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Abstract

Assume a time-harmonic elastic wave is incident onto a penetrable anisotropic body embedded
into a homogeneous isotropic background medium. We propose an equivalent variational formulation
in a truncated bounded domain and show uniqueness and existence of weak solutions by applying
the Fredholm alternative and using properties of the Dirichlet-to-Neumann map in both two and three
dimensions. The Fréchet derivative of the near-field solution operator with respect to the scattering
interface is derived. As an application, we design a descent algorithm for recovering the interface
from the near-field data of one or several incident directions and frequencies. Numerical examples in
2D are demonstrated to show the validity and accuracy of our methods.

1 Introduction

Time-harmonic elastic scattering problems arise from many real-world mechanic systems and engineer-
ing structures, in which the linear elasticity theory provides an essential tool for analysis and design. In
an infinite background medium, the boundary value problem for the Lamé system needs to be reduced
to an equivalent system in a bounded computational domain. For instance, the application of the finite
element method to scattering problems usually requires a strongly elliptic variational formulation with a
nonlocal boundary condition (see e.g., [8,11]). To truncate the unbounded domain, one needs to derive
the so-called Dirichlet-to-Neumann map (or non-reflecting boundary condition, transparent boundary op-
erator) on an artificial boundary as a replacement of the Kupradze radiation condition at infinity. In the
literature, expressions of the DN map in elastodynamics have been used by some physicists and engi-
neers for simulation ( [1,6,15,16,18,28]). However, properties of the transparent operator have not been
sufficiently investigated yet. These properties are fundamental in analyzing the strong ellipticity of the
sesquilinear form generated by the variational formulation and in proving the well-posedness (existence,
uniqueness and stability) of the scattering problem as well. We refer to [9, 12,27] for the treatment of the
time-harmonic Helmholtz and Maxwell equations. Although a nonlocal boundary condition closely related
to the DtN map was utilized in [7], mapping properties of the non-reflecting operator in Sobolev spaces
were not involved there. In a recent paper [25], a special sesquilinear form, which corresponds to the
choice of the parameters A = A + p, it = 0 in Betti’s formula (21), has been employed to prove well-
posedness of the elastic scattering problem. However, the approach of [25] relies heavily on the boundary
condition of the scatterer and applies only to a rigid impenetrable elastic body in two dimensions.

This paper is concerned with both direct and inverse scattering from an anisotropic elastic body in a
homogenous isotropic background medium. The first half is devoted to address the well-posedness in a
more general setting. We propose an equivalent variational formulation in a truncated bounded domain,
and show uniqueness and existence of weak solutions not only forinhomogeneous penetrable anisotropic
bodies but also for impenetrable scatterers with various kinds of boundary conditions. In contrast to the
Helmholtz equation, the real part of the DtN map, Re 7T, is not negative-definite. Nevertheless, the result-
ing sesquilinear form still appears to be strongly elliptic, since the operator —Re T can be decomposed



into the sum of a positive-definite operator and a finite-dimensional operator; see Lemma 2.13 (ii) and
Lemma 2.17 (ii). Motivated by Betti’'s formula, we analyze the DtN map for the generalized stress operator
which covers the definition of the usual stress operator (i.e., A = A, ji = p in (21)) and the special case
discussed in [14,25]. To prove uniqueness, we verify the Rellich’s identity in elasticity; see Lemma 2.14
and Lemma 2.17 (iii). Our proof seems of independently interesting, since it has generalized the argu-
ments presented in [25] and [19, Lemma 5.8] for special cases. The Rellich’s identity in periodic structures
can be found in [13, 14].

The second half of this paper is concerned with the inverse problem of detecting the shape of an unknown
anisotropic body. Relying on the variational arguments presented the first half and those in [21] and
[23], we derive the Fréchet derivative of the solution operator with respect to the scattering surface. A
different approach based on the integral equation was used in acoustics [30] and in elasticity [10, 26].
Such kind of shape derivative can be used, for instance, to design a non-linear optimization approach
for shape recovery from the data of several incident directions and frequencies. We employ a decent
method for finding the parameters of the unknown surface in a finite dimensional space. At each iteration
step, it is required to solve the forward problem and then evaluate the correctness of the parameters
under question. Numerical examples in 2D are demonstrated to show the validity and accuracy of our
inversion algorithms. We refer to the review article [6] and the recent monograph [2] for various kinds of
inverse problems in elasticity and to [3—5,25] where an iterative approach using multi-frequency data was
developed.

It is worth noting that there are still two open questions in our studies. Firstly, how to derive a frequency-
dependent estimate of the solution for a star-shaped rigid scatterer? Readers are referred to e.g. [9] for a
wavenumber-dependent estimate in the acoustic case, which was derived based on the use of a Rellich-
type identity for the scalar Helmholtz equation. In linear elasticity, the lack of the positivity of —Re 7 leads
to essential difficulties in generalizing the arguments of [9]. Secondly, how to prove well-posedness in a
homogenous anisotropic background medium? A new radiation condition at infinity needs to be proposed,
which should cover the Kupradze radiation condition as a special case. In this paper, the assumption of
the isotropic background medium has considerably simplified our arguments. The far-field asymptotics of
the Green’s tensor for a transversely isotropic solid was recently analyzed in [17]. However, a radiation
condition in the general case seems not available in the literature.

The remaining part of this paper is organized as following. In Section 2, we describe the forward scattering
model in R (IV = 2, 3) and prove the unique solvability using variational arguments. Properties of the
DtN map in two and three dimensions will be presented in Sections 2.3 and 2.4, respectively. In Section
3 we derive the Fréchet derivative and apply it to solving inverse scattering problems. Numerical tests for
both direct and inverse problems will be reported in the final Section 4.

2 Well-posedness of direct scattering problems

2.1 Mathematical formulations

Suppose that a time-harmonic elastic wave 1™ (with the time variation of the form e~ where w > 0 is
a fixed frequency) is incident onto an anisotropic elastic body {2 embedded in an infinite homogeneous
isotropic background medium in RY (N = 2, 3). It is assumed that {2 is a bounded Lipschitz domain
and the exterior Q¢ := RN\ Q) of () is connected. In particular, {2 is allowed to consist of a finite number



of disconnected bounded components. In linear elasticity, the spatially-dependent displacement vector

u(x) = (ug,us, -+ ,uyn) " (z) is governed by the following reduced Lamé system
N
0 0
Z — | Ciju(x) k() +wp(@)ui(z) =0 in RY, i=1,2,--- N, (1)
P ox; ox;

In (1), u = u™ + u* is the total field and u** is the perturbed scattered field; C = (Ciju).; .1—1
is a fourth-rank constitutive material tensor of the elastic medium which is physically referred to as the
stiffness tensor; p is a complex-valued function with the real part Re p > 0 and imaginary part Im p > 0,
denoting respectively the density and damping parameter of the elastic medium. The stiffness tensor
satisfies the following symmetries for a generic anisotropic elastic material:

major symmetry:  Cjirr = Chij, minor symmetries:  Cjjx = Cliri = Cijig, (2)

forallz,7,k,l = 1,2,---, N. By Hooke’s law, the stress tensor ¢ relates to the stiffness tensor C via
the identity o(u) := C : Vu, where the action of C on a matrix A = (a;;) is defined as

N
C:A=(C: A= Cyn an.
k=1
Hence, the elliptic system in (1) can be restated as
V-(C:Vu)+w?’pu=0 in RY. (3)

Note that in (1) we have assumed the continuity of the stress vector or traction ( the normal component
of the stress tensor) on 952, i.e., N u = N7 u where

ol Ju ol ou al ou
k k k
New:=v-o(u) = ( Z Vjcljkla_x’ Z VjCijla_x, B Z VjCNjkla_x> )
k=1 bki=1 t jikd=1 !
with v = (v1,10,...,vy)" € SV~ denoting the exterior unit normal vector to 92 and () the limits
taken from outside and inside of {2, respectively.
Since the elastic material in ) is isotropic and homogeneous, one has
Cijkl(l') = )\(51'7]'5]{71 + ,U(di’kéj’l + (5i,15j,k)> x € Q°. (4)

That is, the stiffness tensor of the background medium is characterized by the Lamé constants A and p
which satisfy 1+ > 0, N + 2u > 0. Hence, the stress tensor in 2¢ takes the simple form

1
o(u) = Adivu + 2ue(u), €(u):= 3 (Vu+Vu'),
where I stands for the N x N identity matrix and (-) " means the transpose. Assuming that p(z) = pg
in £2¢, the Lamé system (1) reduces to the time-harmonic Navier equation
A u+w?pou=0 in Q) A%u:=pAu+ (A + p)graddiv u. (5)

Moreover, the surface traction Neu on OS2 takes the more explicit form N u = T ,u, where

€

Ty :=2p0,u+ Avdivu + uvt (Oouy — Oyug), v = (v, VQ)T, v = (—wo, VI)T, (6)



in two dimensions, and
Typu:=2p0u+ Avdivu + pv x curlu, v = (14, 1o, 1/3)T, (7)

in three dimensions. Here and also in what follows, we write T\ ,u = T'u to drop the dependence of T} ,,
on the Lamé constants A and u of the background medium. Denote by

ks i=wv/po/ 1, kp = wv/po/(A+2p)

the shear and compressional wave numbers of the background material, respectively.

Since the domain )¢ is unbounded, an appropriate radiation condition at infinity must be imposed on u*¢
to ensure well-posedness of our scattering problem. The scattered field in €2¢ can be decomposed into
the sum of the compressional (longitudinal) part uff and the shear (transversal) part ©:° as follows (in
three dimensions):

1 1
sc __ ,.8C sc sc __ . sc sc __ sc
U =, Uy, U, ——ﬁgraddlvu , U, —ﬁcurlcurlu . (8)
y4 S

In two dimensions, the shear part of the scattered field should be modified as

1 —
ug® = — curleurl u™, (9)
S

where the two-dimensional operators curl and m are defined respectively by
curlv = O1vg — Doy, v = (vl,vg)T, cm f:=(0f, —81f)T.
It then follows from the decompositions in (8) and (9) that
(A+E2)usc =0, a=p,s, divui®=0
and
curlu,® =0 in 3D, mugc =0 in 2D.

The scattered field is required to fulfill the Kupradze radiation condition (see e.g. [24])

N1 [ Ous No1 [ Ouse
. =22 p . . == .
fo 7 (G = ) =0 88 (G ) <0, vl g0
uniformly with respect to all Z = z/|z| € SV~ := {# € R" : |x| = 1}. The radiation conditions in
(10) lead to the P-part (longitudinal part) u;" and the S-part (transversal part) u:° of the far-field pattern
of u*¢, given by the asymptotic behavior

we(a) = SPORITD ooy SPURITD oo L 0(10]28Y), Ja] 400, (1)

N-1 P N-1

=] 2 || 2
where, with some normalization, ugo and u3° are the far-field patterns of u;c and u:¢, respectively. In this
paper, we define the far-field pattern u* of the scattered field u*“ as the sum of w,° and u°, that is,

u™ = u,” + ug”. Since u,° is normal to S¥=! and u%° is tangential to SV 1, it holds the relations
00 A _ (1100 . &\ 4 coray ] T xu(T) x in 3D,
@) = @) da @ ={ L D

Throughout this paper we make the following assumptions:



(A1) There exists R > 0 such that Q C By := {x € R" : |z| < R} and that u'" satisfies the Navier
equation (5) in Bp.

(A2) The stiff tensor C satisfies the uniform Legendre ellipticity condition
N N
> Cinl@)agan > oy lay’, ay =az, ¢ >0, (12)
ik, l=1 i,j=1

for all z € Q. In other words, (C(z) : A) : A > co||A||* for all symmetry matrices A =
(ai)l;—1 € RY*N Here || A|| means the Frobenius norm of the matrix A.

(A3) ||p||Le() < 00, and ||Ciju|| () < ooforalll <i,5,k, I < N.

Remark 2.1. The incident wave u'™ is allowed to be a linear combination of pressure and shear plane
waves of the form

u™(x,d) = c,dexp(ik,x - d) + ¢, d-exp(ik,x - d), c,,cs € C, (13)

with d € SN=1 being the incident direction and d*+ € SN ~! satisfying d* - d = 0. It also covers elastic
point source waves satisfying the equation

AT u™(y) + P pou™ (5 y) = 0(-—y)a in RM\{y},

wherey € RN \E R represents the location of the source and a € C" denotes the polarization direction.
An explicit expression of u'™(-;y) is given by u'™(-;y) = I1(-,y)a where Il is the free-space Green’s
tensor to the Navier equation given by

1
H(z,y) = ;% (z, )+ grad , grad, [®, (2,y) — P, (z,y)], = #v. (14)

pow?

Here @y, (k = k,, k) is the fundamental solution to the Helmholtz equation (A + k*)u = 0 in R™. It is
well-known that

iH(l)km—y , N =2,
() = { ﬁik\a?—yl( | ) N3 T #Yy, (15)
dr|z—y|’ — 9

with H, él) (+) being the Hankel function of the first kind of order zero.

Let Hl(BR) denote the Sobolev space of scalar functions on Bpg. In the following we state the unique-
ness and existence of weak solutions to our scattering problem in the energy space X := (H'(Bg))".

Theorem 2.2. Under the assumptions (A1)-(A3) there exists a unique solution u € X g to the scattering
problem (1), (5) and (10).

The proof of Theorem 2.2 will depend on the Fredholm alternative together with properties of the Dirichlet-
to-Neumann mapping on I'r. As a consequence, we also obtain the well-posedness of the scattering
problem due to an impenetrable elastic body with various kinds of boundary conditions.

Corollary 2.3. Consider the time-harmonic elastic scattering from an impenetrable bounded elastic body
Q) with Lipschitz boundary embedded into a homogeneous isotropic medium. Suppose that the total field
satisfies one of the following boundary conditions on the surface 0€):



(i) The first kind (Dirichlet) boundary condition: u = 0;

(ii) The second kind (Neumann) boundary condition: T'u = 0;

(iii) The third kind boundary condition: v - ©w = 0,v x Tu = 0in 3D, v - u = v+ - Tu = 0 in 2D;
(iv) The fourth kind boundary condition:v x w = 0,v-Tu =0in3D, v+ -u =v - Tu = 0 in 2D;

(v) Robin boundary condition: Tu — inu = 0, n € C, Re(n) > 0.
Then the scattered field u*® = u — u'™ is uniquely solvable in (H}. .(RN\Q))".

The variational approach for proving Theorem 2.2 can be easily adapted to treat the boundary value
problems in Corollary 2.3. We omit the details for simplicity and refer to [14] for the proof in unbounded
periodic structures.

Remark 2.4. Using integral equation methods, well-posedness of the boundary value problems in Corol-
lary 2.3 has been investigated in Kupradze [24, 31] for scatterers with C?-smooth boundaries. The varia-
tional arguments presented here have thus relaxed the regularity of the boundary to be Lipschitz.

2.2 Variational formulation with transparent boundary operator

Let R > 0 be specified in assumption (A1). Write ' := {2 € RY : |2| = R}. By the first Betti's
formula, it follows that for u, v € X,

_/BR[V.(c:quwzpu]_wx_/

Br

[(C:Vu):Vﬁ—pru-E]dx—/ Tu-vds. (16)

I'r

Below we introduce the Dirichlet-to-Neumann (DtN) map in a homogeneous isotropic background medium,
allowing us to reduce the scattering problem to a bounded computational domain.

Definition 2.5. Foranyw € (H'/?(I'g))", the DIN map T acting onw is defined as
Tw = (Tv*)|r,,

where v*¢ € (H}.

loc

(RN \E R))N is the unique radiating solution to the boundary value problem
AV + WPpv® =0 in RY\Bg, v*=w on Tj. (17)

Remark 2.6. The DtN map ‘T is well-defined, since the Dirichlet-kind boundary value problem (17) is
uniquely solvable in (H} (R \ Br))"; see Remarks 2.12 and 2.16 for the explicit expressions in terms
of special functions.

To obtain an equivalent variational formulation of (1), we shall apply Betti’s identity (16) to a solution
u = u™ 4 u*¢ in Bg and use the relation

TU — TU,m + Tusc — Tum + Tusc — f + TU, f = (Tuzn o Tuin>|FR-



Then the variational formulation reads as follows: find © = (ul, cee ,uN) € Xy such that
a(u,v):/ f-vds forall v = (vi,vs, -+ ,vn) € Xg, (18)
I'r

where the sesquilinear form a(-, -) : Xr x Xr — Cis defined by

a(u,v) := / i C; kl%@ —w? puT; p du — Tu-vds. (19)
’ Br J 8:)31 aﬂ:'J

i3,k 1=1 T'r

Remark 2.7. The variational problem (18) and our scattering problem (1), (5), (10) are equivalent in the
following sense. If u*® € (H}., .(R™))N is a solution of our scattering problem, then the restriction of the
total field u to B, i.e., u| Bg» Satisfies the variational problem (18). Conversely, a solution u € Xg of
(18) can be extended to a solution u = u'™ + u* of the Lamé system in |x| > R, where u*° is defined
as the unique radiating solution to the isotropic Lamé system in |x| > R satisfying the Dirichlet boundary

value u*¢ = u — u™ onT'p.

In the following lemma, we show properties of the DtN map 7 which play an essential role in our unique-
ness and existence proofs. The two and three dimensional proofs will be carried out separately in the
subsequent Sections 2.3 and 2.4.

Lemma 2.8. (i) 7 is a bounded operator from (H'/?(T'g))N to (H~/?(I'))".

(ii) The operator —T can be decomposed into the sum of a positive operator ], and a compact operator
To, thatis, =T = Ty + Tz on (H/*(T'g))".

Let X}, denote the dual of X p with respect to the inner product of (L?(Bg))" . By the boundedness of p,
Cijii (see Assumption (A3)) and T, there exists a continuous linear operator A : Xp — X1}, associated
with the sesquilinear form a such that

a(u,v) =< Au,v > forall v € Xg. (20)

Here and henceforth the notation < -, - > denotes the duality between X, and X r. By Assumption (A1)
and Lemma 2.8 (ii), there exists & € X, such that

f-vds=<F,v> forall v € Xg.
T'r

Hence the variational formulation (18) can be written as an operator equation for finding © € Xg such
that

Au=F in Xj.
Below we recall the definition of strong ellipticity.

Definition 2.9. A bounded sesquilinear form a(-, ) given on some Hilbert space X is called strongly
elliptic if there exists a compact form q(-, -) such that

Re a(u,u)| > C||ul|% — q(u,u)  foral u€ X.



The following theorem establishes the strong ellipticity of the sesquilinear form a defined in (19).

Theorem 2.10. The sesquilinear form a(-,-) is strongly elliptic over X r under the Assumption (A2).
Moreover, the operator A : Xr — X7, defined by (20) is always a Fredholm operator with index zero.

Proof. We may rewrite the form a as the sum a = a; + as, where the sesquilinear forms a; (7 = 1, 2)
are defined as

Ouy, 07;
a(u,v) = / { E Czjklaukaz}dx+ A Tiu-vds,
J R

i,Jsk =1

as(u,v) = —w2/ u-vdr + Tou - vds,
Br Tr

Note that 7; (j = 1,2) are the operators given by Lemma 2.8. It is seen from the uniform Legendre
ellipticity condition and Lemma 2.8 (ii) that a; is coercive over X r. The compact embedding of X into
(L?(Bg))" and the compactness of T, give the compactness of the form a,. Hence a(-, -) is strongly
elliptic over X and thus A is a Fredholm operator with index zero. O

Proof of Theorem 2.2. Using Theorem 2.10 and applying the Fredholm alternative, we only need to prove
the uniqueness of our scattering problem. Letting " = 0 (which implies that f = 0 in X%) and taking
the imaginary part of (18) with v = u*¢ we get

Im Tu®* - uscds = 0.
Ir

By the analogue of Rellich’s lemma in elasticity (see Lemmas 2.14 and 2.17 below) we obtain 4°¢ = 0 in
Bpg. This proves the uniqueness and Theorem 2.2. Ul

The remaining part of this section will be devoted to the proof of properties of the DtN map in a more
general setting. We shall consider the generalized stress vector (cf. (6))

)

T = (M+ﬁ)u-gradu+§udivu—wacurIu, if N =2,
AR (u+ p)v-gradu + Avdivu + pv X curlu, — if N =3,

where X 1t € R satisfying A+ [t = X\ + p. In the present paper we suppose that

(A — p)(A+2p)
A+ 3

<A< A+ 24 (22)

The assumption (22) will be used later for proving Lemma 2.13 (ii) and Lemma 2.17 (ii). We emphasize
that the above condition (22) covers at least the following three cases:

Case (i): A=\ ji = L.
Case (ii): A=A+ p, i =0.

Case (ji): A= (A + 21) (A + 1) /(N +3p), fi = (X + ) /(A + 3p).



Note that the usual surface traction coincides with fX i in the case (i). Properties of the DtN map in case
(i) were analyzed in [13] on a line and in [25] on a circle.

The generalized DIN map 7N' corresponding to (21) is defined as
Tw=(T5;v) e, we (H(TR)",
where v°¢ € (Hlloc(Qc))N is the radiating solution to the isotropic homogeneous Navier equation (5) in
z| > R.
2.3 Properties of DtN map in 2D

In this section we verify Lemma 2.8 and the Rellich’s identity for the generalized DtN map 7~‘ in R2. For
this purpose, the surface vector harmonics in R? are needed. Denote by (r, 0, the polar coordinates of
T = (a:l, xg)T € R? and by 7,0 € S the unit vectors under the polar coordinates, i.e.,

7 = (cosf,sinf)", @ =(—sinb,cosd)", 6e]l0,2m).
Let P,, and S,, be the surface vector harmonics in two-dimensions defined as

P, (&) := "¢, 8, (&) := "0, & =ux/|z|eS. (23)

Below we shall derive a series representation of the generalized DtN map. The solution v*¢ can be split
into the sum of a pressure part with vanishing curl and a shear part with vanishing divergence, that is,

v*¢ = grad ¢, + mzﬂs in |z|] > R, (24)

where 1), and 1), are both scalar functions. It then follows that

O
Aty + k21py =0,  lim 7/ ( Vo _ ikawa) =0, a=p,s. (25)
r—00 or
The solutions of (25) can be expressed as
= H Y (kar) .
@Z)a(l') - —¢Z 62n917 r= |ZE‘ Z R7 a =p,Ss, (26)
n:z—:oo H7(11) (kaR)

where 1! € C stand for the Fourier coefficients of ¢, |r,, and H{ is the Hankel function of the first kind
of order n. Set

aVt,) 7Y (t)
to = kaR> Yo = Ta7 5& = 1) = ) a=Dp,Ss.
Hy (ta) Hn (ta)
Let (-, -) be the L? inner product on the unite circle, given by
1 2
(u,v) := %/0 w-vdf forall wu,ve (L*(SH))%



Due to the orthogonality relations between P,, and S,,, it is easy to derive from (24) and (26) that

1 . n sc 1 ; n n
tpvag + ans:l 9 (U |FR7 STL) - E [an/Jp - ts,ysws} .

(v*|rps Pn) = 5
Equivalently, the previous relations can be written in the matrix form

7 |
(A (v*|rp, Pr) |ty m
A, L/le} =R {(USC|FR, Sn):| . A, = Iz?np —ts%} . (27)

Lemma 2.11. The matrix A,, is invertible for alln. € Z and R > 0. Its inverse is given by

_ 1 [—tyyvy —in
A= { —uz ty, ] N =det(Ay) = 0P — ttey. (28)
n pIp

Proof. It's sufficient to prove that A,, # 0. We write A,, as
Ay =n?— Li(tp) In(ts), In(z) = ZH ( )/H ( )-

Making use of the Wronskian identity for Bessel and Neumann functions (see, e.g., [12, Chapter 3.4]), it
is easy to derive that

2
Im (1,(z)) = ——q, o, foral ne Z, z > 0.
| Hn (2)]?

This implies that, for any fixed n € 7Z,

Re(A,) = n?—Re(L,(tp)) Re (I,(ts)) +Im (I,(tp)) Im (I, (L)),
Im(A,) = —Re(L,(tp)) Im (1,(ts)) — Im (L,(tp)) Re (I.(ts))

cannot vanish simultaneously. Hence, A,, # 0. O

Remark 2.12. The unique radiating solution v*¢ to the boundary value problem (17) can be represented
as the series (24) and (26), where the coefficients w;} and ! are given by

] = s

Now, we turn to investigating the generalized stress vector (cf. (21))
Tv*e = (u+ ) 7 - grad v* + A7 dive* — 10 curlv™  on |z| =

Inserting (24) into the previous identity and using the relations

9 1,0 9 = L0 1.0
grad—TE—i—;O%, ’r'grad— 5, CUI’|——08—+;T%,
we obtain via straightforward calculations that
= 3% 1, 3% 3% A w
. Sc — - _ 0 |
r-Tv (u+p)r " [ o +r 50 e + e + \divcurly,

o 2
" Yy 1 0y 1 0%, -

p— - - A

OH_'M)(@TQ r2 89+r87°80 + ALY,

n T,sc __ n. Y awp 1Aa¢p_ 87#3 1 8ws - —
0-Tv = (u+np)o- B { 50 0 5 T 5 ficurl curli
10 1 8% 0?9, _
=t ( r2 0 7“87’32 o2 ) + BAY;.

10



This implies that

7’ SC R Pn n
(~v Ir ) _ %Bn {%}] (29)
(TUSC|I‘Ra Sn) R ws
where
B, - [ (n+ D5 = il ) (83, —3)} o)
i(p+mn ey — 1) — (u+ R) 66, — it
Combining (29) with (27) gives the relation
(T(USC‘FR)a Pn) _ Wn |:(UZZ|1"R, Pn>:| ’ Wn — anAgl (31)
(T(USC|FR)7STL> (?) |FR’Sn) R

Properties of the two-dimensional DtN map are summarized in the subsequent two lemmas.

Lemma2.13. Letw =Y, , wiP, + wlS, € (H'/*(Ty))*. Then,

(i) The generalized DtN operator % takes the form
Tw= Z W, {wz}
ne”Z s

in the orthogonal basis {(P,,S,) : n € Z}. Moreover, T is a bounded linear operator from
(H*(Tg))* to (H*"Y(Tg))? forall s € R.

(ii) For sufficiently large M > 0, the real part of the operator

—Tw = — Z W, {z

[n|=M

» 3T I

|

is positive over (H'/%(T'y))2, and T — T, is a compact operator.

Proof. (i) We only need to show the boundedness of 7N’ Recall that

1/2
[l e (a2 = <Z<1+!nl>25\w”l2> =l w]T

neL

1/2
T wll(ms—1rry = <Z(1+!n|)2(51)!annl2> -

ne”

Hence, it suffices to estimate the max norm of the matrix 1V,, bounded by
[[Whllmax < C'|n], (32)

for some constant C' > 0 uniformly in all n € Z, so that |IW,,w"|? < C? |n|?|w"|?.

11



It holds that

HY'(2) = (HOG) - 2H0E)

n—1 n
—1
= —HD(E) + () + HO () = = (H(2) - SHD(2))
z 2
n?4+n— 22 1
- 22 Hr(bl)(z) - ;Hfz—)l( )
2 2 1
= PR a0e) - - (1) + 2HDG)
z z
n2 1 I
= (= 1) HD) = ZgW)
(% - 1) 06 - L)
giving rise to the identities
n? 1 n? 1
:——1—— 5:——1__5. 33
5}7 tg tp’y]” ﬁ tz t57 ( )

From the expressions of A~ ! and B,, we get the entries Wéi’j) of W,,, given by

WD = (e [ 18, — X2 - Pt~ 1)}
— R}\n [— (1 + ) An 4+ w?po Rt

WED o {4 Bt — 1) = b, [0+ DR, + 7]
= R}\n [ (1 + 1) An + w?po Rty ]

w2 R}\n {_m [(u + )28, — th} +intyyp(p+ 1) (tsys — 1)}
_ R}\n [—in(u + i) A + inw?po R?] |

WD = Ri\n {=in(p + Pyt — 1) +in [(p + 0)t3 6, + fit?] }
_ Rin [in(+ 7i) Ay — inw?po R?)]

in which we have used (33) and the fact that X+ = A+ .

From the series expansions of the Bessel and Neumann functions (see, e.g., [12, Chapter 3]) we know

HWY(2) = % (%)nl [(n— 1) (%)2+1+O (%)] . n — +oo0.

12



This implies that

/
The asymptotic behavior (34) together with the relation Hfll) = —n/zHﬁl) + H,Sl_)l leads to

HY' 1
#:_Lim(j), n = +oo.
Hy(2) z n

Since H(_IT)L(Z) = (=1)" fll)(z), we obtain as |n| — oo that
a2Vt |t 1
o = LA Sl /R < O - | > bl 22! 35
T D) e 2l () amre .

R?(ky + k3) 1, RPpow’(A+3p) 1
A, = ) oy = o) . 36
2 i (!n!) i+ 2m) ( > %)

]

Inserting (35) and (36) into the expression of W,gi’j) yields

1,1) _QM()\+2M) n

2u(A +2p)
R(A+3p)
1oy [(p A p) A+ 3p) = 2u(A + 2]

W = RO+ 30) In| +O(1),
2y _ et pA+3p) = 2p(A+ 2]

Wy RO% 30 [nl +0(1),

from which the estimate (32) follows directly.

w2 In| +O(1),

(ii) Define W, := —(W,+W)/2, where (-)* means the conjugate transpose of a matrix. For sufficiently
large |n|, we have

= 2p(A + 2p)
WLy —
" R(\+3p) |

dot (7.) = AP\ + 2p) ;z £((>)\\ 1 ?)L()AQ 30 2P, O(n).

n|+0O(1) >0,

Under the assumption (22) on X we see

AP+ 20) = [ = N\ + 3p) + 242 > 0.

13



implying that det (Wn) > ( for sufficiently large |n|. Hence, there exists M > 0 such that Wn is positive
definite over C? for all [n| > M. This proves the positivity of the operator —Re 7; defined in Lemma
2.13. Finally, 7 — 77 is compact since it is a finite dimensional operator over (H'/?(T'z))2. O

Below we verify the analogue of Rellich’s lemma in plane elasticity. It was used in the uniqueness proof
of Theorem 2.2.

Lemma 2.14. Let u*“ be a radiating solution to the Navier equation (5) in |x| > R. Suppose that
Im < T (w*|r,,) ~st) = 0.
I'r
Thenu*® = 0in|z| > R.

Proof. Assume that ¢ can be decomposed into the form of (24) and (26) with the coefficients ¥,, =
(n,7) T € C2 It follows from (27) and (29) that

T(w*lr,) - ueds =Y (RB,¥,, R'A,0,) = R (ALB,¥,,T,). (37)

I'r nez nez
Using again the relations in (33), straightforward calculations show that
A*B, = {tp% m_} [ ( +£L)tp5p — Aty i+ Mln (;55% —~1)2} _. {an (112} . (38
—in —ts| li(p+p)n(tyy, — 1) — (u+ ) t28s — ut? a1  G22
Recalling X+ it = A\ + p and making use of the relations

2

2 Ba=n>—t2 —taVe, Im(¥,)=——7——
|HY ()2t

<O’ a:p7s7

we obtain
2w R?
Im (an) = ~Im (7,) (A + 2u)ty = —47——— >0,
’ " wlHDY (k,R)P2
2w R?
Im (ag) = —Im (7,)ut; = —7——— >0,
w|Hi (k, )2
a12 = Q21.
This implies that
. AiBy) = (A3B.)*  2w*R? |1/|HY (k,R)[? 0
(4, _ A8 — (4B) JEOGRE 0
20 ™ 0 1/[Hn” (ks R)|
Now, we conclude from (37) and (38) that
20 yr no
O:%Z ‘ o ‘ (1;%
T \ | He (K R) Hy (ksR)
implying that ¢)7 = 1) = 0 for all n € Z. Therefore, u** = 0 in |z| > R. O

14



2.4 Properties of DtN map in 3D

The aim of this section is to derive properties of the generalized DitN map in 3D, following the lines in
the previous section. Denote by (7, 0, ¢) the spherical coordinates of x = (x1,2,73)" € R>. The
coordinate 6 € [0, | corresponds to the angle from the z-axis, whereas ¢ € [0, 27) corresponds to the
polar angle in the (x, y)-plane. Let

= (cosfsin ¢,sinfsin ¢, cos @) ',

= (—siné,cos6,0)",

= (cosf cos ¢, sin 6 cos ¢, — sin ¢) "

> P

be the unit vectors in the spherical coordinates. In 3D, we need the nm-th spherical harmonic functions

A (2 + 1)(n — [m]) .
Ynm = Ynm 9; — P‘m‘ 9 ime = - Sz
() = Yon(0,0) \/ e T E s =l
foralln € Nand m = —n,--- ,n, where P is the m-th associated Legendre function of order n. Let

Unm and V', be the vector spherical harmonics defined as

R Ve Y, (2
Upm (XT) 1= ST()’

where 0,, := n(n + 1) and Vg2 denotes the surface gradient on S2. They form a complete orthonormal
basis in the L?-tangent space of the unit sphere

V(@) = & X Uy (&), (39)

L7(8%) == {p € (L*(§"))" : & - (&) = 0}, (40)
and satisfy the following equations for any f(r) € C*(R™):

VoS, 106 (r)

(V) = L0y, 5 LOWTOD), (@1)
P curl (F(1 V) = —%wwm, (42)
P ourl (F(r) Vo) — @um @3

v (f(r)unm) = _MYW (44)

As done in 2D, we split a radiating solution v°¢ to the Navier equation (5) into its compressional and shear
parts,

v* = grad, + ¢, divey, = 0. (45)

where 1), is a scalar function satisfying

A, + k2 =0, limr (% — z‘k:pwp) =0, (46)

li
r—00
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and the vector function 1, fulfills

curlcurlp, — k2ap, = 0, l1m r (agp — iks'd)s) =0. (47)
T
The solutions of (46) and (47) in |z| > R can be expressed as
N (D)
" nzg ngn hg) (kpR) g

N () hi) (kyr)

Y, = LMV (0, 0) + curl | ———"—Y"0V . (0,0)| ¢, (49)
22 2 V) TR

where )™ Y (j = 1,2) € C and 1" is the spherical bessel function of the third kind of order n. A
direct calculation implies that

@) = 3 Z UV (0,6)

n=0 m=—n

() o . W' g
+ZZ{W1 (o) [hn<k5>+kh (k1)

mar Sl iy R) rhi (kR) bl (kR)
d (k,r) Ok (kyr) .
+ Y — S0 5 Yo (0, )7 (50)
,;mz_n{ e,r) T rhD(kR) )
Analogously to the 2D case, we set
hY (2, h (t)
lo == koaRa VYa = —Oé’ ﬁa = —aa a=p,s. (51)
(1) h(t)

Due to the orthogonality relations for w,,,,,, V .., and Y,,,,,7 we derive from (50) that
G T A ¢?T,
@l tn) = [V~ (L )]
(0l Vo) = }%(tpwgm—@ ).

In other words,

?,T (USC|FRa Vnm) R 0 0
Ap V85| = R | (Vg tnm) |, Ani= |0 =1 =1, Vo, . (52)
¢gm (USC|1"R> Ynm’f') 0 _\/5_71 tp’yp

Lemma 2.15. The matrix A, is invertible for alln > 0, R > 0, k, > 0 and ks > 0. Its inverse is given
by

L0 0
R
A7 =0 tﬁ; —1% Ay =0, — (1 + t7s). (53)
0 VOon __t.s!s
A’VL n
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/!
Proof. It's sufficient to prove thatdet(A,,) # 0, or equivalently, A,, # 0. Setting I,,(z) := zh) (z)/hg)(z)
we have A,, = 0, — I,,(t,) — L, (t,)In(ts). Recalling from [27, Theorem 2.6.1] that

1
1< —-Rel,(z)<n+1, 0<Iml,(z)=——— <2z foral z>0, (54)

2| (2)]?

we obtain

Im (A,) = —Im I,(¢,)(1 + Re (1,,(ts)) — Re I,,(t,)Im I,,(¢5) > 0.

The equation (52) implies that

Remark 2.16. The unique radiating solution v*¢ to the boundary value problem (17) can be represented
in the form of (24) and (26), where the coefficients "™ and 7,0 (7 = 1,2) are given by

o = RA;1 (W, Upm)
(DA (w, Yom?)

We now consider the generalized stress operator
Tv* = (pu+ Ji)7 - grad v*° + A7 div o™ + [if X curl v*°, (55)

where X, it € R satisfying Py + & = A + . Using the notation introduced in (51), the first and second
terms on the right hand side of (55) can be rewritten respectively as

(7 - grad v*°)| = ((%SC)
I'r or I'p

n=0 m=—n

+ Z Z RQ [ p/Vp )¢;m + (1 - tsfys t265) s 2] unm(ea gb)

=0 m=-—n

EYY B VB v V0,00

n=0 m=—n

and

(Faivo™ )|, = (PAY) [ = (=ku?) | Z Z Y (0, ).

n=0 m=—n
Since h,(ll)(kzsr)Vnm(é’, ¢) is a radiating solution of (47) and

P X Vo =7 (T Upm) — Uppn (P - T) = —Upy,

17



the third term of 7 v¢ in (55) takes the form

(7 x curlv*)| = (# xcurly, )!

"’ )
— Z Z 7 x curl [h )(k ) ZTVW(@,@]

n=0 m=—n (k3R>
(1)
+§mz_n {r x curlcurl [y %Vnm(& gb)] }
n= Omf—n
00 n t2

n=0 m=—n

Therefore,

T sc 1 ~\ L, nm
(TU |FR) Vnm) ey (,uts'Ys - ,u) %,1 9

R
(7-USC‘FR’ unm) - % {\/aQu + 1) (tpyp — )wnm [(:u + 1) (1 tsys — t26s) 3] Z’Q”} ’

(Te* s Yom?) = Ri {0+ 28, = X2 v+ ou(u+ 1) (L= t,) vy

Set the matrices

R (/Ltsﬁ)/s - /j) 0 " ~0
B = 0 (n+ ) (1= toys = £28,) — it VOu(p+ 1) (b — 1) |, (56)
0 VO (i + 1) (1 = ty5) (4 W)t26, — Aty

and define W, := 1/RB, A,;'. Then we obtain

’72 se 7Vnm> nm Sc

(NU |FR s,1 (U |FRaVnm)

(T Vg s unm> =B, |5 | = Wi | (v*|rg,s Unm) | - (57)
<;7V-/USC|FR7Ynm'f') vy ("I Yom )

The above identity links the generalized stress operator %USC‘FR and v*°|r,, in the coordinate system
(V s, Unms Ynm ™) of the vector space (L?(S?))3. Below we shall investigate properties of the three
dimensional DtN map 7 using (57).

Lemma 2.17. (i) 7 is a bounded linear operator from (H*(T's))? to (H*Y(T'g))? forall s € RR.

(ii) The matrix —Re W, is positive definite for sufficiently large n > 0. Hence T is the sum of a positive
operator and a compact operator over (H'/?(I'y))?.

(iif) Lemma 2.14 remains valid for the generalized DtN map 7~' in 3D.

18



Proof. (i) We only need to show that the max norm of the matrix ¥/, is bounded by
|[Wollmax = R7|B, A, |Imax < C'n, (58)

for some constant C' > 0 uniformly in all n > 0, where the matrices A,, and B,, are given by (53) and
(56), respectively. For this purpose we need to derive the asymptotics of each entry W,Em ) 1<4,73<3)
of W,,. In three dimensions, it holds that

n-+1 !
W) = (M) - )
—1 +1 +1 +1
= A+ T )+ ) - P (1) - ) )
z z z z
(n+1)2*+n+1-—22 2
= » AP (2) = Zhi(2)
1)? 1 — 22 2 1
—— +; () - > B (2) + 2T h£1’<z))
_ (2 r0(2) — ZpW'(2)
ZQ n > n ’
implying that
5 2 5 p
B:_n_l__77 Bs:_n_l__fys- (59)
P t, " 2 te

Note that the relations in (59) differ from those in two dimensions; cf. (33). Using the expressions of B,,
and A,,, we obtain the entries of IV,, via straightforward calculations

ts/Ys - ﬁ
wey - Hss T i
n R )
WTEI,Q) _ Wygll) — W,—(LL?)) — WT(L3,1) — 0’
1 - - -
W1E2,2) = RA [tzﬁp(ﬂ + 1) (1 —1sYs — tiﬁs) - Ntitzﬁp — O (p+ 1) (1 — tﬂp)}
1 -
= RA [(M + 1) (tptsypYs — On + tzﬁp) + thtp%] )
WD = st ) (U 1) = [t 28, — A2 (14 1))
n - RAn n\M T H Vs Ko )T, Pp P sVs
1 ~
= a2+ 835) + 200+ 1)t ys = O + 7))
1 7 - - ~
Wi = o | = VOt ) (1=t = £30) + AN O+ V/On( 4 1) (1= 17) (1 4+ £7)
1 7 ~ /
= RA _\/ 5n(,u + M) (5n — UptsVpYs — tp’Yp) - Mti 5n] )
1 _ o~
Wrgg,Q) = RA. LY Ontpyp(p+ 1) (1 — tsys) + tzz)ﬁp V On (4 1) — >‘t12; V 571}
1 7 ~ /
= RAL L V O (p =+ 1) (6n — IptsVpYs — tpr) — (A + Qﬂ)ti 54 )

3

19



in which we have used the relation (59) and the fact that by + 1t = A+ p. Now, we need to derive the

asymptotics of W (1 < i,j < 3) as |n| tends to infinity. From the series expansions of the spherical
Bessel and Neumann functions we know

1 1 1 1
B —21-3..... 2n—1 O —= — .
w(2) i (2n —1) ot T 227=1(2n — 1) N 2)| T
Then
hilzl(z) _ 1 + 2zMn— 2(2n 3) + 0 ( )
hw(@ 2n —1 z”l‘"l + g 2n i) (LQ

- o)) {”0( )

which further leads to

Therefore, as n — 400,

w _ K BktH 1
W IR T <n :
2p(A +2p)
w2 o(1),
" R(A+3p) (1)
2p(A + 2#)
Wi = n+0(1),
R(A+3p)
A+ 3p) — 2p(A + 24)]
W(2,3) _ [( )( n+O(1 :
" R(A+3p) (1)
+ 1) (A + 3p) — 2p(A + 2p)]
W(3,2) — [(:u o(1).
n RO\ + 310 n+0()
This proves (58) and thus the first assertion.
(i) Set Wn = —(W,, + Wy)/2forn > 0. For sufficiently large n > 0, we have
W = Ky +w+o( ) -0,
203 (A + 2p)
WD 2) = FCeEm) n?+0(n) > 0,
4O\ + 2)% — [(A = NN+ 3p) + 207
O .
det (W, ( RN T 30)° n”+ O(n)

Recalling the assumption (22) on X we see

AP+ 20)2 = [ = N\ + 3p) + 212 > 0.
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This implies that det Wn is positive definite over C? for sufficiently large n. The proof of the second
assertion is compete.

(ii) Assume that a radiating solution v*¢ to the Navier equation (5) admits the series expansion (45), (48)
and (49) with the vector coefficient U™ := ( SRS wgm)T € C®. Making use of (52) and the first
relation in (57), we get

T r,) veds = > Y (R2By™ R7'A ™)

neNg m=—n

= R7) zn: (A* B, U™ ™y

neNg m=—n

I'r

Here (-, -) denotes the inner product over C3. Hence,

> i (Im (A% B,)¥m™™ wmm) = (. (60)

neNg m=—n

To evaluate the product of A* and B,, we need the identities (cf. (54), (59))

Im (taYa) = 1/(tal BV (8a)]7) >0, 1200 = 60 — 12 = 2taYa, @ =p,s. (61)
Since
R 0 0
AZ =10 —-1- tsis _\/E )
0 \/E tpﬁp
direct calculations show that
plm (ts7ys) 0 0
Im (A% B,) = R? 0 wTm (t47s) 0
0 0 w?Im (t47s)
This together with (60) and the first relation in (61) yields | U™ = O foralln > 0, m = —n,--- ,n.
Therefore, v*¢ = 0in || > R. O

3 Reconstruction of multiple anisotropic obstacles

In this section, we consider the inverse scattering problem of reconstructing the support of multiple un-
known anisotropic obstacles from near-field measurement data. We first derive the Fréchet derivative
of the near-field solution operator, which maps the boundaries of several disconnected scatterers to the
measurement data. Then, as an application, we design an iterative approach to the inverse problem using
the data of one or several incident directions and frequencies.
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3.1 Fréchet derivative of the solution operator

Suppose that 2 = vazole is a union of several disconnected bounded components 2; C RY. Each
component {2 is supposed to be occupied by an anisotropic elastic obstacle with constant density p; > 0
and constant stiffness tensor C; = (C} kimn ). j.mn—1- Assume that the boundary T'; of Q; is C?. Let
Qg := Bg\Q. Denote by pg > 0and Co = (Coxtmn) 1 mn1 the density and stiffness tensor of the
homogeneous isotropic background medium. Set

Uy, WS Qj,
U = . Ny (62)
uC+u", oz e RY\Q.

We assume there is an a priori information that the unknown elastic scatterers {2;, 7 = 1,---, Ny,
are embedded in the region By for some R > (. The variational formulation for the forward scattering
problem in the truncated domain B reads as follows: find u € Xy := (H'(Bgr))" such that

a(u,v) = f-vds forall veE Xg, f:=(Tu™—Tu™)|r,, (63)
Ir
where
No
a(u,v) = ZAQ].(U,'U)_/ Tu-vds
=0 Ir
al Oty DT,
Aq. = C; mn_m_k_ Wi -T da ‘:Ov]-)'”’N'

Here 7 is the DtN map introduced in the previous section. We study the following inverse problem:

(IP): Determine the boundaries I'y,--- ,I'y, from knowledge of multi-frequency near-field measure-
ments u|r,, corresponding to the incident plane wave (13) with one or several incident directions.

Let u € Xg be the unique solution to the variational problem (63). Since each boundary I'; is C?, we
have u € (H?(Bgr))". In this paper we define the near-field solution operator .J as

J: (T, Tng) = ulrg. (64)

The mapping J is obviously nonlinear. To define the Fréchet derivative of 7 with respect to the boundary
I'= Uévz()le, we assume that the function

hj = (hjp, - hin) " € (CHTNY, hillcreyy < 1
is a small perturbation of I';. The perturbed boundary is given by
Dini={yeRY :y=u0+hi(z),r €Ty}

Definition 3.1. The solution operator [J is called Fréchet differentiable at I' if there exists a linear
bounded operator J}. : (CH(T'}))N x -+ x (CYT'n, )N — (L*(TR))™ such that

No
|T (Cons - s D) = T (T, Tvg) = Frha, - v 2oy = 0 (Z thH(Cl(rj))N> :
j=1

The operator [T} is called the Fréchet derivative of J atT".
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Given h; € (C'(T';))", there exists an extension of h;, which we still denote by h;, such that h; €
(CHRY)N, NRjllcr@ayyy < cllhyll iy~ and supp (h;) C K, where K is a domain satisfying

I'; C K; CC Bg\ (Ui\f:()l#ij)_ Define the functions

No

W)=Y hi(z), y=&@) =az+h(z), zeR".

j=1

For small perturbations, £" is a diffeomorphism between I'; and T'; .. The inverse map of £" is denoted
by n". Corresponding to Q;(j=0,1,---, Np), we define

Qjﬁ = {y - RN LYy = §h<$),$ & Qj}, ] = ]_,27 e ,N(), QO,h = BR\U;-V:%Q]"}V
The differentiability of 7 at I is stated as following.

Theorem 3.2. Let u (see (62)) be the unique solution of the variational problem (63), and let h; €

(CHT))N, 4 =1,---, Ny, be sufficiently small perturbations. Then the solution operator J is Fréchet
differentiable at I'. Further, the Fréchet derivative J. is given by Jl.(hi,- - , hn,) = to|ry, where 1

together withu; (j = 1,-- -, Ny) is the unique weak solution of the boundary value problem:
V(Cj : Vﬂj)+p]~wzﬂj =0 in Qj, ]:O,l, 7N07 (65)
aj—ﬂg—szo on Pj,j:]_,"',N()7 (66)
NciaJ_NCJrﬂo_gjzo on Fj?jzlf"uNOv (67)
Tﬂ() - Tﬁo =0 on FR. (68)

where

fi = —=(hy-v) [07u; = OF (u™ +u™)] Ir, (69)

and the expressions of g; € (H~/2(T;)) rely on the space dimensions. In 2D, we have

g; = wz(hj V) [pju; — po(u® + um)ﬂ
—0; [((05(u;))™ = (go(u* + u™))") (hj2, —hj1) "], (70)

where 0. = v+ - V is the tangential derivative. In 3D, it holds that
gj = wg(hj . V) [pju]_ — po(u“ + Um)—’—} — dI'VFJ. ((A] — Ao) X V) s (71)

where divr is the surface divergence operatoronl and A; € CN*N are defined by

0 —hg hs
Aj = O'j(uj')ih"j —h3 0 hl y ] == 0, 1, te ,NQ. (72)
he hy 0O

Proof. Set the space

H = {(v,w) € (H* Q)Y x (H' ()Y :v=w on Ty, j=1,---,No}.
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The variational problem of (65)-(68) can be formulated as the problem of finding uy € (H'(Q))Y,
u; € (H(Q;))N suchthatu; — ug = fjonT, 5 =1,---, Ny, and

NO NO
ZAQJ.(%,U) —/ Tug-wds = Z/ gj-wds foral (v,w)e€ H. (73)
=0 Tr j=17T;

It follows from the regularity of u that f; € (H'/2(T';))N and g; € (H~Y(T;))N. Let f; € (H'(,))N
be the trace lifting functions of f;. Then the variational formulation (73) looks for 7y € (H'(€))" and
ﬁj = ﬂj — fj S (Hl(Q]))N such that ﬁj = a() on Fj,j = 1, s ,NQ and

NO NO
ZAQj(aj,v)— Tﬁo-wds:Z/ gj-wds—ZAQj(fj,v) forall (v,w) € H. (74)
I'r j=1 YL j=1

j=0

Applying Lemma 2.8 and Theorem 2.10, we see that the above variational equation (74) admits a unique
solution. For the given functions ; € (C*(T';))", we extend them to B, in the same way as before. Let
Jyn and Jen be the Jacobian matrices of the transforms nh and £", respectively. It then follows that

Joo = I+Vh, Jp=I-Vh+O (IIhII%I(BRw) )
det(Jer) = 1+V-h+0O <||h||201(BR)N> '

Consider the perturbed variational problem: find u;, € X such that

No
ZAijh(uh,vh) —/ Tuy, - vy ds = / f-vnds forall v, € Xg. (75)
Here f = (Tu™ — Tu™)|r,. Define U = (1, Us) " := (up, 0 £")(z). Then we have

No No N
> Aq,(unon) = Y / D CiktmnV Ty (,0) T (2, 1) TV det(Jgn) dar
=0 - 0.

J k,l,m,n=1
No
— ijWQ/ U - vdet(Jen) da
=0 &

where A(:, n) means the n-th column of the matrix A. From the stability of the direct scattering problem it
follows that u converges to u in Xg as ||h||(c1(p,))v — 0. Letw € X be the solution of the variational
problem

No
a(w,v) = ij(u,v, h) foral v € Xg,

Jj=0

where

N
Dun OhT . Oh ovF O, IV

J k,l,m,n=1

+p; w2/ (V-h)u-vdz. (76)
Q.

J
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Then it's easy to prove that

sup a(u —u—w,v)/||v]|x, =0 (Hh”(cl(BR))N) )
veEXR

Applying the trace theorem it follows that a(d — u — w)/||h||(c1 ()~ tends to zero in (H/?(I'g))~
as ||h|(c1 By~ tends to zero. By the definition 3.1, we get J1(h1,- - , hy,) = w|r,. Hence, it only
remains to prove that w = g on I'p.

Below we are going to calculate b;(u, v, h) for j = 0,1,---, Ny. Set (v, w) € H. Using integration by
parts and the relation

(V-h)(u-v)=V-[(u-v)h] = (h-Vu)-v—(h-Vv)-u

the last term of (76) can be rephrased as

pjw2/ (V- -h)u-vdr = ijQ/r (h-v)(u-7v)ds — pjw2/ [(h-Vu;) -7+ (h- V) - uldz. (77)

Q j Q;

To compute the first integral on the right hand of (76), we need the identities

Ou,, O 0 (ou 0%*u ou Oy
m 7o _ Z th —\ m hT . m _k
o 0 Y T o (axn W’“) oo, VO — gV (83:1) ’
Oh Ovy, 0 ovy, ou,, OV, ou,, 0v,  Ou ov
T __k _ T k N m_k m k m 3 T k
Vit an = o, Vi) g~V (h e 8351) VN Tt Y (8351

Making use of the previous two identities and applying again the integration by parts, it follows for § > 1
that

O, Oh" +  Oh Oy Ou,, Oy,
T k(v )T g
/J kl; 10jklmn L‘) axlv ey " O, O, v )&Bn (%J ’

= / V- [(h-VO)-0;(u) — h(o;(u) : V)] dz —i—pij/ (h-V7)-udx

&
oy
+ [ S G (- V) g do

Jklmn 1

_ /F[(h-.w>-(y.o—j(uj))—(hj.y)(o—j(uj):W)] d5+pjw2/g(h~V6)-udx

J

Ovy,
/ Z C] klmn h Vum) 83312 dx. (78)

Q; kJlmmn=1
Next, we proceed with the space dimensions. In two dimensions (i.e., N = 2), we have
(hj - V) - (v~ 05(u)) = (hy - v)(05(uy) - VO) = 0;(u;)(hj, —hj1) " - 8T onT;.

Therefore, combining (76), (77) and (78) yields

bj(u,v,h) = Ag,(h - Vu,v) + pjw2/

Lj

(05 0)ds = [0, [(03(u) (hsa —hs)T] - .

Lj
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for j > 1. When j = 0, we obtain in a similar manner that

bo(U, v, h)
= Agq,(h-Vu,v)

No

_ Z{POWZ/F_

j=1 J

(hs )l +um) s = [ 0, [fon(u™ + ™) (hya ~1sa)] ws} |

Now define u = w — h - Vu and set i := g, for j = 0,1, -, Ny. We conclude that ig|r,, = w|r,
and the formula (73) holds with such u. Furthermore, we have the transmission conditions
14

Uy — o = —hj - [Vu; — V(u* +u™)] = —(h; - v)[0;u; — 5 (™ +u™)] on Ty,

since u; — u* = u™ on I';. This prove the relation J{.(h1, - - , hn,) = Uo|r, in two dimensions.

If N = 3, we recall the tangential gradient V- for a scalar function u and the surface divergence divr for
a vector function v by

Vu=Vru+vo,u, V-v=dvrv+v-9J,v. (79)

In this case, the first integrand on the right hand side of (78) can be rewritten as

(hj - V) - (v - 05(u;)) — (hy - v)(0;(u;) : V) = Z(Aj(i, D) x V)

where the matrix A is given by (72). Hence, by integration by part we find

bj(u,v,h) = Aq,(h-Vu,v)+ pjw2/

Lj

(hj - v)(u; -0)ds — / divr, (A; x v) -vds (80)

Ly
for 7 > 1. Analogously,

bo(u,v,h) = Ag,(h-Vu,w)
No
-y {pow2/ (hy - )[(u* + u™) - w]ds _/ divr, (Ag x v) -wds} (81)
j=1 i t

From (80) and (81) we conclude the variational formulation (73) still holds with w = w — h - Vu in three
dimensions. Moreover, we get ﬂo\pR = w|pR and the transmission conditions (66) due to the fact that
divp, u; = divp, (u* — u"™). This completes the proof. O

3.2 Inversion algorithm in 2D

In this subsection we design a descent algorithm for the inverse problem in two dimensions. Assume that
Iy(=1,2,---,Np) is a star-shaped boundary that can be parameterized by 7;(6) as follows

[,={zecR?: z=~9(0) = a(l),a(l) T4+ 0 (0)(cosh,sind)",0 € [0,2n
15 Q2
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where the function 7 is 2m-periodic and twice continuously differentiable. Let the Fourier series expan-
sion of (V) be given by

r(g) = a(()l) + Z [aggl_l cos(mb) + ozg,z] sin(mQ)] :
m=1

We approximate the unknown boundary I'; by the surface
rY) = {zeR?:2=790) = (@, a)T ++1(6)(cosb,sin6)T,6 € [0,27]},

M
r](\?(ﬁ) = oz((]l) + Z [aglg%l cos(mb) + aglg@ sin(m#)|, (82)

m=1
in a finite dimensional space. The function 7“5\9 is a truncated series of 7(!). For large M, the surface

Fg\l/[) differs from I'; only in those high frequency modes of [ > M. Evidently, there are totally 20/ + 3

D)

unknown parameters for I , Which we denote by

l l l l l l l l
A = (AD . AD T = (@@ 0,0 0 ol al)_ L all)T € CMH,

Assume that the measurement points { z; } X are uniformly distriouted on I'g, that s, z; = R(cos 6;,sin 6;) ",
0; = (i — 1)27/Nyeq- We use the notatlon u(+, d,w) to denote the dependence of the total field on
the incident direction d and frequency w. It is supposed that the measured data are available over a
finite number of frequencies w; € [Winin, Wmaz| ([ = 1,2,---, K) and several incident directions d;
(j =1,---, Ni). Hence, we have the data set of the total field

Umea = {U(zhdjawl) Z:]-u 7Nm€a7 .]:17 aNincv l:]-a 7K}

Then we consider the following modified inverse problem:

(IP*): Determine the parameter vector A1) of the boundary T'j, j = 1, - - - , Ny, from knowledge of the
near-field data set U, .

The inverse problem can be formulated as the nonlinear operator equation
j(A(1)7 e 7A(NO)) - Umeaa (83)

where 7 is the solution operator for all incident directions dj and frequencies w;. The data set can be
rewritten as U,,,eq = vazqeaumea(zi), where

umea(zi) = {u(ziadj7wl) j: ]-7 7N’inca [ = 17 aK}

is the data set at z; € FR over all d; and w;. Let J; be the solution operator mapping the boundary to
umea(zz) ie., \72( (1) A(NO)) - umea(zi)-

To solve the problem (83), we consider the objective function

F(A(1)7 T 7A NO)) - _Hj( 7A(NO)> - Umea”l2-

27



Then the inverse problem (IP’) can be formulated as the minimization problem

min FAW ... AWy,

AQ) ... ANQ)eC2M+3

To apply the descent method, it is necessary to compute the gradient of the objective function. A direct
calculation yields that

F (AW, ... ANy o Nmea OT(AW ... AW
oA —e Z_; oAy

: [\Z(A(l)v T 7A(NO)) - umea(zi)} } .
Set

-

OF(AM ... AWNo) OF(AM ... AWo)

VA(z)F:=< ( ’ (l)’ )’...7 ( 7(l) ! ) , 1=1,2,---, Ny.
OAS OM 4

The calculation of V ,«) F' is based on Theorem 3.3 below, which is a consequence of Theorem 3.2.

Theorem 3.3. Let u be the unique solution of the variational problem (73) with fixed incident direction
and frequency. Then the operator J; is differentiable in Ag ) and its derivatives are given by

8$(A(1), .. 7A(No))
oAV
where uy, together withw; (j = 1,- -+, Ny), is the unique weak solution of the boundary value problem:
V- (C;: V) +pjwiu; =0 in Q, j=0,1,--- Ny,
ﬁj—ﬁo—szo on Fj,jzl,"',No,
Nc_l’z]—/\/’c—i_ao—gjzo on Fjaj:]w'..?NO)
Tﬂo — Tﬂo =0 on FR.
Here, f; = g; =0forj=1,--- Ny, j # 1, and
fi = —(hi-v) [0, w — Of (w* +u™)],
g = W(h-v) [pw — po(u* +u™)t]
— 0, [((ou(w))™ = (oo(u™ + u™) ") (a2, —hu1) ']

where u; 1= U/|Ql and the functions hl,l, h 2 are defined in the following way relying on n.:

:’170(21‘), lzlv"')NOa n:17)2M+37 izlv"'7Nmea7

17 n = 1’
0, n =2,
hi1(0) = < cos@, n=3,

cos((n —2)0/2)cos, n=4,6,8,--- ,2M + 2,
(sin((n —3)0/2) cos, n=5,7,9,---,2M + 3,

(

0, n=1,
1, n =2,
hhg(@) = 4 sin 49, n =o,

cos((n —2)0/2)sinf, n=4,6,8,--- ,2M + 2,
(sin((n —3)0/2)sinf, n=5,7,9,---,2M + 3.
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We now propose an algorithm based on the descent method to reconstruct the coefficient vectors AD,
[=1,---,Ny. We assume the number N, of the disconnected components is known in advance. For
notational convenience we denote by A53m) the solution of the inverse problem at the i-th iteration step
reconstructed from the data set at the frequency w,,, with the incident direction d;. Our approach consists
of the following steps:

Step 1. Collect the near-field data over all frequencies w,,, m = 1,--- , K and all incident directions
djaj = ]-7 7Nz'nc-

1,0,0,0)

Step 2. Set initial approximations Al foreveryl =1,---, Nj.

Step 3. Foralll =1,---, Ny, update the coefficient vector by the iterative formula
A(l’i+1’j’m) = A(l’i’j’m) — EVA(l,i,j,m) F, ¢=0,---,L—1,
where € and L > ( are the step size and total number of iterations, respectively.

Step 4. Foralll = 1,---, Ny, set AGOI+Lm) — A(LLim) and repeat Step 3 until the last incident
directions dy;, _ is reached.

Step5. Foralll = 1,---, Ny, set ALOOm+D) — A(LLNinem)  Repeat Step 3 from the smallest fre-
quency w; and end up with the highest frequency wg.

4 Numerical examples

In this section, we present several numerical examples in 2D to verify the efficiency and validity of the finite
element method solving direct scattering problems and the reconstruction scheme for inverse scattering
problems.

4.1 Numerical solutions to direct scattering problems

Firstly, we present an analytic solution to the elastic wave equation in a homogeneous anisotropic medium;
see [29, Chapter 1.7.1] for the details. Such a solution will be used to verify the accuracy of our numerical
scheme. For simplicity we assume that {2 consists of one component only, i.e., Ny = 1.

In 2D, the symmetry of the stiffness tensor C = {Cijkl}?7j7k7l:1 leads to at most 6 different elements of
stiffness. Using the Voigt notation for tensor indices, i.e,

iy = 11 22 12,21
N3 b 4 U
a = 1 2 3
one can rewrite the stiffness tensor as
Cii Ci2 Cis
Cijii = Cap = |Cra Oy Oy
Cis Coz O
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In particular, we have

A2 A 0
Cagz A )\—i—Q,U 0 ,
0 0 W

if the elastic medium is homogeneous isotropic with Lamé constants A and .

In a homogeneous anisotropic medium, we consider the propagation of a plane wave which is perpen-
dicular to a fixed unit vector d = (dj, dg)T € S'. The plane wave takes the form

U= pei%x'd, (84)

where p = (101,102)T and v, are the polarization vector and phase velocity to be determined, respectively.
Inserting the solution (84) into the elastic equation (3) gives

Acp = puyp,

where

2 2
Ac = {Z C@-dekdl}

k=1 ii=1

_ [Cn 013] df—l—[ 2C5 Cha + Cs3 Css 023] 2. (85)

dyd.
Ci3 Css Cra + C3 2C%s 1 1 [023 Coo

It follows from the uniform Legendre ellipticity condition of C that the matrix A is positive definite. Thus,
the eigenvectors of A¢ give the vector p with the corresponding eigenvalue pvg.

In order to check whether our code provides the true solution, we consider the elastic transmission prob-
lem: Given f € (HY?(T"))? and g € (H~Y*(I"))?, findu € (H(2))? and u*® € (H}.(92))? such
that

V-(C:Vu)+po*u = 0 in Q, (86)

AU + powu® = 0 in QF, (87)

u—u* = f on 09, (88)

Nou—Ty,u*° = g on 99, (89)

and the scattered field u*¢ satisfies the Kupradze radiation condition. If {2 is specified as a homogeneous

isotropic medium characterized by the density p; > 0 and the Lamé constants A\; and j; satisfying
1 > 0and Ay + p1 > 0, then the problem (86)-(89) is reduced to

ANu+pw’u = 0 in Q, (90)
AU+ powu®® = 0 in QF, (91)
u—u’ = f on 01, (92)

Ty, uu—"Th,u* = g on 09, (93)

where A} := 113 A + (A1 + pq)grad div.
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We define the far-field pattern of the total displacement as

uP(F) = u®(3) T+ ul () 7

where uX*(Z) = u™(Z) - T, uX(Z) = u™(Z) - T* are two scalar functions given by the asymptotic
behavior

sc _ eXp(l pT + Z7T/ )UZO(J?) 74+ eXp(Z sT + “T/ )uio(f) 7L + O(‘x|*3/2)
\/8mk,| x| \/ 8mks|z|

We decompose the scattered field into

—
u*® = grad ¥,, + curl U,
where

U, => U HO (ky|z)e™, W, =Y 0! B (ka|)e™, ¥, 07 eC.

ptin
neL nez

Then it follows from the asymptotic behavior of Hankel functions that

uR () = X (0) = 4k, »_Wr O
nez
uP(E) = u(0) = —4k, » Wm0/,
nez

Example 1. In the first example, € is specified as a homogeneous isotropic medium and we consider the
problem (90)-(93). Let f and g be such that the analytic solution of the above boundary value problem is
given by

w(@) = Vdo(kpalz)), z€Q,  w(x)=VH" (k)|z]), zeQ,

where k1 = w+/p1/(A + 2p1). Wechoose Ay =2, 1y =3, p1 =3, A =1, u =2, pp = 1 and the
boundary 0f) is selected to be a circle

0N ={zr eR*: |z| =1},
or a rounded-triangle-shaped curve
00 ={r € R*: 2 = (24 0.5cos 3t)(cost,sint)",t € [0,27)}.

Denote U = (u, u*®) and Uj, = (up, u;°) the exact and numerical solutions, respectively. The numerical
errors (see Tables 1 and 2)

Eo = U = Upll(z2@)2xz2@0)2:  E1 = [[U = Unl| (a1 @))2x (11 (920))2 (94)
verify the optimal convergence order
Ey = O(h?), E,=O0(h),

where h denotes the finite element mesh size for discretizing our variational formulation.
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w h Ey Order FE; Order
ho 1.55E-2 - 2.29E-1

1 h0/2 3.97E-3 1.97 1.07E-1 1.10
h0/4 1.00E-3 1.99 5.22E-2 1.04
ho 1.52E-1 - 6.66E-1 —

3 h0/2 3.81E-2 2.00 2.95E-1 1.17
h0/4 9.62E-3 1.99 1.43E-1 1.04

Table 1: Numerical errors for Example 1 where I' is a circle, hg = 0.4304 and R = 2.

w h Ey Order FE; Order
ho 3.03E-2 - 1.56E-1 -

1 h0/2 6.83E-3 2.15 7.16E-2 1.12
h0/4 1.79E-3 1.93 3.56E-2 1.01
ho 5.22E-1 - 1.94E0 —

3 h0/2 1.32E-1 1.98 7.81E-1 1.31
h0/4 3.59E-2 1.88 3.75E-1 1.06

Table 2: Numerical errors for Example 1 where I is a rounded-triangle-shaped curve, hy = 1.1474 and
R =5.

Example 2. In this example, {2 is supposed to be a homogeneous anisotropic medium characterized by
the density p > 0 and the stiffness tensor

Cn Crz Cis
Cap= |Crz Cxn (3
Ciz Cos Cig

Consider the problem (86)-(89) and let f and g be such that the analytic solution is given by
u(z) = pe ™z eq, u*(z) = VHSI)(kp|$|)7 z € QF,
where d = (v/2/2,v/2/2) and pvf, is the first eigenvalue of the matrix A (see (85) ). We choose

C11 =10.5,C5 = 13,033 = 4.75,C5 = 3.25,C13 = —0.65, Cy3 = —1.52,
p:37)\: 17M:27PO: L.

The boundary 02 is selected to be a circle or a rounded-triangle-shaped curve given in Example 1. In
Tables 3 and 4 we illustrate the the numerical errors of /g and F/; (see (94)) which also verify the optimal
convergence order. We plot the the numerical solutions in Figures 1 and 2 from which it can be seen that
they are in a good agreement with the exact ones. To compare the errors for far-field patterns, we observe
that the exact far-field pattern takes the explicit form u>°(z) = 4k, . From Figures 3 and 4 it can be seen
that the numerical far-field patterns provide good approximations to the exact ones.
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w h Ey Order FE; Order
ho 1.95E-2 - 2.46E-1

1 h0/2 5.11E-3 1.93 1.15E-1 1.10
h0/4 1.32E-3 1.95 5.60E-2 1.04
ho 2.86E-1 - 1.27E0 —

3 h0/2 8.62E-2 1.73 5.15E-1 1.30
h0/4 2.32E-2 1.89 2.28E-1 1.18

Table 3: Numerical errors for Example 2 where I' is a circle, hg = 0.4304 and R = 2.

w h Ey Order E; Order
ho 9.08E-2 - 3.12E-1 -

1 h0/2 2.26E-2 1.97 1.30E-1 1.10
h0/4 5.87E-3 1.99 6.30E-2 1.04
ho 1.82E0 - 5.78E0 -

3 h0/2 5.73E-1 2.00 2.04E0 1.17
h0/4 1.59E-1 1.99 7.35E-1 1.04

Table 4: Numerical errors for Example 2 where I is a rounded-triangle-shaped curve, hy = 1.1474 and
R =3.

4.2 Numerical solutions to inverse scattering problems

We consider the reconstruction of multiple anisotropic elastic bodies in 2D using the inversion algorithm
described in Section 3. Set py = 2000 Kg/m?, ¢, = /(X + 2u)/po = 3000 m/s, ¢s = / 11/ po = 1800
m/s and R = 5 m. The number of measurement points and iterations are taken as V,,., = 64, L = 10,
respectively. For each frequency, we set the step size as € = 0.005/k,. The boundary of the unknown
anisotropic obstacles together with the initial guess are illustrated in Figure 5, in which Obstacle 1 is
kite-shaped and Obstacle 2 is an ellipse. The density of the anisotropic medium is selected as p = 2400
Kg/m3. We choose the stiffness tensor as

6 8 2
Crtmn = Cog = |8 21 10| x 10" Pa.
2 10 30
To examine the reconstruction results, we compute the residual error RError; 1, ¢ = 0,--- , K of the
total field
where

HJN (A(LLNmmi)a T ’A(N,L,ch,i)) - UmeaHlQ

RError; 1 =
o [Uneall2

In the first experiment, we use four incident plane waves (i.e., N;,. = 4) incited at two frequencies
w; = HkHz and wy, = 6GkHz (i.e. K = 2). The reconstruction results at each frequency are shown
in Figure 6. For different choice of M (see (82)), the residual errors listed in Table 5 indicates that the
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(f) Re ug

Figure 1: Real parts of the numerical solutions uj, = (up1,un2)', Ui = (u,slfl,u;’fQ)T and exact
solutions u = (g, uz) ", u®® = (u3¢, us¢) " for Example 2. We setw = 3, h = 0.1076 and R = 2.

(e) Imuy (f) Im ug (9) Imuj© (h) Im w3

Figure 2: Imaginary parts of the numerical solutions uj, = (up1,un2) ', us¢ = (upy, quQ)T and exact
solutions u = (g, up) ", u® = (u3¢, us¢) " for Example 2. We set w = 3, h = 0.2869 and R = 3.

residual error decreases as frequency increases. Note that the errors corresponding to M = 10 and
M = 20 are almost the same, because the underlying scatterers possess smooth boundaries.

In the second experiment, we use the data generated by one fixed direction d = (—v/2/2,v/2/2)" (i.e.,
N;n. = 1) and by three distinct frequencies w; = HkHz, wy = 6 kHz and w3 = TkHz (i.e., K = 3). In
this case the number of iterations at each frequency is set as L = 20. The parameter M for truncating
the Fourier series is taken as M = 20. The reconstruction results shown in Figure 7 are very satisfactory.
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(a) Re uf (b) Re u3

Figure 3: Exact and numerical far-field pattern u™ = (u$°, u3°) " for Example 2 when I is a circle.

0,5 0 25
120 60

150 150 30

—&— Numerical

180 180

—+—Exact
210 210 —+Exact 330
240 300 240 300
270 270
o o
(a) Re uf (b) Re u3

Figure 4: Exact and numerical far-field pattern u™ = (u$°, u$®)" for Example 2 when T" is a rounded-
triangle-shaped curve.

M RError; RError, RError;
10 0.3042 0.0656 0.0521
20 0.3042 0.0738 0.0528

Table 5: Change of residual reconstruction errors with respect to frequencies.

T T
Obstacle 1: Exact
— — — Obstacle 2: Exact
Obstacle 1: Initial guess
— — — Obstacle 2: Initial guess
Measurement surface

Figure 5: The obstacles to be reconstructed and initial guess.
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T T T T
Obstacle 1: Exact Obstacle 1: Exact
— — — Obstacle 2: Exact — — — Obstacle 2: Exact
Obstacle 1: Reconstruction Obstacle 1: Reconstruction
— — — Obstacle 2: Reconstruction — — — Obstacle 1: Reconstruction
Measurement surface Measurement surface
2t oL
or of
2F 2t
4 4t
6 -6
6 4 2 0 2 4 6 -6 4 2 0 2 4 6

(a) w = BkHz (b) w = 6kHz

Figure 6: Reconstruction results from four incident directions at distinct frequencies. We set M = 10.

6 T T
Obstacle 1: Exact
— — — Obstacle 2: Exact
4l Obstacle 1: Reconstruction
— — — Obstacle 2: Reconstruction
Measurement surface
ot
ot
2F
4t
6 L
6 4 2 0 2 4 6

Figure 7: Reconstruction result from the data of one incident direction and three frequencies.
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