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ABSTRACT. We prove an improvement of flatness result for nonlocal phase transitions. For a class of nonlocal
equations that includes (−∆)s/2u = u− u3, with s ∈ (0, 1), we obtain a result in the same spirit of a celebrated
theorem of Savin [30] for the equation −∆u = u − u3. As a consequence, we deduce that entire solutions
to (−∆)s/2u = u− u3 with asymptotically flat level sets are 1D when s ∈ (0, 1).

The results presented are completely new even for the case of the fractional Laplacian, but the robustness of the
proofs allows us to treat also more general, possibly anisotropic, integro-differential operators.

Analogous and complementary improvement of flatness results for (−∆)s/2u = u − u3 with s ∈ [1, 2) have
been (only very recently) obtained by Savin in [32]. The proofs in [32] follow a more robust version of the proof in
[30], which has been introduced (also very recently and by Savin) in [31].

We remark that the proofs in [31, 32] are valid only for the “mildly nonlocal case” in which s ∈ [1, 2), while
we focus here on the “genuinely nonlocal case” in which s ∈ (0, 1), which presents fundamental differences with
respect to the previous ones.
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1. INTRODUCTION

In this paper we establish an improvement of flatness result for a generalized nonlocal Allen-Cahn equation

Lu = f(u) in Rn, (1.1)
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where L is an elliptic scaling invariant operator of order s ∈ (0, 1), of the form

Lu(x) :=

∫
Rn

(
u(x)− u(x+ y)

)µ(y/|y|)
|y|n+s

dy. (1.2)

The typical example of nonlinearity that we take into account is when f is (minus) the derivative of a double-well
potential W . Also, throughout the paper, we assume that the measure µ in (1.2), which is often called in jargon
the “spectral measure”, satisfies

µ(z) = µ(−z) and 0 < λ 6 µ(z) 6 Λ < +∞ for all z ∈ Sn−1. (H0)

Equations as in (1.1) naturally arise in several contexts, such as phase transitions, atom dislocations in crystals,
mathematical biology, etc. (see e.g. Section 2 in [21], the Appendix in [18], the Introduction in [11], and also [6]
and the references therein for a series of motivations under different perspectives).

Motivated by a celebrated conjecture by Ennio De Giorgi in [19], a natural problem in phase transitions is whether
or not all the solutions (under appropriate energetic or geometric assumptions) are 1D profiles, i.e. increasing
functions of only one Euclidean variable.

The goal this paper is to address this symmetry problem for the nonlocal phase transition equation (−∆)s/2u =
u−u3, and, even more generally, for equations as in (1.1), in the genuinely nonlocal regime in which s ∈ (0, 1).

We use the wording genuinely nonlocal regime for the following reason. Although for all s ∈ (0, 2) the diffusion
operators (−∆)s/2 are nonlocal, when studying asymptotic properties (at large scales) of the nonlocal phase
transition equations one finds very different behaviors in the two regimes s ∈ [1, 2) and s ∈ (0, 1).

Namely, when s ∈ [1, 2), the interfaces between the two phases exhibit a local behavior at a large scale
(in spite of the nonlocal character of the problem) and the phase separation is related to the minimization of
the classical perimeter functional (similarly as in the case of the Laplacian s = 2 as given by the classical
Γ−convergence result of Modica and Mortola [28]). Conversely, in the genuinely nonlocal regime s ∈ (0, 1),
the interface maintains a nonlocal character at any scale and the phase separation is described by a nonlocal
perimeter functional introduced by Caffarelli, Roquejoffre and Savin in [12]. A rigorous statement of the previous
heuristic description was proven by Savin and the third author in [33] through Γ−convergence results.

In this paper we prove that asymptotically flat phase transitions are 1D, i.e. depend only on one Euclidean
variable. As a consequence we obtain several new classification results for entire minimizers of nonlocal phase
transitions along the lines of the conjecture of De Giorgi. These main results will be collected in Theorems 1.2,
1.3, 1.4, 1.5 and 1.6 and discussed in details in the forthcoming Subsection 1.4.

As a matter of fact, the cornerstone for these theorems is an “improvement of flatness” result, which is contained
in Theorem 1.1 and which will be presented in Subsection 1.3.

Next we introduce the mathematical framework in which we work, by listing the precise assumptions on the op-
erator L and on the nonlinearity f which are involved in the main equation (1.1). This is done in Subsections 1.1
and 1.2. Let us however tell in advance that L = (−∆)s/2 and f(u) = u− u3 trivially satisfy the assumptions
given in Subsections 1.1 and 1.2 and thus the reader who is interested only in this model equation can skip
Subsections 1.1 and 1.2 and go straight to Subsections 1.3 and 1.4 to read the main results.

1.1. Further hypotheses on L. Let us introduce the following notation, that we will use throughout the paper,
for the fractional Laplacian in dimension 1 (without normalization constants). Given a bounded ψ ∈ C2(R), we
define

Lψ(z) :=

∫ ∞
−∞

ψ(z)− ψ(z + ζ)

|ζ|1+s
dζ, z ∈ R. (1.3)
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For ψ as above, ω ∈ Sn−1 and h > 0, we define, for any x ∈ Rn,

ψ̄ω,h (x) := ψ
(
ω · x

h

)
. (1.4)

Then, for each operator L of the form (1.2), let hL : Sn−1 → (0,∞) be defined as follows. We set hL(ω) := h,
where h > 0 satisfies

Lψ̄ω,h(x) = Lψ
(
ω · x

h

)
for all ψ ∈ C2(R) ∩ L∞(R). (1.5)

Using the function hL, we define the closed convex set

C = CL :=
⋂

ω∈Sn−1

{
x ∈ Rn : x · ω 6 hL(ω)

}
. (1.6)

We notice also that, since L is even, both hL and CL are even, i.e. symmetric with respect to the origin. In
addition, we remark that, when L = (−∆)s/2, CL is a ball (centered at 0).

Our assumption on L is that
∂ CL is C1,1 and strictly convex. (1.7)

More quantitatively, we assume that there exist ρ′ > ρ > 0 such that

the curvatures of ∂ CL are bounded above by
1

ρ
and below by

1

ρ′
. (H1)

This assumption is equivalent to saying that for all x ∈ ∂ CL there exist ρ′ > ρ > 0 and y, z ∈ Rn such
that Bρ(y) ⊂ CL ⊂ Bρ′(z), and x ∈ ∂Bρ(y) ∩ ∂Bρ′(z).

We remark that the definition of hL in (1.5) is well posed, and indeed an explicit expression of hL(ω) is obtained
through the formula

hL(ω) =

(
1

2

∫
Sn−1

|ω · θ|s µ(θ) dθ

)1/s

. (1.8)

To prove (1.8), we proceed as follows

Lψ̄ω,h (x) =

∫
Rn

(
ψ
(
ω · x

h

)
− ψ

(
ω · x+ y

h

))
µ
(
y/|y|

)
|y|n+s

dy

=

∫ +∞

0

d%

∫
Sn−1

dθ

(
ψ
(
ω · x

h

)
− ψ

(
ω · x

h
+ ω · %θ

h

))
µ(θ)

%1+s

=
1

2

∫ +∞

−∞
d%

∫
Sn−1

dθ

(
ψ
(
ω · x

h

)
− ψ

(
ω · x

h
+ ω · %θ

h

))
µ(θ)

|%|1+s

=
1

2

∫ +∞

−∞
dζ

∫
Sn−1

dθ
(
ψ
(
ω · x

h

)
− ψ

(
ω · x

h
+ ζ

)) |ω · θ|s µ(θ)

hs |ζ|1+s
,

where we used the change of variables ζ = %ω·θ
h

. Hence, if h = hL(ω) is given by (1.8),

Lψ̄ω,h (x) =

∫ +∞

−∞

(
ψ
(
ω · x

h

)
− ψ

(
ω · x

h
+ ζ

)) dζ

|ζ|1+s
= Lψ

(
ω · x

h

)
,

that is (1.5).

A special case of (1.8) occurs when the spectral measure is induced by a convex set, namely when

µ
(
y/|y|

)
|y|n+s

=
1

‖y‖n+s
K

for some convex set K , where ‖ · ‖K is the norm with unit ball K , that is, for any p ∈ Rn,

‖p‖K := sup{t > 0 s.t. p/t /∈ K}. (1.9)
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Then, in this case, an integration in polar coordinates yields

hL(ω) =

(
1

2

∫
Sn−1

dθ
|ω · θ|s
‖θ‖n+s

K

)1/s

=

(
n+ s

2

∫
Sn−1

dθ

∫ 1/‖θ‖K

0

d% |ω · θ|s %n+s−1

)1/s

=

(
n+ s

2

∫
K

|ω · x|sdx
)1/s

.

As pointed out to us by M. Ludwig, to whom we are indebted for this comment and the interesting references
provided, the convex body associated to this support function is the so called “Lp-intersection body” ofK . These
convex bodies are well studied in convex geometry, in relation to the important Busemann-Petty problem, see [3]
and references therein for more information on this subject.

As shown in [3], for any given convex set K (bounded and with nonempty interior) which is symmetric with
respect to the origin, the function hL is strictly convex in all the nonradial directions. Also, from (1.8) it follows
that hL is C1,1 in Rn \ {0} when µ is C1,1. Actually µ ∈ C2−s+ε suffices since the “kernel” |ω · θ|s is Cs and
this yields a regularity improvement.

When K is any C1,1 convex set, the previous observations imply that the set

C∗L := {hL = 1}
is a C1,1, even with respect to 0, strictly convex set. Noting that CL and C∗L are one the polar body of the other,
one can show that CL is also aC1,1, even, strictly convex set. Indeed, since C∗L is aC1,1, even, strictly convex set,
any point of its boundary can be touched by two even ellipsoids, one contained in, and the other one containing,
C∗L. Considering the polar transformations of these ellipsoids we show the same property for CL.

1.2. Hypotheses on f . Our assumptions on f , precisely stated below, are satisfied when f = −W ′, with W
being a C2 double-well potential with wells (i.e. minima) at ±1 and satisfying that W ′′ > 0 near ±1.

More precisely, and somehow more generally, we assume that f belongs to C1
(
[−1, 1]

)
and satisfies, for some

κ > 0 and cκ > 0,

f(−1) = f(1) = 0 and f ′(t) < −cκ for t ∈ [−1,−1 + κ] ∪ [1− κ, 1]. (H2)

Moreover, we assume that

there exists φ0 satisfying


Lφ0 = f(φ0) in R,
φ′0 > 0 in R,
φ0(0) = 0,

lim
x→±∞

φ0 = ±1.

(H3)

We recall that L denotes the one-dimensional fractional Laplacian in (1.3).

When f = −W ′ and W is a C2 double-well potential with wells at ±1, the existence of the previous one-
dimensional heteroclinic solution is proven in [29, 9] (see also [17] for the case of general kernels). Thus, condi-
tion (H3) is satisfied in this case. Also, condition (H2) is satisfied when W ′′ > 0 near ±1, and this model case,
which has concrete realizations in phase transition models, is for us the main motivating example.

In order to precisely identify the quantities on which the constants in the estimates of the paper depend, let us
define

lκ := inf
{
l > 0 : φ0

(
[−l, l]

)
⊃ [−1 + κ, 1− κ]

}
. (1.10)

More informally, lκ is (half of) the length of the symmetric interval where the transition of φ0 essentially occurs.
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1.3. The improvement of flatness result. In the framework that we have just introduced, we are now in the
position of stating our main result as follows.

Throughout the paper, we take s ∈ (0, 1) and we call a constant universal if it depends only on n, s, λ, Λ, ρ, ρ′,
κ, cκ and lκ, see Subsections 1.1 and 1.2. In particular, universal constants depend only on n, L, and f .

In the statement of the next theorem, for fixed α0 > 0, given a ∈ (0, 1) we define

ja :=

⌊
log a

log(2−α0)

⌋
. (1.11)

Note that ja is a nonnegative integer and that 2α0ja is comparable to 1/a.

Theorem 1.1. Assume that L satisfies (H1) and that f satisfies (H2) and (H3). Then there exist universal
constants α0 ∈ (0, s/2), p0 ∈ (2,∞) and a0 ∈ (0, 1/4) such that the following statement holds.

Let a ∈ (0, a0] and ε ∈ (0, ap0 ]. Let u : Rn → (−1, 1) be a solution of Lu = ε−sf(u) in B2ja such that
0 ∈ {−1 + κ 6 u 6 1− κ} and

{ωj · x 6 −a2j(1+α0)} ⊂ {u 6 −1 + κ} ⊂ {u 6 1− κ} ⊂ {ωj · x 6 a2j(1+α0)} in B2j ,

for 0 6 j 6 ja, where ωj ∈ Sn−1.

Then, {
ω · x 6 − a

21+α0

}
⊂ {u 6 −1 + κ} ⊂ {u 6 1− κ} ⊂

{
ω · x 6 a

21+α0

}
in B1/2,

for some ω ∈ Sn−1.

We observe that Theorem 1.1 is related to the improvement of flatness in [30], with some important differences:
besides the nonlinear dependence of ε from a, which is different from the classical case —on which we will
comment later on —we remark that our Theorem 1.1 is valid for solutions, and not only for minimizers of the
energy functional. This is due to the fact that our methods bypass the use of density estimates.

In order to explain more intuitively the content of Theorem 1.1, let us introduce some (informal) terminology. We
call transition level sets (of u) all the level sets {u = θ} for θ ∈ (−1 + κ, 1 + κ). We say that the transition
level sets are flat at a scale R if they are trapped, after some rotation, in a cylinder B′R × (−aR, aR). We call
flatness the adimensional quantity a.

With this terminology, Theorem 1.1 says that if the transition level sets are flat enough at a very large scale, then
its flatness improves geometrically at the half scale. This result is suited for iteration. However, as we will see
in more detail in Section 7, the geometric improvement of the flatness cannot be done up to scale 1 but only
up to some (still huge) mesoscale. This is an important difference with respect to the result in [30] and we will
comment more on it later on.

Another way to look at the result in Theorem 1.1 is as an approximateC1,α regularity result for level sets. Namely,
if the transition level sets of the solution of Lu = ε−sf(u) in B1 are trapped between two parallel planes close
enough to the origin, and ε is small enough, then the transition occurs essentially on a C1,α graph in B1/2 up
to errors that decay algebraically (in ε) as ε ↓ 0. The limit case as ε ↓ 0 of this result plays a crucial role in the
regularity theory of nonlocal minimal surfaces; see Theorem 6.8 in [12].

1.4. 1D symmetry of asymptotically flat entire solutions and consequences. An important consequence
of Theorem 1.1 is a general rigidity result. It states that entire solutions of nonlocal Allen-Cahn equations satis-
fying an “appropriately weak” asymptotic flatness condition for its transition level sets possess one-dimensional
symmetry, i.e. their level sets are hyperplanes.
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Combining Theorem 1.1 with asymptotic results such that the Γ-convergence results of Savin and the third
author in [33] and the classification of minimizing cones for the fractional perimeter [34, 16, 26], we obtain new
1D symmetry results for entire solutions of (−∆)s/2u = f(u) in dimension n 6 8. In this section we list these
new results.

As explained at the beginning of the introduction, these symmetry properties for solutions of equations which
model phase transitions are a classical topic of research that goes back to a famous conjecture posed by
De Giorgi in [19]. The problem has been widely studied in the local setting (see e.g. [2, 1, 27, 4, 30, 38, 20, 24, 25])
and some results have been obtained also in the nonlocal case (see [10, 37, 7, 8, 36]). See also the very recent
results in [31, 32], in which the techniques invented in [30] have been suitably extended and modified in order to
deal with the equation (−∆)s/2u = u − u3 with s ∈ (1, 2) (notice that the range of s dealt with in [31, 32] is
complementary with the range treated in this paper, which takes into account the genuinely nonlocal case).

To state our results, it is convenient to give the following definition: we say that a function u : Rn → R is 1D if it
depends only on one Euclidean variable, up to a rotation, namely if there exist ū : R→ R and ω̄ ∈ Sn−1 such
that u(x) = ū(ω̄ · x) for any x ∈ Rn.

The following general theorem will lead to new rigidity results in different concrete situations: for minimizers or
monotone solutions of fractional Allen Cahn equations, for stable solutions, etc. We write it in this general form
so that it can be neatly applied to all these situations.

Theorem 1.2 (One-dimensional symmetry for asymptotically flat solutions). Assume that L satisfies (H1) and
that f satisfies (H2) and (H3).

Let u be a solution of Lu = f(u) in Rn.

Assume that there exist R0 > 1 and a : (R0,+∞) → (0, 1] such that a(R) ↓ 0 as R ↑ +∞ and such that,
for all R > R0, we have

{ω · x 6 −a(R)R} ⊂ {u 6 −1 + κ} ⊂ {u 6 1− κ} ⊂ {ω · x 6 a(R)R} in BR, (1.12)

for some ω ∈ Sn−1, which may depend on R.

Then, u is 1D.

Let us point out that Theorem 1.2 will be a consequence of Theorem 1.1, but it does not immediately follows
from it. Its proof is nontrivial because in Theorem 1.1 we (need to) assume that ε 6 ap0 , instead of ε 6 ca
as in [30]. As a consequence, applying iteratively Theorem 1.1 to a flat enough interface in a large ball BR,
we improve geometrically the flatness, but only up to a mesoscale Br, where r = R1−δ. If instead we had a
condition like ε 6 ca, we could improve the flatness right away up to scale 1 and the Theorem 1.2 would be an
immediate consequence of Theorem 1.1.

For this reason, the proof of Theorem 1.2 requires a suitable multiscale iteration of Theorem 1.1, combined with
the use of the sliding method of Berestycki, Caffarelli and Nirenberg [4, 5], appropriately modified to treat the
nonlocal case (see e.g. [23]). See Subsection 1.5 for further details on the proofs.

Now we consider the concrete case of minimizing solutions of the nonlocal Allen-Cahn equation (−∆)s/2u =
u− u3, with s ∈ (0, 1). We remark that the problem is variational, with associate energy functional given by

E(u,Ω) := EDir(u,Ω) +

∫
Ω

(1− u2(x))2 dx,

where, for some appropriate constant Cn,s > 0,

EDir(u,Ω) := Cn,s

∫∫
R2n\(Rn\Ω)2

|u(x)− u(y)|2
|x− y|n+s

dx dy. (1.13)
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We say that a solution u of (−∆)s/2u = u− u3 is a minimizer of E in Rn if

E(u,B) 6 E(u+ ϕ,B),

for any ballB ⊂ Rn and any ϕ ∈ C∞0 (B) (notice that, for simplicity, we are dropping the normalization constant
in the fractional Laplace framework).

In this setting, we have:

Theorem 1.3 (One-dimensional symmetry in the plane). Let u be a minimizer of E in R2.

Then, u is 1D.

Theorem 1.3 has been also proved, by different methods, in [9, 37]. On the other hand, the following results are,
as far as we know, completely new, since they deal with higher-dimensional spaces (indeed, the only symmetry
results known for the fractional Allen-Cahn equation are the ones in [7, 8], which hold in dimension n = 3
with s ∈ [1, 2), while we will consider now the case n > 3 and s ∈ (0, 1), under different assumptions).

Theorem 1.4 (One-dimensional symmetry for monotone solutions in R3). Let n 6 3 and u be a solution
of (−∆)s/2u = u− u3 in Rn.

Suppose that

∂u

∂xn
(x) > 0 for any x ∈ Rn

and

lim
xn→±∞

u(x′, xn) = ±1.

Then, u is 1D.

The next two results deal with the case in which the fractional parameter s is sufficiently close to 1 (that is,
roughly speaking, when the nonlocal diffusive operator is sufficiently close to

√
−∆). In this case, it is known

that the minimizers of the corresponding geometric problem of fractional perimeters are close to the classical
minimal surfaces (see [16]). This fact provides an additional rigidity of the interfaces that we can exploit in order
to obtain symmetry results.

Theorem 1.5 (One-dimensional symmetry when s is close to 1). Let n 6 7. Then, there exists ηn ∈ (0, 1) such
that for any s ∈ [1− ηn, 1) the following statement holds true.

Let u be a minimizer of E in Rn. Then, u is 1D.

Theorem 1.6 (One-dimensional symmetry for monotone solutions in R8 when s is close to 1). Let n 6 8. Then,
there exists ηn ∈ (0, 1) such that for any s ∈ [1− ηn, 1) the following statement holds true.

Let u be a solution of (−∆)s/2u = u− u3 in Rn.

Suppose that

∂u

∂xn
(x) > 0 for any x ∈ Rn (1.14)

and

lim
xn→±∞

u(x′, xn) = ±1. (1.15)

Then, u is 1D.
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1.5. Overview of the proofs and organization of the paper. At a very high level, our proof of Theorem 1.1
follows the classical “improvement of flatness strategy” that goes back to De Giorgi (see e.g. the retrospective
in [14]) and that was pioneered in [30] for the case of level sets of classical phase transitions and suitably modified
in [12] in the context of nonlocal minimal surfaces. Our argument uses all the ingredients of the previous literature,
but needs to go beyond them. The delicate proof of our version of the improvement of flatness result relies on
compactness and extends from Section 2 to Section 6. Let us give next the “big picture” of it.

Very roughly, we take a sequence ua of solutions of (−∆)s/2ua = ε−sf(ua) such that the transition level sets
of ua are trapped in (a sequence of) very flat cylinders of flatness a. We assume that ε < ap0 for p0 very large
and we show that ua ≈ ±1 outside of, essentially, a n − 1 dimensional surface (very flat but possibly very
irregular). We then consider “vertical rescalings”, that is, we consider the change of variables

(x′, xn) 7→
(
x′,

xn
a

)
of these “transition” surfaces (clearly here we assume that they are flat in the direction xn).

A main step in the proof consists in proving that these vertical rescalings are compact and converge to a graph. To
achieve this compactness we need a “Hölder type” estimate, or improvement of oscillation, for vertical rescalings.
The proof of this improvement of oscillation estimate requires to build fine barriers for the semilinear equation.
We thus obtain that the vertical rescalings converge to a Hölder continuous graph g : Rn−1 → R. Moreover,
we prove that g is a viscosity solution of the linear translation invariant elliptic equation (−∆)

1+s
2 g = 0 in Rn−1.

Finally we deduce the improvement of flatness of the transition level sets from the C1,α interior regularity of the
equation (−∆)

1+s
2 g = 0.

The rest of the paper, namely Sections 7 and 8, is devoted to the proof of Theorem 1.2 and its consequences.
As explained before, Theorem 1.2 follows from Theorem 1.1 but not in a straightforward way. Let us summarize
next the main steps of its proof.

We use two different iterations of Theorem 1.1. The first iteration, that we informally call “preservation of flat-
ness”, is given in Corollary 7.1. The second iteration, really a geometric “improvement of flatness” is given in
Corollary 7.2. Corollary 7.2 is stronger in the sense that the flatness is improved geometrically in a sequence of
dyadic balls, but only up to a large mesoscale. In Corollary 7.1 the flatness does not improve but is just preserved
across scales but, as a counterpart, it gives information up to scale 1.

To prove Theorem 1.2 we need to combine Corollary 7.1 with a multi-scale application of Corollary 7.2. Doing
so, we prove that the transition level sets are trapped, in all of Rn, between a Lipschitz graph and a finite vertical
translation of it. Then, we need to use the sliding method (in its full strength) to conclude that the level sets of the
solution are indeed flat.

It is worth to emphasize again that, differently from the classical case of [30], and from the mildly nonlocal case
of [32], in our genuinely nonlocal setting the improvement of flatness result is not strong enough to imply the 1D
symmetry of entire solutions right away. Only with the suitably tailored argument outlined above we can conclude
the proof of the symmetry result.

The paper is organized as follows.

In Section 2 we introduce a method to build fine barriers for the semilinear equation Lu = ε−sf(u). The main
idea is to model the solutions using the (anisotropic) distance function given by the norm ‖ · ‖C to a very flat
convex graph.

In Section 3 we give some simple (though very useful) auxiliary results on the decay of the solutions. We prove
that a solution u decays to +1 (resp. to −1) like (d/ε)−γ0 , where d is the distance to {u 6 1 − κ} (resp. to
{u > −1 + κ}).
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In Section 4 we state and prove the improvement of oscillation result for vertical rescaling, thus obtaining the
compactness of the vertical rescalings.

In Section 5 we prove that the limit of the vertical rescalings satisfies a linear translations invariant nonlocal
elliptic equation.

In Section 6 we complete the proof of Theorem 1.1.

In Section 7 we prove Corollaries 7.1 and 7.2 and give the proof of the Theorem 1.2, that is based on a suitable
application of the sliding method.

In Section 8, we then give the proofs of the symmetry results in Theorems 1.3, 1.4, 1.5 and 1.6.

Notation. For the convenience of the reader we gather here the notation that we will follow throughout all the
paper. The following list of notations is just for quick reference and all the notations are introduced (again) within
the text at their first appearance.

� L, f are the nonlocal elliptic operator and the nonlinearity, respectively, see (1.1).
� n, s, λ, Λ are, respectively, the dimension, the fractional parameter (or the order of the operator) and the

ellipticity constants of L, see (1.2) and (H0).
� L denotes the one-dimensional fractional Laplacian as in (1.3).
� C = CL is the convex body with support function hL, and ρ′ > ρ > 0 are the two constants in its curvature

bounds, see Subsection 1.2 and in particular (H1).
� κ, cκ and lκ are the constants in the quantitative assumptions of f , see Subsection 1.3.
� We will call a constant universal if it depends only on n, s, λ, Λ, ρ, ρ′, κ, cκ and lκ. In particular, universal

constants depend only on n, L, and f .
� We write

X ⊂ Y in B if X ∩B ⊂ Y ∩B.
� We denote by ‖ · ‖C the norm with unit ball C. We also denote by Cr(y) the ball of radius r and center y

with respect to this norm, namely
Cr(y) := y + rC.

Notice that when L is the fractional Laplacian Cr(y) is simply Br(y).
� Points in Rn−1 will be denoted by x′ and x = (x′, xn) denotes a point in Rn with n-th coordinate xn.

From now on, we also denote by B′r the (n− 1)-dimensional ball of radius r > 0.
� ξ denotes the function ξ : Rn−1 → R which is defined by

ξ(x′) = ξ(|x′|) :=
(
1 + |x′|2

) 1+α
2 − 1. (1.16)

� Given b > 0, we denote by db the signed distance function to the set {xn > b ξ(x′)} with respect to the
norm ‖ · ‖C , that is,

db(x) =

{
+ inf

{
‖z − x‖C : zn = b ξ(z′)

}
, for xn > b ξ(x′),

− inf
{
‖z − x‖C : zn = b ξ(z′)

}
, for xn 6 b ξ(x′).

� Given φ : R→ (−1, 1), for any x ∈ R, we set

φb(x) := φ
(
db(x)

)
.

Notice that φb : R → (−1, 1), and it may be seen as a “rearrangement” of the layer solution φ with
respect to the signed distance function.

In addition to the previous notations we use also the following very standard ones.

� Given r ∈ R, we denote by r+ := max{r, 0} and r− := max{−r, 0}.
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� Given a measurable function f : X1 × · · · ×Xm → R, we use the repeated integral notation∫
X1

dx1 . . .

∫
Xm

dxm f(x1, . . . , xm) :=

∫
X1

[
. . .

∫
Xm

f(x1, . . . , xm) dxm . . .

]
dx1.

2. APPROXIMATE SOLUTIONS VIA DEFORMATION OF LEVEL SETS

In this section we construct approximate solutions in B1 by deforming (slightly curving) the flat level sets of a
one-dimensional solution.

2.1. A layer cake formula. We start with a simple layer cake representation for the integro-differential operators.

We use the notation

χ[a1,a2](θ) :=


1 if a1 6 a2 and θ ∈ [a1, a2],

0
if either a1 > a2,

or a1 6 a2 and θ 6∈ [a1, a2].

(2.1)

Using this, we have the following simple layer cake type representation for nonlocal operators:

Lemma 2.1. It holds that

Lv(x) =

∫
Rn

dy

∫
R
dθ
(
χ[v(x+y),v(x)](θ)− χ[v(x),v(x+y)](θ)

) µ(y/|y|)
|y|n+s

. (2.2)

Furthermore, if x ∈ Rn is such that v(x) = w(x), then

Lv(x)− Lw(x) =

∫
Rn

dy

∫
R
dθ
(
χ[v(x+y),w(x+y)](θ)− χ[w(x+y),v(x+y)](θ)

) µ(y/|y|)
|y|n+s

. (2.3)

Proof. By (2.1),

(a1 − a2)− = (a2 − a1)+ =

∫
R
χ[a1,a2](θ) dθ

and therefore

v(x)− v(x+ y) =
(
v(x)− v(x+ y)

)
+
−
(
v(x)− v(x+ y)

)
−

=

∫
R
χ[v(x+y),v(x)](θ) dθ −

∫
R
χ[v(x),v(x+y)](θ) dθ.

So, we integrate and we find (2.2).

Similarly, we write

w(x+ y)− v(x+ y) =

∫
R
χ[v(x+y),w(x+y)](θ) dθ −

∫
R
χ[w(x+y),v(x+y)](θ) dθ,

which gives (2.3) after integration. �

2.2. Touching the level sets of the distance function by concentric spheres. This section discuss some
geometric features related to the signed anisotropic distance function to a convex set. To this aim, we recall
some basic properties of the support function hL defined in (1.8). First of all, for any x, y ∈ Rn, the following
inequality of Cauchy-Schwarz type holds true

x · y 6 hL(y) ‖x‖C. (2.4)

See e.g. Lemma 2.1 in [22] for an elementary proof.



11

As a counterpart of (2.4), we have that equality holds when one of the two vectors is normal to the sphere to
which the other vector belongs. More precisely, we have that if z0 ∈ Rn, R > 0, z ∈ ∂CR(z0) and ω0 ∈ Sn−1

is the inner normal of ∂CR(z0) at the point z, then

ω0 · (z0 − z) = RhL(ω0), (2.5)

see for example Lemma 2.3 in [22].

Moreover, it is useful to recall that hL is the “support function” of the convex body C, namely for any ω ∈ Sn−1

we have that

hL(ω) = sup
x∈C

x · ω, (2.6)

see for instance Lemma 2.2 in [22].

We recall also here that both hL and C are even.

Given a nonempty, closed and convex set K ⊂ Rn, we define the anisotropic signed distance function from K
as

dK(x) := inf
{
`(x) : `(x) = ω · x+ c, hL(ω) = 1, c ∈ R and ` > 0 in all of K

}
. (2.7)

Notice that dK is a concave function, since it is the infimum of affine functions. Moreover, as shown for instance
in Proposition 2.7 of [22], it holds that

dK(x) =

{
+ inf

{
‖z − x‖C : z ∈ ∂K

}
for x ∈ K,

− inf
{
‖z − x‖C : z ∈ ∂K

}
for x ∈ Rn \K. (2.8)

We have that dK is a Lipschitz function, with Lipschitz constant 1 with respect to the anisotropic norm, namely,
for any p, q ∈ Rn,

|dK(p)− dK(q)| 6 ‖p− q‖C, (2.9)

see e.g. Lemma 2.4 in [22].

With this setting, we can now prove that the level sets of dK are touched by appropriate concentric anisotropic
spheres:

Lemma 2.2. Let z0 ∈ K = {dK > 0}. Assume that CR(z0) ⊂ {dK > 0} touches ∂K = {dK = 0} at some
point z̄ ∈ {dK = 0}.
Then, for any t ∈ (−∞, R),

the set CR−t(z0) is contained in {dK > t}
and touches {dK = t} at the point

z := z0 +
R− t
R

(z − z0) ∈
(
∂CR−t(z0)

)
∩ {dK = t}.

(2.10)

Furthermore, if we denote by ω0 ∈ Sn−1 the inner normal of ∂CR(z0) at the point z̄, it holds that

R− ‖x− z0‖C 6 dK(x) 6
ω0

hL(ω0)
· (x− z̄) for any x ∈ Rn,

and equalities hold when x = z0 +
R− t
R

(z − z0), for some t ∈ (−∞, R).

(2.11)

In particular,

dK

(
z0 +

R− t
R

(z̄ − z0)

)
= t. (2.12)
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In addition, if τ ∈ (−∞, R) and zτ := z0 + R−τ
R

(z − z0), then

C|t−τ |(zτ ) is tangent from the outside to the set{
x ∈ Rn s.t. dK(x) 6 t 6

ω0

hL(ω0)
· (x− z)

}
at the point z.

(2.13)

Proof. The geometric setting of Lemma 2.2 is depicted in Figure 1.

{dk = t}

{dk = 0}

z0

z

•

•

•

z̄

z0

z̄

{dk = 0}

z

{dk = t}•

•

•z0

FIGURE 1. The geometry of Lemma 2.2 when t ∈ (0, R) and when t ∈ (−∞, 0).

The proof goes like this. For every t ∈ (−∞, R), we have that

‖z − z0‖C =
R− t
R
‖z̄ − z0‖C = R− t, (2.14)

and therefore

z ∈ ∂CR−t(z0). (2.15)

In addition, we point out that, for every t ∈ (−∞, R),

CR−t(z0) ⊂ {dK > t}. (2.16)

To check this, we distinguish two cases: either t > 0 (i.e. t ∈ [0, R)) or t < 0. If t > 0, we argue as follows. Let
p ∈ CR−t(z0). Then, for any q with ‖q‖C 6 t we have that p+ q ∈ CR(z0) ⊂ {dK > 0}.
Consequently, in light of (2.8), for any affine function `(x) = ω · x + c, with hL(ω) = 1, c ∈ R, and such that
` > 0 in {dK > 0}, it holds that

`(p+ q) > 0. (2.17)
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Therefore, we slide the halfspace with inner normal ω
|ω| till it touches ∂C and we take this touching point q.

Namely, we have q ∈ ∂Ct, with ω
|ω| as inner normal of ∂Ct at q. Hence, by (2.5),

− ω

|ω| · q = t hL

(
ω

|ω|

)
=
t hL(ω)

|ω| =
t

|ω| .

This and (2.17) give that
0 6 `(p+ q) = ω · p+ c+ ω · q = ω · p+ c− t.

This shows that `(p) > t and so, in view of (2.22), that dK(p) > t, that establishes (2.16) in this case.

So, we now check (2.16) in the case in which t < 0. For this, let p ∈ CR−t(z0). If p ∈ CR(z0), then dK(p) >
0 > t, and we are done, so we can suppose that p ∈ CR−t(z0) \ CR(z0), hence

‖p− z0‖C ∈
[
R, R− t

]
.

We take

q := z0 +
R (p− z0)

‖p− z0‖C
.

Notice that ‖q − z0‖C = R, hence q ∈ CR(z0) ⊂ {dK > 0}. This and (2.9) imply that

−dK(p) 6 dK(q)− dK(p) 6 ‖q − p‖C =
∣∣R− ‖p− z0‖C

∣∣ = ‖p− z0‖C −R 6 (R− t)−R,
that gives dK(p) > t, as desired. This completes the proof of (2.16).

Now we check that
dK(z) = t. (2.18)

To this aim, we observe that
z ∈ CR−t(z0) ⊂ {dK > t},

thanks to (2.15) and (2.16). Consequently, to establish (2.18), we only need to prove that

dK(z) 6 t. (2.19)

To this goal, if t > 0 we use (2.9) and we see that

dK(z) = dK(z)− dK(z̄) 6 ‖z − z̄‖C =
t

R
‖z̄ − z0‖C 6 t,

which is (2.18) in this case.

If instead t < 0, we denote by ω0 ∈ Sn−1 the inner normal of ∂CR(z0) at the point z, and we exploit (2.5) (recall
also (2.38)) to see that

dK(z) 6
ω0

hL(ω0)
· (z − z̄) =

ω0

hL(ω0)
·
(
z0 − z̄ +

R− t
R

(z̄ − z0)

)
=

t

R

ω0

hL(ω0)
· (z0 − z̄) = t.

(2.20)

This finishes the proof of (2.18).

Then, (2.10) follows from (2.15), (2.16) and (2.18). In turn, (2.10) also implies (2.12).

We also observe that, from the previous considerations, (2.11) follows in a straightforward way using (2.8).

Now we prove (2.13). First of all, we notice that ‖zτ − z̄‖C = |t − τ |, due to (2.14), so z̄ lies on ∂C|t−τ |(zτ ).
Thus, to prove the result in (2.13), we need to show that{

x ∈ Rn s.t. ‖x− zτ‖C < |t− τ | and dK(x) 6 t 6
ω0

hL(ω0)
· (x− z)

}
= ∅. (2.21)
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{dk = t}

{dk = 0}

z0

•

•

•

z̄

z0

z̄

{dk = 0}

{dk = t}•

•

•z0

z⌧

z⌧

FIGURE 2. Proof of (2.21) when τ > t and when τ < t.

For this, we refer to Figure 2, we argue by contradiction and we suppose that there exists x in the set on the left
hand side of (2.21). Then, we distinguish two cases, either τ > t or τ < t. If τ > t, we use (2.12) to see that
dK(zτ ) = τ and so, exploiting (2.9),

0 6 t− dK(x) = t− τ + dK(zτ )− dK(x) 6 −|t− τ |+ ‖x− zτ‖C < 0,

which is a contradiction. If instead τ < t, using (2.4) and (2.5) we find that

t 6
ω0

hL(ω0)
· (x− z̄) =

ω0

hL(ω0)
· (zτ − z̄) +

ω0

hL(ω0)
· (x− zτ )

6 τ
ω0

hL(ω0)
· z0 − z̄

R
+ ‖x− zτ‖C = τ + ‖x− zτ‖C < τ + |t− τ | = t,

which is a contradiction. This proves (2.21), which in turn gives (2.13). �

2.3. Distance function from a convex graph. Here, we look at the special case of the distance function from
a sufficiently flat graph with an appropriate growth. For this, let α ∈ (0, s) be a fixed constant. Let us introduce
the function ξ : Rn−1 → R defined by

ξ(x′) =
(
1 + |x′|2

) 1+α
2 − 1.

Note that ξ(0) = 0 and that ξ is convex with

D2ξ = diag

(
1 + αr2

1 + r2
, 1, 1, . . . , 1

)
(1 + α)(1 + r2)

α−1
2 > 0

in a coordinate system with the first axis pointing in the radial direction.
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Given some orthonormal coordinates x = (x′, xn) in Rn and b > 0, let us define

Γb :=
{
xn > b ξ(x′)

}
.

From the convex set Γb we define the following anisotropic signed distance function

db(x) := inf
{
`(x) : `(x) = ω · x+ c, hL(ω) = 1, c ∈ R, and ` > 0 in all of Γb

}
. (2.22)

By comparing with (2.7), we have that db coincides with dK with the particular choice K := Γb. Hence, in view
of (2.8), it holds that

db(x) =

{
+ inf

{
‖x− z‖C : z ∈ ∂Γb

}
for x ∈ Γb,

− inf
{
‖x− z‖C : z ∈ ∂Γb

}
for x ∈ Rn \ Γb,

(2.23)

where ‖ · ‖C denotes the norm with unit ball C; for this, we use the notations in (1.6) and (1.9) and we recall
that, throughout the paper, C = CL is the convex body associated to L and, for any r > 0 and any y ∈ Rn, we
set

Cr(y) := y + rC. (2.24)

The following result states that under the hypothesis (H1), and for b small enough, all the level sets of db passing
close enough to the origin are C1,1 graphs, with their second derivatives bounded by Cb near the origin and with
growth at infinity controlled by Cb|x|1+α.

Lemma 2.3. There exist b0 > 0 and C0 > 0, depending only on α, ρ and ρ′, such that for any b ∈ (0, b0) and
any t ∈ R, with {db = t} ∩ C4/ρ 6= ∅, we have that

{db = t} = {yn = G(y′)}
where G : Rn−1 → R is a suitable convex function satisfying∣∣D2G

∣∣ 6 C0b in B′4ρ′/ρ (2.25)

and ∣∣G(y′)−G(0)
∣∣ 6 C0b(1 + |y′|)1+α for all y′ ∈ Rn−1. (2.26)

To prove Lemma 2.3 we need the following simple preliminary result:

Lemma 2.4. We have the following inequalities between the anisotropic and the Euclidean norm

1

ρ′
| · | 6 ‖ · ‖C 6

1

ρ
| · |. (2.27)

Proof. By (H1), we have
Bρ ⊂ C ⊂ Bρ′ .

Therefore, recalling (1.9),

‖x‖C = sup{t > 0 s.t. x/t /∈ C} 6 sup{t > 0 s.t. x/t /∈ Bρ} =
1

ρ
|x|,

which proves the second inequality in (2.27). The second inequality is proven likewise. �

Proof of Lemma 2.3. We have ∣∣D2ξ(x′)
∣∣ 6 C (1 + |x′|2)

α−1
2 , (2.28)

for some C > 0 depending only on α.

Using that 0 ∈ ∂Γb = {db = 0} and that, by assumption, there exists p ∈ C4/ρ such that p ∈ {db = t}, we
have that

|t| 6 ‖p− 0‖C 6
4

ρ
. (2.29)
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Choose y ∈ {db = t}. Recalling Lemma 2.4, let ȳ be a point on ∂Γb for which

1

ρ′
|ȳ − y| 6 ‖ȳ − y‖C = |db(y)| = |t|.

By (2.28) there exists a ball of radius R > c/b contained in Γb and touching ∂Γb at the point y, where c > 0
depends only on α. Since Cr ⊂ Brρ′ there exists z0 in Γb such that

CR/ρ′(y0) ⊂ Γb and touches ∂Γb at ȳ. (2.30)

Then, by Lemma 2.2 we have that

CR/ρ′−t(y0) ⊂ {db > t} and touches {db = t} at y. (2.31)

Since C is assumed to be C1,1, this shows that the boundary of the convex set {db > t} is C1,1.

Let us prove that, indeed, the boundary of {db > t} is a graph and control the gradient and the second deriva-
tives of this graph. We assume that b0 is small enough so that

R/ρ′ − t > c

bρ′
− 4

ρ
>
c

b

where c denotes a positive universal constant (that may change each time).

Now, denoting y = (y′, yn) and ȳ = (ȳ′, ȳn), we have

|ȳ′| 6 |y′|+ |y − ȳ| 6 |y′|+ ρ′|t| 6 |y′|+ 4

ρ
6 |y′|+ C.

The tangent plane to CR/ρ′−t(y0) at ȳ is parallel to the tangent plane to CR/ρ′(y0) at y and, by (2.30), this slope
is given by

b(1 + α)|ȳ′|(1 + |ȳ′|2)
α−1
2 6 2(1 + |ȳ′|2)

α
2 6 C0(1 + |y′|2)

α
2 ,

where C0 is a universal constant and where we have used that

(bξ(r))′ = b(1 + α)r(1 + r2)
α−1
2 .

Since the point y can be chosen arbitrarily on the surface {db = t}, this proves that this surface is an entire
graph. Namely, that

{db = t} = {yn = G(y′)} where |DG(y′)| 6 C0(1 + |ȳ|2)
α
2 .

Finally, the estimate for the second derivative in (2.25) follows from (2.31) recalling that R > cb. On the other
hand, (2.26) follows from the fact that∣∣G(y′)−G(0)

∣∣ 6 sup
|z′|6|y′|

|DG(z′)||y′| 6 C0|y′|b(1 + |y′|2)
α
2 6 C0b(1 + |y′|)1+α for all y′ ∈ Rn−1.

This completes the proof of Lemma 2.3. �

2.4. Modeling solutions with the distance function. We now construct useful barriers by using the level sets
of the distance function as a profile and controlling the error produced in the equation by such procedure. For
this, we let φ : R→ (−1, 1) be a C2 and increasing function with

lim
z→±∞

φ(z) = ±1.

Note that any such φ solves an equation of the type

Aφ = fφ(φ) in R,
where fφ : (−1, 1)→ R is defined by

fφ := (Aφ) ◦ φ−1. (2.32)
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Now we define a suitable rearrangement procedure that produces a function φb : Rn → (−1, 1) from any given
φ as above and modeled along the level sets of the distance function db, as introduced in (2.22). Namely, we set

φb(x) := φ
(
db(x)

)
. (2.33)

Then, we have that φb is “almost” a solution of the equation with nonlinearity fφ, as given by the following result:

Lemma 2.5. Let L satisfy (H1). Then, there exist positive quantities b0 and C0 depending only on n, s, λ, Λ, ρ
and ρ′ (and thus independent of φ), such that the following holds.

Assume that

[−1 + δ, 1− δ] ⊂ φ

([
− 1

ρ′
,

1

ρ′

])
. (2.34)

Then, for all ω ∈ Sn−1 and b ∈ (0, b0) we have

0 6 Lφb − fφ
(
φb
)
6 C0(b+ δ) in B1. (2.35)

Proof. Let us fix z ∈ B1. Let θ0 = φb(z) be the level of φb at z. By (2.33), we know that db(z) = φ−1(φb(z)) =
φ−1(θ0) =: t0.

We also recall that hL was introduced in (1.5) (or, equivalently, in (1.8)) and we let ω be the unit vector normal
to {db = t0} at z and pointing towards {db > t0}. Then, we define

d̃(x) :=
ω

hL(ω)
· (x− z) + t0. (2.36)

We also set φ̃ := φ ◦ d̃. Using the notation in (1.4), we have that

φ̃(x) = φ

(
ω

hL(ω)
· (x− z) + t0

)
= φ

(
ω

hL(ω)
·
(
x− z + ω hL(ω) t0

))
= φ̄ω,h(x− z + ω h t0),

with h := hL(ω).

Consequently, by (1.5) and (2.32), for any x ∈ Rn,

Lφ̃(x) = Lφ̄ω,h(x− z − ω h t0) = Aφ
(ω
h
· (x− z + ω h t0)

)
= fφ

(
φ
(ω
h
· (x− z + ω h t0)

))
= fφ

(
φ
(ω
h
· (x− z) + t0)

))
= fφ(φ̃(x)).

(2.37)

Now, by (2.11) in Lemma 2.2 we have
db 6 d̃ in Rn, (2.38)

see also Lemma 2.6 in [22] for the elementary proof of this and related facts. Moreover,

db = d̃ along the ray R := {z0 + t′(z − z0), t′ > 0}. (2.39)

From the observations in (2.38) and (2.39) it follows that

{db = t} is tangent to {d̃ = t} at some point onR. (2.40)

Notice that, by construction,
φb(z) = φ(t0) = φ̃(z) (2.41)

and, by (2.38) and the monotonicity of φ, it holds that φb 6 φ̃. Accordingly,Lφb(z)−Lφ̃(z) > 0. Thus, we apply
the layer cake formula in (2.3) of Lemma 2.1 and use that the image of φ is contained in [−1, 1] to conclude that

0 6 Lφb(z)− Lφ̃(z) =

∫
Rn

dy

∫
R
dθχ[φb(z+y), φ̃(z+y)](θ)

µ(y/|y|)
|y|n+s

=

∫ 1

−1

dθ

∫
Rn
dy

µ(y/|y|)
|y|n+s

χSθ(z + y) =

∫ 1

−1

dθ Iz(θ)

(2.42)
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where
Sθ :=

{
x ∈ Rn : φb(x) 6 θ 6 φ̃(x)

}
=
{
x ∈ Rn : db(x) 6 φ−1(θ) 6 d̃(x)

}
and

Iz(θ) :=

∫
Rn

µ(y/|y|)
|y|n+s

χSθ(z + y) dy.

Now we recall (2.37) and (2.41) to see that Lφ̃(z) = fφ(φ̃(z)) = fφ(φb(z)) and so we can rewrite (2.42) as

0 6 Lφb(z)− fφ(φb(z)) =

∫ 1

−1

dθ Iz(θ). (2.43)

Now, given θ ∈ (−1, 1), let us define
tθ := φ−1(θ).

In the next steps of the proof we will establish different estimates for Iz(θ) by distinguishing the two cases
{db = tθ} ∩ C3/ρ(z) = ∅ and {db = tθ} ∩ C3/ρ(z) 6= ∅.

Case 1. Let {db = tθ} ∩ C3/ρ(z) = ∅. We take b ∈ (0, b0) with b0 small enough, depending only on ρ and ρ′,
and we claim that we have that

Sθ ∩B2 = ∅. (2.44)

Indeed, by (2.13), {db = tθ} ∩ C3/ρ(z) = ∅ implies that Sθ ∩ C3/ρ(z) = ∅. Hence, recalling that z ∈ B1, we
have that B2 ⊂ B3(z) ⊂ C3/ρ(z) and hence (2.44) follows.

Thus, since z ∈ B1, using (2.44) we conclude that

Iz(θ) =

∫
Rn\B1

µ(y/|y|)
|y|n+s

χSθ(z + y) dy 6
∫
Rn\B1

Λ

|y|n+s
dy 6 C, (2.45)

for some C > 0.

Now we claim that in this case we have

θ ∈ [−1, −1 + δ) ∪ (1− δ, 1]. (2.46)

Indeed, if not, by (2.34),

θ ∈ [−1 + δ, 1− δ] ⊂ φ

([
− 1

ρ′
,

1

ρ′

])
and so

tθ = φ−1(θ) ∈
[
− 1

ρ′
,

1

ρ′

]
.

Then, using that 0 ∈ {db = 0} we find that

inf

{
1

ρ′
|y − 0| : y ∈ {db = tθ}

}
6 inf

{
‖y − 0‖C : y ∈ {db = tθ}

}
= |tθ| 6

1

ρ′

and thus {db = tθ} intersects B2, which is a contradiction. This proves (2.46).

Case 2. Now we deal with the case {db = tθ} ∩ C3/ρ(z) 6= ∅ and b ∈ (0, b0), with b0 small enough. Note that
we have {db = tθ} ∩ C4/ρ∅ since z ∈ B1 ⊂ C1/ρ.

In this case, we recall (2.39) and (2.40) and we take z̄ = (z̄′, z̄n) to be the triple intersection point described
there, that is

z̄ ∈ {db = tθ} ∩ {d̃ = tθ} ∩ R. (2.47)

With this notation, we can write the set Sθ as a suitable portion of space trapped between a linear function and
a convex one with small detachment one from the other. For this, we exploit Lemma 2.3 to see that

{db = tθ} = {yn = G(y′)} (2.48)
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with G convex and satisfying

|DG(y′)| 6 C0b in |y′| < 4ρ′

ρ
and

∣∣G(y′)−G(0)
∣∣ 6 C0b(1 + |y′|)1+α for all y′. (2.49)

Therefore, the condition db(x) 6 tθ is equivalent to the fact that the point x lies below the graph of G, namely
that xn 6 G(x′). Similarly, from (2.47), we have that ω is normal to both {d̃ = tθ} and {db = tθ} at z̄ and so,
by (2.48), the condition that tθ 6 d̃(x) is equivalent to

xn > G(z̄′) +∇G(z̄′) · (x′ − z̄′).
In consequence of these observations, we have that

Sθ =
{
G(z̄′) +∇G(z̄′) · (x′ − z̄′) 6 xn 6 G(x′)

}
. (2.50)

Next we observe that, as a consequence of (2.13), for r = ‖z − z̄‖C , we have

Cr(z) ⊂ Rn \ Sθ. (2.51)

Therefore, for all y in Sθ, recalling Lemma 2.4,

|y − z̄| 6 ρ′‖y − z̄‖C 6 C
(
‖y − z‖C + r

)
6 C|y − z|.

Accordingly, if z+ y ∈ Sθ, then |z+ y− z̄| 6 C|y|. As a consequence of this and (2.50), we have that, for any
fixed y′ ∈ Rn−1,∫

R

χSθ(z + y)

|y|n+s
dyn 6 C

∫
R

χSθ(z + y)

|z + y − z̄|n+s
dyn 6 C

∫
R

χSθ(z + y)

|z′ + y′ − z̄′|n+s
dyn

= C

∫
{G(z̄′)+∇G(z̄′)·(z′+y′−z̄′)6zn+yn6G(z′+y′)}

dyn
|z′ + y′ − z̄′|n+s

= C
G(z′ + y′)−G(z̄′)−∇G(z̄′) · (z′ + y′ − z̄′)

|z′ + y′ − z̄′|n+s
.

Hence, if we integrate in y′ ∈ Rn−1 and use the change of variable Y ′ := z′ + y′ − z̄′, up to renaming C > 0
we have that

Iz(θ) 6 C

∫
Rn

χSθ(z + y)

|y|n+s
dy 6 C

∫
Rn−1

G(z′ + y′)−G(z̄′)−∇G(z̄′) · (z′ + y′ − z̄′)
|z′ + y′ − z̄′|n+s

dy′

= C

∫
Rn−1

G(Y ′ + z̄′)−G(z̄′)−∇G(z̄′) · Y ′
|Y ′|n+s

dY ′ 6 Cb,

(2.52)

where (2.49) has been used in the last estimate —note that z̄ ∈ C3/ρ(z) and thus

|z̄′| 6 |z̄| 6 ρ′
(
‖z − z̄‖C + ‖z‖C

)
6 ρ′

(
3/ρ+ 1/ρ

)
6 4ρ′/ρ.

Final estimate. We recall that, from (2.43),

0 6 Lφb(z)− fφ(φb(z)) =

∫ 1

−1

dθ Iz(θ) =

∫
A
dθ Iz(θ) +

∫
B
dθ Iz(θ),

where A is the set of levels θ as in Case 1 and B is the set of levels θ as in Case 2. Then, on the one hand,
(2.46) implies that |A| 6 2δ, and, for each θ ∈ A, we have that Iz(θ) 6 C . On the other hand, (2.52) yields
that, for each θ ∈ B, we have that Iz(θ) 6 Cb. Therefore,

0 6 Lφb(z)− fφ(φb(z)) =

∫
A
dθ Iz(θ) +

∫
B
dθ Iz(θ) 6 Cδ + Cb,

which proves (2.35), as desired. �
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3. DECAY ESTIMATES FOR SOLUTIONS

The goal of this section is to provide suitable decay estimates for our solutions. For this, we start with a preliminary
result:

Lemma 3.1. Let w be such that Lw 6 −kw in BR, where R ∈ [2,∞) and k ∈ [1,∞). Suppose that
0 6 w 6 2 in all of Rn, then

0 6 w 6
C

(k1/sR)γ0
in B1,

where C , γ0 > 0 depend only on n, s, and on the ellipticity constants.

Proof. The idea of the proof is to use a barrier argument at the different scales. For the reader’s convenience,
we split the proof into three steps.

Step 1. We prove the following statement. Assume that Lw̄ 6 −w̄ in B1 and

0 6 w̄ 6 2γ0j in B2j (3.1)

for all j > 0. Then, (3.1) holds also for j = −1.

For this, we take η ∈ C∞0 (B3/4) radially nonincreasing, with η = 1 in B1/2. Let also γ0 ∈ (0, 1), to be taken
appropriately small, and set h0 := 1− 2−γ0 > 0. We define the function

φ := (1− h0η)χB1 +
∞∑
j=1

2γ0jχB
2j
\B

2j−1
.

We observe that φ = 1 − h0η in B1 and φ = 2γ0j in B2j \B2j−1 for any j > 1. As a consequence, for
any x ∈ B3/4,

−Lφ(x) =

∫
B1

(1− h0η)(z)− (1− h0η)(x)

|z − x|n+s
µ

(
z − x
|z − x|

)
dz

+
+∞∑
j=1

∫
B

2j
\B

2j−1

2γ0j − (1− h0η)(x)

|z − x|n+s
µ

(
z − x
|z − x|

)
dz

6 h0

[∣∣∣∣∫
B1

η(x)− η(z)

|z − x|n+s
µ

(
z − x
|z − x|

)
dz

∣∣∣∣+
+∞∑
j=1

∣∣∣∣∣
∫
B

2j
\B

2j−1

2γ0j − 1− h0

|z − x|n+s
µ

(
z − x
|z − x|

)
dz

∣∣∣∣∣
]

6 Ch0 + C
∑

16j6γ−1/3
0

(2γ0j − 1) + C
∑

j>γ−1/3
0

2γ0j

2j(1+s)

6 Ch0 + C
2γ

2/3
0 − 1

γ
1/3
0

+
C

2
1+s

2γ
1/3
0

,

with C > 0 possibly varying from line to line. In particular, when γ0 (and so h0) is small, we have that −Lφ 6
1/2 6 φ in B3/4.

Since also φ > w̄ outside B3/4, using the maximum principle we have that w̄ 6 φ in B3/4. Consequently,
w̄ 6 1− h0 = 2−γ0 in B1/2. This completes the proof of the statement in Step 1.
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Step 2. Now we prove the following statement. Let w̃ be such that Lw̃ 6 −w̃ in BR̃, where R̃ > 1. Suppose

that 0 6 w̃ 6 2 in all of Rn, then, for any ρ̃ ∈
[

1
2
, R̃
)

, we have

0 6 w̃ 6 C

(
ρ̃

R̃

)γ0
in Bρ̃,

for some C , γ0 > 0.

The proof of this claim is an iteration of Step 1. Namely, we take N ∈ N such that 2N 6 R̃ < 2N+1. For
any i ∈ N, i ∈ [1, N + 1], we set

w̄i(x) = 2(i−1)γ0−1 w̃(2N−i+1x). (3.2)

Notice that, by construction,

Lw̄i 6 −2(N−i+1)s w̄i 6 −w̄i in B2i−1 ⊃ B1 (3.3)

and, if i ∈ N, i ∈ [1, N ],
w̄i+1(x) = 2γ0 w̄i(x/2). (3.4)

We claim that
for any 0 6 j 6 i− 1, we have that w̄i 6 2(j−1)γ0 in B2j−1 . (3.5)

The proof of (3.5) is by induction. First, we observe that, for any j > 0, in B2j we have that

w̄1 6 2−1 sup
Rn

w̃ 6 1 6 2j.

From this and (3.3), we can use Step 1 with w̄ := w̄1 and find that w̄1 6 2−γ0 inB1/2. This is (3.5) when i = 1.

Now, we suppose that (3.5) holds true for the index i ∈ [1, N ], and we prove it for the index i + 1. To this aim,
we claim that, for any j > 0,

w̄i+1 6 2γ0j in B2j . (3.6)

To check this, we distinguish two cases. If j > i, then we recall (3.2) and we see that

sup
B

2j

w̄i+1 6 2iγ0−1 sup
Rn

w̃ 6 2iγ0 6 2jγ0 ,

as desired. If instead j 6 i− 1, then we exploit (3.5) with index i together with (3.4) and we obtain

sup
B

2j

w̄i+1 = 2γ0 sup
B

2j−1

w̄i 6 2γ0 · 2(j−1)γ0 = 2jγ0 .

This proves (3.6).

So, by (3.3) and (3.6), we can use Step 1 with w̄ := w̄i+1 and conclude that w̄i+1 6 2−γ0 in B1/2. This
inequality and (3.6) imply that

for any 0 6 j 6 i, we have that w̄i+1 6 2(j−1)γ0 in B2j−1 ,

that is (3.5) for the index i+ 1, as desired. This completes the inductive proof of (3.5).

Hence, using the notation m := i− j, we deduce from (3.5) that

sup
B

2N−m

w̃ 6 21−mγ0 , (3.7)

for any m ∈ Z with m 6 N + 1.

Now we take M ∈ Z such that 2−M−1 6 2−N ρ̃ < 2−M . Notice that

1

2
6 ρ̃ 6 2N−M ,



22

hence M 6 N + 1. Then, we can apply (3.7) with m := M and we obtain that

sup
Bρ̃

w̃ 6 sup
B

2N−M

w̃ =6 21−Mγ0 =
21+2γ0 · 2(N−M−1)γ0

2(N+1)γ0
6

21+2γ0 · ρ̃γ0
R̃γ0

.

This establishes the claim in Step 2.

Step 3. Now we complete the proof of Lemma 3.1 scaling the statement proven in Step 2. To this aim, we take w
as in the statement of Lemma 3.1 and p ∈ B1. We define R̃ := (R− 1)k1/s and

w̃(x) := w
(
p+

x

k1/s

)
.

Notice that R̃ > k1/s > 1. Furthermore, for any x ∈ BR̃ we have that∣∣∣p+
x

k1/s

∣∣∣ 6 |p|+ |x|
k1/s
6 1 +

R̃

k1/s
= R,

and therefore, for any x ∈ BR̃,

Lw̃(x) =
1

k
Lw
(
p+

x

k1/s

)
6 −w

(
p+

x

k1/s

)
= −w̃(x).

So, we can use Step 2 with ρ̃ := 1/2 and obtain that

w(p) = w̃(0) 6 sup
B1/2

w̃ 6
C

(2R̃)γ0
=

C

(2(R− 1)k1/s)γ0
6

C

(Rk1/s)γ0
,

which is the desired result. �

As a consequence of the previous preliminary result, we have:

Lemma 3.2. Let R > 2 and ε ∈ (0, 1]. Let u : Rn → [−1, 1] be a solution of Lu = ε−sf(u) in Rn. Then, if ε
is sufficiently small,

u(x) > 1− C
( ε
R

)γ0
whenever BR(x) ⊂ {u > 1− κ}

and

u(x) 6 −1 + C
( ε
R

)γ0
whenever BR(x) ⊂ {u 6 −1 + κ},

for some C , γ0 > 0.

In particular, for n = 1, the profile φ0 satisfies∣∣φ0 − (−1)| 6 Cf |x|−γ0 in (−∞,−1] and
∣∣φ0 − 1| 6 Cf |x|−γ0 in [1,+∞). (3.8)

Proof. Using assumption (H2) we have

−f(u) = f(1)− f(u) 6 −cκ(1− u) for u > 1− κ

and therefore

L(1− u) = −Lu = −ε−sf(u) 6 −ε−scκ(1− u) in {u > 1− κ}.
Thus, from Lemma 3.1 with w := 1− u and k := ε−scκ we obtain the desired decay estimates. �
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4. IMPROVEMENT OF OSCILLATION FOR LEVEL SETS OF SOLUTIONS

The goal of this section is to establish the following improvement of oscillation result for level sets, which is one of
the cornerstones of this paper. This result is crucial since it gives compactness of sequences of vertical rescaling
of the level sets.

For fixed α ∈ (0, s), m0 ∈ N and a > 0, let us introduce

ka :=

⌊
log a

log(2−α)

⌋
−m0, which belongs to N for a small. (4.1)

Notice that ka ↑ +∞ as a ↓ 0, and

1

2
2−αm02−αka 6 a 6 2−αm02−αka . (4.2)

Theorem 4.1. Assume that L satisfies (H1) and that f satisfies (H2) and (H3). Then, given α ∈ (0, s) there
exist p0 ∈ (2,∞), a0 ∈ (0, 1/4), and η0 ∈ (0, 1), depending only on α, m0, and on the universal constants,
such that the following statement holds.

Let a ∈ (0, a0) and ε ∈ (0, ap0). Let u : Rn → (−1, 1) be a solution of Lu = ε−sf(u) in B′
2ka
× (−2ka , 2ka)

such that

{xn 6 −a2j(1+α)} ⊂ {u 6 −1 + κ} ⊂ {u 6 1− κ} ⊂ {xn 6 a2j(1+α)} in B′2j × (−2ka , 2ka),

for j = {0, 1, 2, . . . , ka}.
Then, either

{xn 6 −a(1− η0)} ⊂ {u 6 −1 + κ} in B′1/2 × (−2ka , 2ka)

or

{u 6 1− κ} ⊂ {xn 6 a(1− η0)} in B′1/2 × (−2ka , 2ka).

We will deduce Theorem 4.1 from the following result:

Proposition 4.2. Assume that L satisfies (H1) and that f satisfies (H2) and (H3). Then, given α ∈ (0, s) there
exist p0 ∈ (2,∞), a0 ∈ (0, 1/4), and η0 ∈ (0, 1), depending only on α, m0, and on the universal constants,
such that the following statement holds.

Let a ∈ (0, a0) and ε ∈ (0, ap0). Let u : Rn → (−1, 1) be a solution of Lu = ε−sf(u) in B′
2ka
× (−2ka , 2ka)

such that

{u 6 1− κ} ⊂
{
xn 6 a2j(1+α)

}
in B′2j × (−2ka , 2ka) (4.3)

for j = {0, 1, 2, . . . , ka}, and ∫
B2

u dx > 0. (4.4)

Then, we have that

{u 6 1− κ} ⊂ {xn 6 a(1− η0)} in B′1/2 × (−2ka , 2ka). (4.5)

For its use in the proof of Proposition 4.2, we recall the following maximum principle:

Lemma 4.3. There exists θ > 0, depending only on n, s, λ and Λ, such that the following statement holds true.
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Let w ∈ C2(B4) satisfy 

Lw > −θ in B4 ∩ {w 6 0},∫
Rn
w−(y)(1 + |y|)−n−s dy 6 θ,

∫
B4

w+(y) dy > 1.

Then w > 0 in B2.

Proof. See Lemma 6.2 in [13]. �

In order to prove Proposition 4.2 (and so Theorem 4.1), we also need the following observation:

Lemma 4.4. Let φ := φ0( · /ε) and φb := φ ◦ db, where db is defined in (2.22) (see also (2.23)).

Then, ∣∣Lφb − ε−sf(φb)
∣∣ 6 C(b+ εγ0) in B4,

where C > 0 is a universal constant and γ0 > 0 is the constant given by Lemma 3.2.

Proof. By (3.8), we have that (2.34) is satisfied with δ := Cεγ0 . Hence, using Lemma 2.5 (scaled to B4 and
with fφ := ε−sf ), we obtain that

∣∣Lφb − ε−sf(φb)
∣∣ 6 C(b+ δ). The desired result now plainly follows. �

With this, we are in the position of proving Proposition 4.2.

Proof of Proposition 4.2. In all the proof we denote

Cr := B′r × (−2ka , 2ka).

Fix z′ ∈ B′1/2 and let

ū(x) := u(x′ − z′, xn). (4.6)

By assumptions, we have

{ū 6 1− κ} ⊂
{
xn 6 a+

1

2
b ξ(x′)

}
in C2ka (4.7)

for

b := Ca, (4.8)

where C > 0 depends only on α and ξ was defined in (1.16).

Throughout the proof, we use the notations

φ(t) := φ0

(
t

ε

)
and φb(x) := φ ◦ db(x). (4.9)

The idea of the proof is to consider the infimum h∗ among all the h > 0 such that

min
x∈B1

(
ū(x)− φb(x− hen)

)
> 0. (4.10)

We will indeed observe that such h∗ is well defined. Then, we will show that

h∗ < a(1− η) (4.11)
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for a suitable and universal η ∈ (0, 1). The proof of (4.11) will be done by contradiction (namely, we will show
that the inequality h∗ > a − ηa leads to a contradiction). Then, from the inequality in (4.11), the claim in
Proposition 4.2 will follow in a straightforward way.

Step 1. Let us show first that if h > a+ 3 then (4.10) holds true.

First, we claim that

φb(x− hen) 6 −1 +
Cεγ0(

xn − h− bξ(x′)
)γ0
−

for all x ∈ C2ka−1 (4.12)

and

ū(x) > 1− Cεγ0(
xn − a− 1

2
b ξ(x′)

)γ0
+

for all x ∈ C2ka−1 . (4.13)

To prove (4.12) and (4.13), it is important to observe that, by (4.2),

|∇(bξ)(z′)| 6 Ca(1 + |z′|2)
α−1
2 |z′| 6 Ca2ka 6 C2−m0 for all z′ ∈ B′2ka . (4.14)

Now, to show (4.12), we use the decay properties of φ0 in Lemma 3.2, which imply that, for all h > 0,

φb(x− hen) = φ0

(
db(x− hen)

ε

)
6 −1 +

Cεγ0(
db(x− hen)

)γ0
−

. (4.15)

Also, as a consequence of (4.14), we see that, for all y ∈ B′
2ka
× R,(

db(y)
)
− > c

(
yn − bξ(y′)

)
−, (4.16)

for some c > 0 depending only on ρ and ρ′. (for more details see Lemma 3.2 in [22]).

Now, making use of (4.15) and (4.16) (with x ∈ B2ka and y := x− hen), we deduce (4.12).

Let us now prove (4.13). To do it, given x ∈ C2ka−1 , define R = R(x) to be the the largest radius for which

BR(x) ⊂ C2ka ∩
{
yn > a+

1

2
b ξ(y′)

}
.

By (4.7), we know that u(y) > 1 − κ for any y ∈ B2ka with yn > a + 1
2
b ξ(y′) and by assumption u solves

Lu = ε−su in C2ka . Hence, using Lemma 3.2 we obtain

u(x) > 1− Cεγ0

Rγ0
. (4.17)

Now we observe that, by (4.14), for any x ∈ C2ka/2 with xn > a+ 1
2
b ξ(x′) we have

R(x) > c

(
xn − a−

1

2
b ξ(x′)

)
+

,

as long as c > 0 is sufficiently small. Hence, (4.13) follows.

Now we remark that (
xn − a− 1

2
bξ(x′)

)
−
(
xn − h− b ξ(x′)

)
= h− a+

b

2
ξ(x′). (4.18)

Hence, since we are now assuming that h− a > 3 > 2, we deduce from (4.18) that(
xn − a− 1

2
bξ(x′)

)
−
(
xn − h− b ξ(x′)

)
> 1 +

b

2
ξ(x′) > 1.
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Consequently,

either
(
xn − a−

1

2
b ξ(x′)

)
> 1 (4.19)

or
(
xn − h− bξ(x′)

)
6 −1. (4.20)

Now we claim that
ū(x)− φb(x− hen) > −Cεγ0 for any x ∈ C2ka−1 . (4.21)

For this, we distinguish two cases, according to (4.19) and (4.20). If (4.19) is satisfied, then we exploit (4.13) and
the fact that φb 6 1 to find that

ū(x)− φb(x− hen) > ū(x)− 1 > − Cεγ0(
xn − a− 1

2
b ξ(x′)

)γ0
+

> −Cεγ0 ,

up to renaming C > 0, which gives (4.21) in this case.

If instead the inequality in (4.20) holds true, we use (4.12) and the fact that ū > −1 to see that

ū(x)− φb(x− hen) > ū(x) + 1− Cεγ0(
xn − h− bξ(x′)

)γ0
−

> − Cεγ0(
xn − h− bξ(x′)

)γ0
−

> −Cεγ0 ,

up to renaming constants, and this completes the proof of (4.21).

Furthermore, since ξ is a nonnegative function with ξ(0) = 0, the affine function `(x) := xn/c̃, with c̃ =
hL(en) > 0, is admissible in (2.22). As a consequence, we obtain that db(x) 6 xn/c̃. Accordingly, from the
monotonicity of φ, we have that

φb(x) = φ(db(x)) 6 φ(xn/c̃) for all x ∈ Rn. (4.22)

Now, since in this case h > a+ 3 > 3, we observe that, for any x ∈ B2,

xn − h
ε

6
2− 3

ε
= −1

ε

and so, if ε is large enough,

sup
B2

φ0

(
xn − h
c̃ε

)
6 −1

2
.

Therefore, recalling the assumption (4.4) and (4.22),∫
B2

ū(x)− φb(x− hen) dx >
∫
B2

ū(x)− φ(c̃(xn − h)) dx

=

∫
B2

ū(x)− φ0

(
c̃
xn − h
c̃ε

)
dx > 0−

∫
B2

φ0

(
xn − h
c̃ε

)
dx > c,

(4.23)

where c > 0 is a universal constant.

We consider now the function w(x) := ū(x)− φb(x− hen). Let us show that

Lw > −C(b+ εγ0) in {w 6 0} ∩B4. (4.24)

Indeed, let
Ω := {w 6 0} ∩

(
{u > 1− κ} ∪ {φb(· − hen) 6 −1 + κ}

)
.

To start with, we will show that (
{w 6 0} ∩B4

)
\ Ω = ∅. (4.25)

Indeed, suppose, by contradiction, that there exists a point y ∈
(
{w 6 0} ∩B4

)
\ Ω. Then,

ū(y) < 1− κ and φb(y − hen) > −1 + κ. (4.26)
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Thus, by (4.7), we see that

0 > yn − a−
1

2
bξ(y′) = yn − h+ h− a− 1

2
bξ(y′) > yn − h+ 3− 1

2
bξ(y′).

Therefore

yn − h− bξ(y′) = yn − h+ 3− 1

2
bξ(y′)− 3− 1

2
bξ(y′) 6 0− 3− 1

2
bξ(y′) < 0.

Hence, we can use (4.12), which gives that

φb(yn − hen) 6 −1 + Cε−γ0 ,

up to renaming C > 0. Thus, for ε small, we deduce that φb(y − hen) 6 −1 + κ, which gives that the second
inequality in (4.26) cannot occur. This contradiction establishes (4.25).

Hence, in view of (4.25), to complete the proof of (4.24), we only need to show that (4.24) holds true in Ω ∩B4.
To this aim, we take y ∈ Ω ∩B4. Then, w(y) 6 0 and so ū(y) 6 φb(y − hen). Therefore, using Lemma 4.4,

Lw(y) = Lū(y)− Lφb(y − hen) > ε−sf
(
ū(y)

)
− ε−sf

(
φb(y − hen)

)
− C (b+ εγ0)

> ε−sf ′(ξ)w(y)− C (b+ εγ0),
(4.27)

where C > 0 and ξ = ξ(y) belongs to the real interval
[
ū(y), φb(y · −hen)

]
.

We also recall that by (H2) we have that f ′ 6 0 in [−1,−1 + κ] ∪ [1− κ, 1]. Moreover, by the definition of Ω,
we have that either 1− κ 6 ū(y) < φb(y− hen) 6 1 or−1 6 ū(y) < φb(y− hen) 6 −1 + κ. In any case,
we have that f ′(ξ) 6 0 and so (4.24) follows from (4.27).

Now, putting together (4.24), (4.21) and (4.23), we have proven that w satisfies

Lw > −C(b+ εγ0) in B4 ∩ {w < 0},
w > −Cεγ0 in C2ka−1 ,

w > −2 in Rn \ C2ka−1 ,∫
B2

w(y) dy > c.

Note that ∫
Rn

w−(y)

(1 + |y|)n+s
dy 6 Cεγ0 +

∫
|y|>2ka−1

2dy

|y|n+s
6 Cεγ0 + C2−ska .

Then, choosing a0 small enough (that corresponds to ka large in view of (4.1)), we fall under the assumptions of
Lemma 4.3, which yields that w > 0 in B2. This plainly implies the desired statement for Step 1.

Step 2. Let
h∗ := inf

{
h > 0 : (4.10) holds

}
.

Notice that the infimum is taken over a nonempty set, thanks to Step 1, and indeed h∗ 6 a + 3 < +∞. We
next show that

h∗ < a− ηa as long as η > 0 is sufficiently small. (4.28)

The proof of (4.28) will be by contradiction, namely we will show that the two conditions h∗ > a − ηa and η
small enough lead to a contradiction (for an appropriately small a0).

To this aim, we define
φ∗(x) := φb(x− h∗en).

We observe that, by the definition of h∗, we have that u− φ∗ > 0 in B1.

Under this assumption, we will prove that

ū− φ∗ > 0 in B2, (4.29)
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which contradicts the definitions of h∗ and φ∗.

Indeed, using the contradictory assumption that h∗ > a− ηa, we have(
xn − a− 1

2
b ξ(x′)

)
−
(
xn − h∗ − b ξ(x′)

)
= h∗ − a+

b

2
ξ(x′) >

b

2
ξ(x′)− ηa.

Then, if η is small enough we have, for all x ∈ C2ka−1 \B1,(
xn − a− 1

2
b ξ(x′)

)
−
(
xn − h∗ − b ξ(x′)

)
>
b

2
ξ(1/2)− ηa > b

8

where we have used that b = Ca (recall (4.8)).

Therefore, for all x ∈ C2ka−1 \B1,

either
(
xn − a− 1

2
b g(x′)

)
>

b

16
or

(
xn − b g(x′)

)
6 − b

16
.

Thus, similarly as in Step 1, using either (4.12) and the fact that ū > −1, or (4.13) and φ∗ 6 1, we obtain that

ū− φ∗ > −C(ε/b)γ0 in C2ka−1 ,

for some C > 0.

Next, similarly as in Step 1, the function w := u− φ∗ satisfies

Lw > −C(b+ εγ0) in B4 ∩ {w 6 0},
w > −C(ε/b)γ0 in B2ka−1 \B4,

w > −2 in Rn \B2ka−1 ,∫
B2

w(y) dy > c h∗ > ca,

(4.30)

up to renaming c > 0.

Notice now that, recalling (4.8),

1

a

∫
Rn

w−(y)

(1 + |y|)n+s
dy 6

C

a

(ε
b

)γ0
+

∫
|y|>2ka−1

2dy

|y|n+s
6
C

a

(ε
a

)γ0
+
C

a
2−ska

6
C

a

(
ap0−1

)γ0 + C2−(s−α)ka
2−αka

a

6 C
(
a(p0−1)γ0−1 + Cm02

−(s−α)ka
)
→ 0 as a ↓ 0,

where Cm0 > 0 depends on m0. Similarly,

C

a

(
b+ εγ0 +

(ε
b

)γ0)
6 Ca(p0−1)γ0−1 → 0 as a ↓ 0.

Then, choosing a0 small enough, we can apply Lemma 4.3 to show that w > 0 in B2, thus proving (4.29),

Now, by the definition of h∗, we know that there exists a point x∗ ∈ B1 such that w(x∗) = ū(x∗)−φ∗(x∗) = 0.
This is in contradiction with (4.29). Therefore, we have proved (4.28) and completed the proof of Step 2.

Step 3. We now complete the proof of Proposition 4.2. For this, we recall the definition of ū in (4.6) and we prove
that

{ū 6 1− κ} ⊂
{
xn 6 a

(
1− η

2

)}
on {0} × (−1, 1). (4.31)

Indeed, by Step 2, we know that

ū(x)− φb(x− a(1− η)en) > 0.
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Moreover (see e.g. Lemma 3.1 in [22]), we have that, on {x′ = 0} × (−1, 1),

db(x− a(1− η)en) >
xn − a(1− η)

c̃
for some c̃ > 0, and so

φb(x− a(1− η)en) > φ0

(
xn − a(1− η)

c̃ε

)
on {x′ = 0} × (−1, 1). Therefore, we have that

{xn ∈ (−1, 1) : ū(0, xn) 6 1− κ} ⊂
{
xn ∈ (−1, 1) : φ0

(
xn − a(1− η)

c̃ε

)
6 1− κ

}
⊂
{
xn − a(1− η)

c̃ε
∈ (−∞, lκ)

}
⊂
{
xn
a
<
c̃εlk
a

+ (1− η)

}
⊂
{xn
a
< 1− η

2

}
,

where lκ has been introduced in (1.10), and the last inclusion holds since ε/a is as small as desired. This
estimate establishes (4.31), as desired.

Now, from (4.6) and (4.31), we obtain that

{xn ∈ (−1, 1) : u(x′, xn) 6 1− κ} ⊂
{
xn 6 a

(
1− η

2

)}
, (4.32)

where x′ ∈ B′1/2 is arbitrary.

Now, to complete the proof of Proposition 4.2, let x = (x′, xn) ∈ {u 6 1−κ}, with |x′| < 1/2 and |xn| < 2ka .
Then, using (4.3) with j = 0, we obtain that

xn 6 a < 1. (4.33)

Now, if xn 6 0, then (4.5) is obviously true, so we may assume that xn > 0. Thanks to this and (4.33), we are
in position of using (4.32), which in turn implies (4.5), as desired. �

With this, we are now in the position of completing the proof of Theorem 4.1.

Proof of Theorem 4.1. If (4.4) holds true, the claim follows from Proposition 4.2. If instead the opposite inequality
in (4.4) holds, we look at ũ := −u, which satisfies

Lũ = −ε−sf(−ũ) =: ε−sf̃(ũ).

Since f̃ satisfies the same structural conditions as f in (H2) and (H3), and now ũ satisfies (4.4), we can apply
Proposition 4.2 to ũ and obtain the desired result. �

Rescaling and iterating Theorem 4.1 we obtain the following result:

Corollary 4.5. There exist constants a0 > 0, p0 > 2, σ > 0 and C > 0, depending only on α, m0, and on
universal constants, with σ satisfying α(1 + σ) < s, such the the following statement holds.

Let a ∈ (0, a0) and ε ∈ (0, ap0). Let ka be given by (4.1). Assume that ua : Rn → (−1, 1) is a solution of
Lu = ε−sf(u) in B′

2ka
× (−2ka , 2ka) such that

{xn 6 −a2j(1+α)} ⊂ {ua 6 −1 + κ} ⊂ {ua 6 1− κ} ⊂ {xn 6 a2j(1+α)} in B′2j × (−2ka , 2ka)
(4.34)

for 0 6 j 6 ka.

Then, there exist two functions ga = ga(x
′) and ga = ga(x′) belonging to Cσ(B′

2ka−1) and satisfying ga 6 ga

such that, for all R ∈ [1, 2ka−1], we have

‖ga‖L∞(BR) +Rσ[ga]Cσ(BR) 6 CR1+α(1+σ), ‖ga‖L∞(BR) +Rσ[ga]Cσ(BR) 6 CR1+α(1+σ), (4.35)
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‖ga − ga‖L∞(BR) 6 CR1+α(1+σ)a1+σ, (4.36)

and

{xn 6 aga(x
′)} ⊂ {ua 6 −1 + κ} ⊂ {ua 6 1− κ} ⊂ {xn 6 aga(x′)} in B′2ka−1 × (−2ka , 2ka).

In particular, the two functions ga and ga converge locally uniformly as a → 0 to some Hölder continuous
function g satisfying the growth control g(x′) 6 C(1 + |x′|)1+α(1+σ).

Proof. The proof of this result follows from iterating and rescaling the Harnack inequality of Theorem 4.1; see
[30, 12] for similar arguments.

Step 1. We first prove the following claim which states that the transition region is trapped near the origin between
two Hölder functions that are separated by a very small distance near the origin.

Throughout the proof we denote by Cr := B′r × (−2ka , 2ka).

Claim. For some (0, zn) ∈ {−1 + κ 6 ua 6 1− κ} we have{
xn 6 zn − aC(|x′|σ + r)

}
⊂ {ua 6 −1 + κ} ⊂ {ua 6 1− κ} ⊂

{
xn 6 zn + aC(|x′|σ + r)

}
in C1,
(4.37)

for
r := 8 (a0)−

1
1−σ a

1
1−σ−1,

where a0 > 0 is the small constant in Theorem 4.1 and where C > 0 and σ ∈ (0, 1) depend only on α, m0,
and on universal constants.

Let us prove that for every integer l > 0, satisfying

a2(1−σ)l < a0, (4.38)

we have that

{xn 6 cl − a2−σl} ⊂ {ua 6 −1 + κ} ⊂ {ua 6 1− κ} ⊂ {xn 6 cl + a2−σl} in C2−l (4.39)

where cl ∈ R satisfy

cl − a2−σl 6 cl+1 − a2−σ(l+1) 6 cl+1 + a2−σ(l+1) 6 cl + a2−σl. (4.40)

The proof is by induction over the integer l. Indeed, it follows from (4.34) that (4.39) holds true for l = 0, with

c0 = 0 (4.41)

Assume now that (4.39) holds true for 0 6 l 6 l0, and let us prove that (4.39) is also satisfied for l = l0 + 1.
For this, let

U(x) := ua
(
2−l0x′, 2−l0xn + cl0

)
.

We have

LU =
( ε

2−l0

)−s
f(U) in C1. (4.42)

To abbreviate the notation we define

A := {U 6 −1 + κ} and B := {U 6 1− κ}.
We claim that

{xn 6 −a2(1−σ)l02j(1+α)} ⊂ A ⊂ B ⊂ {xn 6 a2(1−σ)l02j(1+α)} in C2j , (4.43)

for j = 0, . . . , ka. As a matter of fact, to prove (4.43), we first show that it holds for j = 0, then for j = 1, . . . , l0
and then we complete the argument by showing that (4.43) holds also for j = l0 + 1, . . . , ka.

To this aim, we observe that, since (4.39) holds for 0 6 l 6 l0, we have

{xn 6 2l0(cl − cl0)− a2l0−σl} ⊂ A ⊂ B ⊂ {xn 6 2l0(cl − cl0) + a2l0−σl} in C2l0−l , (4.44)
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for any 0 6 l 6 l0. This, when l = l0, gives (4.43) for j = 0.

Hence, we focus now on the proof of (4.43) when j = 1, . . . , l0. For this, we can suppose that

l0 > 1, (4.45)

otherwise this case is void, and we will use (4.44) with l = 0, . . . , l0−1. We remark that the inequalities in (4.40)
imply that, for any 0 6 l 6 l0 − 1,

cl − a2−σl 6 cl0 − a2−σl0 6 cl0 + a2−σl0 6 cl + a2−σl.

Therefore

cl 6 cl0 − a2−σl0 + a2−σl 6 cl0 + a2−σl

and cl0 6 cl + a2−σl − a2−σl0 6 cl + a2−σl.

Accordingly, we have that, for 0 6 l < l0 − 1,

|cl − cl0 | 6 a2−σl

and so
2l0|cl − cl0|+ a2l0−σl 6 2a2l0−σl = a2(1−σ)l02σ(l0−l)+1.

From this and (4.44), using the notation j := l0 − l, we see that, for any j = 1, . . . , l0,

{xn 6 −a2(1−σ)l02σj+1} ⊂ A ⊂ B ⊂ {xn 6 a2(1−σ)l02σj+1} in C2j , (4.46)

We also observe that, for any j = 1, . . . , l0, taking σ 6 α, we have that

(σj + 1)− (1 + α)j 6 (αj + 1)− (1 + α)j = 1− j 6 0

and thus
2σj+1 6 2(1+α)j.

So, we insert this into (4.46) and we complete the proof of (4.43) for j = 1, . . . l0.

To complete the proof of (4.43), we have now to take into account the case j = l0 + 1, . . . , ka. For this, we
recall assumption (4.34) (used here with the index i) and we obtain that

{xn 6 −2l0cl0 − a2l0+i(1+α)} ⊂ A ⊂ B ⊂ {xn 6 −2l0cl0 + a2l0+i(1+α)} in C2l0+i (4.47)

for i = 0, . . . , ka (in our setting, we will then take j = l0 + i, with i = 1, . . . , ka − l0). Now, we point out that

cl0 + a2−σl0 6 c0 + a2−σ·0 = a

and −a = c0 − a2−σ·0 6 cl0 − a2−σl0 ,

thanks to (4.40) and (4.41). Consequently, we have that |cl0| 6 a and so

2l0 |cl0|+ a2l0+i(1+α) 6 a2l0(1 + 2i(1+α)) 6 a2l0+1+i(1+α). (4.48)

We also observe that, taking σ 6 α and using (4.45),

l0 + 1 + i(1 + α) = 1 + (σ − 1− α)l0 + (1− σ)l0 + (i+ l0)(1 + α)

6 1− l0 + (1− σ)l0 + (i+ l0)(1 + α) 6 (1− σ)l0 + (i+ l0)(1 + α).

This and (4.48) give that
2l0 |cl0|+ a2l0+i(1+α) 6 a2(1−σ)l0+(i+l0)(1+α).

Plugging this into (4.47) with i = j − l0, we obtain (4.43) for j = l0 + 1, . . . , ka.

These considerations complete the proof of (4.43). Next, in view of (4.43), we may apply Theorem 4.1 with u
replaced by U , with a replaced by

ā := a2(1−σ)l0 ,
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and with ε replaced by

ε̄ :=
ε

2−l0
.

Note that, since we assume that ε < ap0 , the condition ε̄ < āp0 holds whenever

ap0

2−l0
<
(
a2(1−σ)l0

)p0 .
This is equivalent to

1 < 2((1−σ)p0−1)l0

which is always satisfied when p0 > 2 and σ is taken small.

We recall however that, in order to apply Theorem 4.1, we must have that ā is less than the small universal
constant a0. This is the reason why we need condition (4.38) to continue the iteration.

Thanks to these observations and (4.43), we can thus apply Theorem 4.1. In this way, we have proved that (4.39)
holds whenever (4.38) holds, which immediately implies the statement of the claim.

Step 2. To complete the proof of Corollary 4.5, let us fix a nonnegative integer l 6 ka − 1 and z′ ∈ B′
2l

. Here,
we define

U(x) := u
(
z′ + 2lx′, 2lxn

)
.

Then, rescaling (4.34) we find

{xn 6 −2−la2(l+i+1)(1+α)} ⊂ {U 6 −1 + κ} ⊂ {U 6 1− κ} ⊂ {xn 6 2−l2(l+i+1)(1+α)} (4.49)

in B′2i × (−2ka−l, 2ka−l), for 0 6 i 6 ka − l − 1.

Let us denote
ā := 2−l2(l+1)(1+α)a = 2(l+1)α+1a.

Observe that, recalling the definition of ka in (4.1), we have

kā < ka − l − 1.

Thus, (4.49) implies that

{xn 6 −ā2i(1+α)} ⊂ {U 6 −1 + κ} ⊂ {U 6 1− κ} ⊂ {xn 6 ā2i(1+α)} (4.50)

in B′2i × (−2ka−l, 2ka−l). We note also that U solves LU = ε̄−sf(U) for

ε̄ := 2lε < 2lap0 6
2l

(2αl)p0
āp0

and hence the inequality ε̄ < āp0 is satisfied provided that we choose p0 large enough.

Thus, the claim in Step 1 yields that, for a suitable z̄n ∈ R,{
x̄n 6 z̄n − āC(|x̄′|σ + r̄)

}
⊂ {U 6 −1 + κ} ⊂ {U 6 1− κ} ⊂

{
x̄n 6 zn + āC(|x̄′|σ + r̄)

}
(4.51)

in B′1 × (−2ka−l, 2ka−l), for r̄ = C(ā)
1

1−σ−1.

After rescaling, and setting x = 2lx̄, zn = 2lz̄n and r := 2lr̄, we obtain{
xn
2l
6
zn
2l
− C2lαa

( |x′|σ
2lσ

+
r

2l

)}
⊂ {U 6 −1 + κ}

⊂ {U 6 1− κ} ⊂
{
xn
2l
6
zn
2l

+ C2lαa

( |x′|σ
2lσ

+
r

2l

)}
in B′

2l
(z′)× (−2ka , 2ka), for

r = 2lr̄ = C2lā( 1
1−σ−1) = C(2l)1+α( 1

1−σ−1)a( 1
1−σ−1) 6 C(2l)1+α(1+σ)aσ. (4.52)
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Now, given z′ ∈ B′
2ka−1 , let us denote Rz′ := 2l, where l := min{l′ : 2l

′
> |z′|}. In view of (4.52), we define

also
rz′ := C (Rz′)

1+α(1+σ) aσ

and the function Ψz′ : Rn−1 → [0,+∞], given by

Ψz′(x
′) :=

{
CR1+α

z′

(
Rασ
z′
|x′−z′|σ
Rσ
z′

+
rz′
Rz′

)
for |x′| 6 Rz′ ,

+∞ for |x′| > Rz′ .

Hence, from (4.51), we have that

{xn 6 zn − aΨz′(x
′)} ⊂ {U 6 −1 + κ} ⊂ {U 6 1− κ} ⊂

{xn
2l
6 zn +−aΨz′(x′)

)
in B′

2ka−1 × (−2ka , 2ka).

Furthermore, we notice that
Ψz′(z

′) 6 CRα
z′R

1+α(1+σ)
z′ aσ

and
‖Ψz′‖L∞(BRz′

(z′)) +Rσ
z′ [Ψz′ ]Cσ(BRz′

(z′)) = CR
1+α(1+σ)
z′ .

We then define

ga(x′) := min
z′∈B′

2ka−1

(
zn(z′) + Ψz′(x

′)
)

and ga(x
′) := max

z′∈B′
2ka−1

(
zn(z′)−Ψz′(x

′)
)
.

It is now straightforward to verify that these two functions satisfy the requirements in the statement of Corol-
lary 4.5, as desired. �

We state a further consequence of Corollary 4.5 and Lemma 3.2 for its use in the next section.

Corollary 4.6. With the same assumptions as in Corollary 4.5, the following statement holds true.

Given θ ∈ (−1, 1), we have that

{xn 6 ag(x′)− Ca1+σ(1 + |x|)1+α(1+σ) − C(1 + |x|)ασd} ⊂ {ua 6 θ}
and

{ua 6 θ} ⊂ {xn 6 ag(x′) + Ca1+σ(1 + |x|)1+α(1+σ) + C(1 + |x|)ασd}
in C2ka−1 , for all d > 0 satisfying (ε

d

)γ0
6 1− |θ|.

Proof. This is a direct consequence of Corollary 4.5 and the decay estimates of Lemma 3.2. �

5. VISCOSITY EQUATION FOR THE LIMIT OF VERTICAL RESCALINGS

In this section we will prove that the limiting graph g given by Corollary 4.5 satisfies the equation

L̄g = 0 in Rn−1 (5.1)

where

L̄h(x′) :=

∫
Rn−1

(
h(x′) +∇h(x′) · (y′ − x′)− h(y′)

)
K(x′ − y′, 0) dy′, x′ ∈ Rn−1, (5.2)

and

K(y) :=
µ (y/|y|)
|y|n+s

.
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We introduce K both to simplify the notation and because the results of this part are also valid for more general
kernels. The definition of L̄h(x′) is valid for functions h which are C2 in a neighborhood of x′ and satisfying∫

Rn−1

|h(x′)| (1 + |x′|)−n−s dx′ < +∞.

We also point out that (5.1) is a linear and translation invariant equation.

The strategy that we have in mind is the following: once we have proved that g is an entire solution of (5.1),
satisfying the growth control g(x′) 6 C(1 + |x′|)1+α(1+σ) (as given by Corollary 4.5), we will deduce that g is
affine. This will be an immediate consequence of the interior regularity estimates for the equation (5.1).

This set of ideas is indeed the content of the following result:

Proposition 5.1. The limit function g : Rn−1 → R given by Corollary 4.5 satisfies (5.1) in the viscosity sense.
As a consequence, g is affine.

In all this section we assume that ua is a solution of Lua = ε−sf(u) in B2ka , where ε ∈ (0, ap0) with p0 large
enough. We denote by g the limiting graph as a→ 0 of the vertical rescalings of the level set, see Corollary 4.5.
We recall that this graph satisfies the growth control∣∣g(x′)

∣∣ 6 C(1 + |x′|)1+α(1+σ). (5.3)

Moreover, as a consequence of Corollary 4.6 we may assume that, for any given θ ∈ (−1, 1),

{xn 6 ag(x′)− C(a1+σ + d)(1 + |x|)1+α(1+σ)} ⊂ {ua 6 θ} (5.4)

and
{ua 6 θ} ⊂ {xn 6 ag(x′) + C(a1+σ + d)(1 + |x|)1+α(1+σ)} (5.5)

for all d > 0 satisfying (ε
d

)γ0
6 1− |θ|. (5.6)

In all the section and in the rest of the paper we will fix constant α, σ > 0 satisfying

α(1 + σ) < s and α < σ

For concreteness we may take, here and in the rest of the paper,

α =
s

4
and andσ = 1.

To prove that g is a viscosity solution of (5.1), we will argue by contradiction. Indeed, we will assume that g
is touched by above by a convex paraboloid at x0 and that the operator computed at a test function h that is
built (from g) by replacing g with the paraboloid in a tiny neighborhood of x0 gives the wrong sign. Using this
contradictory assumption, we will be able to build a supersolution of Lu = ε−sf(u) touching ua from above at
some interior point near x0. This will give the desired contradiction.

In all the section, we assume that Q is a fixed convex quadratic polynomial and, up to a rigid motion, we can
take the touching point x0 to be the origin. We also let da be the anisotropic signed distance function to {xn >
aQ(x′)}, i.e. we use the setting in (2.7), with K := Ka := {xn > aQ(x′)}. More explicitly

da(x) := inf
{
`(x) : ` affine, hL(∇`) = 1, and ` > 0 in Ka

}
. (5.7)

Then, we will consider the following functions:

ũa(x) := φ0

(
da(x)

ε

)
χQδ + ua(x

′, axn)χRn\Qδ (5.8)

and

va(x) := φ0

(
da(x)

ε

)
χQδ + sign(xn − ag(x′))χRn\Qδ , (5.9)
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where δ > 0,
Qδ := B′δ × (−δ, δ), (5.10)

and φ0 is the 1D profile in (H3). In a sense, ua and va have “very flat level sets” and we will compute the action
of the operator L on such functions.

By explicit computations and error estimates, we will prove that not only Lũa − ε−sf(ũa) → 0 and Lva −
ε−sf(va) → 0 as a → 0 in a neighborhood of 0, but we also provide the behavior of the next order in an
expansion in the variable a. Namely, for a small enough, we will show that

1

a

(
Lũa − ε−sf(ũa)

)
≈ 1

a

(
Lva − ε−sf(va)

)
≈ −̄Lh(0)

in neighborhood of 0 in Rn (we recall that h is the test function built from the touching paraboloid before (5.7)).

To prove this, we will use our previous idea of “subtracting the tangent 1D profile”

φ̃(x) = φ0(d̃/ε), (5.11)

where d̃ will be the signed anisotropic distance function to some appropriate tangent plane to the zero level set
of ua.

More precisely, in order to compute Lva − ε−sf(va) at a point z ∈ Bδ/4, we introduce the “tangent profile” at z
defined as (5.11) with

d̃(x) :=
ω

hL(ω)
· (x− z) + t0, where t0 = da(z) (5.12)

and ω ∈ Sn−1 is the unit normal vector to {da = t0} pointing towards {da > t0}.
Using the layer cake decomposition in Lemma 2.1, we will compute the differenceLva−ε−sf(va) as the integral

Lva(z)− ε−sf(va(z)) = Lva(z)− Lφ̃(z)

=

∫ 1

−1

dθ

∫
Rn

(
χSθ(y)− χTθ(y)

)
K(z − y) dy

(5.13)

where
Sθ :=

{
va 6 θ 6 φ̃

}
and Tθ :=

{
φ̃ 6 θ 6 va

}
. (5.14)

However, in this section we will obtain more information by introducing the vertical rescaling (or change of vari-
ables)

(y′, yn) = (ȳ′, aȳn)

which allows us to compute

1

a

(
Lva(z)− f(va(z))

)
=

∫ 1

−1

dθ

∫
Rn

(
χS̄θ(ȳ)− χT̄θ(ȳ)

)
K(z′ − ȳ′, zn − aȳn) dȳ

where
S̄θ :=

{
(x̄′, x̄n) : (x̄′, ax̄n) ∈ Sθ

}
and T̄θ :=

{
(x̄′, x̄n) : (x̄′, ax̄n) ∈ Tθ

}
. (5.15)

We will see that for all the level sets outside a set of “small” measure 2a2, namely for

θ ∈
(
−1 + a2, 1− a2

)
,

we have

S̄θ =
{
ȳ = (ȳ′, ȳn) : hθ(ȳ

′) 6 ȳn 6 hθ(z̄
′) +∇hθ(z̄′) · (ȳ′ − z̄′)

}
and T̄θ =

{
ȳ = (ȳ′, ȳn) : hθ(z̄

′) +∇hθ(z̄′) · (ȳ′ − z̄′) 6 ȳn 6 hθ(ȳ
′)
}
,

(5.16)

where, given β ∈ (0, 1), we have, for some η > 0,

‖hθ − h‖C1,β(B′δ)
6 Caη and hθ = h in Rn \B′δ. (5.17)
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This will imply that when |z′|, |zn| and a are all converging to 0, we have

1

a

(
Lũa(z)− ε−sf(ũa(z))

)
1≈ 1

a

(
Lva(z)− ε−sf(va(z))

)
2
=

∫ 1

−1

dθ

∫
Rn

(
χS̄θ(ȳ)− χT̄θ(ȳ)

)
K(z′ − ȳ′, zn − aȳn) dȳ

3≈
∫ 1−a2

−1+a2
dθ

∫
Rn

(
χS̄θ(ȳ)− χT̄θ(ȳ)

)
K(z′ − ȳ′, zn − aȳn) dȳ

4≈
∫ 1−a2

−1+a2
dθ

∫
Rn

(
χS̄θ(ȳ)− χT̄θ(ȳ)

)
K(z′ − ȳ′, 0) dȳ

5
=

∫ 1−a2

−1+a2
−L̄hθ(z′) dθ

6≈ − L̄h(0).

(5.18)

In the next six lemmas, corresponding to the numbers appearing in (5.18), we prove the claimed equalities and
we control the errors in the previous chain of approximations.

Lemma 5.2 (Approximation 1). We have

lim
a→0

sup
z∈Bδ/4

∣∣∣∣1a(Lũa(z)− f(ũa(z))
)
− 1

a

(
Lva(z)− f(va(z))

)∣∣∣∣ = 0.

Proof. We observe that ũa = va inQδ. Then, using the layer cake formula in (2.3) of Lemma 2.1,

|Lũa(z)− Lva(z)| 6 Ca2 +

∫ 1−a2

−1+a2
dθ

∫
Rn\Qδ

χ{ũa6θ6va}∪{va6θ6ũa}(y) |y − z|−n−s dy. (5.19)

We also remark that, by the definition of va, we have that, for all θ ∈ (−1, 1),

{va > θ} = {xn > ag(x′)} in Rn \ Qδ. (5.20)

Hence, if θ ∈ (−1 + a2, 1− a2), we use (5.4), (5.5) and (5.6) and we find that

{ũa 6θ 6 va} ∪ {va 6 θ 6 ũa}
⊂
{
ag(x′)− C(a1+σ + d)(1 + |x|)1+α(1+σ) 6 xn 6 ag(x′) + C(a1+σ + d)(1 + |x|)1+α(1+σ)

}
(5.21)

in B2ka−1 \ Qδ, whenever

(ε/d)γ0 6 a2. (5.22)

For p0 chosen large enough (recall that we assume ε < ap0), we may take

d := a1+σ (5.23)

and satisfy (5.22). Hence, with the setting in (5.23), we get from (5.21) that

{ũa 6 θ 6 va} ∪ {va 6 θ 6 ũa}
⊂
{
|xn − ag(x′)| 6 Ca1+σ(1 + |x|)1+α(1+σ)

}
in B2ka−1 .
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It then follows that, for all θ ∈ (−1 + a2, 1− a2),∫
Rn\Qδ

χ{ũa6θ6va}∪{va6θ6ũa}(y) |y − z|−n−s dy

6
∫
Rn\B

2ka−1

|y − z|−n−s dy + Cδ

∫ 2ka−1

1

a1+σ r
1+α(1+σ)+n−2

rn+s
dr

6 Cδ(a
s/α + a1+σ),

(5.24)

where we have used that σ is chosen small so that α(1+σ) < s (recall the setting of Corollary 4.5). The desired
result then follows immediately from (5.19) and (5.24). �

Lemma 5.3 (Equality 2). Let z ∈ Bδ/4. Then

1

a

(
Lva(z)− f(va(z))

)
=

∫ 1

−1

dθ

∫
Rn

(
χS̄θ(ȳ)− χT̄θ(ȳ)

)
K(z′ − ȳ′, zn − aȳn) dȳ

where S̄θ and T̄θ are defined in (5.15).

Proof. From the layer cake formula in (2.3) of Lemma 2.1 and the idea of “subtracting the tangent 1D profile”
at z (exactly as in the proof of Lemma 2.5) we obtain that (5.13) and (5.14) hold, where φ̃ is defined by (5.11)
and (5.12). Then, the result simply follows by performing the change of variables (y′, yn) = (ȳ′, aȳn). �

Lemma 5.4 (Approximation 3). Let z ∈ Bδ/4. If a is small enough, then for all θ ∈ (−1, 1) with |θ| > 1 − a2

we have ∣∣∣∣∫
Rn

(
χS̄θ(ȳ)− χT̄θ(ȳ)

)
K(z′ − ȳ′, zn − aȳn) dȳ

∣∣∣∣ 6 C

a
,

for some C > 0.

Proof. To prove this result, it is convenient to look at the statement with the integrals written with respect to the
original variables (y′, yn) = (ȳ′, aȳn). In this setting, we have to show that

I1 :=

∣∣∣∣∫
Rn

(
χSθ(y)− χTθ(y)

)
K(z − y) dy

∣∣∣∣ 6 C. (5.25)

To prove this, we actually do not need the condition |θ| > 1− a2, although the result will be used only for these
values of θ.

Note that in Qδ we have that va = φ0(d/ε) and φ̃ = φ0(d̃/ε). Recalling the definition of Tθ in (5.14) and the
facts that, by construction, the level sets of d are convex, and the level sets of d̃ are tangent hyperplanes to the
level sets of d, we obtain that

Tθ ∩Qδ = ∅ (5.26)

for all θ.

Now, to prove (5.25), we distinguish the two cases Sθ ∩Qδ/2 = ∅ and Sθ ∩Qδ/2 6= ∅.

In the first case in which

Sθ ∩Qδ/2 = ∅, (5.27)

we claim that

|z − y| > δ

4
for all y ∈ Sθ ∪ Tθ. (5.28)

To check this, let y ∈ Sθ ∪ Tθ. Then, by (5.26) and (5.27), we have that y 6∈ Qδ/2. This, together with the fact
that z ∈ Qδ/4, proves (5.28).
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Therefore, in light of (5.28), we have that

I1 6 Cδ

∫
Rn

dy

(δ + |y|)n+s
6 C.

This proves (5.25) in this case.

In the second case in which
Sθ ∩Qδ/2 6= ∅,

we use the fact that {va = θ} ∩ Qδ is the level set of the anisotropic distance function to the parabola xn =
Qa(x

′) := aQ(x′). Hence, exactly as in Lemma 2.3, we have that {va = θ} ∩ Qδ is a convex C1,1 graph with
C1,1 norm bounded by Ca (and thus by C). Therefore, recalling also (5.26),∣∣∣∣∣

∫
Bδ/4(z)

(
χSθ(y)− χTθ(y)

)
K(z − y) dy

∣∣∣∣∣ 6
∫
Bδ/4(z)∩Sθ

K(z − y) dy 6 C.

Consequently, we conclude that

I1 6 C +

∫
Rn\Bδ/4(z)

dy

|z − y|n+s
6 C,

up to renaming C > 0, and so (5.25) follows also in this second case, as desired. �

Lemma 5.5 (Approximation 4). For all θ ∈ (−1, 1) with |θ| 6 1− a2 we have∣∣∣∣∫
Rn

(
χS̄θ(ȳ)− χT̄θ(ȳ)

)
K(z′ − ȳ′, zn − aȳn) dȳ −

∫
Rn

(
χS̄θ(ȳ)− χT̄θ(ȳ)

)
K(z′ − ȳ′, 0) dȳ

∣∣∣∣→ 0

as (|a|+ |zn|)→ 0 whenever |z′| 6 δ/4.

To prove Lemma 5.5, we need the following pivotal result:

Lemma 5.6. For all θ ∈ (−1 + a2, 1− a2) there exists a function hθ : Rn−1 → R such that

hθ = h = g outside B′δ, (5.29)

hθ ∈ C1,1(B′δ) and (5.16) holds true. Namely,

S̄θ =
{
ȳ = (ȳ′, ȳn) : hθ(ȳ

′) 6 ȳn 6 hθ(z̄
′) +∇hθ(z̄′) · (ȳ′ − z̄′)

}
and T̄θ =

{
ȳ = (ȳ′, ȳn) : hθ(z̄

′) +∇hθ(z̄′) · (ȳ′ − z̄′) 6 ȳn 6 hθ(ȳ
′)
}
.

(5.30)

Moreover,
‖hθ − h‖L∞(B′δ)

6 Ca and ‖hθ − h‖C1,1(B′δ)
6 C (5.31)

for some C > 0. In particular, (5.17) holds true for η = 1−β
2

.

Proof. If θ is as in the statement of Lemma 5.6, we take tθ := εφ−1
0 (θ). Then, using (3.8), we have that

a2 6 1− |θ| = 1−
∣∣∣∣φ0

(
tθ
ε

)∣∣∣∣ 6 C

1 +
(
|tθ|
ε

)γ0 .
Hence (assuming ε < ap0 and p0 conveniently large), we find that

|tθ| 6
Cε

a2/γ0
6 a2. (5.32)

Then, by the definition of va, we have

{va = θ} = {da = tθ} inQδ.
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Now, since {da = 0} = {xn = aQ(x′)}, by exactly the same argument of Lemma 2.3, we obtain that

{da = tθ} = {xn = Gθ(x
′)}

for some Gθ satisfying

|D2Gθ| 6 Ca in B′1.

Notice also that, by (5.32), the graph of Gθ in B′δ lies in a Ca2-neighborhood of the graph of aQ (that is ah,
recall the construction of the touching test function before (5.7)).

We now recall that the tangent profile at z, that we denoted by φ̃, is built in such a way that

{φ̃ = θ} = {d̃ = tθ}

is the tangent plane to {xn = ag(x′)} at the point z = (z′, zn).

These observations and (5.20) imply that

Sθ =
{
y = (y′, yn) : h̃θ(y

′) 6 yn 6 h̃θ(z̄
′) +∇h̃θ(z′) · (y′ − z′)

}
and Tθ =

{
y = (y′, yn) : h̃θ(z

′) +∇h̃θ(z′) · (y′ − z′) 6 yn 6 h̃θ(y
′)
}
,

for a suitable function h̃θ, with

sup
y′∈B′δ

|D2h̃θ(y
′)| 6 Ca (5.33)

and h̃θ = ag outside B′δ. In addition,

the graph of h̃θ in B′δ lies in a Ca2-neighborhood of the graph of ah. (5.34)

Now, the desired result in (5.30) follows from the change of variables (y′, yn) = (ȳ′, aȳn), by taking

hθ := h̃θ/a.

To check (5.31), we observe that the estimate in C1,1(B′δ) follows from the bound in (5.33) and the fact that h is
a given paraboloid in B′δ. Also, the uniform bound in (5.31) is a consequence of (5.34).

These observations establish (5.31). We also remark that (5.17) follows from (5.31) by interpolation. �

Proof of Lemma 5.5. We claim that the map

Rn 3 ȳ = (ȳ′, ȳn) 7→ J (ȳ) :=
χS̄θ(ȳ) + χT̄θ(ȳ)

|z′ − ȳ′|n+s
belongs to L1(Rn). (5.35)

For this, we use Lemma 5.6 to see that∫
B′
δ/4

(z)×(−∞,∞)

J (ȳ) dȳ

6 C

∫
R
dȳn

∫
Sn−2

dω

∫ δ

0

dr
rn−2

(
χS̄θ(z

′ + rω, ȳn) + χT̄θ(z
′ + rω, ȳn)

)
rn+s

6 C

∫ δ

0

rn−2 r2

rn+s
dr 6 Cδ1−s 6 C,

(5.36)
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up to renaming C > 0. On the other hand, recalling (5.3) and (5.29), we deduce from (5.30) that S̄θ and T̄θ are
controlled at infinity by a function with growth C|ȳ′|1+α. Consequently,∫

Rn\
(
B′
δ/4

(z)×(−∞,∞)
) J (ȳ) dȳ

6 C

∫
R
dȳn

∫
Sn−2

dω

∫ +∞

δ/4

dr
rn−2

(
χS̄θ(z

′ + rω, ȳn) + χT̄θ(z
′ + rω, ȳn)

)
rn+s

6 C

∫ +∞

δ/4

rn−2 r1+α

rn+s
dr 6 Cδα−s 6 C.

This and (5.36) imply (5.35), as desired.

Then, using (5.35) and the fact that K(z′ − ȳ′, zn − aȳn) → K(z′ − ȳ′, 0) almost everywhere in Rn as
(|a|+ |zn|)→ 0, we see that the result in Lemma 5.5 follows by the dominated convergence theorem. �

Lemma 5.7 (Equality 5). For all θ ∈ (−1 + a2, 1− a2) we have∫
Rn

(
χS̄θ(ȳ)− χT̄θ(ȳ)

)
K(z′ − ȳ′, 0) dȳ = −L̄hθ(z′)

where hθ ∈ C1,1(B′δ) is given in Lemma 5.6.

Proof. From (5.30), we see that∫
Rn

(
χS̄θ(ȳ)− χT̄θ(ȳ)

)
K(z′ − ȳ′, 0) dȳ =

∫
Rn−1

(
hθ(ȳ

′)−∇hθ(z′)(ȳ′ − z′)− hθ(z′)
)
K(z′ − ȳ′, 0) dȳ′.

This and (5.2) give the desired result. �

Lemma 5.8 (Approximation 6). For all θ ∈ (−1 + a2, 1− a2) we have∣∣L̄hθ(z′)− L̄h(0)
∣∣→ 0

as (|a|+ |z′|)→ 0.

Proof. It is standard using that (5.17) holds, as given by Lemma 5.6. �

Let us give now an elementary result that will be useful in the proof of Proposition 5.1.

Lemma 5.9. Given r > 0, there exists δ > 0, depending only on n, s, ellipticity constants and r, such that the
following holds.

Assume that Lw > a > 0 in Br ∩ {w 6 0} and w > −δa in all of Rn.

Then, w > 0 in Br/2.

Proof. The proof is standard, we give the details for the convenience of the reader. We consider the function w̃ :=
w + δa(1 − η(x/r)), where η ∈ C2

0(B1) is a smooth radial cutoff with η = 1 in B1/2. If, by contradiction,
w 6 0 at some point in Br/2, then w̃ attains an absolute minimum at some point x0 in Br. Thus,

0 > Lw̃(x0) > Lw − Cδar−s > a− Cδar−s > a/2 > 0,

which gives a contradiction if δ is taken small enough. �

With this preliminary work, we can finally complete the proof of Proposition 5.1, by arguing as follows.
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Proof of Proposition 5.1. Up to a translation, we can test the definition of viscosity solution for a smooth function
touching g by above at the point x0 = 0 (the argument to take care of the touching by below is similar).

Let U ′ ⊂ Rn−1 be a neighborhood of the origin and ψ ∈ C2(U ′). Assume that ψ touches by above g in U ′ at
0. Assume by contradiction that ψ̃ := ψχU ′ + gχRn\U ′ satisfies L̄ψ̃(0) > 0.

Then (see, for instance, Section 3 in [15]), we know that there exist δ > 0 small and two concave polynomials,
denoted by Q and Q̃, satisfying

Q(0) = Q̃(0) = g(0) and Q > Q̃ > g in B′δ \ {0} (5.37)

and such that, if we define Qt := Q+ t and h := QtχB′δ + gχRn\B′δ , it holds that

L̄h(0) > 0,

for all t ∈ (−δ3, δ3).

Let us now consider the function ũa,t defined as in (5.8), with da replaced by the distance from aQt, namely,

ũa,t(x) := φ0

(
da(x)

ε

)
χQδ + ua(x)χRn\Qδ (5.38)

where now da is the anisotropic signed distance function to {xn > aQt(x′)} andQδ was defined in (5.10).

By (5.18) (which has been proved in Lemmas 5.2, 5.3, 5.4, 5.5, 5.7 and 5.8), we obtain that

Lũa,t − ε−sf(ũa,t) 6 −ca in Br, (5.39)

for some r > 0 and c > 0, whenever a is small enough and t ∈ [−δ3, δ3]. By possibly reducing r > 0, we will
suppose that

r ∈ (0, δ). (5.40)

We note that, in this setting, r and c depend on L̄h(0).

Next we show that, for t = δ3 and a small enough, we have

ua − ũa,t > 0 in Br/2. (5.41)

To prove this, we recall that, by Corollary 4.6 (used here with d := a2), we have

{xn 6 ag(x′)− Ca1+σ} ⊂ {ua 6 θ} ⊂ {xn 6 ag(x′) + Ca1+σ} (5.42)

in B′1 × (−1, 1), provided that (ε/a2)γ0 6 1 − |θ|. On the other hand, by definition ũa,t = φ0(da/ε) in Qδ.
Therefore,

{xn 6 aQt(x′)− Ca2} ⊂ {ũa,t 6 θ} ⊂ {xn 6 aQt(x′) + Ca2} (5.43)

inQδ, also provided that (ε/a2)γ0 6 1− |θ| (with γ0 given by (3.8)).

We remark that, roughly speaking, (5.42) says that the “transition level sets” of ua lie essentially on the surface
{xn = ag(x′)}, while (5.43) says that the “transition level sets” of ũa,t lie essentially on the surface {xn =
aQt(x′)}, up to small errors of size a1+σ.

Then, since Q > g in B′δ by (5.37), for t = δ3 (or any other fixed positive number), if we assume that ε 6 ap0

with p0 large enough, we can use (5.42) with θ := 1 − a2 and (5.43) with θ := −1 + a2, take a small enough
and conclude that

{ua 6 1− a2} ⊂ {ũa,t 6 −1 + a2} inQδ. (5.44)

In particular, by (5.40), we obtain that

{ua 6 1− κ} ⊂ {ũa,t 6 −1 + κ} in Br. (5.45)

Now we observe that
ua − ũa,t > −a2 in all of Rn. (5.46)
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Indeed, if x ∈ Qδ, we distinguish two cases: either ua(x) > 1 − a2 or ua(x) 6 1 − a2. In the first case, we
have that

ua(x)− ũa,t(x) > (1− a2)− 1 = −a2.

In the second case, we can use (5.44) and obtain that ũa,t(x) 6 −1 + a2 and, consequently

ua(x)− ũa,t(x) > −1− (−1 + a2) = −a2.

These observations prove (5.46) when x ∈ Qδ. If instead x ∈ Rn \ Qδ, we recall (5.38) and we have
that ũa,t(x) = ua(x), and this implies (5.46) also in this case.

Now, we observe that
f(ua) > f(ũa,t) in Br ∩ {ua − ũa,t 6 0}. (5.47)

To check this we take x ∈ Br ∩ {ua − ũa,t 6 0} and we distinguish two cases, either ua(x) 6 1 − κ
or ua(x) > 1− κ. In the first case, we exploit (5.45) and we obtain that ũa,t(x) 6 −1 + κ and thus

ua(x) 6 ũa,t(x) 6 −1 + κ.

This and the monotonicity of f in (H2) imply (5.47) in this case.

If instead ua(x) > 1− κ, we have
1− κ < ua(x) 6 ũa,t(x),

and once again the monotonicity of f in (H2) implies (5.47), as desired.

Now, from (5.39) and (5.47) it follows that

L(ua − ũa,t) > ε−s
(
f(ua)− f(ũa,t)

)
+ ca > ca in Br ∩ {ua − ũa,t 6 0}.

Then, Lemma 5.9 applied to w := ua − ũa,t gives that (5.41) holds for t = δ3.

Also, using (5.42) with θ := 0, we have that

(0, . . . , 0, ag(0)− Ca1+σ) ∈ {ua 6 0} and (0, . . . , 0, ag(0) + Ca1+σ) ∈ {ua > 0}.
Therefore there exists τ ∈ [g(0) − Caσ, g(0) + Caσ] such that the point pa = (p′a, pa,n) := (0, . . . , 0, aτ)
satisfies

ua(pa) = 0. (5.48)

We claim that, for every fixed t < 0, taking a small enough (possibly in dependence of t), we have

ua − ũa,t 6 0 at the point pa. (5.49)

To this end, we recall (5.37) and we observe that

pa,n − aQt(p′a)− Ca2 = aτ − aQt(0)− Ca2 > a
(
g(0)− Caσ

)
− aQ(0)− at− Ca2

= −Ca1+σ − at− Ca2 > 0,

since t < 0, as long as a is small enough (possibly depending on t). From this and (5.43) (applied here
with θ := 0), we conclude that

pa ∈ {xn > aQt(x′)− Ca2} ⊂ {ũa,t > 0}.
This and (5.48) give that

ua(pa)− ũa,t(pa) 6 ua(pa) = 0,

which proves (5.49).

Now we let t∗ = t∗(a) be the infimum of the t ∈ R such that (5.41) holds. Notice that, by (5.41) and (5.49), we
know that

lim inf
a→0

t∗(a) = 0. (5.50)

Next, by (5.37) we have
Q− g > c0 > 0 for any x′ outside B′r/8, (5.51)
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where c0 depends only on Q and Q̃.

Also, in view of (5.50), if a is small enough, we may assume that t∗ > −c0/2. Thus, by (5.51), we have that

Qt∗ − g = Q+ t∗ − g > c0/2 > 0 for any x′ outside B′r/8.

Hence, using again (5.42) and (5.43), we obtain that

{ua 6 1− κ} ⊂ {ũa,t 6 −1 + κ} inQδ \Br/2.

Hence, as before, using that ũa,t = ua outside ofQδ, we conclude that

ua − ũa,t∗ > −a2 in Rn \Br/2.

Using again (5.39) and assumption (H2), it follows that, for a small enough,

L(ua − ũa,t∗) > ε−s
(
f(ua)− f(ũa,t∗)

)
+ ca > ca in (Br \Br/2) ∩ {ua − ũa,t∗ 6 0}. (5.52)

On the other hand, by the definition of t∗, we have that ua − ũa,t∗ > 0 in Br/2 and hence formula (5.52) holds
true by replacing (Br \Br/2) with Br (since the contribution in Br/2 is void).

Then, Lemma 5.9, applied to w := ua − ũa,t∗ , yields that ua − ũa,t∗ > 0 in Br/2, which is a contradiction with
the definition of t∗. �

6. COMPLETION OF THE PROOF OF THEOREM 1.1

Using the techniques developed till now, we are in the position to prove Theorem 1.1.

We need an auxiliary result, a geometric observation. It says that if in a sequence of dyadic balls a set is trapped
in a sequence of slabs with possibly varying orientations, then it is also trapped in a sequence of parallel slabs.

Lemma 6.1. Let α ∈ (0, 1). Assume that, for some a ∈ (0, 1) and X ⊂ Rn, we have{
x · ωj 6 − a 2j(1+α)

}
⊂ X ⊂

{
x · ωj 6 a 2j(1+α)

}
in B2j (6.1)

for all

j =

{
0, 1, 2, . . . , ja :=

⌊
log a

log(2−α)

⌋}
where ωj ∈ Sn−1.

Then, for some m0 ∈ N, with m0 6 ja, and C > 0, depending only on α, we have1 that{
x · ω0 6 −Cθ a 2j(1+α)

}
⊂ X ⊂

{
x · ω0 6 Cθ a 2j(1+α)

}
in B′θ2j × (−2ka , 2ka) (6.2)

for every j ∈ N, with 0 6 j 6 ja −m0.

Proof. We have, for all j ∈ {0, 1, . . . , ja},{
x · ωj+1 6 −a2(j+1)(1+α)

}
⊂ X ⊂

{
x · ωj 6 a2(j+1)(1+α)

}
in B2j .

Thus, rescaling by a factor 2−j , we obtain that{
x · ωj+1 6 −a2jα+1+α

}
⊂
{
x · ωj 6 a2jα

}
in B1. (6.3)

Also, for all j ∈ {0, 1, . . . , ja − 1}, we have that

a2(j+1)α 6 a2jaα 6 1. (6.4)

Hence,
δj := a2−jα 6 2−j−1−α < 1. (6.5)

1We stress that ω0 in (6.2) is simply ωj with j := 0.



44

Notice that, with this notation, (6.3) implies that{
x · ωj+1 6 −4δj

}
⊂
{
x · ωj 6 δj

}
in B1. (6.6)

Observe now that

|ωj+1 − ωj| 6 32δj. (6.7)

Now, from (6.7), summing a geometric series, we deduce that

|ωj − ω0| 6
j−1∑
i=0

|ωi+1 − ωi| 6 C

j−1∑
i=0

δi = Ca

j−1∑
i=0

2iα =
Ca 2jα

2α − 1
6 Ca 2jα,

up to renaming C > 0.

From this, and up to renaming C once again, we obtain that{
x · ω0 6 −Ca 2j(1+α)

}
⊂
{
x · ωj 6 −a 2j(1+α)

}
and

{
x · ωj 6 a 2j(1+α)

}
⊂
{
x · ω0 6 Ca 2j(1+α)

}
in B2j ,

which implies the desired result (if m0 is sufficiently large). �

Now we are in the position of completing the proof of Theorem 1.1.

Proof of Theorem 1.1. Let us denote u = ua to emphasize the dependence of the statement on a. By Lemma
6.1 we have that, in a suitable coordinate system such that the axis xn is parallel to ω0,

{xn 6 −a2j(1+α0)} ⊂ {ua 6 −1 + κ} ⊂ {ua 6 1− κ} ⊂ {xn 6 a2j(1+α0)} in B′2j × (−2ka , 2ka)

for 0 6 j 6 ka, where ka = ja −m0 and where m0 = m0(α0) is the constant of Lemma 6.1.

Then, by Corollaries 4.5 and 4.6, combined with Proposition 5.1, we find that

{xn 6 ag(x′)− Ca1+σ} ⊂ {ua 6 −1 + κ} ⊂ {ua 6 1− κ} ⊂ {xn 6 ag(x′) + Ca1+σ}
in B′1 × (−2ka , 2ka), where g is affine. The assumption 0 ∈ {−1 + κ 6 ua 6 1− κ} guarantees that

g(0) = 0.

Then, if a is small enough, this implies that{
ω · x 6 − a

21+α0

}
⊂ {ua 6 −1 + κ} ⊂ {ua 6 1− κ} ⊂

{
ω · x 6 a

21+α0

}
in B1/2,

for some ω ∈ Sn−1, and thus Theorem 1.1 follows. �

7. PROOF OF THEOREM 1.2

Now we give the proof of Theorem 1.2, by applying a suitable iteration of Theorem 1.1 at any scale and the
sliding method. For this, we point out two useful rescaled iterations of Theorem 1.1. The first, in Corollary 7.1,
is a “preservation of flatness” iteration up to scale 1, while the second, in Corollary 7.2, is a “improvement of
flatness” iteration up to a mesoscale.

We first give the

Corollary 7.1 (“preservation of flatness”). Assume that L satisfies (H1) and that f satisfies (H2) and (H3). Then
there exist universal constants α0 ∈ (0, s/2), p0 ∈ (2,∞) and a0 ∈ (0, 1/4) such that the following statement
holds.
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Let u : Rn → (−1, 1) be a solution ofLu = f(u) in Rn, such that 0 ∈ {−1+κ 6 u 6 1−κ}. Let k > j ∈ N
and suppose that

j >
p0 | log a0|

log 2
. (7.1)

Assume that

{ωi · x 6 −a02i} ⊂ {u 6 −1 + κ} ⊂ {u 6 1− κ} ⊂ {ωi · x 6 a02i} in B2i , (7.2)

for every i > k, where ωi ∈ Sn−1.

Then, for every i ∈ N, with j 6 i 6 k, it holds that

{ωi · x 6 −a02i} ⊂ {u 6 −1 + κ} ⊂ {u 6 1− κ} ⊂ {ωi · x 6 a02i} in B2i , (7.3)

for some ωi ∈ Sn−1.

Proof. We prove (7.3) for all indices i of the form i = k − `, with ` ∈ {0, . . . , k − j}. The argument is by
induction over `. Indeed, when ` = 0, then (7.3) is a consequence of (7.2). Hence, recursively, we assume that
the interface of u in B2k−q is contained in a slab of size a02k−q, with q ∈ {0, . . . , `− 1}, and we prove that the
same holds for q = `. To this aim, we set ũ(x) := u(2k−`+1x) and ε := 1

2k−`+1 . Notice that Lũ = ε−sf(ũ)
and

ε

ap00

=
1

ap00 2k−`+1
6

1

ap00 2j+1
6 1, (7.4)

thanks to (7.1). In addition, we claim that

for any i ∈ N, the interface of ũ in B2i is trapped in a slab of size a0 2i(1+α0). (7.5)

For this, we distinguish the cases i > ` and i ∈ {0, . . . , ` − 1}. First, suppose that i > `. Then, if x lies in
the interface of ũ in B2i , then y := 2k−`+1x lies in the interface of u in B2k−`+1+i . Accordingly, by (7.2), we
know that y is trapped in a slab of size a0 2k−`+1+i. As a consequence, x is trapped in a slab of size a0 2i 6
a0 2i(1+α0).

This is (7.5) in this case, so we can now focus on the case in which i ∈ {0, . . . , `−1}. For this, we take x in the
interface of ũ in B2i , and we observe that y := 2k−`+1x lies in the interface of u in B2k−`+1+i = B2k−(`−1−i) .
Then, from the inductive assumption, we know that y is trapped in a slab of size a0 2k−(`−1−i) = a0 2k−`+1+i.
Scaling back, it follows that x is trapped in a slab of size a0 2i, which implies (7.5) also in this case.

So, in light of (7.4) and (7.5), we can apply Theorem 1.1 to ũ and find that the interface of ũ in B1/2 is trapped in
a slab of size a0

21+α0
.

That is, scaling back, the interface of u in B2k−` is trapped in a slab of size a0 2k−`+1

21+α0
6 a02k−`, which gives the

desired step of the induction. �

We next give the

Corollary 7.2 (“improvement of flatness”). Assume that L satisfies (H1) and that f satisfies (H2) and (H3). Then
there exist universal constants α0 ∈ (0, s/2), p0 ∈ (2,∞) and a0 ∈ (0, 1/4) such that the following statement
holds.

Let u : Rn → (−1, 1) be a solution of Lu = f(u) in Rn, such that 0 ∈ {−1 + κ 6 u 6 1− κ}. Let k, l ∈ N
be such that

l 6
k

α0p0 + 1
+ 1 +

p0 log a0

(α0p0 + 1) log 2
. (7.6)

Assume that

{ωj · x 6 −a02j} ⊂ {u 6 −1 + κ} ⊂ {u 6 1− κ} ⊂ {ωj · x 6 a02j} in B2j , (7.7)

for every j > k, where ωj ∈ Sn−1.
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Then, for every i ∈ {0, . . . , l}, it holds that{
ωi · x 6 −

a0 2k−i

2α0 i

}
⊂ {u 6 −1 + κ} ⊂ {u 6 1− κ} ⊂

{
ωi · x 6

a0 2k−i

2α0i

}
in B2k−i , (7.8)

for some ωi ∈ Sn−1.

Proof. The proof is by induction over i. When i = 0, we have that (7.8) follows from (7.7) with j = k.

Now, we assume that (7.8) holds true for all i ∈ {0, . . . , i0 − 1}, with 1 6 i0 6 l, and we prove it for i0. To this
aim, we set

ũ(x) := u(2k−i0+1x), ε̃ :=
1

2k−i0+1
, ã :=

a0

2α0(i0−1)
.

Our goal is to use Theorem 1.1 in this setting (namely, the triple (u, ε, a) in the statement of Theorem 1.1
becomes here (ũ, ε̃, ã)). For this, we need to check that (ũ, ε̃, ã) satisfy the assumptions of Theorem 1.1. First
of all, we notice that ã 6 a0 and

ε̃

ãp0
=

2α0p0(i0−1)

ap00 2k−i0+1
=

2(α0p0+1)i0

ap00 2α0p0+k+1
6

2(α0p0+1)l

ap00 2α0p0+k+1
6 1, (7.9)

thanks to (7.6).

Now we claim that, for any j > 0,

the interface of ũ in B2j is trapped in a slab of width ã2j(1+α0). (7.10)

For this, we distinguish two cases, either j > i0 or j ∈ {0, . . . , i0 − 1}. In the first case, we take x ∈ B2j

belonging to the interface of ũ, and we observe that y := 2k−i0+1x ∈ B2j+k−i0+1 belongs to the interface of u:
then, we can use (7.7) and find that y is trapped in a slab of size

a02j+k−i0+1 = ã2α0(i0−1)+j+k−i0+1.

Scaling back, this says that x is trapped in a slab of size

ã2α0(i0−1)+j 6 ã2α0(j−1)+j 6 ã2j(1+α0).

This proves (7.10) in this case, and now we focus on the case in which j ∈ {0, . . . , i0 − 1}. For this, let us
take x ∈ B2j in the interface of ũ. Then, we have that y := 2k−i0+1x ∈ B2j+k−i0+1 = B2k−(i0−j−1) belongs to
the interface of u and hence, in view of the inductive assumption, is trapped in a slab of width

a0 2k−(i0−j−1)

2α0(i0−j−1)
= ã2α0j+k−i0+1+j.

Thus, scaling back, we find that x is trapped in a slab of width ã2α0j+j , which establishes (7.10).

In light of (7.9) and (7.10), we can apply Theorem 1.1 (with (u, ε, a) replaced here by (ũ, ε̃, ã)): in this way, we
conclude that the interface of ũ in B1/2 is trapped in a slab of width ã

21+α0
. That is, scaling back, the interface

of u in B2k−i0 is trapped in a slab of width

ã 2k−i0+1

21+α0
=

a0

2α0(i0−1)
· 2k−i0+1

21+α0
= a0 2k−i0−α0i0 ,

which is (7.8) for i0. This completes the inductive step. �

For the proof of Theorem 1.2, it is also useful to have the following maximum principle:

Lemma 7.3. Assume that w is continuous and bounded from below, and satisfies, in the viscosity sense, Lw >
−cw in {w < 0}, for some c > 0. Then w > 0 in Rn.
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Proof. Assume, by contradiction, that {w < 0} 6= ∅. Then, up to a translation, we may assume that w(0) < 0.
Let also Co > 0 be such that w > −Co in Rn. Fix η ∈ C∞(Rn, [0, 1]) with η = 0 in B1/2 and η = 1
in Rn \B1. For any δ > 0, we define

wδ(x) := w(x) + Coη(δx).

Notice that
inf
Rn
wδ 6 w(0) + Coη(0) = w(0) < 0. (7.11)

Moreover, if x ∈ Rn \B1, then
wδ(x) = w(x) + Co > 0.

This and (7.11) imply that
inf
Rn
wδ = min

B1

wδ = wδ(xδ),

for a suitable xδ ∈ B1.

We remark that wδ(xδ) 6 wδ(0) = w(0) < 0, and so w(xδ) = wδ(xδ)− Coη(δxδ) < 0. Hence

0 > Lwδ(xδ) = Lw(xδ) + Co L
(
η(δxδ)

)
> −cw(xδ)− Cδs,

for some C > 0. Consequently,

inf
Rn
wδ = w(xδ) + Coη(δxδ) > −

Cδs

c
+ Coη(δxδ).

That is, for any x ∈ Rn,

w(x) + Coη(δx) > −Cδ
s

c
+ Coη(δxδ).

Taking limit in δ, we thus conclude that, for any x ∈ Rn,

w(x) = w(x) + Coη(0) > 0,

against our initial assumption. �

With this, we can now complete the proof of Theorem 1.2, with the following argument:

Proof of Theorem 1.2. Step 1. We prove that in an appropriate orthonormal coordinate system we have

{xn 6 zn − C2j(1−δ)} ⊂ {u 6 −1 + κ} ⊂ {u 6 1− κ} ⊂ {xn 6 zn + C2j(1−δ)} in B2j(z) (7.12)

for all z ∈ {−1 + κ 6 u 6 1− κ} and j ∈ N, for a suitable δ ∈ (0, 1).

Let a0 > 0 be the constant in Theorem 1.1. First we claim that there exists k0 > 1 universal such that, for
any z ∈ {−1 + κ 6 u 6 1− κ} and k > k0, we have{
ω · (x− z) 6 −a0 2k

}
⊂ {u 6 −1 + κ} ⊂ {u 6 1− κ} ⊂

{
ω · (x− z) 6 a0 2k

}
in B2k(z), (7.13)

where ω ∈ Sn−1 may depend on z and k.

To prove (7.13), we use (1.12), to see that, if k is sufficiently large (depending on a0),{
ω · x 6 −a02k−1

}
⊂ {u 6 −1 + κ} ⊂ {u 6 1− κ} ⊂

{
ω · x 6 a02k−1

}
in B2k+1 , (7.14)

for some ω ∈ Sn−1 possibly depending on k. Then, if k is also large enough (depending on z) in such a way
that |z| 6 k, we can suppose that B2k(z) ⊂ B2k+1 and

a02k−1 + |z| 6 a02k−1 + k 6 a02k.

These observations and (7.14) give that, if k is sufficiently large, possibly depending on a0 and z, then{
ω · (x− z) 6 −a02k

}
⊂ {u 6 −1 + κ} ⊂ {u 6 1− κ} ⊂

{
ω · (x− z) 6 a02k

}
in B2k(z).
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Hence, in light of Corollary 7.1 (centered here at the point z), we can conclude that (7.13) holds true (we stress
indeed that condition (7.1) gives a universal lower threshold for the validity of (7.13)).

Our goal is now to use (7.13) to prove (7.12). For this, we need to pick up the exponent δ in (7.12) which will
imply the “stabilization” of the direction ω from one scale to another. To this aim, fixed j large enough, we take

k :=

⌊
α0p0 + 1

α0p0

j +
log a0

α0 log 2

⌋
and l := k − j. We observe that

l >
α0p0 + 1

α0p0

j +
log a0

α0 log 2
− 1− j =

j

α0p0

+
log a0

α0 log 2
− 1. (7.15)

In this setting, we have that

l − k

α0p0 + 1
=

α0p0k

α0p0 + 1
− j 6 α0p0

α0p0 + 1

(
α0p0 + 1

α0p0

j +
log a0

α0 log 2

)
− j =

p0 log a0

(α0p0 + 1) log 2
.

This says that (7.6) is satisfied. Also, condition (7.7) (here, centered at the point z) follows from (7.13). Conse-
quently, in view of (7.8) (centered here at the point z), we conclude that the interface of u in B2j = B2k−m is
trapped in a slab of size

a0 2k−l

2α0m
=
a0 2j

2α0l
6
a1 2j

2
j
p0

= a1 2j(1−δ),

for some a1 > 0, where δ := 1
p0

, and (7.15) has been exploited.

In formulas, this says that

{ωz,j · (x− z) 6 −a12j(1−δ)} ⊂ {u 6 −1 + κ}
⊂ {u 6 1− κ} ⊂ {ωz,j · (x− z) 6 a12j(1−δ)} in B2j(z),

(7.16)

for any j > j0 large enough, for suitable ωz,j ∈ Sn−1.

Next we improve (7.16) by finding a direction which is independent of j and z. For this, we start to get rid of
the dependence of j: namely, we use (7.16) in two consecutive dyadic scales (say, j and j + 1) and we obtain,
similarly as in the proof of Lemma 6.1, that

|ωz,j+1 − ωz,j| 6 C2−jδ.

This implies that
lim

j→+∞
ωz,j = ωz,∞, (7.17)

for each fixed z.

We will make this statement more precise, by showing that the limit is independent of z, namely we claim that

lim
j→+∞

ωz,j = ω∞, (7.18)

for some ω∞ ∈ Sn−1. For this, we observe that, for any z, z̄ ∈ {−1 + κ 6 u 6 1− κ},
{ωz,j · (x− z) 6 −a12j(1−δ)} ⊂ {u 6 −1 + κ} ⊂ {u 6 1− κ} ⊂ {ωz̄,j · (x− z̄) 6 a12j(1−δ)}

in B2j(z) ∩B2j(z̄), thanks to (7.16). This implies that

|ωz,j − ωz̄,j| → 0 as j→∞.
From this and (7.17), we deduce (7.18), as desired.

Let us choose now an orthonormal coordinate system in which ω∞ = (0, 0, . . . , 0, 1). Then, (7.16) and (7.18)
imply that (7.12) holds true for all j > j0 universal. Also, for j < j0, (7.12) holds true simply by choosing C
large enough, hence we have proved the desired claim in (7.12) for all j ∈ N.
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In addition, for our purposes, it is interesting to observe that, as as consequence of (7.12), we have

{xn 6 G(x′)− C} ⊂ {u 6 −1 + κ} ⊂ {u 6 1− κ} ⊂ {xn 6 G(x′) + C} (7.19)

in all of Rn, for some G ∈ Lip(Rn−1) with Lipschitz seminorm universally bounded and such that

|G(x′)−G(y′)| 6 C̄ (|x′ − y′|1−δ + 1), (7.20)

for a suitable C̄ > 0.

Step 2. We now use (7.19) and a sliding method (which is somehow related to the one in [23]) to conclude that
u has 1D symmetry. Indeed, given (e′o, 0) ∈ Sn−1 ∩ {xn = 0} and ε > 0 we consider

ut(x) := u(x− et)
where

e = (e′, en) :=
(e′o, ε)√
1 + ε2

. (7.21)

Our goal is to prove that
ut 6 u in all of Rn and for all t > 0. (7.22)

From the fact that e′o and ε are arbitrary it will follow immediately that u = u(xn) is a 1D function.

To prove (7.22), we first observe that, if we take t large enough (depending on ε), we have that

{u 6 1− κ} ⊂ {ut 6 −1 + κ}. (7.23)

To check this, let x ∈ {u 6 1− κ}. Then, by (7.19), we know that xn 6 G(x′) + C . Hence, in view of (7.20),
we have that

(x− et)n −G((x− et)′) + C = xn −
εt√

1 + ε2
−G

(
x′ − e′o t√

1 + ε2

)
+ C

6 G(x′)− εt√
1 + ε2

−G
(
x′ − e′o t√

1 + ε2

)
+ 2C

6 C̄

[(
t√

1 + ε2

)1−δ

+ 1

]
− εt√

1 + ε2
+ 2C 6 0,

as long as t is large enough (possibly in dependence of ε). Hence, by (7.19),

ut(x) = u(x− et) 6 −1 + κ,

that proves (7.23).

Now we define I− := (−1,−1 + κ] and I+ := [1− κ, 1) and we observe that, for large t,

if x ∈ Rn, and ut(x) > u(x), then either ut(x), u(x) ∈ I− or ut(x), u(x) ∈ I+. (7.24)

To prove it, let x be such that
ut(x) > u(x). (7.25)

We distinguish two cases,

either u(x) ∈ I+, (7.26)

or u(x) ∈ (−1, 1) \ I+. (7.27)

If (7.26) holds, then (7.25) gives that ut(x) ∈ I+, and we are done. If instead (7.27) holds, then (7.23) gives
that ut(x) ∈ I−. This and (7.25) imply that u(x) ∈ I−, and this concludes the proof of (7.24).

Now we claim that
ut 6 u for all t large enough (possibly in dependence of ε). (7.28)
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To prove this, let w := u− ut. We claim that

Lw > −cκw in {w 6 0}. (7.29)

Indeed, from (7.24) and the monotonicity of f in I− ∪ I+ given in (H2), we have that, if x ∈ {w 6 0} = {ut >
u},

−Lw(x) = Lut(x)− Lu(x) = f(ut(x))− f(u(x)) =

∫ ut(x)

u(x)

f ′(τ) dτ 6 −cκ (ut(x)− u(x)) = cκw(x),

thus establishing (7.29).

Then, from (7.29) and Lemma 7.3, we deduce that w > 0. This concludes the proof of (7.28).

Now, to complete the proof of (7.22), we perform a sliding method to check that ut 6 u also when t decreases,
up to t = 0. To this aim, we first check the touching points inside the tubular neighborhood described by the
function G in (7.19). Namely, we let G and C be as in (7.19), we let t0 > 0 be a fixed, suitably large, t for
which (7.24) holds true, and we define

C ′ := C + t0 ‖∇G‖L∞(Rn−1). (7.30)

Let also
G := {x = (x′, xn) ∈ Rn s.t. |xn −G(x′)| 6 C ′}. (7.31)

and the set G is somehow the cornerstone of the sliding strategy that we follow here, since

if t > 0 and ut 6 u in G, then ut 6 u in the whole of Rn. (7.32)

Notice that, from the discussion before (7.30), we already know that ut 6 u in the whole of Rn for t > t0, so, to
establish (7.32), we can focus on the case t ∈ [0, t0). To this objective, we claim that (7.24) holds true also in
this setting (we stress that the original statement in (7.24) was proved only for large t). To prove it, let x be such
that

ut(x) > u(x). (7.33)

We distinguish two cases, namely

either u(x) ∈ I+, (7.34)

or u(x) ∈ (−1, 1) \ I+. (7.35)

If (7.34) is satisfied, then (7.33) implies that ut(x) also lies in I+, which gives (7.24). So, we can focus on the
case in which (7.35) holds true. Then, from the assumption in (7.32), we know that ut 6 u in G. This and (7.33)
imply that x lies outside G. This and (7.35) give that x lies below G, that is, recalling (7.31),

xn 6 G(x′)− C ′.
Hence, in light of (7.30),

(x− et)n −G((x− et)′) 6 xn −G(x′) + t ‖∇G‖L∞(Rn−1)

6 xn −G(x′) + t0 ‖∇G‖L∞(Rn−1) = xn −G(x′) + C ′ − C 6 −C.
This and (7.19) imply that x− te ∈ {u 6 −1 + κ}. That is ut(x) ∈ I−. This proves that (7.24) holds true also
in this setting. From this and the assumption in (7.32), it follows that ut 6 u, by arguing exactly as in the proof
of (7.28). This completes the proof of (7.32).

Now, in view of (7.32), to complete the proof of (7.22), it is enough to show that

for any t > 0, it holds that ut 6 u in G. (7.36)

To this aim, we let
t̄ := inf{t > 0 s.t. ut 6 u in G}.
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Notice that t̄ 6 t0, thanks to the discussion before (7.30). We claim that, in fact,

t̄ = 0. (7.37)

To this aim, we assume, by contradiction, that t̄ > 0. Then, we have that ut̄ 6 u in G, and there exists a
sequence of points

xj ∈ G (7.38)

such that u(xj) − ut̄(xj) 6 1/j. So, we set uj(x) := u(x + xj), ut̄j(x) := ut̄(x + xj) and wj(x) :=

ut̄j(x)− uj(x), and we see that wj(0) > −1/j, wj(x) 6 0 for any x ∈ Rn with x+ xj ∈ G, and

Lwj(x) = f(ut̄j(x))− f(uj(x)) in Rn.

That is, from the Theorem of Ascoli, passing to the limit as j → +∞, we find that there exist ū, ūt̄ and w̄ (which
are the locally uniform limits of uj , ut̄j and wj , respectively) and Ḡ (which is a tubular neighborhood obtained as
the limit of G − xj) such that w̄(0) = 0 and

ū(x− t̄e)− ū(x) = ūt̄(x)− ū(x) = w̄(x) 6 0

for any x ∈ Ḡ. Consequently, we infer that

w̄(x) 6 0 for any x ∈ Rn, (7.39)

thanks to (7.32) (applied here to ū, which solves the equation Lū = f(ū)).

Notice that

Lw̄ = f(ūt̄)− f(ū) in Rn

and so

Lw̄(0) = f(ūt̄(0))− f(ū(0)) = 0.

This and (7.39) imply that w̄ vanishes identically in Rn. As a consequence, for any x ∈ Rn,

ū(x) = ūt̄(x) = lim
j→+∞

ut̄(x+ xj) = lim
j→+∞

u(x+ xj − et̄) = lim
j→+∞

uj(x− et̄) = ū(x− et̄), (7.40)

which means that ū is periodic (of period t̄ in direction e). Also, from (7.19) and (7.38), moving in the vertical
direction, we know that there exists x̃j that is at distance at most 2C ′ from xj and such that u(x̃j) = 0. So we
write x̃j = xj + x̂j , with |x̂j| 6 2C ′, and we find, up to a subsequence, that x̂j converges to some x̂ and

0 = lim
j→+∞

u(x̃j) = lim
j→+∞

u(xj + x̂j) = lim
j→+∞

uj(x̂j) = ū(x̂). (7.41)

We also claim that

{ū = 0} ⊂ {xn > −Co (|x′|1−δ + 1)}, (7.42)

for some Co > 0, where δ ∈ (0, 1) is as in (7.20). To check this, we use the notation xj = (x′j, xj,n) ∈
Rn−1 ×R, we set Gj(x

′) := G(x′ + x′j)− xj,n and we see that if p ∈ {ū = 0}, then, for j large enough, we
have that p ∈ {|uj| < 1− κ}, that is p + xj ∈ {|u| < 1− κ} ⊂ {xn > G(x′)− C}, thanks to (7.19). This
gives that pn+xj,n > G(p′+x′j)−C . Since xj ∈ G, we have that xj,n−G(x′j) 6 C ′. Hence, recalling (7.20),
we find that

pn > G(p′ + x′j)− xj,n − C > G(p′ + x′j)−G(x′j)− C − C ′ > −C̄(|p′|1−δ + 1)− C − C ′.

This completes the proof of (7.42).
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Now, from (7.40) and (7.41), we know that x̂−`et̄ ∈ {ū = 0} for any ` ∈ N. This and (7.42) imply that x̂−`et̄ ∈
{xn > −Co (|x′|1−δ + 1)}, for any ` ∈ N. That is, recalling (7.21),

0 6 lim
`→+∞

(x̂− `et̄)n + Co
(
|(x̂− `et̄)′|1−δ + 1

)
= lim

`→+∞
x̂n −

`εt̄√
1 + ε2

+ Co

(∣∣∣∣x̂′ − `e′o t̄√
1 + ε2

∣∣∣∣1−δ + 1

)
= −∞.

This is a contradiction and so (7.37) is proved. Notice that (7.37) implies (7.36), which in turn implies (7.22),
thanks to (7.32)

Finally, from (7.22) we obtain that Deu > 0 in all of Rn for all e of the form (7.21) where ε > 0 is arbitrary.

Accordingly, we have that D(e′o,0)u > 0 for any e′o ∈ Sn−1 ∩ {xn = 0}. Hence, exchanging e′o with −e′o, we
obtain that D(e′o,0)u vanishes identically. It thus follows that u(x) = u(xn), that is u has 1D symmetry. �

8. PROOF OF THEOREMS 1.3, 1.4, 1.5 AND 1.6

As a first step towards the proof of Theorems 1.3, 1.4, 1.5 and 1.6, we recall that the limit interface of the
minimizers is a nonlocal minimal surface.

More precisely, we say that E ⊂ Rn is s-minimal in Rn if its characteristic function is a minimizer for the
functional in (1.13), that is if EDir(χE, B) < +∞ and

EDir(χE, B) 6 EDir(χF , B),

for any ball B ⊂ Rn and any F ⊂ Rn such that F \B = E \B.

These nonlocal minimal surfaces have been introduced in [12] and widely studied in the recent literature. In this
setting, we have (see Corollary 1.7 in [35]):

Lemma 8.1. Let u be a minimal solution of (−∆)s/2u = u − u3 in Rn. For any ε > 0, let uε(x) := u(x/ε).
Then there exists E ⊂ Rn which is s-minimal in Rn and, up to a subsequence, uε → χE − χRn\E a.e. in Rn.
Also, {|uε| 6 1− κ} converges locally uniformly to ∂E.

By a standard sliding method (see e.g. Lemma 9.1 in [38]), one also sees that monotone solutions are minimal:

Lemma 8.2. Let u be a solution of (−∆)s/2u = u− u3 in Rn. Suppose that

∂u

∂xn
(x) > 0 for any x ∈ Rn

and
lim

xn→±∞
u(x′, xn) = ±1.

Then, u is a minimal solution.

The result in Lemma 8.1 can be better specified for monotone solutions, by obtaining that the limit interface is a
graph. The precise statement that we need is the following:

Lemma 8.3. Let u be a minimal solution of (−∆)s/2u = u− u3 in Rn.

Suppose that
∂u

∂xn
(x) > 0 for any x ∈ Rn

and
lim

xn→±∞
u(x′, xn) = ±1.



53

For any ε > 0, let uε(x) := u(x/ε). Then there exist γ : Rn−1 → R and E ⊂ Rn which is s-minimal in Rn,
such that E = {xn > γ(x′), x′ ∈ Rn−1}, and, up to a subsequence, uε → χE − χRn\E a.e. in Rn.

Proof. In view of Lemma 8.1, we only have to check that ∂E is the graph of some function γ : Rn−1 → R. As
a matter of fact, one has that E = {xn > γ(x′), x′ ∈ Rn−1} up to sets of measure zero, for a suitable γ :
Rn−1 → [−∞,+∞] (see e.g. the argument from (9.3) on in [38]). That is, ∂E is a nonlocal minimal surface,
which is a graph, with possibly vertical portions.

By slidingE in the vertical direction and using the comparison principle, one sees that either γ(Rn−1) ∈ {±∞}
or else ∂E is a graph.

In the first case E is a minimizing cone in dimension n − 1 and hence for n − 1 6 7 it is a half space. In the
second case, since E is a cone it is automatically a Lipschitz graph and we conclude anyway that E is flat using
the Bernstein type result in [26]. �

With these preliminary results, we can now complete the proofs of Theorems 1.3, 1.4, 1.5 and 1.6.

Proof of Theorems 1.3 and 1.5. From Lemma 8.1, we know that the level sets of uε approach locally uniformly ∂E,
and E is s-minimal in Rn. Then we use either [34] (in case we are in R2 and we want to prove Theorem 1.3)
or [16] (in case we are in Rn with n 6 7, s is close to 1 and we want to prove Theorem 1.5) and we see that ∂E
is a hyperplane.

Hence, we are in the setting of Theorem 1.2, which implies that u is 1D. �

Proof of Theorems 1.4 and 1.6. By Lemma 8.2 we know that u is a minimal solution and by Lemma 8.3 we
conclude that the level set of uε approach an s-minimal set E which is a complete graph (as a matter of fact, in
view of Lemma 8.1, we also know that these level sets approach ∂E locally uniformly).

Then, when n = 3 and we want to prove Theorem 1.4, we make use of Corollary 1.3 in [26]; similarly, when n 6
8, s is close to 1 and we want to prove Theorem 1.6, we make use of Theorem 1.2 in [26] combined with [16].
In any case, we conclude that E is a halfspace. This enables us to exploit Theorem 1.2, which implies that u
is 1D. �
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