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Abstract

An efficient, function-space-based second-order method for the H1-projection onto the
Gibbs-simplex is presented. The method makes use of the theory of semismooth Newton
methods in function spaces as well as Moreau-Yosida regularization and techniques from
parametric optimization. A path-following technique is considered for the regularization
parameter updates. A rigorous first and second-order sensitivity analysis of the value func-
tion for the regularized problem is provided to justify the update scheme. The viability of
the algorithm is then demonstrated for two applications found in the literature: binary im-
age inpainting and labeled data classification. In both cases, the algorithm exhibits mesh-
independent behavior.

1 Introduction

In many modern applications such as image inpainting [2, 9], topology optimization [4, 5], multi-
class data segmentation [12], and multiphase fluid dynamics [24, 22], the associated variational
problems contain multiple phase-field functions, denoted here by u1, . . . , un, that fulfill the con-
ditions ui ≥ 0 and

∑
ui = 1 (in a pointwise almost everywhere (a.e.) sense). This typically

leads to situations in which one needs to project onto the so-called Gibbs-simplex in the Sobolev
spaceH1(Ω). Mathematically speaking, this involves the solution of the following infinite dimen-
sional optimization problem:

min

{
1

2
‖u− ϕ‖2

V over u ∈ V
∣∣∣ u ∈ G} , (P)

where G ⊂ H1(Ω), given by

G :=
{
u ∈ V

∣∣ 1>u = 1, ui ≥ 0, i = 1, . . . , n
}
,

is the Gibbs simplex. Here, we let Ω ⊂ Rn be non-empty, open, and bounded with Lipschitz
boundary Γ, and set V := H1(Ω) and V := V n. In addition, we fix some ϕ ∈ V and note
that 1 is the column vector of ones in Rn. The conditions on the functions u in G are always
understood pointwise a.e. Moreover, since Ω is bounded, G is in fact a non-empty, closed, and
convex subset in H1(Ω)n ∩ L∞(Ω)n, which is also bounded in L∞(Ω)n.

Although the constraint set G is formulated with pointwise a.e.-constraints, it is crucial that the
correct norm, in this case the H1-norm, is used in the projection. Indeed, let Γ be smooth,
n = 1, and ϕ ∈ H2(Ω) such that ∇ϕ · n|Γ = 0. Then (P) reduces to solving the obstacle
problem in H1 given by

min

{
1

2
‖u‖2

V − (f, u)L2 over u ∈ V
∣∣∣ 0 ≤ u ≤ 1

}
,
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where f = −∆ϕ+ ϕ ∈ L2(Ω). It is well-known, cf. [8, 18], that the unique optimal solution u
is in H2(Ω). Furthermore, the pointwise/thresholding/L2-projection of ϕ, given by

ϕ+ max(0,−ϕ)−max(0, ϕ− 1),

is feasible, but only in H1(Ω); as the pointwise max(0, ·)-operator does not preserve H2-
regularity. Hence, the pointwise projection of ϕ onto the Gibbs simplex is feasible, yet it cannot
be the solution to the original problem.

Following the approach in [16, 15], we approximate (P) by replacing G with a Moreau-Yosida-
type regularization of the associated indicator function. This yields the approximation:

θ(γ) := min
{1

2
‖u−ϕ‖2

V+
γ

2

n∑
i=1

∫
Ω

(−ui)2
+dx+

γ

2

∫
Ω

∣∣1>u− 1
∣∣2 dx over u ∈ V

}
(Pγ)

The associated first-order system can be solved by a semismooth Newton method in function
space. In order to increase numerical efficiency by avoiding excess parameter updates, we
derive a full differential sensitivity analysis of the optimal value function θ(γ). These results lead
to an explicit parameter update scheme referred to as “path-following.” We note that our analysis
is much more compact than [16, 15]. Moreover, no assumptions on the active sets are needed
to derive second-order properties of θ(γ).

A further important factor, which motivates this work, arises from the fact that a first-discretize-
then-optimize approach will typically exhibit mesh dependence under adaptive refinements (cf.
the examples in Section 5). The main culprit for this aspect is due to a lack of multiplier regularity
for the constraints in G. By regularizing the problem, we increase its regularity, which enables us
to obtain superlinear function-space convergence for the semismooth Newton methods for the
regularized problems. Moreover, by deriving an efficient approximation of the primal-dual path
value functional θ, we avoid problems connected with ill-conditioning.

The rest of the paper is structured as follows. In Section 2 we analyze the parameter depen-
dent problem (Pγ), which lays the foundation for the path-following. Afterwards, we suggest a
path-following scheme and present the algorithm in Sections 3 and 4. Finally, in Section 5, we
demonstrate the performance of the algorithm on two applications taken from the literature.
This is done for both path-following schemes and a comparison is made to a mesh-dependent
scheme based on the direct solution of the first-order system of (P).

2 Sensitivity Analysis

As indicated in the introduction, we need to analyze the first and second-order differentiabil-
ity properties of the parameter dependent quantities related to (Pγ) in order to derive a path-
following scheme. We thus begin this section with some basic facts about the optimal solution
mapping and optimal value functions associated with (P) and (Pγ). Throughout the discussion,
we use • to indicate the dependence on the penalty parameter γ > 0.

Theorem 2.1. Under the standing assumptions, the following facts hold:
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1 (P) has a unique solution ū and, for all γ > 0, (Pγ) has a unique solution ūγ .

2 The optimal solution mapping ū• : (0,∞) → V is globally Hölder continuous with
exponent 1/2 and locally Lipschitz continuous.

3 For any sequence γk → +∞, the sequence
{
ūk
}

with ūk := ūγk converges strongly
to ū in V.

4 The optimal value function θ : (0,∞) → R is non-negative, monotonically increasing
with limγ↓0 θ(γ) = 0, locally Lipschitz continuous, and bounded from above by θ∞, the
optimal value of (P).

Proof. To see that 1. holds, consider that both (P) and (Pγ) involve the minimization of a strongly
convex continuous functional over a non-empty closed set in a real Hilbert space, both problems
admit unique solutions ū and ūγ , respectively.

To prove continuity of ū• on (0,∞), we need several results. For readability, let

β(u) :=
1

2

n∑
i=1

∫
Ω

(−ui)2
+dx+

1

2

∫
Ω

∣∣1>u− 1
∣∣2 dx.

By definition of a global optimum, we have

1

2
‖ūγ − ϕ‖2

V + γβ(ūγ) ≤ 1

2
‖u− ϕ‖2

V + γβ(u), ∀u ∈ V.

Therefore, it follows from the feasibility of ū and non-negativity of the objectives that

0 ≤ θ(γ) ≤ 1

2
‖ū− ϕ‖2

V = θ∞, ∀γ > 0. (1)

Furthermore, since β(·) ≥ 0, we deduce the uniform boundedness in H1(Ω)n of the set
{ūγ}γ>0.

Let γ1, γ2 ∈ (0,∞) and define the associated optimal solutions of (Pγ) by ūγi , i = 1, 2. Since
β : V → R is continuous and convex, it is subdifferentiable. It follows then from the first-order
optimality conditions for (Pγ) that

0 ∈ ∂(
1

2
‖·−ϕ‖2

V+γiβ(·))(ūγi) = ∂(
1

2
‖·−ϕ‖2

V)(ūγi)+γi∂β(·)(ūγi) =⇒ −vi ∈ γi∂β(·)(ūγi),

where vi ∈ ∂(1
2
‖ · −ϕ‖2

V)(ūγi) = A(ūγi − ϕ) and A is the (uniformly elliptic) bounded linear
operator associated with the inner product on V. Note that due to convexity and continuity, the
sum rule for convex subdifferentials holds, cf. [17]. By definition of the subdifferential, we now
have

γiβ(z) ≥ γiβ(ūγi) + 〈−vi, z − ūγi〉, ∀z ∈ V, i = 1, 2. (2)

For i = 1, we set z = ūγ2 and for i = 2, we set z = ūγ1 in (2). Adding the resulting terms
yields

γ1β(ūγ2) + γ2β(ūγ1) ≥ γ1β(ūγ1) + γ2β(ūγ2) + 〈−v1, ū
γ2 − ūγ1〉+ 〈−v2, ū

γ1 − ūγ2〉.
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Hence, we have

|γ1−γ2||β(ūγ1)−β(ūγ2)| ≥ (γ1−γ2)(β(ūγ2)−β(ūγ1)) ≥ 〈A(ūγ1−ūγ2), ūγ1−ūγ2〉 = ‖ūγ1−ūγ2‖2
V

Since {β(ūγ)}γ>0 is bounded, there exists some M > 0 such that

‖ūγ1 − ūγ2‖V ≤M1/2|γ1 − γ2|1/2, ∀γ1, γ2 > 0,

i.e., ū• : (0,∞) → V is Hölder continuous. Since β is convex and continuous, it is locally
Lipschitz on any open convex set containing {ūγ}γ>0. Therefore, if we fix some γ0 ∈ (0,∞)
and consider ū• : (γ0−ε, γ0+ε)→ V for sufficiently small ε > 0, then ū• : (γ0−ε, γ0+ε)→
V is Lipschitz continuous. This proves 2.

Next, let γk → +∞ and define the sequence
{
ūk
}

by ūk := ūγk . Since
{
ūk
}
⊂ {ūγ}γ>0,

which is bounded, there exists a weakly convergent subsequence
{
ūkl
}

with limit ū?. Returning
to (1) in this setting and dividing both sides by γkl , it follows from the weak-lower semicontinuity
of β that β(ū?) = 0; from which it can be easily deduce that ū? ∈ G. But then given

1

2
‖ūkl − ϕ‖2

V ≤
1

2
‖ūkl − ϕ‖2

V + γklβ(ūkl) ≤ 1

2
‖ū− ϕ‖2

V, (3)

it follows from the weak lower-semicontinuity of ‖ · −ϕ‖2
V and the uniqueness of the global

minimizer ū that ū? = ū. Moreover, the uniqueness of ū also implies, by the Urysohn property,
that the entire sequence

{
ūk
}

converges weakly to ū. Using the previous inequality, we have
once again by weak lower-semicontinuity and optimality (respectively):

lim inf
k→+∞

1

2
‖ūk − ϕ‖2

V ≥
1

2
‖ū− ϕ‖2

V and lim sup
k→+∞

1

2
‖ūk − ϕ‖2

V ≤
1

2
‖ū− ϕ‖2

V.

Thus, ‖ūk−ϕ‖2
V → ‖ū−ϕ‖2

V and subsequently ‖ūk‖V → ‖ū‖V. Since V is a Hilbert space,
it follows that ūk → ū strongly in V. This proves 3.

Finally, we prove 4. Since 0 ≤ θ(γ) ≤ γβ(ϕ) → 0 as γ ↓ 0, we obtain limγ↓0 θ(γ) = 0.
Moreover, local Lipschitz continuity of θ : (0,∞) → R follows from that of ū• : (0,∞) → V.
To see that θ is monotonically increasing, fix γ, η > 0 consider that

θ(γ + η)− θ(γ) ≥ 1

2
‖ūγ+η − ϕ‖2

V + (γ + η)β(ūγ+η)− (
1

2
‖ūγ+η − ϕ‖2

V + γβ(ūγ+η))

= ηβ(ūγ+η) ≥ 0.
(4)

This completes the proof.

Building on the results of Theorem 2.1, we show that θ : (0,∞)→ R is continuously differen-
tiable.

Theorem 2.2. Under the standing assumptions the optimal value function θ : (0,∞) → R is
continuously differentiable. The gradient of θ at γ̄ > 0 is given by

∂θ

∂γ
(γ̄) = β(ūγ̄).
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Proof. Fix γ, η > 0. According to (4), we have

η−1(θ(γ + η)− θ(γ)) ≥ β(ūγ+η). (5)

Similarly, we have (for sufficiently small η > 0)

θ(γ−η)−θ(γ) ≥ 1

2
‖ūγ−η−ϕ‖2

V+(γ−η)β(ūγ−η)−(
1

2
‖ūγ−η−ϕ‖2

V+γβ(ūγ−η)) = −ηβ(ūγ−η).

Hence,
η−1(θ(γ − η)− θ(γ)) ≥ −β(ūγ−η). (6)

We also have the upper bounds

θ(γ + η)− θ(γ) ≤ 1

2
‖ūγ − ϕ‖2

V + (γ + η)β(ūγ)− (
1

2
‖ūγ − ϕ‖2

V + γβ(ūγ)) = ηβ(ūγ)

and (for sufficiently small η > 0)

θ(γ − η)− θ(γ) ≤ 1

2
‖ūγ −ϕ‖2

V + (γ − η)β(ūγ)− (
1

2
‖ūγ −ϕ‖2

V + γβ(ūγ)) = −ηβ(ūγ).

This yields

η−1(θ(γ + η)− θ(γ)) ≤ β(ūγ) (7)

η−1(θ(γ − η)− θ(γ)) ≤ −β(ūγ). (8)

It follows from Theorem 2.1.2, the continuity of β, (5), and (7) that

lim
η↓0

η−1(θ(γ + η)− θ(γ)) = β(ūγ).

Similarly, we have from Theorem 2.1.2., the continuity of β, (6), and (8) that

lim
η↓0

η−1(θ(γ − η)− θ(γ)) = −β(ūγ).

Hence, θ is differentiable from (0,∞)→ R. Finally, as ū• : (0,∞)→ V and β are continuous,
θ is continuously differentiable.

Remark 2.3 (Relation to Danskin’s Theorem). Since β was kept rather general in Theorems
2.1 and 2.2, it appears that the value function is continuously differentiable for a wide variety of
constraints beyond our setting. Note that Theorem 2.2 is not a direct consequence of Danskin’s
theorem. Indeed, the hypotheses of Danskin’s theorem (cf. [6, Prop. 4.12]) require, in particular,
that the objective functional is continuous and inf-compact on some Hausdorff topological vec-
tor space. In our case, the level sets of the objective are inf-compact in the weak topology on
V. However, the objective is weakly lower-semicontinuous, but not continuous with respect to
the weak topology. Therefore, we cannot simply embed the problem into the setting of Danskin’s
theorem by replacing (V, ‖ · ‖V) by (V, σweak).
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In order to approximate θ in the path-following scheme by a simple model function, we need
second-order information. This will require a differential sensitivity analysis of ū•. For this dis-
cussion, we will make use of the first-order necessary and sufficient optimality conditions for
(Pγ), which for each i = 1, . . . , n are given by

−∆ūγi + ūγi − λ
γ
i + 1µγ = −∆ϕi + ϕi, in Ω, (9a)

∂(ūγi − ϕi)
∂n

= 0, on Γ, (9b)

λγi = γ(−ūγi )+, (9c)

µγ = γ(1>ūγ − 1). (9d)

Note that−λγi = γ∂(1
2
‖(−·)+‖2

L2(Ω))(ū
γ
i ) and µγ = γ∂ui(

1
2
‖1> ·−1‖2

L2(Ω))(ū
γ). In addition,

we define the difference quotients:

dηi :=
ūγ+η
i − ūγi
η

, χηi :=
λγ+η
i − λγi
η

, νη :=
µγ+η − µγ

η
.

We then have the following result.

Proposition 2.4. The directional derivative of the composition (β◦ ū•) : (0,∞)→ R at γ > 0
in direction 1 is given by

β′(ūγ; 1) = −
n∑
i=1

∫
Ω

(−ūγi )+d̄i dx+

∫
Ω

(1T ūγ − 1)d̄i dx,

where d̄ ∈ V is the unique solution of the following variational problem:

min
{1

2
‖d‖2

V −
n∑
i=1

(
(−ūγi )+ − (1>ūγ − 1), di

)
L2(Ω)

+
γ

2

∫
Ω

∣∣1>d∣∣2 dx+

γ

2

n∑
i=1

∫
{ūγi =0}

(−di)2
+dx+

γ

2

∫
{ūγi <0}

|di|2dx over d ∈ V
}
. (Dγ)

Moreover, it holds that
β′(ūγ; 1) ≤ 0, ∀γ > 0.

Hence, θ : (0,∞)→ R is concave.

Proof. We first show that {dη}η>0 is uniformly bounded in V. First note that dηi solves the
following elliptic PDE with homogeneous Neumann boundary conditions:

−∆dηi + dηi − χ
η
i + νη = 0, in Ω, (10a)

∂dηi
∂n

= 0, on Γ. (10b)
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Now note that
∑n

i=1 ‖d
η
i ‖2
V =

∑n
i=1〈−∆dηi +dηi , d

η
i 〉 and by the monotonicity of the gradients

of β that

n∑
i=1

‖dηi ‖2
V ≤

n∑
i=1

〈−∆dηi + dηi , d
η
i 〉−

n∑
i=1

γη−2((−ūγ+η
i )+− (−ūγi )+, ū

γ+η
i − ūγi )L2(Ω)+

n∑
i=1

γη−2((1>ūγ+η − 1− (1>ūγ − 1), ūγ+η
i − ūγi )L2(Ω)

Then, testing (10a) with dηi and summing over i we have

n∑
i=1

〈−∆dηi + dηi , d
η
i 〉 =

n∑
i=1

〈χηi , d
η
i 〉 −

n∑
i=1

〈νη, dηi 〉.

Next, given

n∑
i=1

〈χηi , d
η
i 〉 −

n∑
i=1

〈νη, dηi 〉 −
n∑
i=1

γη−2((−ūγ+η
i )+ − (−ūγi )+, ū

γ+η
i − ūγi )L2(Ω)+

n∑
i=1

γη−2((1>ūγ+η − 1− (1>ūγ − 1), ūγ+η
i − ūγi )L2(Ω)

=
n∑
i=1

((−ūγ+η
i )+, d

η
i )L2(Ω) −

n∑
i=1

((1>ūγ+η − 1, dηi )L2(Ω),

we have

n∑
i=1

‖dηi ‖2
V ≤

n∑
i=1

((−ūγ+η
i )+, d

η
i )L2(Ω) −

n∑
i=1

((1>ūγ+η − 1, dηi )L2(Ω). (11)

It follows from Theorem 2.1.3, that {dη}η>0 is uniformly bounded in V. Next, we derive expan-
sions for ληi and µη.

From the Lebesgue dominated convergence theorem we see that the superposition operator
(·)+ : L2(Ω)→ L2(Ω) is Lipschitz continuous and Hadamard directionally differentiable with

(·)′+(ūγi ; d
η
i )(x) =

{
dηi (x) on {ūηi > 0} ∪ {ūηi = 0, dηi > 0},
0 otherwise.

(12)

Moreover, due to [21, Proposition 3.1] it is continuous in the second variable. Since {dηi }η>0 is
uniformly bounded in V and

χηi = η−1((γ+η)(−ūγ+η
i )+−γ(−ūγi )+) = γ

(
(−(ūγi + ηdηi ))+ − γ(−ūγi )+)

η

)
+(−ūγ+η

i )+,

there exists a small o-function such that

χηi = γ(·)′+(−ūγi ;−d
η
i ) + o(1) + (−ūγ+η

i )+. (13)
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Arguing similarly for νη, we have

νη = γ1>dη + 1>ūγ+η − 1. (14)

Now, letting ηk ↓ 0, there exists a weakly converging subsequence
{
dkli

}
with dkli := d

ηkl
i and

a weak limit point d̄i ∈ V . Since V embeds compactly into L2(Ω) and ū• : (0,∞) → V is
continuous, we have

χ
ηkl
i → γ(·)′+(−ūγi ;−d̄i) + (−ūγi )+ strongly in L2(Ω)

νηkl → γ1>d̄+ 1>ūγ − 1 strongly in L2(Ω)

Moreover, d̄i solves

−∆d̄i + d̄i − γ(·)′+(−ūγi ;−d̄i) + γ1>d̄ = (−ūγi )+ − (1>ūγ − 1), in Ω, (15a)

∂d̄i
∂n

= 0, on Γ. (15b)

It is then easy to see that the vector d̄ ∈ V solves (Dγ). Since (Dγ) has a unique solution, we
can deduce by the Urysohn property that the entire sequence

{
dk
}

converges weakly to d̄.

We are now ready to derive a formula for the directional derivative of θ′(γ). Consider that

η−1(β(ūγ+η)− β(ūγ)) = (2η)−1

n∑
i=1

∫
Ω

[(−ūγ+η
i )2

+−

(−ūγi )2
+]dx+ (2η)−1

∫
Ω

[|1T ūγ+η − 1|2 − |1T ūγ − 1|2]dx.

Using the chain rule, formula (12) and ūγ+η = ūγ + ηdγ , we have

η−1(β(ūγ+η)− β(ūγ)) =
n∑
i=1

∫
Ω

[−(−ūγi )+d
η
i ]dx+

∫
Ω

[(1T ūγ − 1)dηi ]dx+ o(1).

Since ηk → 0 implies dηk ⇀ d̄ (weakly in V), we can use the compactness of the embedding
V into L2(Ω) and pass to the limit in the previous equation. This yields

β′(ūγ; 1) = −
n∑
i=1

∫
Ω

(−ūγi )+d̄i dx+

∫
Ω

(1T ūγ − 1)d̄i dx.

Finally, it follows from (11) that β′(uγ; 1) ≤ 0. This completes the proof.

3 Solving the First-Order System

3.1 A Semismooth Newton Iteration

The main component of the algorithm involves the direct solution of (9) using a semismooth
Newton method. We refer the reader to the papers [23, 14] for the full theory of this method and
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only note that in the current setting, the iterates are generated by solving the following (reduced)
linear system: Given γ > 0 and uold, solve

A(u− ϕ) + γI{uold<0}u+ γ1(1>u− 1) = 0 in Ω, (16a)

∂(u− ϕ)

∂n
= 0 on ∂Ω (16b)

for unew. Here, A is the PDE-operator associated with the V-inner product and I{uold<0} is the
characteristic function for the set {uold < 0}. Once the residual of (9) is sufficiently small, the
method terminates and γ is updated. The previous γ-dependent solution serves as the starting
value for the next iteration. We summarize this procedure in Algorithm 3.1.

Algorithm 3.1 H1-Projection onto the Gibbs Simplex

Input: tol > 0, γ > 0, ϕ ∈ H1(Ω,Rn), k ← 0, u0 ← 1
n
1

1: repeat . Outer loop
2: k ← k + 1, l← 1, uk,1 ← uk−1

3: repeat . Inner loop
4: Set γ ← γk, uold ← uk,l and solve (16) for uk,l+1

5: l← l + 1
6: until Stopping criterion is satisfied
7: uk ← uk,l+1

8: λk ← −γk(−uk)+, µk ← γk(1
>uk − 1)

9: Update γk+1

10: until Stopping criterion is satisfied

Defining the residuals

r1
k = ‖(−uk)+‖L2(Ω,Rn), r

2
k = ‖1>uk − 1‖L2(Ω), r

3
k = (λk, uk)L2(Ω),

the outer loop terminates whenever

‖(r1
k, r

2
k, r

3
k)‖2 ≤ tol.

Note that r1
k, r2

k are feasibility errors, whereas r1
k, r3

k represent the complementarity error. The
stopping criteria for the inner loop depend on the type of γ-update strategy. These are detailed
below in Section 4.

3.2 Feasibility Restoration

In some applications, e.g., topology optimization, where the phase field functions u1, . . . , un
arise as parameters in a second-order PDE-operator, it is imperative that u ∈ G. For such
situations, we are forced to employ a mesh-dependent numerical method. However, the (very)
warm start provided by Algorithm 3.1 provides a point that is sufficiently close to the true solution
of (P) so that the jump to feasibility requires minimal effort. We demonstrate this fact in the
examples.
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4 Path-Following Scheme

We now detail a strategy for efficiently updating γk in Algorithm 3.1. As suggested in [16], an
ideal update scheme for γ (at step k) would be to choose γk+1 such that

|θ∞ − θ(γk+1)| ≤ τk|θ∞ − θ(γk)|, (17)

where τk ↓ 0 is a given null sequence. However, as noted there, this is not a practical strategy
as we cannot evaluate θ(γk+1) and θ∞. Nevertheless, our analysis shows that θ : (0,∞)→ R
is positive, bounded, increasing, continuously differentiable and concave. Hence, we first fit a
model function, using the information available at step k, and then update according to an
approximation of (17). This serves the basis for the path-following approach.

Our approach follows the arguments in [16, Sections 5-6]. We therefore consider the following
model function m : (0,∞)→ R given by

m(δ) := C1 −
C2

E + δ

as an approximation of θ. Given γ > 0 and ūγ , we determine the (γ-dependent) constants in
each of the model functions by setting

m(0) = 0, m(γ) = θ(γ), m′(γ) = θ′(γ). (19)

This amounts to:

E = γ2β(ūγ)(
1

2
‖ūγ − ϕ‖2

V)−1,

C2 = γ−1E(E + γ)(
1

2
‖ūγ − ϕ‖2

V + γβ(ūγ)),

C1 = C2E
−1.

Clearly, E,C1, C2 > 0. Moreover, it can be argued using (3) that γβ(ūγ) → 0 as γ → +∞.
Hence, m(·) monotonically increasing, m(·) ≤ C1 and

C1 =

(
γβ(ūγ)

1
2
‖ūγ − ϕ‖2

V
+ 1

)
θ(γ)

implies that m(δ)→ C1 as δ →∞ and C1 → θ∞ as γ →∞. Now, we may use (17), which
leads to the following explicit update formula:

γk+1 =
C2,k

τk|C1,k − θ(γk)|
− Ek. (21)

By choosing three different reference values for γ in (19), we see in Figure 1 that m is an
excellent local approximation of θ.

In this method, the Newton iteration (inner loop) is terminated whenever the active index sets
{uk < 0} are the same in two subsequent iterations or

‖A(uk,l+1 − ϕ)− γk(−uk,l+1)+ + γk1(1>uk,l+1 − 1)‖H1(Ω,Rn)∗ ≤ tol. (22)
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Figure 1: Approximations m of θ taken at different reference points γ

5 Numerical results

In this section, we demonstrate the performance and wide applicability of the proposed meth-
ods on three examples. The first example shows the mesh-independent behavior of the path-
following methods and compares this to the first-discrete-then-optimize approach suggested
above, which utilizes the primal-dual active set method (adapted to our setting) from [14]. This
method does not admit a function space convergence analysis and, hence, is expected to be-
have mesh dependently, i.e., utilizing the same stopping rule and initial point on all meshes, the
number of iterations until successful termination will grow as the mesh is refined. For the lat-
ter two examples, we consider two optimization problems from mathematical image processing
and labeled data classification that may be solved using a gradient-flow or projected gradient
method, see e.g. [3]. At each step of the line search in the projected gradient method, a projec-
tion onto the Gibbs simplex is required.

In all examples, the underlying domain Ω = (0, 1)2 is discretized using a uniform triangular
mesh with parameter h > 0. The function space H1(Ω) is discretized using the associated
nodal basis comprised of the standard continuous piecewise affine finite elements, see, e.g.,
[10, 7]. Note that the pointwise almost-everywhere constraints are approximated in the finite
dimensional problem by requiring the coefficients for each nodal basis function to be in the
finite dimensional Gibbs simplex. In order to calculate the H1(Ω;Rn)∗-norm in (22), we need
the Riesz representation of the dual object. This is done by solving a (vector-valued) Poisson
problem with homogeneous Neumann boundary conditions with the residual of interest on the
right-hand side. We make use of the P1AFEM package [11]. Concerning the path-following
parameters, we choose τk = 10−2k, initial parameter γ1 = 104, maximum parameter γmax =
1014 and the stopping criterion tol = 10−6. PDAS is stopped once the residual of the optimality
conditions to (P) drops to 10−10.

11



5.1 Projection onto the Gibbs Simplex

For this example, we set n = 3 and construct ϕi such that the optimal solution of (P) exhibits
biactivity at the optimal solution, i.e, both the inequality constraint and the associated Lagrange
multiplier are equal to zero. Such problems can be notoriously difficult to solve. Let

v̂1(x, y) =

{
0 if x ∈ (0, 1), y ∈ (0, 1

2
)

sin(y − 1
2
) cos(xy) if x ∈ (0, 1), y ∈ [1

2
, 1)

v̂2(x, y) = 2 + cos(10xy), (x, y) ∈ (0, 1)2

v̂3(x, y) = 0, (x, y) ∈ (0, 1)2

and then set

vi =
v̂i

v̂1 + v̂2 + v̂3

.

for i = 1, 2, 3. Note that v = (v1, v2, v3) satisfies the constraints in G. Similarly, we define the
functions

λ1(x, y) =

{
1 if x ∈ (0, 1), y ∈ (0, 1

2
)

0 if x ∈ (0, 1), y ∈ [1
2
, 1)

λ2(x, y) = 0, (x, y) ∈ (0, 1)2

λ3(x, y) = 0, (x, y) ∈ (0, 1)2,

µ(x, y) = 1, (x, y) ∈ (0, 1)2

and construct ϕ by solving the problem:

−∆ϕ+ ϕ = −∆v + v + λ− 1µ, in Ω,

∂(ϕ− v)

∂n
= 0, on Γ.

Note that λ = (λ1, λ2, λ3) ∈ L2(Ω)3, that (λ, v)L2 = 0 and that the above system forms
the Karush-Kuhn-Tucker conditions for (P). Thus, v is its optimal solution, λ is the Lagrange
multiplier associated with the inequality constraint and biactivity is present on the whole third
component. The starting point was chosen as ϕ.

The results of Algorithm 3.1 are presented in Table 1. We compare the behavior of the primal-
dual active set (PDAS) and the path-following method (PF) on six different meshes with decreas-
ing h. For PDAS, ‘total iter’ refers to the number of linear solves. For PF, ‘inner steps l’ refers to
the total number of linear solves used in the Newton iterations, ‘outer steps k’ is the number of
γ updates, and ‘feas. step’ counts the number of linear solves to optimality needed when using
the solution of PF as a starting point in the PDAS method. This qualitatively demonstrates how
close the solution of the approximating problems gets to solving (P). Note that no adaptive mesh
refinement or nested grid strategies, where one would consider subsequently refined meshes
and use the prolongation of the solution on the coarser mesh as the starting point on the finer
mesh, are considered. Clearly, the PF strategies behave much better over mesh refinements
than PDAS. For example, with h = 2−8, the true solution to (P) is obtained in 99 iterations with
PDAS and 15 with PF.
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h 2−4 2−5 2−6 2−7 2−8 2−9

PDAS: total iter 10 16 33 58 99 196
PF: inner steps l 12 12 14 14 15 14

outer steps k 3 3 3 3 3 3
feas. step 1 1 1 1 1 1

Table 1: Results for projection of ϕ onto the Gibbs simplex

5.2 Applications in Image Processing and Labeled Data Classification

In this subsection, we consider two examples inspired by the work in [2, 12]. Having n phases,
the common goal is to minimize a criterion J such that the phases are (almost) pure. This
amounts to solving the problem

min
u∈H1(Ω;Rn)

{
J(u) + ζ

∫
Ω

(
ε|∇u|2 +

1

ε
u(1− u)

)
dx
∣∣∣ u ∈ G} , (23)

where ζ > 0 is the scaling parameter and parameter ε > 0 is proportional to the interfacial
width. The second part of the objective is the multiphase Ginzburg-Landau energy, which along
with the indicator function for G, serves as a penalty functional that avoids pathological free
boundaries between the phases. Together, the sum of these functionals Γ-converges to the
perimeter of the characteristic functions associated with the true phases in a sharp interface
regime [19, 20]. As such, straight edges are more favorable. We use the standard projected
gradient method with line search to solve (23).

Labeled Data Classification
In the first example we separate n = 3 different classes of observations with known labels.
First, we ‘train’ three segmentation phase field functions u on M noisy data and then test the
accuracy of these solutions on further noisy realizations. This amounts to solving (23) with

J(u) =
M∑
m=1

(
1− 1

|B(xm, δ)|

∫
B(xm,δ)

uj(m)dx

)
, (24)

where m ∈ {1, . . . ,M} is the index of a noisy data point xm ∈ Ω and B(xm, δ) is a small
ball of radius δ > 0 around this point; j(m) ∈ {1, 2, 3} refers to the known label (class) of this
point. Due to the structure of the Gibbs simplex, J is minimized when uj(m) = 1 and ui = 0
for i 6= j(m) on B(xm, δ). Thus, J expressed the number of incorrectly classified points. In
(23) we consider ε = 2−6 and ζ = 2 · 10−2 and in (24) we set δ = 3 · 2−7. The algorithm was
started with a uniform mixture of phases.

We randomly generated M = 1500 points (500 for each category +/left half circle, ◦/bottom
half circle,×/right half circle), see the left-hand side of Figure 2. We then solved the optimization
problem in order to train three phase field functions, see the right-hand side of Figure 2. In order
to test the accuracy of these fields, we again generated the same number of points and checked
how many of these points lie in the correct region. In this instance, the solution was correct for
99.6% of the data points. The numerical comparison of both methods is shown in Table 2. Even
though PF needs more iteration than PDAS, the iteration growth is much slower upon mesh
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refinement. The difference diminishes when we use warm start from the previous mesh. As we
will see it the next application, on sufficiently fine meshes PF will eventually need less iterations
than PDAS.

Figure 2: Classification results: Generated random points in the shape of three half-moons (left)
and the obtained three regions used for categorization of points (right).

Uniform phases start Warm start
h 2−6 2−7 2−8 2−9 2−6 2−7 2−8 2−9

PDAS: total iter 33 39 58 89 33 29 39 48
increase 18.18% 48.72% 53.45% -12.12% 34.48% 23.08%

PF: inner steps l 59 68 85 113 59 51 68 81
increase 15.25% 25.00% 32.94% -13.56% 33.33% 19.12%
feas. step 8 13 14 16 8 9 15 17

Table 2: Classification results: Number of iterations on uniform meshes with element size h and
the increases with respect to previous iterations. The first part depicts the start with uniform
phases, the other one the warm start from the previous mesh. The projected gradients needed
4 iterations with 7 projections in both cases.

Inpainting
For the inpainting application, we assume that an original image (top left of Figure 3) is degraded
by adding a text on top of it to produce a known image û (top right of Figure 3).1 The goal is
then to recover the original image as faithfully as possible. We follow the suggestion in [2] to use
a modified Allen-Cahn equation for image inpainting, which leads to (23) with

J(u) =

∫
Ω

(u− û)2dx. (25)

In (23) we consider ε = 2−7 and ζ = 7 · 10−3. The algorithm was started with the degraded
image.

On the contrary to the previous cases, we use non-uniform mesh, where the phase interface is
much more refined, see the bottom right part of Figure 3 which depicts the mesh for the right
panda eye. For simplicity, we consider a locally adapted mesh which is given. A similar mesh

1The picture can be downloaded from many wallpaper sites such as http://dairennsa.net/
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may be obtained from developing an a posteriori error estimates for adaptive mesh refinement
see e.g. [1] or [13]. As the latter technique, however, is not the focus of this work, we rely on an a
priori mesh. For simplicity, we consider locally adapted mesh which is given a priori; for results
The recovered image is shown in the bottom left part of Figure 3. The numerical evidence is
summarized in Table 3, where h is the smallest element size. On the coarsest mesh PDAS
outperforms PF but as the mesh is getting finer, PF needs less iterations to converge to the
solution. In all cases, the projected gradients needed 12 iterations with 26 projections.

Figure 3: Inpainting results: Initial image (top left), devalued image (top right), recovered image
(bottom left) and mesh detail of the right panda eye (bottom right).

h 2−8 2−9 2−10 2−11 2−11 2−12

Node number 66049 80500 110065 169733 289685 529971
PDAS: total iter 96 108 125 159 194 245
PF: inner steps 155 164 176 190 200 200

feas. step 35 33 45 48 51 74

Table 3: Inpainting results: Non-uniform mesh with refined mesh interface; h is the size of the
smallest element. The projected gradients needed 12 iterations with 26 projections.

6 Summary

In this paper, we motivate the need for a function-space-based algorithm for the H1-projection
onto the multiphase Gibbs simplex. In particular, the wide array of applications alone involving
optimization or control problems with the Gibbs simplex as a constraint warrants such a study.
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In order to make the best use of fast second-order methods for semismooth equations, an
analytical path-following study is carried out. Our analytical approach drastically reduces the
length of the arguments and necessary assumptions required in [16, 15]; the two works that
inspired our approach. Due to the generality of our arguments, they can clearly be extended to
similar constraint sets. As in [16, 15], we suggest a path-following strategy for the update of the
Moreau-Yosida regularization parameter, which is based on a concave model function. In our
numerical experiments, we first demonstrate the clear advantage of our methods over a first-
discretize-then-optimize approach. Finally, we consider two small examples inspired by recent
work in [2, 12] that require the H1-projection onto the Gibbs simplex. Further applications, for
example in topology optimization will be considered in future work.
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