
WeierstraB-Institut 
fiir Angewandte Analysis und Stochastik 

im Forschungsverbund Berlin e.V. 

Adaptive and spatially adaptive testing of a 
nonparametric hypothesis 

Vladimir G. Spokoiny 

submitted: 17th April 1996 

Weierstrass Institute 
for Applied Analysis 
and Stochastics 
Mohrenstrafie 39 
D - 10117 Berlin 
Germany 

Preprint No. 234 
Berlin 1996 

1991 Mathematics Subject Classification. 62Gl0; Secondary 62G20. 
Key words and phrases. Signal detection, minimax hypothesis testing, nonparametric alternative, 
error probabilities, adaptive test. 



Edited by 
Weierstra:B-Institut fiir Angewandte Analysis und Stochastik (WIAS) 
Mohrenstra:Be 39 
D - 10117 Berlin 
Germany 

Fax: + 49 30 2044975 
e-mail (X.400): c=de;a=d400-gw;p= WIAS-BERLIN ;s=preprint 
e-mail (Internet): preprint@wias-berlin.de 



ADAPTNE AND SPATIALLY ADAPTNE TESTING 

ABSTRACT. The present paper continues studying the problem of nonparametric hy-
pothesis testing started in Lepski and Spokoiny, 1995 and Spokoiny, 1995. Let a func-
tion f be observed with noise. A null simple hypothesis f = fo is tested against a 
composite alternative of the form II!- follr ~ g. Additionally it is assumed that the 
underlying function f possesses some smoothness properties, namely, that f belongs 
to some Besov (or Sobolev) ball Bs,p,q(M) = {! : llfllBs,p,q ::; M}. The aim is to 
evaluate the fastest rate of decay of the radius e to zero as the noise level tends to 
zero (or, equivalently, as the number of observations tends to infinity) for which testing 
with prescribed error probabilities is still possible. The ealier results show that the 
answer depends heavily on the smoothness parameters s,p, q, M. Below we consider 
the problem of adaptive (assumption free) testing if these parameters are unknown. A 
test </> * is proposed which is near minimax and adaptive at the same time. Compared 
with the optimal (minimax) rate, this test has a performance which is worse within a 
log log-factor that is inessential but unavoidable payment for adaptation. 

1. Introduction 

1 

Let a function f be observed with noise on the interval [O, 1]. More precisely, we observe 
a process X(t) for t E [O, 1] obeying the stochastic equation 

dX(t) = f(t)dt + n-1l2 dW(t), 05:t5:l. (1.1) 

The factor n-1! 2 for the noise level is prompt by analogy between this "ideal" statistical 
model and more realistic models such as the regression model, distribution or spectral 
density model etc. where n has meaning of the number of observations. 

In what follows we consider the problem of testing the null hypothesis about function 
f. Namely, it is _assumed that the function f ·is completely specified under the null 
hypothesis. To be more definitive, we assume the null of the form Ho : f = 0. Such a 
problem is classical in statistical inference, see e.g. Mann and Wald, 1942 or Lehmann, 
1959, and it can be treated as the signal detection problem when one has to decide by 
observations X (t) whether "a signal" f presents or not. Note that the whole statement 
of the testing problem includes also description of the alternative set. Our aim is to 
propose such a test which is powerful against as large set Hi of alternatives as possible. 

We would like t.o consider below alternative sets of the form Hi (e) :· llfllr ~ e where 
r ~ 1 and e > 0 . Unfortunately, such sets of alternatives are too large. It was shown 
in Burnashev, 1979; Ibragimov and Khasminskii, 1977; Ingster, 1982 that for any e > 0 
any test has the trivial power on H1 (e) (in the minimax sense). Further progress in this 
direction was made under the extra assumption that the function f is smooth in the 
sense that it belongs to some ball in Sobolev, Holder of Besov space. Hence we look at 
the alternative of the form 

Hi: llfllr ~ e, llJllBs,p,q 5: M. 
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Here II · llBs,p,q, is the Besov norm with parameters s, p, q, see e.g. Triebel, 1992 or 
Daubechies, 1992. For the case of an integer s and p = q, one may apply Sobolev's 
type seminorm llfllHs,p = (J IJ(s)(t)jPdt) 11P instead of the mentioned Besov norm. For 
this case, the parameter s could be viewed as the number of derivatives of the function 
f integrated in Lp -norm. 

The problem is studied in the asymptotic set-up when n tends to infinity or, equiva-
lently, the noise level tends to zero. It is natural to expect that for large n the radius fl 
can be taken small. Therefore, one may ask about the optimal (fastest) rate of decay of 
fl = g( n) to zero as n -t oo for which a nontrivial testing is still possible. It turned out 
that the optimal rate depends critically on the smoothness degree s , the norm power r 
in which we measure the distance between the null and the alternative set and the norm 
power p in which we measure smoothness properties of the function f . 

The reader is referred to Ingster, 1993; Lepski and Spokoiny, 1995 and Spokoiny, 1995 
for mpre detailed historical background. We mention here only __ a few results closely 
related to the pro~lem under consideration. 

The first results concerning the problem of minimax nonparametric hypothesis testing 
were obtained for the case when the distance between the null and the alternative set 
and smoothness properties of the function f are measured in the same norm L 2 (i.e. 
r = p = 2 ), see Ingster, 1982; Ingster, 1986; Ermakov, 1990. In this case, the optimal rate 

2s s 
is g(n) = n- 4s+i • Note that this rate differs from the rate 'lf;(n) = n-2,,+1 of estimation 
of the function f under the same smoothness assumptions (more precisely, the rate of 
testing is better and it corresponds to the rate of estimation with smoothness parameter 
2s ). Next, Ingster, 1986; Ingster, 1993 evaluated the rate of testing if p = r and arbitrary 

s 2s 
r ~ 1. It appeared to be g(n) = n 2s-1/r+1 if r ~ 2 and again fl(n) = n- 4s+1 if 
1 ~ r < 2 . Such a behavior differs essentially from that of for the estimation problem 

s 
where, say, for any p ~ r, the rate of estimation is the same, namely n-2s+1 . It was 
shown also in Ingster, 1986 that for the case with p ~ 2 and r ~ 2 , the rate of testing 
is the same as for · p = r = 2 . 

Note; however, that the case of p < r was not considered in that papers. But the 
recent progress in the estimation theory, see Nemirovski, 1985; Donoho and Johnstone, 
1995; Donoho et al., 1995; Lepski et al., 1994 stressed importance, both for theory and 
practice, of considering the situation with p < r corresponding to functions f from (1.1) 
with inhomogeneous smoothness properties. 

The hypothesis testing problem for the case with p < r = 2 was studied in Lepski and 
2s-l/p+l/r 

Spokoiny, 1995. The corresponding rate was found to be of the form g( n) = n - 2 <2s-1/P+ 1) • 

Note, see Donoho and Johnstone, 1995, that, for the estimation problem, the correspond-
ing rate does not depend on p in the domain sp > 1 . 

A variety of different tests was proposed in the papers cited above. But among all 
these test procedures, the crucial problem for their practical applications is dependence 
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of their structure on the smoothness parameters s, p, q, M which are typically unknown 
a'priori. 

The problem of adaptive (assumption free) testing for the same nonparametric set-up 
was considered in Spokoiny, 1995 for the case of L 2 -distance ( r = 2). It was shown that 
adaptive testing is impossible without loss of efficiency. The optimal adaptive rate was 
also evaluated there. It occured to be worse than the minimax rate within a log log n 

factor. 
Below we continue studying this problem for the case of an arbitrary integral norm Lr . 

We are aiming, firstly, to evaluate the optimal rate of testing and secondly, to propose an 
adaptive test which achieves this rate (probably with .extra log log-factor). The results 
of the paper show. that rates of testing differ essentially in three domains described by 
relations between smoothness parameters s, p, M and the norm power r. Informally one 
may classify these three domains as follows: the first domain corresponds to function of 
high regularity with homogeneous smoothness properties; the nex:.t domain, on the con-
trary, corresponds to functions with very poor (inhomogeneous) smoothness properties, 
particularly, to functions with jumps; finally, the last case can be placed between the ex-
treme two: functiqns from this domain have again inhomogeneous smoothness properties 
but of moderate degree. 

These three domains can be described also in term of the corresponding least favorable 
priors. For the first case, the hardest for detection function (signal) is uniformly small 
and, particularly, signal-to-noise ratio tends to zero. For the second (opposite) case, the 
hardest for detection signal is zero almost everywhere except one peak at a random place 
with the altitude which exceeds the noise level within some log-factor. In the last case, 
the corresponding signal contains polynomial number of peaks with the altitude of the 
noise level. 

Then we propose three kinds of test procedure and show that for each domain, one 
may show one of these three which is critical for providing the optimal rate of testing. 
The first procedure corresponds to testing in L2-norm and it achieves the minimax rate 
of testing in the first domain. (Note that both r and p may differ from 2 there.) The 

. 2s 
corresponding rate is n - 4s+1 and the test is very powerful (in the sense of the rate of 
testing) but it "works" only for very regular function. 

The second procedure corresponds to testing in sup-norm. One could say that this 
method "works" for any alternative (of course, some minimal smoothness is required) 
but it leads to relatively poor rate coinciding with the rate of estimation for the same 
value of smoothness parameters. 

The last test procedure, in analogy with the estimation theory, might be called "spa-
tially adaptive". It is based on thresholded empirical wavelet coefficients. 

In the case when no information about smoothness properties of the function f is 
available a'priori, our recommendation is extremely simple and natural: let apply all these 
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procedures simultaneously. We show that a proper combination of the indicated above 
tests can be taken to provide prescribed error probabilities. Of course, the sensitivity of 
such a test still depends on the smoothness properties of the underlying function but the 
proposed goodness-of-fit procedure is "assumption free". 

Resuming, let us highlight one more important benefit of considering arbitrary p, r ~ 
1 . This enables us to observe how quantitative change of smoothness parameters leads 
to qualitative change of the structure of least favorable priors and the corresponding 
optimal test structure. 

The paper is organized .as follows. In the next section we formulate the problem and 
state the results. The proposed test procedure is discussed in Section 3. The proofs are 
postponed to Section 4 and Appendix. 

2. Model and hypothesis testin.g __ problein 
Assume we are given by the data X(t), 0 ::; t ::; 1, obeying the following stochastic 
differential equation 

dX(t) = f(t)dt + n-112dW(t), 0::; t::; 1, X(O) = 0. (2.1) 

The function f (·) is unknown and the following statistical problem is considered: to test 
the null hypothesis Ho that the function f is identically zero, 

Ho: j:.::: 0. 

We wish to test this hypothesis against as large class of alternatives as possible. That is 
why we do not assume any special (parametric) structure for the alternative set. This 
leads to considering a nonparametric alternative set. Following to Ingster, 1982; Ing-
ster, 1993; Lepski and Spokoiny, 1995 we assume only that the function f obeys some 
smoothness conditions. More precisely, the function f is supposed to lie in some Besov 
ball Bs,p,q (M) , 

Bs,p,q(M) = {J: ll!llBs,p,q ::; M}. 

The definition of the Besov norm II · llBs,p,q can be found, e.g., in Triebel, 1992. For 
the discussion of this notion in statistical context, see Donoho and Johnstone, 1995 or 
Donoho et al., 1995. Note that the definition of a Besov space can be done also in terms 
of the wavelet decomposition, see the property 1802 below. 

To be able to test the null against the alternative, we assume also that the alternative 
set is separated away from the null in some integral Lr -norm where the number r ~ 1 
is specified. Hence we arrive at the following alternative 

Hi: Fu,r(l2) = {J E Bs,p,q(M) : llJllr ~ 12} · 
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Now we define the hypothesis testing problem. A. (non-randomized) test ¢; is a mea-
surable function of the observation X(·) with two values {O, 1}. As usual, the event 
{ ¢; = 0} is treated as accepting the null hypothesis, and { ¢; = 1} means that the null is 
rejected. To simplify the exposition, we do not consider randomized tests. All the results 
can be extended on the case of randomized tests in a standard way, see e.g. Lehmann, 
1959 or Ingster, 1993. 

Let Po be the distribution of the process X(·) under the null i.e. if we observe the 
only noise, and let Pf means the distribution of the process X under f due to (2.1), 
P1 = £(Xlf) · 

The quality of any test </> is measured by the corresponding error probabilities of the 
first and the second kinds. For the case under consideration with a simple hypothesis, 
the error probability of the first kind is 

. ., 

If f is a point from the alternative set, f E Fu,r (fl) , then the error probability of the 
second kind at f is defined as usual by f3(f) = P 1(¢> = 0). The value 1- j3(f) is called 
the power of the test ¢> at f . 

We consider further the minimax set-up which leads to the following criteria 

f3u,r ( ¢; Q) = sup Pf ( ¢> = 0) · 
fE:Fcr,r(e) 

2.1. Minimax r.ate of testing 

(2.2) 

Below we are focusing on the asymptotic hypothesis testing problem as the noise level 
tends to zero ( n --+ oo ). We are interested in evaluating the optimal (fastest) rate of 
decay of the radius fl as a function of n to zero as n --+ oo for which testing with 
prescribed error probabilities is still possible. The following definition of the minimax 
rate e(n) was proposed in Ingster, 1993. 

Definition 2.1. A sequence e( n) is called the minimax rate of testing if e( n) --+ 0 as 
n--+ oo and the following two conditions hold: 

( i) For any sequence fl' ( n) such that 

r/(n)j fl(n) = On(l) 

one has 

inf [Po(ef>n) + f3u,r(¢>n; r/(n))] = 1 - On(l). 
<Pn 

(ii) For any a, j3 > 0 there exist a constant C > 0 and tests ¢>~ such that 

Po(¢>~) < a+ on(l) 

f3u,r(¢~; Ce(n)) < f3 + On(l). 
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Here and below we denote by on(l) any sequence tending to zero as n-+ oo. 

Remark 2.1. The first condition of the above definition means that testing with the rate 
faster than g( n) is impossible i.e. if the distance between the null and the alternative 
set is less in order than e(n), then any test has asymptotically trivial power in the sense 
that the sum of the error probabilities of the first and second kinds is close to 1. The 
second condition means roughly that, on the contrary, if the distance is of the order g( n) 
then testing could be done with prescribed error probabilities. 

It turns out that the rate e(n) depends on the smoothness parameters a= (s,p, q, M) 
and the norm r in which we measure the distance between the null and the alternative. 

We present below without proof the result about the rate e( n) . This result is par-
tially (for particular values of p, r) proved by different authors, see the remark after the 
statement of the result. 

It is useful to introduce the folowing three numbers 

Denote also 

.6.2,3 

.6.1,2 = 

... ye1) -

= 

= 

1 
4s+ 1' 

1-1/r 
2s + 1- 1/p' 

1- 2/r 
2s+ 1- 2/p" 

(2) _ (3) _ 2sp - (r - p) 
I I - , pr ( 2s + 1 - 1 / p) ( 2s + 1 - 2 / p) 

(1) _ (2) _ p - r - 2sp(r - 2) 
1 1 - pr(4s+ 1)(2s + 1- 1/p)" 

The following technical statements are straightforward. 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

Lemma 2.1. Let sp > 1 . If /(l) > 1<2), then also 1(2) > 1(3) • On the contrary, 
/(2) < 1(3) implies 1<1) < 1(2) • 

The proof is left to the reader. 

Now we are ready to formulate the result. We consider only the domain sp > 1 
(this constrains comes from the approximation theory) and we exclude the points with 
.6.1,2 = 0 or .6.2,3 = 0. The latter special cases are more involved and they require special 
consideration. 

Theorem 2.1. Given r and a= (s,p, q, M) with sp > 1, let 

!
{!~~J(n) = M-Y(1)n_1-2'1) if /(1) > /(2), 

!!u,r(n) = e~:t(n) = M-Yc2>n- 1-7/2

> if 1<2) > 1(1) and 1<2) > 1(3), 

(3) (3) l-=x<3) 
f2u,r(n) = M'Y (n/logn)- 2 if 1(2) < /(3). 

(2.8) 
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If r/(n)/ l2u,r(n) = On(l), then 

if! [Po(<f>n) + f3u,r(<f>n; e'(n))] = 1 - On(l). 

Remark 2.2. Such kind of results is called typically "a lower bound of the rate of conver-
gence". It means that testing with a faster rate than l2u,r(n) is impossible. 

We do not state a precise "upper bound" result i.e. we do not present a test which 
achives exactly th~ rate shown in (2.8). Instead we propose later on a test which achives 
(and even adaptively) this lower bounds up to extra loglog-term. But the following 
conjecture can be formulated: let CJ = (s,p, q, M) and r be given with sp > 1 and 
1C1) -::j:. rC2), 1C2) -::j:. rC3). Then 12u,r(n) is just the minimax rate of testing. This 
conjecture is proved for some particular cases, see the remarks below. 

Remark 2.3. In view of Lemma 2.1, one may say that up to log term 12u,r(n):::::: Af'Yn-(1-'Y)/2 

where- r = max{ r(l)' r<2)' rC3)}. 

( ) 
1 2s 

Remark 2.4. The rate /2 1 ( n) = M 4s+1 n - 4s+i appeared first in Ingster, 1982 for the 
case p = r = 2 and was extended to the case p ~ 2 , r ~ 2 in Ingster, 1986. The 
expression for 12<2) ( n) in the particular case of p = r > 2 was found in Ingster, 1986; 
Ingster, 1993 and for the case r = 2, p < r in Lepski and Spokofny, 1995. 

Remark 2.5. To compare the results on the rate of testing with the similar results for the 
estimation problem, we recall first the expression for the rate 'l/Ju,r ( n) of estimation of 
the function f over the Besov ball Bs,p,q(M) for the global error measure in Lr-norm, 
see Nemirovski, 1985; Donoho et al., 1995; Lepski et al., 1994: 

{ 

(0) _ 1-:y(O) 
M'Y n 2 if sp > ( r - p) /2, 

'l/Ju,r ( n) = (3) 1-7(3) 
. Af'Y (n/logn)- 2 if sp < (r - p)/2. 

(2.9) 

Here /(o) = I/(2s + 1) and rC3) is from (2.5). 
First we observe that expression (2.8) for the rate of testing l2u,r ( n) differs essentially 

in three different domains whereas there are only two cases for the estimation problem. 
But the last case and the corresponding rate 12<3)(n) are common for both problems. The 
related domain (with sp < (r -p)/2) corresponds to functions with very inhomogeneous 
smoothness characteristics, see Donoho et al., 1995. 

Coincideness of the rates for the testing and estimation problems leads to the following 
conclusion: the test of the form llJ~llr > C'l/Ju,r(n) is rate minimax where f~ is any rate 
optimal estimator and C is a proper constant. Note that this conclusion is not true for 
the remaining cases where sp > ( r - p) /2 and where the rate of tesing is better than the 
rate of estimation (since rC0) > ,c1) and ,co) > 1C2) ). 

Now we turn to" the problem of adaptive testing. 
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2.2. Adaptive testing 

Let the smoothness parameters a = (s,p, q, M) be unknown. We assume only that 
these parameters belong to some prescibed set T. We say that the set T is nontrivial 
if there are numbers p, M and Smin < Smax such that a = (s,p, q, M) E T for any 
Smin ::=; S ::=; Smax • 

The problem of adaptive testing for a nontrivial set T was considered for r = 2 in 
Spokoiny, 1995. It was shown that an adaptive testing without loss of efficiency (i.e. 
with the same rate Qu,r(n)) is impossible. Moreover, the optimal "adaptive" rate was 
evaluated, it appeared to be (for r = p = 2) eu,r ( n) = Qu,r ( n/Jlog log n) . and an 
adaptive test ¢~ was constructed based on the wavelet decomposition. The stricture of 
this test depends inessentially on the range of adaptation T but not on the particular 
value a from this domain. 

Below we present a slightly different test based again on wavelet decomposition and 
show that it "works" for any norm Lr and for any compact range of ~daptation T. The 
structure of this test is described in the next section. Now we state the result describing 
its asymptotic performance. 

Denote for a= (s,p, q, M) 

(M2n)-2s+1-1/p, 
1 

(M2n/logn) 2s+1-2/p. 

(2.10) 

(2.11) 

(2.12) 

Theorem 2.2. Let a set T be such that its projection Ts,p = ITs,p T on the plane (s,p) 
is a compact set non-intersecting with the curves 1<1) = 1<2) and 1<2) = 1(3), see (2.6), 
(2. 7). Particularly, one has 

inf 1"V<2) - "V<3) I > o uET 1 u,r 1 u,r ' 
inf 1"V<2) - "V(1) I > o 
uET 1 u,r 1 u,r ' 

whehe l(i) = 1~:? is due to (2.3) - (2.5), i = 1, 2, 3. Let also there be a constant 8 > 0 
such that 

i = 1, 2, 3, 

for any a E T. .Then there is a constant C = C(T;,p, r) and tests </>~ (see the next 
section) such that 

Po(</>~= 0) = on(l) (2.13) 

and uniformly in a ET and f E Bs,p,q(M) with llfllr 2: Ceu,r(n) one has 

p J(<f>~ = 0) = On(l) 



where 

eo-,r(n) = 
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c1> 1-=r<1> 1-::P> M'Y n- 2 (loglogn)- 4 

c2> 1-P) ..!.._~ M 7 n - 2 (log log n) 2r 2p 

1 (3) 
M 7 (

3
) (n/logn)-~ 

if "Y(l) > /(.2)' 

if 1(2) > ')'(l) and 1(2) > 1'(3), 

if 1(3) > 1'(2). 

9 

(2.14) 

Remark 2.6. Easy to see that the condition of the theorem related to h~1), h~2) or h~3) 
is fulfilled if the parameter M belongs to some compact set that is ME [Mmin, Mmax] 

for all (J' E T. But the presented condition is much weaker and it allows parameter M 
to be close to zero or infinity for s inside the interval [smin, Smax]. 

Remark 2. 7. We see that eo-,r ( n) = f!o-,r ( n) = e~~t ( n) if sp < ( r - p) /2 . This means that 
the test </>~ is adaptive and minimax simultaneously in this domain. 

The possibility of adaptive testing for this case could be explained also by the fact that 
the r~tes of testing and estimation coincide and that an adaptive _estimation is possible, 
see Juditsky, 1995, Donoho et al., 1995, Lepski et al., 1994. 

Remark 2.8. The factor log log n in the domain .6.2,3 > 0 can be viewed as "payment 
for adaptation". It was shown in Spokoiny, 1995 for r = p = 2 that this factor can be 
neither removed nor improved. 

3. Test procedure 
In this section we describe the structure of the adaptive test ¢~ declared in Theorem 2.2. 

The whole construction uses only two external parameters Smax and fJ where Smax 

has the meaning of the upper considered value of the smoothness degree s (recall that 
s belongs to a compact set on the real line). The knowledge of the norm Lr in which 
we measure the distance between the null and the alternative set, is also important. The 
construction of the test makes heavy use of the wavelet decomposition. We proceed as 
in Spokoiny, 1995. 

3.1. Wavelet transform 

Assume we are given an orthonormal basis of compactly supported wavelets of L2 [0, 1]. 
One may use the construction from Meyer, 1990 or Cohen et al., 1993b. Let </>j,k, 'l/;j,k be 
a system of compactly supported orthogonal wavelets (supp</> ~ [-0, A] and supp 'lj; ~ 
[-0, A]). We suppose that</> and 'lj; E cm, where mis the maximal integer smaller than 
Smax. This impli~s (cf. Daubechies, 1992[Ch.7]) that 'lf;(x) has at least m vanishing 
moments. 

Let j 0 be such that 2io > A + 1. It has been shown in Cohen et al., 1993b and Cohen 
et al., 1993a that an orthogonal wavelet basis on [O, 1] can be constructed by retaining 
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'l/Jj,k and </Ji.k as the interiour wavelets and scaling functions and adding adapted edge 
wavelets and scaling functions. These edge elements are tailored so that the total number 
is exactly 2i at resolution j. For the sake of simplicity we use the same notation for the 
edge corrected and original functions. This construction provides an unconditional basis 
for the Bs,p,q [O, 1] space for s > m, sp > 1. 

It is useful to use for </>jo,k also the notation '¢k, k = 1, ... , 2io. Denote also by .J the 
set of resolution levels for the considered wavelet basis, 

.J = {j ~ jo} 

and let Ij be the index set for j th level, 

Ij0 - {k: k = 1, ... , 2i0 } LJ{(j0, k) : k = 1, ... , 2i0 }, 

Ij - {(j, k) : k = 1, ... , 2i}. 

One has obviously for the number of elements Nj = #(Ij) in j th level 

Nj = #(Ij) = {2~o+l j = jo, 
22 j > jo. 

By I we denote the global index set for the considered basis, I= {Ij, j E .J}. Now 
the wavelet decomposition of a function f can be represented in the form 

J(t) = L e1'¢1(t) = L L fh'¢1(t) 
!EI jEJ IEij 

where 81 is Ith wavelet coefficient, 

fh = [ J(t)'if;r(t)dt, !EI. 

Let now X1, IE J; be empirical wavelet coefficients for the model (2.1), 

Xr = [ .Pr(t)dX(t). 

The model equation (2.1) yields 

Xr =!Jr+ n-1/ 2 [ .Pr(t)dW(t) 

and the original functional model (2.1) is translated into the sequence space model 

I EI, 

where f,1 = J '¢1dW are standard normal and independent for different I. 

(3.1) 

Given j, denote by Dj the projector on the function subspace corresponding to j th 
level, 

Djf (t) = L fh'¢1(t) 
IEij 



ADAPTIVE AND SPATIALLY ADAPTIVE TESTING 11 

and by Ej the projector on the first levels till j, 

j 

Ejf(t) = L L B1'l/J1(t). 
j'=io lEip 

The wavelet transform is justified by the following (isometric) properties, cf. Triebel, 
1992[p.240]: 

(ISOl) for any function f E L2[0, 1] 

11111 2 = JIBll 2 := LBJ, (3.2) 
I 

(IS02) there are two constants C1 and C2 such that 

where 

(3.3) 

(IS03) For any r ~ 1 there exists a constant C depending only on r and the considered 
basis { 'l/Jr(t), IE I} such that for any j ~ jo and any f 

For the technical reason, we suppose that the initial level j 0 of the considered wavelet 
basis { 'lj; I ( t), I E I} is chosen depending on n in such a way that j 0 -+ co as n -+ oo 
and 

(3.4) 

Here 8 is from the theorem conditions. 

3.2. Test procedure. Preliminaries 

The presented test is essentially levelwise. This means that all the considered statistics 
are based on empirical wavelet coefficients within a certain wavelet level. In the other 
words, we test each wavelet level independently and the resulting test rejects the null if 
at least one level test does. 

Note that a test procedure presented in Spokoiny, 1995 used "global" test statistics 
depending on coefficients from a number of levels. 
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Let the empirical wavelet coefficients X1 be defined by (3.1). Denote also 

Y1 = n1/ 2 X1=n11281+6-

Given j ~ io , set 

Si = L Yf = n L x]. 
lEij lEij 

For r > 2 set also 

It was shown in fogster, 1982; Ingster, 1986; Ingster, 1993 that a rate optimal test for 
the case with p = r can be based on the sum Tj(n) = Sj0 + ... + Sj(n) where the index 
j ( n) is to be chosen depending on s, p. More precisely, determine the level j ( n) for 
p = r_= 2 by 

Then the rate optimal test could be taken in the form 

</>n,2 = 1 ( T/j(n) > Xa) 

where T/j = ~i , Eo'f/ and Do'f/ mean the expectation and the variance of a random 
variable ( under the measure Po and Xa is (1 - a)-quantile of the standard normal 
low. 

For the case with r = p > 2 , see Ingster, 1993, a rate optimal test can be constructed 
in the similar way· with Sj,r in place of Sj, 

</>n,r = 1 ('f/j,r > Xa) · 
T· -EoT· Here 'f/j,r = ~r, Tj,r = Sj0 ,r + ... + Sj,r and the level j(n) is to be taken by 

0 J,r 

Note that the proper choice of the level j ( n) is crucial here and above for r = 2 . 
In the case of adaptive testing, when s and p are unknown, such a test could not be 

implemented. It was proposed in Spokoiny, 1995 to use for testing the supremum value 
of 'f/j or T/j,r over all feasible levels j. Below we proceed in the similar way but the test 
is based directly on Sj (resp. Sj,r) in place of Tj (resp. Tj,r). 

As it was pointed out in Spokoiny, 1995, tests based on Sj or Sj,r allow to test with 
the optimal rate for the .. case with p ~ r . If the norm Lr for the distance is stronger 
than the norm Lp in which we measure smoothness properties of f, then such tests do 
not provide the optimal rate. The situation here is similar to that of in the estimation 
problem when linear methods are rate optimal only for r ~ p. For the case p < r, 
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similarly to the estimation problem, see Donoho and Johnstone, 1995 or Donoho et al., 
1995, we involve the idea of thresholding of empirical wavelet coefficients. 

3.2.1. An adaptive test 

The test proposed below can be viewed as combination of four different tests each of them 
is in its turn composite and operates levelwise. The first test corresponds to testing in 
L2 -norm, the second one (to be apply only for r > 2) tests in Lr norm, and the third one 
does the same but for thresholded empirical wavelet coefficients. Finally, the last subtest 
analyses each empirical wavelet coefficient separately and it corresponds to testing in 
sup-norm. 

To begin with, we restrict the number of considered wavelet levels. Let j 0 be taken 
due to (3.4). Define also the highest considered level imax in such a way that 

nl-8/2 < 2ima.x < n 

where 8 is shown in the theorem conditions. Denote 

Note that 

and 

For each j E :r , state 

:r == {j : io -5:. j -5:. imax} · 

zn == LJ Ij. 
je:Jn 

S· J LY/, 
lEij 

Sj - EoSj 
JDoSj . 

The first test, which we introduce, is based on (j for j E :r , 

<Pn,2 == 1 { sup (j > 2.jlog log n} . 
jE:Jn 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

Remark 3.1. Now we are in a position to explain the nature of the log log-factor en-
tering in the adaptive rate of testing. Obviously, Sj and thus (j are independent for 
different j. This follows directly from the definition and from independence of empirical 
wavelet coefficients. Easy to observe also that each (j is under the null asymptotically 
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(as n -too) standard normal. Hence our test statistic in (3.9) is supremum of mn in-
dependent asymptotically Gaussian random variables and its distribution is degenerate 
around y'2 log mn· ~ y'2 loglog n. This explains the choice of the testing level in (3.9). 

Similarly we define the test <Pn,r for r > 2 . Set 

(j,r 

</Jn,r = 

L IY1lr, 
lEij 

Sj,r - EoSj,r 
JDoSj,r 

1 { sup (j,r > 2}log log n} . 
je:rn 

The similar test with thresholding is defined as follows. Denote 

r = max{r, 2} 

and, given A> 0 '· j E Jn set 

Define also the set Aj by 

Aj = {). = J2rklog2, k = 1, 2, ... , A~ J0.5logNj} 

where recall Nj = #(Ij) = 2j for j > io, Nj0 = 2j0+1. Now state 

</>n,r,t = 1 { sup sup (j,r(A) > 3}log log n} . 
jE:fn >..EAj 

Finally set 

</>n,oo = 1 { ~up (j,oo > 2Jlog Nj} . 
JE:fn 

The whole test </>~ rejects the null if at least one of these four does: 

</>~ = max{ <Pn,2, <Pn,r, <Pn,r,t, <Pn,oo} 

where </>n,r = 0 for r ~ 2. 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

Note that the values EoSj, DoSj, EoSj,n DoSj,r and even EoSj,r(A), DoSj,r(A) are 
easy to calculate, see Lemmas 4.2 - 4.4 below, that simplifies the implementation of the 
test </>~. 
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4. Proofs 
In this section we prove Theorem 2.2. The proof can be informally split into three parts. 
First We' study the behavior of the test statistics (j , (j,r , (j,r ( .X), (j,oo under the null 
and show that P0(¢~ = 1) = on(l). Next we analyse what sort of information about 
the function f can be extracted from the statistical fact that ¢~ = 0. Finally we show 
that this information and smoothness properties of the function f enable us to prove 
the desired assertion (2.14). 

4.1. Error probability of the first kind 

In the next lemmas we collect some information about the distrubution of all introduced 
statistics under the null i.e. if f = 0 and hence fh = 0, I E I. 

Denote 

tn = Jlog log n. 

Lemma 4.1. For each j E Jn and I E 'Ij 

and 

Lemma 4.2. The following assertions hold uniformly in j E Jn-: for n large enough 

(i) 
(ii) 

(iii) 

EoSj = N5; 
DoSj = 2Nj = d~Nj with d2 = y'2. 
Po (sj -E0Sj > 2d2./Nitn):::; 2exp{-2t;} = 2(1ogn)-2

• 

The similar assertions are valid for for Sj,r . 

Lemma 4.3. Let r > 2 . For n large enough, uniformly in j E Jn 

(i) EoSj,r = brNj with br = Elelr, e "'N(O, 1) , 

br = (211")-1! 2 J lxlre-x2f2dx. 

(ii) DoSj,r = d;Nj with dr = D lelr = b2r - b; . 
(iii) Po ( Sj,r - EoSj,r > 2dr./Nitn) :::; 2exp{-2t;} = 2(1ogn)-2

• 

Lemma 4.4. For. n large enough, uniformly in j E Jn and A E Aj 

(i) EoSj,r(.X) = br(.X)Nj with br = Elelrl(lel > .X), e "'N(O, 1), 
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(ii) DoSj,r(A) .= d~(A)Nj with 

d; = Dl~Yl(l~I > A)= b2r(A) - b;(A); 

(iii) Po ( Sj,r(A) - EoSj,r(A) > 3dr(A)./Njtn) ~ 2exp{-9t~/2} = 2(1og n)-912 ; 

(iv) There are such C, C' > 0 that for any A~ 1 and r ~ 2 one has 

Ce->.2
/ 4 ~ dr(A) ~ C'Are->.2

/ 4 . 

We defer the proof of these lemmas to the Appendix. Using these results, one can easily 
prove that </>~ obeys (2.13). In fact, due to Lemma 4.2, (i) and (iii), one has 

Po(</>n,2 = 1) Po (sup (j > 2t~) ~ 
je.:Jn 

< L Po ( Sj - EoSj > 2d2..;N;tn) ~ L 2(logn)-2 ~ 
je:Jn je:Jn 

< 2#(J'"n)(logn)-2 = 2mn(logn)-2 -+ 0, - 7],-+ oo, 

since mn ~ 2 log n. Similarly one estimates the probabilities Po( ¢n,r = 1). Next, to 
estimate Po( </>n,r,t = 1), we apply Lemma 4.4 in the same manner. One has 

Po( </>n,r,t = 1) ~ L L P ((j,r(A) > 3dr(A)tn) ~ 
je:Jn >.EAj 

~ L. #(Aj) exp{-9t~/2} ~ C(logn) 2 (1ogn)-9
/

2 -+ O, , n-+ oo. 
je.:Jn 

The assertion of Lemma 4.1 implies obviously 

Po(</>n,oo = 1) ~ L NT1 ~ 2-ojo+2 = On(l). 
je:Jn 

and the statement. (2.13) follows. 

At the next step of the proof, we study which functions f are detectable for the test 
</>~ . 

4.2. Sensivity of the test ¢~ 

Let an arbitrary function f be observed with noise due to (2.1) and let {81,I EI} be 
the corresponding wavelet coefficients. Denote for j E Jn and . A E Aj 

S· J = L lv'nBrl2
, 

IEij 

Sj,r L lv'nBrlr, 
lEij 

Sj,r(A) = L lv'nBrlrl(lv'nBrl >A). 
IEij 
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Proposition 4.1. If for some j E :rn and I E Ij one has IB1I > 4n-1/ 2 .Jlog Nj, then 

P 1(</>n,00 = 0) = On(l). 

Proposition 4.2. If for some j E :rn 

then 

Pf (</>n,2 = 0) = On(l). 

The similar fact can be stated for </>n,r and </>n,r,t . For technical reason, we formulate 
these statements in combination with the result of Proposition 4.1. 

Prop_osition 4.3. Let r > 2 . If for some j E :rn 

and IB1I :::; 4n-1/ 2 .Jlog Nj for all I E Ij, then 

Proposition 4.4. If for some j E :rn and >.. E Aj 

and l81I :::; 4n-1/ 2 .Jlog Nj for all IE Ij, then 

Pf (</>n,r,t = 0) = On(l). 

Proof of these propositions can be found in the Appendix. 
The results of Propositions 4.1- 4.4 can be treated in the following way. Given function 

f , if { </>~ = 0} , then the following statements hold true simultaneosly for all j E :rn 
and ).. E Aj with Pf -probability close to 1 

sup IBrl < 4n-1l 2 .JlogNj, 
lEij 

I: 1Brl2 :::; 4n-1d2JN;tn, 
lEij 

E IBrlr :::; 4n-r12drJNitn, 
lEij 

I: IBrlrl(IBrl > >..n-112):::; 4n-r/2dr(>..)JN;tn. 
lEij 

(4.1) 

(4.2) 

(4.3) 

(4.4) 
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4.3. Rate of testing 

To complete the proof of the theorem, it remains to show that the latter statements and 
smoothness conditions f E Bs,p,q (M) imply the desired assertion (2.14). 

The inclusion f E Bs,p,q(M) yields, see IS02, 

L llhlp:::; CMP2-jp(s+t-~). (4.5) 
IEI3· 

Let Dj and Ej be the projector operators associated with the given wavelet transform. 
By IS02, see also (4.5), and IS03, for any function f E Bs,p,q(M) 

(4.6) 

For r :::; p , one has also 

(4.7) 

and for r > p in view of ( 4.5) and Holder inequality 

that implies by IS03 

(4.8) 

This statement is well known as the "embedding theorem for Besov classes", see e.g. 
Triebel (1992). 

Note also that, using 1801, IS03 and the equality Nj = 2j, j > j 0 , one can rewrite 
the inequalities ( 4.2) and ( 4.3) in the following form: for each j E .Jn 

llDjfll~ :::; Cn-12il2tn, (4.9) 
llDifll~:::; c2i(r/2-1)n-r/22jf2tn = c2i(r/2-1/2)n-rf2tn. (4.10) 

Here and in what follows, C means a constant depending possibly on r, s, p but not on 
f, j, n and bounded uniformly over the whole range of adaptation I. 

Further we show that the above inequalities enable us to prove the result of the theo-
rem. We use the following fact which is a simple consequence of the triangle inequality 
in the Lr-norm: 

llJll.r llJ - Ejma.xf + Djof + • • • + Dima.xfllr :::; 

< llJ - Ejmaxfllr + L llDjfllr· (4.11) 
jE:Jn 

In view of (4.7) and (4.8) one may conlude that 

'If - E· !II < c2-imaxs' < cn-s'(l-o)/2 ~ /') (n). Jmax r _ _ r:;q,r 
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with s' ==min{ s, s - l/p + 1/r}. Therefore, it suffices to show that 

· L llDjfllr ~ C§a,r(n) 
je.:Jn 

with Qa,r(n) from (2.14). 
We are checking this statement separately for different domains of the parameters 

p, r, s and for each case and each j, we pick one from the indicated above inequalities in 
an optimal way. We separate between the following cases taking into account the value 
of argmax{ /(l), 1(2), 1(3)} and the relation between p, r, 2: 

/(1) == max{ 1'(1)' /(2)' 1'(3)}: 

1. r ~ p, r ~ 2; 
2. p < r ~ 2; 
3. 2 ~ r ~ p; 

1'(2) == max{ 1'(1), 1'(2), 1'(3)} : 

-i. 2~r~p; 
2. p < r, r;:::: 2; 
3. p < r ~ 2. 

1 (3) == max{ 1 (1), 1'(2), 1 (3)}: 

In the last case, one has automatically p < r and r > 2. Using Lemma 2.1, it is not 
hard to check that any point outside the curves /(l) == r(2) and 1(2) == 1'(3), see (2.3) -
(2.5), belongs to one from the indicated above cases. 

We start with the simplest case with p ;:::: r and r ~ 2 considered first in Ingster, 
1982 (for p == r == 2) and Ingster, 1986. In this domain one has automatically /(l) == 
max{1(1), 1'(2), 1'(3)}. 

4.3.1. The case of r ~ p, r ~ 2 

For this case, it suffices to use only ( 4.9) and ( 4.6) i.e. we use the information delivered 
by the test <f>n,2 and the smoothness properties of the function f . This means that the 
L 2 -test <f>n,2 provides the optimal rate of testing in this domain. 

One has by ( 4.6) 

and by (4.9) 

The following technical statement is helpful. 

Lemma 4.5. Let {dj,j E J"n} be a sequence such that for some positive bo, bi, Eo, E1 

one has 
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Then 
2 ~ _!Q_ 

·"' d· < C(E E )b 2-j*e.o = beo+e1 beo+e1. 
~ J _ a, 1 a l _ 2e.o/\e.1 a 1 

jE:Jn 

Here j* is determined by the equality 

(4.12) 

and C( Ea, E1) is uniformly bounded if Ea and E1 are separated away from zero. 

Proof. The proof is obvious. One applies dj :::; ba2-je.o for j :::; j* and dj :::; b12je.1 for 
j < j* . One may also use for C (Ea, E1) an estimate 

2 
C( Ea, Ei) :::; 1 - 2-e.oAe.1 

and the assertion follows. D 

We apply now this lemma with dj = llDjfll, Ea= s in (4.7) and El = 1/4 in (4.9) 

L dj:::; C(Eo, Ei)M2-j*s 
jE:Tn 

where j* is due to 

(4.13) 

By the condition of the theorem, the values Ea = s and E1 = 1/4 are separated away 
from zero in the whole range of adaptation. This implies 

sup C(Ea, El) :::; sup(l - 2-s/\t)-1 :::; C < oo. (4.14) 
O"E7 O"E7 

The relation ( 4.13) is equivalent to 

2j* = (M2n/tn) 4s~l. 

With this choice 

L llDjfllr:::; CMrj*s = CM4s~ 1 (n/tn)-4;+1 = CM7 (l) (n/tn)-(l--y(l))/2 

jE:Jn 

and the theorem follows in the considered case. 

4.3.2. The case of p < r :::; 2, 1(1) > 1 (2) 

We apply again o~ly (4.9) and (4.6) hence L2-test ef>n,2 provides again rate optimality. 
The relation p < r :::; 2 allows to estimate llDjfllr for each j E .Jn with the help of 

Minkovskii's inequality 

llDjfll~ :::; llDjfll;PllDjfll~(l-p) 
where p = (p- r)/(p- 2). By (4.6), (4.9) we get for any j E .Jn 

llDjfll~ :::; C (~-l t;,,2jf2) P (M2-js)P(l-p) = CMP(l-p)n-P t~ 2j[p/2-p(l-p)J. (4.15) 
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Denote 
p/2 - sp(l - p) p - r - 2sp(r - 2) 

E- -------
- r - 2r(p - 2) · (4.16) 

and under the case into consideration one has, see (2. 7), 

sign E = - sign('y(l) - 1<2)) = -1. 

This allows to apply Lemma 4.5 with Eo = -E in (4.15) and E1 = 1/4 in (4.9). One gets 

L llDjfllr ~ cn-lf2t~f22j*/4 
jE:Jn 

where j* is determined by the equation 

( n-lf2t~f22j* /4r = MP(l-p)n-P t~ 2i*[p/2-sp(l-p)]. (4.17) 

The definition of p yields the identity p(l - p) = r - 2p and thus ( 4.17) leads again to 
the s~lection rule for j* in the form 

2i* = (M2n/tn) 4s~l. 

This implies similarly to the above 

L llDjfllr ~ CM'Y(l) (n/tn)-(l---P))/2. _ 

jE:Jn 

4.3.3. The case of 2 ~ r ~ p, /(1) > 1 (2) 

We proceed similarly to the preceding case and again the L2-test </>n,2 provides the 
optimal rate. 

The Minkovskii inequality allows to get ( 4.15) but now E from ( 4.16) is positive (since 
p > 2 ). We apply Lemma 4.5 with E1 = E in (4.15) and Eo = s in (4.7). One obtains 

L llDjfllr ~ CM2-j*s 
jE:Jn 

where j* is deterJ:?ined by the equation 

(Mrj*sr = MP(l-p)n-P t~ 2i[p/2-sp(1-p)]_ 

Using again the identity p(l - p) = r - 2p we get 

2j* = (M2n/tn) 4s~l. 

This implies similarly to the above 

L llDjfllr ~ CM'Y(l) (n/tn)-(l-'Y(l))/2 • 

jE:Jn 

We resume that for all cases where /(l) = max{ /(l), 1<2), 1(3)}, the L2 -test </>n,2 

provides the optimal rate of testing. 
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4.3.4. The case of 2 ::; r ::; p, 1(1) < 1 (2) 

In this case, we apply (4.9) (more precisely (4.15) which is based on (4.9) and (4.6)) 
and ( 4.10). This means that the optimal rate is obtained by a combination of testing in 
L2 -norm and in Lr -norm. 

In the considered case of -·y{1) < 1<2), one has E < 0 in ( 4.16). Now we apply 
Lemma 4.5 for (4.15) with Eo = -€ and for (4.10) with E1 =1/2-1/(2r). We get 

L llDjfllr ::; cn-1l2t~lr2j*ci (4.18) 
je:Jn 

where j* is determined by 

or 
'* 1 - 2 -21 = (M2n) 2s-l/p+l tn p(2s-1/p+1) • 

Substituting in (4.18), we obtain 

L llDjfllr < cn-1/2 t;jr2i*(r-1)/(2r) = 

r-1 l/2+ r-1 1/r ( r-j ) c Af 2r(2s-l/p+l) n - 2r(2s-1/p+l) tn pr 2s-l p+l -

- C Af'Y(2) n-(1--y(2) )/2 t;f r--y(2) /p (4.19) 

and the assertion follows. 

Now we consider the case with 1'(3) = max{1(1), 1(2), /(3)}. 

4.3.5. The case of sp < (r - p)/2 

In this case, the inequality sp > 1 implies p < r and r > 2. We will apply now ( 4.6), 
(4.8) and (4.1). This means that in this domain the test </>n,oo provides the optimal rate 
of testing. 

By ( 4.1) and ( 4~5), one has for each j E :rn 

(4.20) 

In view of IS03 this implies 
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Now we use the latter inequality, (4.8) and Lemma 4.5 with Eo = (r - p - 2sp)/(2r) 

and E1 =s-1/p+1/r. We get 

L llDjfllr S CMrj*(s-l/p+l/r) 
je:Jn 

where j* is due to 
!..=E. 

Mrrj"r(s-1/p+l/r) = co: n) 2 Mp2j(r-p-2sp)/2 

or 

2J = -- . .* (M2n) 2s-2/p+1 

logn 
With this choice, one gets 

"°' (M2n) s2-;/:_~~~1; (s) ( n )-(1--y(s))/2 
~ llDjfllr S CM -1 - =CM-Y -1 -
. " . ~n ogn JE..;n . 

and the assertion follows. 
It remains to consider the cases with 1(2) = max{ ')'(l), 1(2), 1(3)} and r > p. The 

calculations differ slightly for r 2:: 2 and r < 2 . 

4.3.6. The case of r > p, r 2:: 2, 2sp > r - p 

Here we apply the statements (4.3) and (4.4) based on the tests ef>n,r and ef>n,r,t. First 
we note that by ( 4.4) for each j E :rn and any ). E Aj 

L IBrlrI(IBrl > >../vn) + L IBrlrI(IBrl s >../vn) s 
lEij lEij 

< 4n-r12dr(.X)2jf2tn + (.X/vnr-p L IBrlP. 
lEij 

Since f E Bs,p,q(M), we get using 1802 and 1803 

L IBrlP S CMP2-jp(s+l/2-lfp). 
lEij 

Let us fix now s~me j* E :rn and state for j > j* 

Aj = J2r(j - j*) log2. 

(4.21) 

Then, using again IS03 and Lemma 4.4,iv, one has for j > j* and 2r(j - j*) log2 s 
0.5logNj 

llDjfll~ s c2jG- 1)n-rf2dr(Aj)2jf2tn + (.X/vnr-p MP2-jp(s+~-i-) s 
s c2j*(f-~)n-rf2tnU - j*yl22-(j-j*)/2 + C(j - j*)-T-n-T-Mprj(sp+~-~). 

If 2r(j- j*) log 2 > 0.5 log Nj , then llDjfllr can be estimated even better (with the only 
second term) using ( 4.20). 
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Easy to check that the last inequality yields 

Next, for j ~ j* we use ( 4.10) which gives 

Let us take level j* due to 

/ 2 ·• ( r 1 ) r-n '* ( .,, r ) -r t 23 --- - -~MP2-J sp+,.;. __ n n 2 2 -n 2 2 2 

or 

We get now 

k~ lfr E llDjllr ~ C [n-rf2tn2j*(~-~)] = CM,..p)n-(l--y(2
))/2{;_jr--Y(2

)/p 

j=jo 

as required. 

4.3.7. The case of p < r < 2, 1(1) < 1(2) 

We proceed as above but with 2 in place of r (since r < 2 ). 
For each j E :Jn and any A E Aj 

Let again some j* E :Jn be fixed. We set for j > j* 

Aj = y' 4(j - j*) log 2. 

Now by (4.4), using then Holder inequality and Lemma 4.4, iv, one gets 

Since f E Bs,p,q (M) , we get using 1802 and 1803 

E llhlP ~ C MPrip(s+i/2-1/p). 
lEij 

( 4.22) 
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Now we obtain as above 

imax 

< c :E [2j*(?f-1)n-rf2t1\/ j - j* 2-(j-j*)(f+~) r/r + 
j=j*+I 

imax 1/ 
C :E [(j-j*)-7n-T MPri(sp+~-~)] r::;; 

j=j*+l 

< c [2j"(~ -l)n-rf2t;f2 r'r + c [n-T MP2-j"(sp+~-~)tr. 
Here we have used that 2sp - r + p > 0 . 

Next, for j ::;; j* we use (4.15) which gives 

t tlDjllr::; C [MP(l-p)n-P t~ 2j[p/2-p(l-p)]] l/r ::; C [w<1-p)n-Pt~.2j"[p/2-p(l-p)]] l/r 
j=jo 

since p/2- p(l - p) > 0 for p = (r - p)/(2- p) if ,.y{I) < 1'(2) and p < 2, see (2.7) and 
(4.16). 

Let us take the .level j* again due to (4.22). We get now 

-rf2t 2i*(!:-l) _ -!:=E.Mp2-j*(sp+E-!:) _ MP(I-p) -p tP 2i*[p/2-p(l-p)] _ n n 2 2 -n 2 2 2 - n n -
= [ M'Y(2) n-(1--y(2) )f2t;_fr-"((2) /p] r 

Since 3r/4 - 1 > r/2 - 1/2 for r > 2, we obtain 
imax :E llDillr :'.S CM'Y(2) n-(1-'Y(2))f2t;_fr-"(C2) /p. 
j=jo 

This completes the proof of the theorem. 

Appendix 
4.4. Proof of Theorem 2.1 

The proof follows to Ingster, 1993 and we indicate below only the main points. Given 
a = (s,p, q, M), let .e(n) = ea-,r(n) be from (2.8) and let e'(n) be such that Ce = 
e'(n)/ e(n)-+ 0 as n-+ oo. To simplify the notation, we will write e~ instead of e'(n). 
We have to show that for any tests </>n 

lim inf [a( cPn) + f3o- r ( </>n, e~)] 2 1. ( 4.23) 
n-too ' 

Here, recall, f3o-,r(</>n,e) = supfE:Fcr,r(e)PJ(</>n = 0) and Fa-,r(e) = {f E Bs,p,q(M) : 
II! llr 2 e}. Au usual, proving such sort of results, one changes the minimax problem by 
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a proper Bayes on·e. Due to Ingster, 1993, it suffices to construct such measures 'lrn on 
the space Bs,p,q that 

(4.24) 

and 

(4.25) 

Here P 1rn is the Bayes measure corresponding to the prior 7rn, see e.g. Lehmann, 1959, 
and the last convergence is treated in probability under the measure Po. 

For the proof of these statements, we pass to the sequence space model and identify 
the function f with the set of the corresponding wavelet coefficients 8 = {81, I E 1}. 
Under the Bayes approach, these coefficients are random and the measure 7r n describes 
their joint distribution. 

Below we consider priors with a special levelwise structure. -M<?re precisely, given 
j E :Jn and two numbers µ E [O, l] and v > 0, introduce a prior 'lrj,µ,,v such that 
81 = 0 for all I~ 1j and {81,l E 1j} are iid with the three-points distribution of the 
form 

7rj,µ,,v(81=0)=1- µ, 7rj,µ,,v(81 = ±v) = µ/2, IE 'Lj. (4.26) 

Further we are constructing a sequence Un, µn, vn) in such a way that the corresponding 
priors 7rn = 'lrjn,µ,n,vn obey (4.24) and (4.25). Following to Ingster, 1993, we use the 
following three families of priors 'lrjn,µn,vn: 

,,,.(1) • µ(1) - 1 v(l) - n-1/22-in/4c1/2. 
11 n • n - , n - n , 
,,,.(2) • µ(2) - 2-in/2 v(2) - n-1/2c1/2. 
11 n · n - , n - n , 
7r~3): µ~3) = 2~in, v~3) = (n/logn)- 112c~/2 • 

Here Cn = f2~/ f2o-,r ( n) = On (1) . 

Lemma 4.6 (Ingster, 1993). Let in---+ oo and Cn---+ 0. Then (4.25) holds true for each 
from three indicated above families of priors 'lrn = 7r~i), i = 1, 2, 3. 

Next, it is easy to observe using 1802 and 1803 that the condition (4.24) for the priors 
( i) 'lrn , i =:= 1, 2, 3 ca·n be represented in the form 

7rn(llDjn8llp ~ CM2-in(s+I/2-l/p)) = 1 - On(l), 

7rn(llDjnBllr ~ c2-in(l/2-l/r)e~) = 1- On(l), 

where DjB = {81,I E 1j} means the subvector of 8 corresponding to jth level. Since 
8 l are iid within t_he level j , one gets 

j > jo, 
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and similarly for llDinOllP. Using these equalities and again the iid structure of {01 , IE 
Ij}, one can reduce the above statements to the following conditions, see Ingster, 1993, 

(4.27) 

( 4.28) 

It remains to show that these conditions are fulfilled under a proper choice of jn . Define 
j~i) for i = 1, 2, 3 by the relations 

.(1) 2 
2Jn (l\.12n)4s+1, 

.(2) 1 
2Jn (l\.12n) 2s+l-l/p, 

·(3) 1 
23n = (l\.12n/logn) 2s+1-2/P. 

Straightforward calculation shows that with these choice, one gets for each of priors 
7r~i) = (j~i), µ~), v~i)) , i = 1, 2, 3, 

l\.1-p2j~i\sp+p/2) µn lv~i)lp = 1, 

2i~i)rf2µ~)lv~i)lr = le(i)(n)r. 

this implies ( 4.27) and ( 4.28) since Cn -+ 0 as n -+ oo and the theorem follows. 

4.5. Proof of Lemmas 4.1-4.4 

First we recall that all the statement of these lemmas relate to the case of null hypothesis 
that is we observe a pure noise and all the considered statistics are sums of iid random 
variables. 

The statements of Lemma 4.1 are obvious since the normalized empirical wavelet 
coefficients Y1 coincides with Gaussian errors 6. Statements (i) and (ii) of Lemmas 4.2 
through 4.4 are also straightforward. To prove assertion (iii) of these lemmas we use the 
following general ~echnical assertion. 

Lemma 4. 7. Let random variables 'T/i,n , i = 1, ... , n , be independent identically dis-
tributed and bounded, 

with some positive k and C1. If also 

d2 > C n-1/4 n _ 2 

(4.29) 

(4.30) 

where d; = D'f/l,n, then for any constant C3 > 0, one has for n large enough and any 
a< C3logn 
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Proof. Denote 

a 
µ 

We apply the Chebyshev exponential inequality 

P (t 'li,n > nbn + adn,/ii) < exp{-µ(nbn + adnvin)} Eexp {tµ'li,n} = 

- exp{-µnbn - a2 + nl(µ)} 

where 

I(µ) = log Eeµ1Ji,n. 

By Taylor' expansion 
2 3 

I(µ)= I(O) + µI'(O) + ~ I"(O) + ~ ! 111 (8µ)" 

with some IBI S 1 . Easy to check using ( 4.29) that 

I(O) = 0, 

I' (0) bn, 

I"(O) - i;, 
I"' ( Bµ) < 6( Cilog n )3k 

and therefore by (4.30) 

3 · 3(C I )3k C3(C I )3k+3 n!!:_II"'(B )I< a 1 ogn < 1 3 ogn -+ 0 
6 µ - d3 1n - c3f2 1/8 , nV'" 2 n 

n-+ oo. 

Since a < C3 log n , this yields for n large enough 

p (I)11i,n - bn) > adnfo) s e-a212+on(l) < 2e-a212. 

The lemma is proved. D 

Now we show how e.g. statement (iii) of Lemma 4.4 can be proved with the help of this 
result. Let An = 2.JIC)gn. Given j , set for I E Lj and A E Aj 

Denote bn = Em , d~ = Dm . Straightforward calculation show that 

lbn - br(A.)I s El~lrl(l~I >An) s cn-2
, 

Id; - d;(A-)I s cn-2 • 

Since obviously I:reii 'T]I S Sj,r(A.), then in view of Lemma 4.4,iv, the desirable assertion 
follows directly from Lemma 4.7. 
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The statement (iii) of Lemma 4.3 is a particular case of this result with .A = O. The 
same is true for Lemma 4.2,iii, where, moreover, r = 2. 

4.6. Proof of Propositions 4.1 - 4.4 

We start with Proposition 4.1. Let fol th I > 4.Jlog Nj for some j E :Jn and I E Ij . 
Then 

and the assertion follows. 

4.6.1. Proof of Proposition 4.2 

Let Sj ~ 4d2tn./Ffj for some j E :Jn. Obviously 

and using the Cauchy-Schwarz inequality 

P1(4>n,2 = 0) = P1(-(Sj - EjSj) > EjSj -Nj - 2d2tn.JFfi):::; 
< DjSj 

(E1Si - Nj - 2d2tn./Ffj) 2. 

Since 6 are independent for different I, one gets easily 

~ 2 ~ 2 -EjSj L.t E1lvnB1 +~JI = L.t (nfh + 1) = Sj + Nj, 
IEij IEij 

D1Si = LD1IJ7i"B1+~11 2 = L(4nBJ+2)=4Sj+2Nj. 
IEij IEij 

Now the above estimate can be rewritten in the form 

P (,./... _ O) < 4Sj + 2Nj 
f 'f'n,2 - - (Sj - 2d2tny'lVj)2. 

Since the function g( x) = (:!~)2 is for any positive a, b, c monotonously decreasing for 
x > c, one gets by Sj ~ 4d2tnJNi 

( ) 4 · 4d2tnJNi + 2Nj 1 + On(l) ( ) Pj ,+..n 2 = 0 < r;;:r: < = On 1 . 
If' ' - (2d2tny Nj) 2 - 4t~ 

Here we have used that tn-+ oo as n-+ oo. 

4.6.2. Proof of Proposition 4.4 

Let r ~ 2 and let·for some j E :r and .A E Aj, 

(4.31) 
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Recall also that IJnB1I :::;; 4)1og Nj for all IE 'Ij due to the conditions of the proposi-
tion. One gets similarly to the above 

P1(</>n,r,t = 0):::;; P1(Sj,r(A) < br(>..)Nj +3dr(>..)tny'Nj) = 
= P1(-(Sj,r(>..) - EjSj,r(>..)) > EjSj,r(>..) - br(>..)Nj- 3dr(>..)tnvfN.i):::;; 
< D 1Si,r(>..) . 
- (EJSj,r(A) - br(>..)Nj - 3dr(>..)tny'Nj)2 

To estimate E1Sj,r(>..) and D 1Sj,r(>..), we use the following technical statements. 

Lemma 4.8. Let ).. 2:: -jr and let e be standard normal. Then there are some positive 
constants Ci, C2 such that 

(i) for any x 

Dix+ ~Yl(lx +el>>..):::;; C1 [>..rElx + elrl(lx +el>>..)+ lxl2r1(jxl > >..)]; 

(ii) for any x 

(iii) if lxl 2:: >..,then 

Elx + elrl(lx +el>>..) 2:: lxlr + Elelrl(lel > !); 

(iv) n1e1r1(1e1 > >..) 2:: C2>..rEle1r1(lel > >..). 

Proof of statements (i), (iii), (iv) is straightforward and left to the reader. Statement (ii) 
follows from Andersen's lemma, see Ibragimov and Khasminskii, 198l[Lemma 2.12.1]. 

Using Lemma 4.8, i, and the condition IJn81I :::;; 4)1og Nj we have 

D1Sj,r(>..):::;; C1>..rE1Si,r(>..) + C1(41ogNjr/2sj,r(>..). 

Next, by Lemma 4.8, ii, iii, and (4.31) 

Hence as above in the proof of Proposition 4.3 

( 
_ ) C1>..rbr(>..)Nj + 4C1[>..r + (4logNjYl2]dr(>..)tny'Nj 

Pj </>n,r,t-0 :::;; d2(>..)t2N. · 
r n J 

To complete the proof we note that by Lemma 4.4,iv, dr(>..) 2:: Nj-l/4 and by definition 
).. < )0.5 log Nj f?r ).. E Aj. Using also Lemma 4.8,iv, we get 

p O C1>..rbr(>..) 5C1(4logNjy/2 
J(</>n,r,t = ) :::;; d;(>..)t; + dr(>..)tny'Nj = On(l). 

Proposition 4.3 can be proved in the same line with inessential modifications. We omit 
the details. 
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