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Abstract

Chance constraints represent a popular tool for finding decisions that enforce a robust
satisfaction of random inequality systems in terms of probability. They are widely used in
optimization problems subject to uncertain parameters as they arise in many engineer-
ing applications. Most structural results of chance constraints (e.g., closedness, convexity,
Lipschitz continuity, differentiability etc.) have been formulated in a finite-dimensional set-
ting. The aim of this paper is to generalize some of these well-known semi-continuity and
convexity properties to a setting of control problems subject to (uniform) state chance con-
straints.

1 Introduction

Many mathematical and engineering applications contain some considerable amount of uncer-
tainty in their input data, e.g., unknown model coefficients, forcing terms and boundary condi-
tions. Partial differential equations with uncertain coefficients play a central role and are efficient
tools for modeling randomness and uncertainty for the corresponding physical phenomena. Re-
cently there is a growing interest and meanwhile a large amount of research literature for such
PDEs, see e.g. [4], [5], [6] and references therein. Moreover, optimal control problems of such
uncertain systems are of great practical importance. We mention here the works [7], [12], [15]
and references therein. We note that the analysis of PDE constrained optimization with uncer-
tain data is still in its beginning, in particular when uncertainty enters state constraints. The
appropriate approach depends critically on the nature of uncertainty. If no statistical informa-
tion is available, uncertainty cannot be modeled as a stochastic parameter but could be rather
treated in a worst case or robust sense (e.g., [22]). On the other hand, if a (usually multivariate)
statistical distribution can be approximated for the uncertain parameter, then a robust approach
could turn out to be unnessecarily conservative and methods from stochastic optimization are
to be preferred.

In [11], [8], the authors consider the minimization of different risk functionals (expected excess
and excess probability) in the context of shape optimization, where the uncertainty is supposed
to have a discrete distribution (finite number of load scenarios). In [2] an excess probability
functional has been considered for a continuous multivariate (Gaussian) distribution. Random-
ness in constraints can be delt with by imposing a so-called chance constraint. To illustrate this,
consider a random state constraint

y(x, ω) ≤ ȳ(x) ∀x ∈ D,

where x, y refer to space and state variables, respectively, ω is a random event, D is a given
domain and ȳ a given upper bounding function for the state. The associated joint state chance
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constraint then reads as
P(y(x, ω) ≤ ȳ(x) ∀x ∈ D) ≥ p,

where P is a probability measure and p ∈ [0, 1] is a safety level, typically chosen close to
but different from one. The chance constraint expresses the fact that the state should uniformly
stay below the given upper bound with high probability. In a problem of optimal contro, the state
chance constraint transforms into a (nonlinear) control constraint, thus defining an optimization
problem with robust in the sense of probability decisions. This probabilistic interpretation of
constraints has made them a popular tool first of all in engineering sciences (e.g., hydro reservoir
control, mechanics, telecommunications etc.). We note that the state chance constraint above
could be equivalently formulated as a constraint for the excess probability

P(C(y, ω) ≥ 0) ≥ p

of the random cost function

C(y, ω) := sup
x∈D
{y(x, ω − ȳ(x)},

thus making a link to the papers discussed before. Note, however, that C is nondifferentiable in
this case.

A mathematical theory treating PDE constrained optimization in combination with chance con-
straints is still in its infancy. The aim of this paper is to generalize semi-continuity and convexity
properties of chance constraints, well-known in finite-dimensional optimization/operations re-
search, to a setting of control problems subject to (uniform) state chance constraints. Although
optimization problems with chance constraints (under continuous multivariate distributions of the
random parameter) are considered to be difficult already in the finite-dimensional world, there
exist a lot of structural results on, for instance, convexity (e.g., [17], [18], [13]), or differentiability
(e.g., [16], [23]). For a numerical treatment in the framework of nonlinear optimization methods,
efficient gradient formulae for probability functions have turned out to be very useful in the case
of Gaussian or Gaussian-like distributions (e.g., [14], [3]). A classical monograph containing
many basic theoretical results and numerous applications of chance constraints is [19]. A more
modern presentation of the theory can be found in [21].

The paper is organized as follows: In Section 2, we provide some basic results on weak sequen-
tial closedness and convexity of chance constraints as well as weak sequential semi-continuity
properties of probability functions in an abstract framework. In Section 3, these results will be
applied to a specific PDE constrained optimisation problem with random state constraints.

2 Continuity properties of probability functions

We consider the following probability function

h(u) := P (g (u, ξ, x) ≥ 0 ∀x ∈ C) (u ∈ U). (1)

Here,U is a Banach space,C is an arbitrary index set, g : U×Rs×C → R is some constraint
mapping and ξ is an s-dimensional random vector living on some probability space (Ω,F ,P).
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Probability functions of this type figure prominently in stochastic optimization problems either
in the form of probabilistic constraints h(x) ≥ p or as an objective in reliability maximization
problems. We are going to provide conditions for weak sequential upper semicontinuity of h first
and, by adding appropriate assumptions, for weak sequential lower semicontinuity next. The
following proposition follows the idea of the proof of Prop. 3.1 in [20] which was given in a finite
dimensional setting .

Proposition 1 In (1), let U have a separable dual U∗ and assume that the g(·, ·, x) are weakly
sequentially upper semicontinuous for all x ∈ C . Then,

1 g (u, ·, x) is Borel measurable for each u ∈ U and x ∈ C .

2 M := {u ∈ U |h(u) ≥ p} is weakly sequentially closed for each p ∈ R.

3 h is weakly sequentially upper semicontinuous.

Proof. By assumption, the functions g (u, ·, x) : Rs → R are upper semicontinuous for each
u ∈ U and x ∈ C . Consequently, the sets {z ∈ Rs|g (u, z, x) ≥ 0} are closed for all u ∈ U
and x ∈ C , which implies 1. and justifies to talk about probabilities of events as in (1). 3. is an
immediate consequence of 2. Hence, in order to prove 2., let p ∈ R be arbitrary and consider
any weakly convergent sequence un ⇀n ū ∈ U with un ∈ M for all n. We have to show that
ū ∈M . We define

H(u) := {z ∈ Rs | g(u, z, x) ≥ 0 ∀x ∈ C}.

From un ∈M , it follows that

P (ξ ∈ H (un)) ≥ p ∀n ∈ N. (2)

Boundedness of un (by weak convergence) implies that there is some closed ball B with suffi-
ciently large radius such that ū ∈ B and un ∈ B for all n. By U∗ being separable, the weak
topology on B is metrizable by some metric d. We put

Ak :=
⋃
{H(u) |u ∈ B, d(u, ū) ≤ k−1} (k ∈ N) .

It holds that
H(ū) =

⋂
k∈N

Ak. (3)

Indeed, the inclusion ’⊆’ being trivial, let z ∈
⋂
k∈NAk be arbitrary. By definition, there exist

sequences zk ∈ Rs and wk ∈ B such that

‖zk − z‖ ≤ k−1, d(wk, ū) ≤ k−1, zk ∈ H(wk) ∀k ∈ N.

Hence zk →k z and wk ⇀k ū, where the latter convergence follows from the fact that d
metrizes the weak topology on B. In particular, g (wk, zk, x) ≥ 0 for all x ∈ C and all k ∈ N.
Now, the weak sequential upper semicontinuity of g(·, ·, x) for all x ∈ C yields that

g (ū, z, x) ≥ lim supk g (wk, zk, x) ≥ 0 ∀x ∈ C.
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Hence, z ∈ H(ū) which shows the reverse inclusion of (3).

Clearly, Ak+1 ⊆ Ak for all k ∈ N which along with (3) entails that

P (ξ ∈ Ak)→k P (ξ ∈ H(ū)) .

Accordingly, for any arbitrarily fixed ε > 0 there is some k′ ∈ N with

P (ξ ∈ H(ū))− P (ξ ∈ Ak′) ≥ −ε.

Moreover, by un ⇀n ū there exists some n∗ ∈ N with d (un∗ , ū) ≤ (k′)−1. It follows that
H (un∗) ⊆ Ak′ , whence altogether

P (ξ ∈ H(ū))− P (ξ ∈ H (un∗)) ≥ P (ξ ∈ H(ū))− P (ξ ∈ Ak′) ≥ −ε.

Now, (2) provides that P (ξ ∈ H(ū)) ≥ p − ε. Since, ε > 0 was chosen arbitrarily, we infer
that P (ξ ∈ H(ū)) ≥ p or ū ∈M as was to be shown. 2

The simple analogue of the previous Proposition, providing weak sequential lower semicontinu-
ity of h under the condition that all functions g(·, ·, x) (x ∈ C) are weakly sequentially lower
semicontinuous cannot hold true even in a one-dimensional setting, where g : R × R × R is
defined as

g(u, z, x) := u− z ∀x ∈ C := R

and the distribution of ξ is the Dirac measure in zero. Then, clearly, g is even continuous but the
probability function satisfies

h(u) =

{
0 if u < 0
1 if u ≥ 0

.

Hence, it fails to be lower semicontinuous at ū := 0.

The following proposition provides some missing conditions ensuring the weak sequential lower
semicontinuity of h:

Proposition 2 In (1), let U have a separable dual U∗. Assume that

1 C is a compact subset of Rd.

2 the g are weakly sequentially lower semicontinuous (as functions of all three variables
simultaneously).

3 the g(u, ·, x) are concave for all u ∈ U and x ∈ C .

4 For each u ∈ U there exists some z̄ ∈ Rs such that g(u, z̄, x) > 0 for all x ∈ C .

5 ξ has a density.

Then h is weakly sequentially lower semicontinuous.
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Proof. We introduce the function

gmin(u, z) := min
x∈C

g(u, z, x) (u ∈ U ; z ∈ Rs)

Note first that this definition is justified by weak sequential lower semicontinuity of g in x and by
compactness of C . We show next that, as a consequence of our assumptions 1. and 2., gmin

is weakly sequentially lower semicontinuous. Indeed, fixing an arbitrary (ū, z̄) ∈ U × Rs, we
may select a weakly convergent sequence (uk, zk) ⇀ (ū, z̄) realizing the inferior limit:

lim
k
gmin(uk, zk) = lim inf

(u,z)⇀(ū,z̄)
gmin(u, z).

By definition, there exists a sequence xk ∈ C such that gmin(uk, zk) = g(uk, zk, xk). Due to
the compactness of C , we may assume that xkl →l x̄ for some subsequence and some x̄ ∈
C . Summarizing, exploiting the assumed weak lower semicontinuity of g in all three variables
simultaneously, we get the desired weak lower semicontinuity of gmin:

lim inf
(u,z)⇀(ū,z̄)

gmin(u, z) = lim
l
gmin(ukl , zkl) = lim

l
g(ukl , zkl , xkl)

= lim inf
l

g(ukl , zkl , xkl) ≥ g(ū, z̄, x̄) ≥ gmin(ū, z̄).

As a consequence, −gmin is weakly sequentially upper semicontinuous. We may apply now
Proposition 1 in order to derive the weak sequential upper semicontinuity of the probability
function

h̃(u) := P(−gmin(u, ξ) ≥ 0)

(by formally choosing the set C as a singleton so that the dependence on x disappears). Ac-
cordingly, for an arbitrarily fixed ū ∈ U we have that

lim sup
u⇀ū

P(−gmin(u, ξ) ≥ 0) ≤ P(−gmin(ū, ξ) ≥ 0). (4)

Then, it follows:

lim inf
u⇀ū

h(u) = lim inf
u⇀ū

P (g (u, ξ, x) ≥ 0 ∀x ∈ C) (5)

= lim inf
u⇀ū

P
(
gmin (u, ξ) ≥ 0

)
≥ lim inf

u⇀ū
P
(
gmin (u, ξ) > 0

)
= − lim sup

u⇀ū
−P
(
gmin (u, ξ) > 0

)
= − lim sup

u⇀ū

(
P
(
gmin (u, ξ) ≤ 0

)
− 1
)

= 1− lim sup
u⇀ū

P
(
gmin (u, ξ) ≤ 0

)
≥ 1− P

(
gmin (ū, ξ) ≤ 0

)
(6)

= P
(
gmin (ū, ξ) > 0

)
= P

(
gmin (ū, ξ) ≥ 0

)
(7)

= P (g (ū, ξ, x) ≥ 0 ∀x ∈ C) = h(ū).

Here, (6) follows from (4) and it remains to justify (25): Observe first that, as a consequence
of our assumption 3., gmin(ū, ·) is a concave function. Moreover, by our assumption 4., there
exists some z̄ ∈ Rs such that gmin(ū, z̄) > 0. Both observations entail that the set

E := {z ∈ Rs | gmin(ū, z) = 0}
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is a subset of the boundary of the convex set

{z ∈ Rs | gmin(ū, z) ≥ 0}.

Since the boundary of a convex set has Lebesgue measure zero, E itself has Lebesgue mea-
sure zero. By our assumption 5., the distribution of ξ is absolutely continuous with respect to
the Lebesgue measure, whence P(ξ ∈ E) = 0. This finally yields (25), so that the chain of
relations above proves the weak sequential lower semicontinuity of h. 2

Remark 1 Assumptions 1. and 2. in the previous proposition were needed in order to show the
weak sequential lower semicontinuity of the minimum function gmin. If the set C happens to be
just a finite one, then of course the same property of gmin can be derived from the substantially
weaker (compared with 2.) assumption that g(·, ·, x) is weakly sequentially lower semicontinu-
ous for each x ∈ C because the finite minimum of lower semicontinuous functions also happens
to be so.

Corollary 1 In (1), let U have a separable dual U∗. Assume that

1 C is a compact subset of Rd.

2 the g are weakly sequentially continuous (as functions of all three variables simultane-
ously).

3 the g(u, ·, x) are concave for all u ∈ U and x ∈ C .

4 For each u ∈ U there exists some z̄ ∈ Rs such that g(u, z̄, x) > 0 for all x ∈ C .

5 ξ has a density.

Then h is weakly sequentially continuous. Moreover, owing to Remark 1, the same result can be
derived in the case thatC happens to be a finite set upon replacing 2. by the weaker assumption
that the g(·, ·, x) are weakly sequentially continuous for all x ∈ C .

We finally address the question of convexity for a chance constraint h(u) ≥ p for h introduced
in (1). To this aim, we recall that a function p : V → R (V a vectors space) is defined to be
quasiconcave, if the following relation holds true:

p(λx+ (1− λ)y) ≥ min{p(x), p(y)} ∀x, y ∈ V ; ∀λ ∈ [0, 1]

The next proposition can be proven exactly in the same way as in [19, Theorem 10.2.1]. As
this original proof has been given in an unnecessarily restricted setting (U finite dimensional,
C a finite index set), we provide here a streamlined proof applicable to our setting in (1) for the
readers convenience.

Proposition 3 In the setting of (1), let U be an arbitrary vector space. Moreover, let the ran-
dom vector ξ have a density whose logarithm is a (possibly extended-valued) concave function.
Finally, assume that the g(·, ·, x) are quasiconcave for all x ∈ C . Then, the set

M := {u ∈ U | h(u) ≥ p} (8)

is convex for any p ∈ [0, 1].
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Proof. Define the infimum function

ginf (u, z) := inf
x∈C

g(u, z, x) (u ∈ U ; z ∈ Rs)

and observe that, according to (1),

h(u) = P(ginf (u, ξ) ≥ 0) (u ∈ U). (9)

We note that ginf is quasiconcave. Indeed, fix an arbitrary couple of points

(u1, z1), (u2, z2) ∈ U × Rs

along with an arbitrary λ ∈ [0, 1]. Moreover, choose an arbitrary ε > 0. Then, there exists
some x ∈ C such that

ginf (λ(u1, z1) + (1− λ)(u2, z2)) ≥ g(λ(u1, z1) + (1− λ)(u2, z2), x)− ε
≥ min{g(u1, z1, x), g(u2, z2, x)} − ε
≥ min{ginf (u1, z1), ginf (u2, z2)} − ε

Here, in the second inequality, we exploited our assumption on g(·, ·, x) being quasiconcave for
all x ∈ C . As ε > 0 was arbitrarily chosen, the claimed quasiconcavity of ginf follows. Next,
the assumption on ξ having a logconcave density implies by Prekopa’s Theorem [19, Theorem
4.2.1] that ξ has a logconcave distribution. This means that

P(ξ ∈ λA+ (1− λ)B) ≥ [P(ξ ∈ A)]λ[P(ξ ∈ B)]1−λ (10)

holds true for all convex subsets A,B ∈ Rs and all λ ∈ [0, 1]. I order to prove the claimed
convexity of the set M in (8), let u1, u2 ∈ M and λ ∈ [0, 1] be arbitrarily given. Accordingly,
h(u1), h(u2) ≥ p. We have to show that λu1 + (1 − λ)u2 ∈ M . To this aim, define a
multifunction H : U ⇒ Rs by

H(u) := {z ∈ Rs | ginf (u, z) ≥ 0} (u ∈ U).

Observe that H(u1) and H(u2) are convex sets as an immediate consequence of the quasi-
concavity of ginf . We claim that

H(λu1 + (1− λ)u2) ⊇ λH(u1) + (1− λ)H(u2). (11)

Indeed, selecting an arbitrary z ∈ λH(u1) + (1 − λ)H(u2), we may find z1 ∈ H(u1) and
z2 ∈ H(u2) such that z = λz1 + (1− λ)z2. In particular,

ginf (u1, z1), ginf (u2, z2) ≥ 0.

Exploiting the quasiconcavity of ginf proven above, we arrive at

ginf (λu1 + (1− λ)u2), z) = ginf (λ(u1, z1) + (1− λ)(u2), z2)

≥ min{ginf (u1, z1), ginf (u2, z2)} ≥ 0.
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In other words, z ∈ H(λu1 + (1 − λ)u2), which proves (11). Now, (9) along with (10) yields
that

h(λu1 + (1− λ)u2) = P(ξ ∈ H(λu1 + (1− λ)u2))

≥ P(ξ ∈ λH(u1) + (1− λ)H(u2))

≥ [P(ξ ∈ H(u1))]λ[P(ξ ∈ H(u2))]1−λ

= hλ(u1)h1−λ(u2) ≥ pλp1−λ = p.

Consequently, λu1 + (1− λ)u2 ∈M as desired. 2

3 Example from PDE constrained optimization

In this part we are going to apply the method developed in section 2 to a simple PDE constrained
optimization with chance constraint. To this end, we consider a fairly general PDE

−∇x · (κ(x)∇xy(x, ω)) = r(x, ω), (x, ω) ∈ D × Ω

n · (κ(x)∇xy(x, ω)) + α y(x, ω) = u(x) (x, ω) ∈ ∂D × Ω, (12)

whereD ⊂ Rd, d = 2, 3, α > 0 and∇x is the gradient operator with index x indicating that the
gradient has to be build with respect to the spatial variable x ∈ D. Moreover ω is the stochastic
variable, which as in Section 2 belongs to a complete probability space denoted by (Ω,F , P ).
Here Ω is the set of outcomes, F ⊂ 2Ω is the σ-algebra of events, and P : F → [0, 1] is a
probability measure. In (12) the function denoted by u will play the role of a deterministic con-
trol variable (boundary control), whereas the function r indicates an uncertain source function.
Such PDEs appear for instance in shape optimization with stochastic loadings, see e.g. [11],
or in induction heating problems in semiconductor single crystal growth processes, see e.g. [9].
For problems arising in the context of crystal growth of semiconductor single crystals optimizing
the temperature - the state of the system - within a desirable range is one of important goals. In
[9] a stationary heat equation is considered with a source term caused by an induction process.
There, such an induction process generated by time-harmonic electromagnetic fields can not
be realized exactly and exhibits uncertainty which consequently results in a random temperatur
field.

To ensure well-posedness of (12), we assume that

D ∈ C1,1, κ ∈ C0,1(D) and ∃κ0 > 0 : κ0 ≤ κ(x)∀x ∈ D. (13)

3.1 Well-posedness of (12)

Throughout this paper, we use standard notations (e.g., see [1]) for the Sobolev spacesHm(D)
for each real numberm with norms ‖ ·‖Hm(D). We denote the inner product onHm by (·, ·)Hm

and c a generic constant whose value may change with context. Let ξ be an Rs-valued random
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variable in a probability space (Ω,F , P ). If ξ ∈ L1
P (Ω), we define Eξ =

∫
Ω
ξ(ω) dP (ω) as

its expected value. We now define the stochastic Sobolev spaces

L2(Ω;Hm(D)) = {v : D × Ω→ R | ‖v‖L2(Ω;Hm(D)) <∞},

where

‖v‖2
L2(Ω;Hm(D)) =

∫
Ω

‖v‖2
Hr(D)dP (ω) = E‖v‖2

Hm(D).

Note that the stochastic Sobolev spaceL2(Ω;Hm(D)) is a Hilbert space with the inner product

(u, v)L2(Ω;Hm(D)) = E
∫
D

∇u · ∇v dx.

For simplicity, we use the following notation:

Hm(D) = L2(Ω;Hm(D)).

For instance,

L2(D) = L2(Ω;L2(D))

and

H1(D) = {v ∈ L2(D) | E‖v‖2
H1(D)<∞}.

Moreover we define

C(D̄) = L2(Ω;C(D̄)).

We now state the well-posedness for (12).

Proposition 4 Let (13) be fulfilled. Then for every (r, u) ∈ L2(D) ×H 1
2 (∂D) there exists a

unique solution y ∈ H2(D) of (12) in the sense

E
(∫

D

κ(x)∇xy(x, ω) · ∇xϕ(x, ω) dx+ α

∫
∂D

y(x, ω)ϕ(x, ω) ds

)
= E

(∫
D

r(x, ω)ϕ(x, ω) dx+

∫
∂D

u(x)ϕ(x, ω) ds

)
, ∀ϕ ∈ H1(D) (14)

Moreover, the mapping

Y : L2(D)×H
1
2 (∂D)→ H2(D), (r, u) 7→ y := Y (r, u)

is linear and continuous, i.e.

‖y‖H2(D) ≤ C
(
‖r‖L2(D) + ‖u‖

H
1
2 (∂D)

)
. (15)

Proof. Use the Lax-Milgram lemma and [10]. 2

Remark 2 For n = 3, we know that the continuous embedding H2(D) ↪→ C(D̄) is fulfilled.
Hence, the solution y from Proposition 4 belongs to C(D̄) and we further obtain

‖y‖C(D̄) ≤ C
(
‖r‖L2(D) + ‖u‖

H
1
2 (∂D)

)
. (16)

9



3.2 Optimization problem

Let Uad be a bounded, closed and convex subset of U := H
1
2 (∂D) and ȳ(x) ∈ C(D̄) a

given function. Moreover, we will work in different cases with a subset C of D. The first case ist
C = D, whereas the second case is C ⊂ D with finite C . Given a weakly sequentially lower
semi-continuous cost functional L : H2(D) × H 1

2 (∂D) → R which is additionally bounded
from below, our overall optimization problem reads as

(P )


min E(L(y(x, ω), u(x)))

over H2(D)× Uad
s.t. (12) is satisfied

P(ω ∈ Ω | y(x, ω) ≤ ȳ(x), ∀x ∈ C) ≥ p, p ∈ (0, 1)

Remark 3 As indicated in the beginning of this section for problems arising in the context of
crystal growth of semiconductor single crystals optimizing the temperature - the state of the
system - within a desirable range is one of important goals. In application this is an impor-
tant issue since engineers are interested to prevent damage in semiconductor single crystals
which are caused by high temperatur distributions. But as one has to deal with uncertain time-
harmonic electromagnetic fields the temperatur field is consequently random, too. In this case
it is reasonable to claim that the temperatur as state variable stays with high probability in some
prescribed domain.

3.3 Finite sum expansion

For the source function r in (12) we make the ansatz of a finite (truncated) sum expansion

r(x, ω) :=
s∑

k=1

φk(x) ξk(ω), (17)

which enables us to approximate the infinite dimensional stochastic field by a finite dimensional
(s-dimensional) random variable. For a discussion of this ansatz, we refer to [2, Section 2.4].
With

φ(x) := (φ1(x), . . . , φs(x))T ; ξ(ω) := (ξ1(ω), . . . , ξs(ω))T ,

we define

r̃(x, ξ) := φ(x) · ξ(ω), (18)

where ξ is is an Rs-valued random variable. Using the solution operator Y and (18) we define

g : U × Rs ×D → R, g(u, ξ, x) := ȳ(x)− Y (r̃(x, ξ), u(x)). (19)

Lemma 5 LetC = D in (P ). Then g(·, ·, x), defined in (19), is weakly sequentially continuous
for all x ∈ C .
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Proof. Using Proposition 4, in case of (17), we obtain from (15) the estimate

‖y‖H2(D) ≤ C
(
(‖φ‖[L2(D)]s · ‖ξ‖[L2(Ω)]s) + ‖u‖U

)
. (20)

which means that y is depending linearly and continuously on the data (ξ, u) for fixed x ∈ D.
Linearity in combination with continuity provides weakly sequentially continuity. Consequently
the assertion of the lemma immediately follows. 2

3.4 Properties of the reduced problem

Defining the reduced cost functional by

f(u(·)) := E(L(Y (r̃(·, ξ), u(·)), u(·))) (21)

and using the definition

h(u) := P(g(u(x), r̃(x, ξ), x) ≥ 0,∀x ∈ C), (22)

the chance constraint in (P ) can be formulated as

M := {u ∈ U |h(u) ≥ p}. (23)

Then the reduced optimal control problem reads as

(P ) min
u∈Uad∩M

f(u). (24)

The aim of the following Theorem is to establish the existence of a solution to (P ).

Theorem 6 The problem (P ) admits a solution u ∈ Uad ∩M .

Proof. As a Hilbert space U := H
1
2 (∂D) has a separable dual and moreover g is weakly

sequentially continuous by Lemma 5. Consequently Proposition 1 from section 2 yields that M
is weakly sequentially closed. Hence, by assumptions on Uad it is obvious that Uad ∩ M is
weakly sequentially closed, too. Taking into account the assumptions on the cost functional the
existence of a solution to (P ) follows by the direct method in the calculus of variations. 2

In the previous theorem, one of the main ingredients in proving the existence result was to
establish the weakly sequentially upper semicontinuity of the function h. This was done by using
Lemma 5 and Proposition 1. In the following theorem we will refine this upper semicontinuity
result to a semicontinuity result by taking into account additional assumptions. The theorem will
then ensure weakly sequentially continuity of the function h.

Theorem 7 LetC be finite and the random variable ξ, defined in (18), have a density. Moreover,
assume that for each u ∈ U there exists some z̄ ∈ Rs such that

Y (r̃(x, z̄), u(x)) < ȳ(x) ∀x ∈ C. (25)

Then the function h, defined in (22), is weakly sequentially continuous.
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Proof. Using once again Lemma 5, it follows that g is weakly sequentially continuous as a
function of all three variables simultaneously. Moreover, it is obvious that g(u, ·, x) is linear for
all u ∈ U and x ∈ C , and consequently concave. Then the third assumption of Corollary 1 is
fulfilled. Hence, the assertion of the Theorem follows from Corollary 1. 2

The condition given by (25) can be interpreted as a Slater’s condition. It means that for every
given control u there must exists a realization z̄ of the random variable ξ such that the state y
has to be uniformly strictly smaller than the given state ȳ. If this condition is not fulfilled then the
upper limit function ȳ was chosen too restrictively.

To provide an instance for the use of Theorem 7 is the consideration of random state constraints
in disjunctive form which would lead to the following state chance constraint:

P(ω ∈ Ω | ∃x ∈ C : y(x, ω) > ȳ(x)) ≥ p.

Here, in contrast to the previous setting in problem (P) one is interested in the complementary
situation, namely that with high probability the random state exceeds some given threshold at
least somewhere on the domain. Turning this state chance constraint into a control constraint
as before and using the functions g, h defined in (19) and (22), respectively, we arrive at the
condition

P(ω ∈ Ω | ∃x ∈ C : y(x, ω) > ȳ(x)) = P(ω ∈ Ω | ∃x ∈ C : g(u, ξ, x) < 0)

= 1− h(u) ≥ p.

So, instead of (23) the chance constraint would be defined by M := {u | h(u) ≤ 1 − p}. In
order to prove an existence result similar to that of Theorem 6, one would now need the weak
sequential lower (rather than upper) semicontinuity of h. This would come as a consequence of
Theorem 7.

In the following theorem we are going to establish a condition such that (P ) becomes a convex
optimization problem.

Theorem 8 Let the random variable ξ, defined in (18), have a density whose logarithm is a
(possibly extended-valued) concave function. Moreover, assume that the objective function L is
convex. Then problem (P ) is a convex optimization problem.

Proof. The convexity of L and the linearity of the solution operator Y , see (20), yield that the
mapping

u(·) 7→ L(Y (r̃(·, ξ), u(·)), u(·))

is convex. Then by the linearity of the expectation E, we obtain that u 7→ f(u) is convex.
Moreover, by the linearity of g(·, ·, x), it follows that it is quasiconcave for all x ∈ C . Then, it
follows from Proposition 3 that M is convex. By assumption Uad is convex and consequently
the intersection M ∩ Uad is convex, too. Hence, the assertion of the theorem follows. 2

Remark 4 Numerous multivariate distributions do have logconcave densities, e.g. normal dis-
tribution, Student’s t-distribution, uniform distribution on compact and convex sets, see e.g. [19].

12



Hence, the assumption about the logconcave densities is fairly general. Often in PDE con-
strained optimization the objective functional L has the form L(y, u) = L1(y) + L2(u) where
L1 and L2 are separately convex and are defined by L1 : H2(D) 3 y 7→ L1(y) ∈ R and
L2 : U 3 u 7→ L2(u) ∈ R.
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