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Abstract

We reanalyse the probability for formation of extreme waves using the simple model of
linear interference of a finite number of elementary waves with fixed amplitude and ran-
dom phase fluctuations. Under these model assumptions no rogue waves appear when
less than 10 elementary waves interfere with each other. Above this threshold rogue wave
formation becomes increasingly likely, with appearance frequencies that may even exceed
long-term observations by an order of magnitude. For estimation of the effective number
of interfering waves, we suggest the Grassberger-Procaccia dimensional analysis of in-
dividual time series. For the ocean system, it is further shown that the resulting phase
space dimension may vary, such that the threshold for rogue wave formation is not always
reached. Time series analysis as well as the appearance of particular focusing wind con-
ditions may enable an effective forecast of such rogue-wave prone situations. In particular,
extracting the dimension from ocean time series allows much more specific estimation of
the rogue wave probability.

Introduction

Ocean rogue waves are large and suddenly appearing surface gravity waves [1], which may
cause severe damage to ships and other maritime structures [2, 3, 4, 5]. Statistically similar
anomalies have been observed for a variety of physical systems. In particular, optical rogue
waves have been observed in nonlinear fiber propagation [6], in speckle formation [7], and in
multiple filamentation [8]. In all these different physical systems, these extreme waves appear
more frequently than predicted by Gaussian statistics, and their appearance frequency is de-
scribed by heavytail probability density functions. Despite years of research, their exact origin,
in particular that of ocean rogue waves, is still a matter of debate [9]. Linear interference of
waves with random phase is certainly the oldest and most straightforward explanation for these
extreme waves [10]. For the limiting case of an infinite number of interfering waves on the ocean
surface, i.e., the formation of short-crested wave patterns, a Rayleigh probability density function

pRayleigh(H) =
H

σ2
exp

(
−H

2

2σ2

)
(1)

results, where H is the wave height (crest to trough) and σ a scale parameter. In the case
of one-dimensional interference, in contrast, long crests form and the distribution is Gaussian.
For the ocean system, careful comparisons with large records of wave height observations indi-
cate, however, significant deviations from either model case [11, 12, 13]. An empirical function
pForristall(H) has been suggested that mediates between the short-crested and long-crested
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waves and provides a much better fit to long-term observations [12, 14]

pForristall(H) =
H

σ2
exp

(
− H2.126

2.105σ2

)
. (2)

More recent explanations suggested that nonlinearities in the system could play a significant role
[2, 3, 15, 16, 17], in particular as inspired by the analogous case of nonlinear optical effects in
fibers [6, 8]. Other more advanced suggestions indicated breather solitons [18] or the Peregrine
soliton [19] as the source of rogue waves. In support of a nonlinear origin of rogue waves,
the soliton scenario has been confirmed in one-dimensional water channel experiments [20]. It
nevertheless appears difficult to derive probability density functions from soliton theory. In the
following, we show that nearly all aspects of ocean rogue waves can be explained by a linear
model when the previous assumption of an infinite number of interfering waves is dropped. In
particular, the linear interference model can explain observed probability density functions as
well as the characteristic single-cycle nature of rogue wave observations. Nonlinearities are
only required to explain the rare appearance of rogue holes.

Conditional linear interference model

To this end, we assume linear interference of N elementary waves, giving rise to the surface
elevation [21]

η(t, ~r) =
N∑
j=1

hj cos
(
~k(ωj) · ~r + ωjt+ ϕj

)
(3)

varying with time t and position ~x. Here the wave amplitudes and phases are given by hj and

ϕj , respectively. The wave vectors ~k(ωj) are connected to the angular frequencies ωj by the
dispersion relation. The ωj are incommensurable frequencies, which are distributed to provide
a discrete representation of the wave spectrum. While the discrete nature of our model may
appear as a limitation at first sight, this issue can be overcome by frequently recomputing the
random seeds for the ωj , e.g., such that their average probability density function converges to
the JONSWAP spectrum [22]. To leading order, the nonlinearity of the system can be accounted

for by adding second harmonic contributions ∝ cos
(

2(~k(ωj)~r + ωjt+ ϕj)
)

[21]. This cor-

rection lifts the crests as much as the troughs and therefore does not affect the crest-to-trough
wave height. Higher-order corrections can be implemented as well, but have been estimated to
lie in the centimeter range even for a rogue wave [23]. As the time series are sampled at one
point in space, we set ~r = 0, which makes us independent of the dispersion relation of the
system. Sampling the surface elevation at a rate � ωj then gives access to the statistics of
surface elevation and wave height by repeatedly computing

η =
N∑
j=1

hj cos(ϕj) (4)

and

H = 2h = 2

∣∣∣∣∣
N∑
j=1

hj exp(iϕj)

∣∣∣∣∣ , (5)
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Figure 1: Simulation of statistical distributions resulting from the interference of N waves with unity amplitude
and random phases. For each value of N , 109 resulting wave heights (crest to trough) have been computed, i.e.,
about 4 times more than available in Ref. [12]. (a) Resulting average wave height, significant wave height HS as
well as maximum observed wave height as a function ofN . For identical phases, a maximum possible wave height
results atN times the height of the individual input waves. Using the threshold condition of 2.0 or 2.2HS, no rogue
waves are possible below N = 8 or 10, respectively. (b) Computed probabilities of exceeding a given wave height
in units of HS. Cases from N = 6 to 100 are shown as lines. Observations from Christou and Ewans are shown
as dots [12]. The Forristall distribution is shown as a dashed line [14]. The fact that no single simulation fits to the
observations is indicative of a strong variation of N due to changing weather conditions during the observations.

respectively, for randomly chosen amplitudes hj and phases ϕj . The problem of the resulting
amplitude h of N interfering waves is mathematically equivalent to computing the probability
of the length h of two-dimensional random walks [24, 25, 10] involving N steps. In the limiting
case of N → ∞, identical probability density functions emerge independent of the amplitude
distribution. In the following, we therefore set hj = const. for simplicity. Moreover, we only
consider wave amplitudes and wave heights, as their statistics do not require any correction
for ocean nonlinearities to leading order. This makes our model fairly generally applicable, e.g.,
for explaining speckle pattern formation in multimode fibers [7], formation of caustics with a
light modulator [26], as well extreme events as in microwave experiments [27]. Moreover, in all
of these experiments, linear interference appears in two or more dimensions, which is in line
with the prediction of [10] that one-dimensional linear interference does not suffice to explain a
heavy tail in the probability density function. The situation of a small number of waves has been
mathematically investigated [24, 25], yet no analytical solution is known as a general function
of the parameter N . We numerically computed the resulting probability density functions for
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a finite number of interfering waves using Eq. (5) with univariate uncorrelated random phases
ϕk ∈ [0, 2π[, see Fig. 1. For the examples shown in Fig. 1, a total of 109 random sets has been
employed for any of the shown values of N . Assuming equal and constant wave amplitudes
hj = 1/2, the absolute maximum possible resulting crest-to-trough wave height H is N , and
for sufficiently large N the mean height is

√
N , cf. Fig. 1(a). The threshold for rogue waves

(2.2HS) scales as ≈ 1.55
√
N . If all ϕk are identical, the maximum possible amplitude of

Hmax = N occurs. Comparing the rogue threshold with the maximum possible wave height, it
becomes immediately clear that a minimum of 10 linearly interfering waves is required to exceed
the rogue threshold. The resulting probability densities pN(H) are skewed, and a heavy tail
starts to form with increasing N , see Fig. 1(b). For large (but finite) values of N , the probability
function converges against the Rayleigh function pRayleigh(H), as discussed in the literature
[21]. We further tested a robustness of the probability density functions against the choice of an
underlying wave spectrum, but could not detect any direct influence. However, we noticed that
variations in the 1% range may occur when counting zero crossings rather than directly referring
to the period of the central frequency. Nevertheless, these variations are too small to explain the
systematic overestimation of the probability of rogue waves by the Rayleigh function.

The Grassberger-Procaccia Algorithm

For a forecast of rogue waves, it would therefore be of high interest to estimate the number N
of interfering waves, ideally using only a time series of surface elevation η(t) measured at one
single location in the ocean. When amplitude variations can be neglected, N is identical to the
dimension D of the phase space governing the dynamics of η(t). For small values of D, non-
linear time series analysis offers methods to estimate the phase space dimension. While origi-
nally proposed for reconstructing the attractor dimension in chaotic systems, the Grassberger-
Procaccia analysis (GPA) [28, 29] is a proven tool for extraction of a dimension estimate Dcorr

from one-dimensional time series ~η = {η1, η2, η3, . . . , ηn} of surface elevations [31, 30] with
record length n. From this time series ~η, sub-series ~yi = {ηi, ηi+1, ηi+2, . . . , ηi+m} of length
m are selected, with the embedding dimension m. Each sub-series ~yi is then compared to all
sub-series ~yj with j > i by calculating Euclidian distances

rijm =‖ ~yi − ~yj ‖=

√√√√i+m∑
k=i

|ηk − ηk+j−i|2. (6)

For m� n the Euclidian distances rijm are accumulated in the correlation sum

Cm(r) =
1

N2

∑
j>i

θ(r − rijm), (7)

where θ(r) is the Heaviside step function. In order to avoid false interpretation due to detection
noise and limited sample length, Cm(r) is only analyzed at the interval [0.01 rmax, 0.1 rmax],
where rmax is the largest Euclidian distance found in the data series. The correlation sumCm(r)
increases monotonically according to

Cm(r) ∝ rν , (8)
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with the exponent ν. For small values of m, ν increases with embedding dimension m until
it reaches a saturation value dsat. For a range of values of m, a plateau with nearly constant
Dcorr = dsat is typically observed (cf. Fig. 2), provided a sufficient number of data points in the
analysis.

Validation of the GPA for Estimation of Phase Space Dimen-
sion

While the GPA has found frequent application in the analysis of chaotic data sets, its useful-
ness for retrieving the phase space dimension of the ocean dynamics from a time series of the
surface elevation may appear debatable. We therefore generated a number of synthetic data
sets based on our model Eq. (3). These data sets resemble the Draupner wave record [32]
concerning record length, number of sampled points, and covariance function. The randomly
chosen frequencies ωi in Eq. (3) have been chosen in accordance with the JONSWAP spec-
trum [22], and the leading-order correction for the ocean nonlinearity has been applied. N has
been varied from 1 to 20, and the data sets have then been processed with the GPA. Figure 2(b)
shows the retrieved Dcorr as a function of N . This analysis indicates that one can quite reliably
reconstruct the phase space dimension up to values of about 10. For larger values, a stagnation
is observed. Nevertheless, retrieved values above 10 seem to safely show that the emergence
of rogue waves is possible. Values significantly below 10 also quite clearly indicate the oppo-
site. As clear identification of the plateau region is sometimes very difficult, we also tested a
second way for reconstruction of the phase space dimension. To this end, we generated sets
of 100 random-generated data sets for each value of N , which we then used to construct av-
erage correlation sums Cm(r,N). Subsequently, we produced further data sets at random N
and then selected the average correlation sum that provided the best fit. The result of this test
procedure is shown in Fig. 2(c). The phase space dimension can be nearly perfectly retrieved
for N ≤ 6. For larger values, there is a sudden increase in the resulting standard deviation, but
the reconstruction continues to follow N up to values of 16 before a stagnation also sets in for
the second method. Considering that a duration of only 20 minutes of wave data was assumed
here, a fairly reliable reconstruction of the phase space dimensions seems to be possible within
about an hour of observation.

Phase Space Dimension Estimates for Ocean Data

Previous studies directed at ocean dynamics during storms [30, 31] indicated values of Dcorr

reaching from 7 to 10.5, with a certain tendency of lower values appearing in calmer waters.
Applying the same method to wave height measurements recorded on January 1, 1995 on the
Draupner platform [32], we determine a dimension Dcorr in the range of 12 to 13, see Fig. 2(a).
The underlying measurement [Fig. 2(d)] is the first record of a rogue wave, which ultimately
confirmed their existence. The significant wave height HS in this event was 12 m, and the rogue
wave exhibited a wave height of H = 25.6 m (crest to trough). For comparison, we also ran
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Figure 2: (a) Dimensional analysis of the Draupner wave record [32] with the Grassberger-Procaccia method.
Shown is the correlation sum slope as a function of embedding dimension for the original 15:20 Draupner record
(green) and a second measurement from the same campaign starting at 16:20 (blue). The first record contains a
rogue event. Both correlation sums exhibit a plateau of the slope for embedding dimensions ranging from 70 to
130. This results in an estimate for the information dimension D of the record of 12 to 13, see pink shaded area.
(b) Reconstructed number of interfering waves D vs. actual number of interfering waves N . Analysis is based on
10 simulated time series according to Eq. (3) for each N . Sampling, duration, and the number of points have been
chosen equal to the Draupner record. Nonlinearity was corrected for to leading order. Points show the reconstruc-
tions, red line the resulting mean curve, and black line the ideal reconstruction. (c) Same with reconstruction by
comparison to from previously collected mean correlation sums. (d) Reconstruction of the Draupner event using the
model assumption of an interference of 12 waves of equal and constant amplitudes but temporally varying phases
ϕj(t), (j = 1, . . . , 12), (original data: black curve, symbols: reconstruction). (e) Phase functions ϕj(t) deter-
mined by simulated annealing. Around t = 0, linear approximations of ϕj(t) fall into two separeted groups. This
separation is indicative of a crossing of two wave groups with well separated frequencies as was also discussed in
[23].

the GPA on other data sets [8] recorded during the Draupner storm, which provided a nearly
identical result for Dcorr.

It is important to understand that the dimension is an estimate of the sea state, which can nei-
ther be obtained by linear statistical methods nor extracted from spectrum and autoconvolution
function [33, 34, 35]. Moreover, the dimension is independent from the appearance of an actual
rogue wave in the time series as one can see from comparison of the two traces in Fig. 2(a).
Nevertheless, D indicates whether a rogue could have formed in a given sea state as well as
the probability for its formation.

While one certainly has to be careful in interpreting these results, the comparison between the
three different data sets appears to be consistent with expectations. Measurements at a fairly
protected location off Venice [31] lead to the lowest values ofDcorr, whereas the extreme storm
conditions in the North Sea at the Draupner platform are indicative of values nearly double as
high. Moreover, a phase space dimension of 12 or higher clearly enables the emergence of
rogue waves whereas the much lower values of D in previous measurements would not allow
for the formation of extreme waves. We further ran a surrogate analysis [8] on the Draupner
data set, which resulted in an absence of the plateau region in Fig. 2(a), i.e., an undefined or
infinite value of D. This systematic difference further supports our hypothesis of a finite number
of interfering waves. One may further conclude that the complexity of the ocean dynamics is
variable and depends both on location and time.
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Phase diffusion and rogue waves

If the phase space dimension behind the ocean dynamics varies as suggested, then one prob-
ably observe relatively calm conditions during most of the time that simply do not allow for the
formation of rogue waves, i.e.,D < 10. Nevertheless, in order to explain the extensive statistics
of wave records by Christou and Ewans [12],D must occasionally reach very large values much
larger than 12. A second explanation for the largest observed rogue events H > 2.5HS in the
Christou record may be nonlinear steepening or compression effects, which further amplify the
heavy tail, similar as nonlinear corrections to linear statistics. The resulting waves have been
previously discussed as super rogue waves [20].

Let us further verify the consequences of our model onN linearly interfering elementary waves.
Assuming unity amplitudes, we can rewrite the resulting surface elevation

η(t, ~r) =
N∑
j=1

cos
(
~kj(ω0) · ~r + ω0t+ ϕj(x, t)

)
, (9)

which assumes a distribution of angular frequencies around a central value ω0. The distribu-
tion of frequencies of Eq. (3) has now been carried into individual time and propagation de-
pendent phases, reverting it to a phase diffusion problem. The wave vectors are defined as
~kj ∝ (cos(θj), sin(θj)), with a Gaussian distribution of random angles θj of vanishing mean.
The standard deviation ∆θ of the angular distribution of waves determines the lateral extent
of a rogue wave along the y direction. Using a 2π univariate angular distribution instead, one
can simulate the emergence of circular symmetric rogue waves as observed by Arecchi et al.
[7]. A one-dimensional diffusion process of the phase functions ϕj(x, t) along the propagation
direction [36] is computed at equidistant positions xi = i∆x according to the recursive law

ϕj(xi±1, t) = ϕj(xi, t) +Dϕϕ̃ij. (10)

with a diffusion coefficient Dϕ and a set of independent Gaussian random phases ϕ̃ij with
mean zero. This model assumption induces a random phase walk, which nevertheless leaves
the average frequency ω0 unaffected. In a nearly monochromatic case, no special assumptions
for the dispersion of the system are required, but can certainly be included for more broadband
scenarios. An example for the resulting random surface is shown in Fig. 3(a). Rogue waves
appear by setting ϕj = 0 at t = 0 and x = 0, see Fig. 3(c,d); rogue holes [37] can be
generated by forcing all ϕj = π [Fig. 3(b)]. In the examples, the angular spread of the θj has
been adjusted to 50 mrad to allow a certain vertical extension of the rogue waves. Narrowing
down the spread, wider and wider walls of water appear. N has been set to 20, which exceeds
the estimate from the dimensional analysis (D = 12 to 13). The characteristic length or time
over which dephasing appears is related to the linear correlation time or the prediction length
[8]. Decreasing the parameter Dϕ, one observes a transition from completely isolated rogue
waves to the formation of rogue wave groups that resemble the famous “three sisters” [38].
The Draupner waveform with its characteristic leading and trailing deep troughs appears for
intermediate values of Dϕ.

This very simple model can also be inverted to find a set of phase functions ϕj(t) that give
rise to a measured wave record η(t), cf. Figs. 2(d,e). Starting at the time t = 0 of the rogue
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Figure 3: Simulation of the interference on a surface with a normally distributed angular spread of N waves
amounting to 50 mrad. In this simulations, a nonlinear correction was included to reduce the depth of the troughs
and steepen the wave crests. (a) Assuming random phases between the waves. A highly random wave pattern
emerges with no wave significantly exceeding the significant wave height. N = 20. (b) Simulation of a rogue
hole [37], with synchronized phases adding up to negative interference at the central point of the propagation
axis. N = 40. (c) Same with phase flipped by π and N = 20, resulting in a single wave with extreme height
> 2.5HS Depending on the diffusion coefficient, leading and trailing troughs appear, similar to the observation
of the Draupner event [32]. (d) Same with weaker phase diffusion. A rogue wave with structure reminiscent of the
“three sisters” [38] emerges.

event, we used a simple simulated annealing variant to adjust the individual phases ϕj(t) in
a round-robin fashion to the end of obtaining best agreement with the measured record of the
Draupner event. This procedure is repeated for each time step in the measured time series. As
this phase retrieval is an ill-posed problem, rapid temporal oscillations of the phase functions
may locally appear. These oscillations can be mostly suppressed by a suitable penalty term, with
the noted exception of the deep trough areas of the Draupner wave. This may be an indication
for unaccounted nonlinear shaping in the immediate vicinity of the rogue wave. It should also
be noted that phase retrieval is certainly highly ambiguous in this situation, but nevertheless
indicates that rogue wave formation can be explained due to phase diffusion in the interference
of a finite number of elementary wave with constant and equal amplitude. The phase dynamics
near t = 0 shows essentially a linear dephasing behavior with time, apparently simply being
caused by different frequencies of two groups of interfering waves. This reproduces the results of
a previous analysis [23], which attributed the Draupner wave to the interference of two crossing
wave groups with markedly different frequencies. We have further investigated the influence
of the wave spectrum on the resulting rogue wave. Using the JONSWAP spectrum together
with 12 randomly chosen frequencies, we can reproduce rogue waves with shape similar to the
Draupner wave, see supplementary movie. From this simulation, one can estimate a lifetime of
the Draupner rogue wave of about 2 minutes. At N > 12 the lifetime of a rogue wave can be
substantially longer. Narrowing down the spectral extension of the wave spectrum, we observe
rogue wave groups similar to the “three sisters” [38]. The slower phase diffusion process for this
type of rogue waves also leads to an increase of their lifetime.

In the completely linear picture of Eq. (3), one would expect to see rogue holes with the same
probability as rogue waves. The leading-order nonlinearity correction, however, causes an equal
uplift, both of the troughs and the crests. For the Draupner wave, this correction amounts to
about 4 meters [23], which would have rendered the emergence of an isolated rogue hole im-
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possible under Draupner storm conditions. Apart from the rogue hole anomaly, however, rogue
wave formation appears perfectly explainable by random linear interference of a limited number
of elementary waves.

Discussion

Our model relates the emergence of ocean rogue waves essentially only to the single param-
eter N , with the shape of the rogue wave being related to the secondary wave spectrum. As
we showed above, the effective number N of interfering waves can be estimated via the GPA
analysis. The variable character of N therefore appears key to understanding the rogue wave
phenomenon. As the waves are generated by winds across the ocean surface, one expects to
see an increase of the average number of interfering waves, e.g., when wind directions change
over a wide range or when turbulence sets in. The fact that rogue wave appearance is not
simply correlated to the wave height, but also depends on the weather conditions was already
suggested by Waseda et al. [13]. In particular, the latter authors showed that there is a corre-
lation between rogue wave appearance in the North Sea and the presence of a pronounced
low pressure region off the North Norwegian coast paired with a high-pressure cell in the Bay
of Biscay. A similar metereological situation appeared on January 1, 1995, i.e., the date of the
Draupner storm [32]. Here it appears striking that an auxiliary low with extremely narrow and
strongly curved isobars must have crossed the position of the Draupner platform. This situa-
tion must have given rise to a strong focusing action of the winds and subsequently generated
waves, in addition to a high directional variability of the winds. This situation is expected to give
rise to crossing seas, i.e., when waves of different directions cross each other in an ocean region
[39]. Let us further remark that the number of interfering waves may certainly also be influenced
by particular coastal shapes, subsea topography, or ocean currents, which may have a focusing
or cumulating effect on otherwise spatially separated waves [41, 40]. All these effects may con-
tribute to highly localized rogue wave formation, whereas no rogue waves appear in neighboring
ocean regions with equally high waves. In fact, the strongest winds during the Draupner storm
passed the platform several 100 km further to the west [32]. While all these indications further
support our hypotheses of a linear origin of ocean rogue waves, there is certainly more work
necessary to deduce effective rogue wave warnings from ocean weather reports.

As an alternative to meteorological prediction, we suggest use of the correlation dimension D
for characterization of the sea state. As indicated by the example analysis of the Draupner data,
relatively short time series of 20 minutes length already suffice for a coarse estimate of D, and
required computational times for its determination are on the order of a second with current
computer technology. Values above the threshold of D ≈ 10 indicate the possibility of rogue
waves, with a rapidly increasing probability at higherD. Using time series analysis, it may there-
fore very well be possible to build “a device on the mast of a ship analyzing the surface of the
sea” [42] in order to obtain effective rogue wave warnings. To this end, we suggest application
of the GPA to larger wave records [12, 13] for solidification of the suspected correlation between
rogue wave appearance and large values of Dcorr. Finally, a further possibility for identifying
rogue wave situations may be given by measuring the transverse extent of the wave crests. In
the light of the above discussion, short-crested waves appear much more dangerous than long-
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crested ones, with the interference of a much wider angular spread [39] of elementary waves in
the two-dimensional case.

Conclusions

In conclusion, our simple linear model indicates that ocean rogue waves may appear due to
interference of elementary waves, similar to what was suggested by Longuet-Higgins [10] al-
ready some 60 years ago, yet with a finite number of interfering waves. Nonlinearities may play
a modifying role when present, but their presence is not strictly required to explain rogue wave
formation. In particular, there remains the anomalously low appearance frequency of rogue
holes, which cannot be explained without including nonlinear corrections. Minor modification of
the original Longuet-Higgins theory, i.e., reducing it to a finite number of interfering waves, gives
rise to a threshold condition of a minimum number of interfering waves that allow for rogue wave
formation. This threshold condition may prove useful for an effective forecast of rogue waves
in the ocean. We indicated possible ways to predict rogue-wave prone situations in the ocean,
including a meteorological approach, observation of the wave crest extension, and time series
analysis. One explanation for the observed variability of the dimension may be the changing
wind-forcing of the waves, which is behind a majority of ocean waves. Compared to the role of
nonlinearity, the aspect of wind-forcing has not found much attention in the rogue-wave literature
so far. Nevertheless, further research is required to clearly identify wind conditions that give rise
to dimensions that exceed the threshold condition for rogue wave formation.
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