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ABSTRACT. We provide a series of rigidity results for a nonlocal phase transition equation. The prototype equation
that we consider is of the form

(−∆)s/2u = u− u3,

with s ∈ (0, 1). More generally, we can take into account equations like

Lu = f(u),

where f is a bistable nonlinearity and L is an integro-differential operator, possibly of anisotropic type.
The results that we obtain are an improvement of flatness theorem and a series of theorems concerning the one-

dimensional symmetry for monotone and minimal solutions, in the research line dictated by a classical conjecture
of E. De Giorgi in [10].

Here, we collect a series of pivotal results, of geometric type, which are exploited in the proofs of the main results
in [12].

1. INTRODUCTION AND MAIN RESULTS

In phase coexistence models, a classical question, which was posed in [10], is whether or not “typical solutions”
possess one-dimensional symmetry. In the models driven by semilinear partial differential equations, this type of
problems has a long history, see e.g. [17, 2, 1, 18, 9] and the references therein. Related problems arise in the
theory of quasilinear equations, see e.g. [8, 13, 15], and find applications in dynamical systems, see [16]. We
refer to [14] for a review on this topic.

Recently, similar questions have been posed for a phase transition model in which the long-range particle inter-
action is described by a nonlocal operator of fractional type, see [6, 21, 5, 3, 4]. Similar models describe also
the atom dislocation in some crystals, see e.g. Section 2 in [11], and some phenomena in mathematical biology,
see e.g. [7]. The goal of this paper is to present a series of rigidity and symmetry results for semilinear problems
driven by nonlocal operators. The results are so general that they can be applied also in a non-isotropic medium
(but, as far as we know, they are also new in the isotropic case).

More precisely, we consider a nonlocal Allen-Cahn equation of the type

Lu = f(u) in Rn,

where L is an operator of the form

Lu(x) :=

∫
Rn

(
u(x)− u(x+ y)

)µ(y/|y|)
|y|n+s

dy, x ∈ Rn,

with s ∈ (0, 1). The typical example of operator comprised by our setting is the fractional Laplacian (in this
case L := (−∆)s/2). The basic nonlinearity f that we take into account is when f is “bistable”, i.e. it is minus
the derivative of a double-well potential (e.g., f(u) = u − u3). We assume that the measure µ (which is often
called in jargon the “spectral measure”) satisfies

µ(z) = µ(−z) and λ 6 µ(z) 6 Λ for all z ∈ Sn−1,

for some Λ > λ > 0. Given a bounded ψ ∈ C2(R) we define

Aψ(z) :=

∫ +∞

−∞

ψ(z)− ψ(z + ζ)

|ζ|1+s
dζ, z ∈ R. (1.1)

Roughly speaking, the operator A plays a role of the one-dimensional fractional Laplacian. In order to take into
account the possible anisotropy of the operator L, we need to scale A appropriately in any fixed direction. To
this aim, for ψ as above, ω ∈ Sn−1, and h > 0 we define, for x ∈ Rn,

ψ̄ω,h (x) := ψ
(
ω · x

h

)
.
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We set hL(ω) := h where h > 0 satisfies

Lψ̄ω,h(x) = Aψ
(
ω · x

h

)
for all ψ ∈ C2(R) ∩ L∞(R).

We also define
C = CL :=

⋂
ω∈Sn−1

{
x ∈ Rn : x · ω 6 hL(ω)

}
(1.2)

and assume that
∂ CL is C1,1 and strictly convex.

More quantitatively, we assume that there exist ρ′ > ρ > 0 such that

the curvatures of ∂ CL are bounded above by
1

ρ
and below by

1

ρ′
. (H1)

Concerning the nonlinearity f , we assume that f ∈ C1
(
[−1, 1]

)
and, for some κ > 0 and cκ > 0,

f(−1) = f(1) = 0 and f ′(t) < −cκ for t ∈ [−1,−1 + κ] ∪ [1− κ, 1]. (H2)

Moreover, recalling the setting in (1.1), we assume that

there exists φ0 satisfying


Aφ0 = f(φ0) in R,
φ′0 > 0 in R,
φ0(0) = 0,

lim
x→±∞

φ0 = ±1.

(H3)

The main result obtained in [12] is the following improvement of flatness:

Theorem 1.1. Assume that L satisfies (H1) and that f satisfies (H2) and (H3). Then there exist universal
constants α0 ∈ (0, s/2), p0 ∈ (2,∞) and a0 ∈ (0, 1/4) such that the following statement holds.

Let a ∈ (0, a0) and ε ∈ (0, ap0). Let u : Rn → (−1, 1) be a solution of

Lu = ε−sf(u) in Bja ,

with

ja :=

⌊
log a

log(2−α0)

⌋
.

Assume that 0 ∈ {−1 + κ 6 u 6 1− κ} and that

{ωj · x 6 −a2j(1+α0)} ⊂ {u 6 −1 + κ} ⊂ {u 6 1− κ} ⊂ {ωj · x 6 a2j(1+α0)} in B2j ,

for any j = {0, 1, 2, . . . , ja} and for some ωj ∈ Sn−1.

Then, {
ω · x 6 − a

21+α0

}
⊂ {u 6 −1 + κ} ⊂ {u 6 1− κ} ⊂

{
ω · x 6 a

21+α0

}
in B1/2,

for some ω ∈ Sn−1.

Theorem 1.1 says that if the level sets of the solution are C1,α0-flat from infinity up to B1, then they are also
C1,α0-flat up to B1/2, and so one can dilate the picture once again and repeat the argument at any small scale
towards the origin (as a matter of fact, suitable scaled iterations of Theorem 1.1 are given in Corollaries 7.1
and 7.2 of [12]). An important consequence of Theorem 1.1 is related to the one-dimensional symmetry proper-
ties of the solutions. For this, we say that a function u : Rn → R is 1D if there exist ū : R→ R and ω̄ ∈ Sn−1

such that u(x) = ū(ω̄ · x) for any x ∈ Rn.

Then, we have the following consequences of Theorem 1.1:
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Theorem 1.2 (One-dimensional symmetry for asymptotically flat solutions). Assume that L satisfies (H1) and
that f satisfies (H2) and (H3).

Let u be a solution of Lu = f(u) in Rn.

Assume that there exists a : (1,∞)→ (0, 1] such that a(R)↘ 0 as R ↗ +∞ and such that, for all R > 0,
we have that

{ω · x 6 −a(R)R} ⊂ {u 6 −1 + κ} ⊂ {u 6 1− κ} ⊂ {ω · x 6 a(R)R} in BR,

for some ω ∈ Sn−1, which may depend on R. Then, u is 1D.

We stress that all these results, as far as we know, are new even for the equation (−∆)s/2u = u − u3,
with s ∈ (0, 1), which is a particular case of our setting.

As a matter of fact, we can consider the concrete case of minimal solutions of the nonlocal Allen-Cahn equa-
tion (−∆)s/2u = u − u3, with s ∈ (0, 1). We remark that the energy functional related to such equation
is

E (u,Ω) := E Dir(u,Ω) +

∫
Ω

(1− u2(x))2 dx,

where

E Dir(u,Ω) := Cn,s

∫∫
R2n\(Rn\Ω)2

|u(x)− u(y)|2

|x− y|n+s
dx dy, (1.3)

for a suitable normalization constant Cn,s > 0. In this setting, we say that a solution u of (−∆)s/2u = u − u3

is a minimizer of E in Rn if

E (u,B) 6 E (u+ ϕ,B),

for any ball B ⊂ Rn and any ϕ ∈ C∞0 (B). In this setting, the following results hold true:

Theorem 1.3 (One-dimensional symmetry in the plane). Let u be a minimizer of E in R2. Then, u is 1D.

Theorem 1.4 (One-dimensional symmetry for monotone solutions in R3). Let n 6 3 and u be a solution
of (−∆)s/2u = u− u3 in Rn.

Suppose that
∂u

∂xn
(x) > 0 for any x ∈ Rn and lim

xn→±∞
u(x′, xn) = ±1.

Then, u is 1D.

Theorem 1.5 (One-dimensional symmetry when s is close to 1). Let n 6 7. Then, there exists ηn ∈ (0, 1) such
that for any s ∈ [1− ηn, 1) the following statement holds true.

Let u be minimizer of E in Rn. Then, u is 1D.

Theorem 1.6 (One-dimensional symmetry for monotone solutions in R8 when s is close to 1). Let n 6 8. Then,
there exists ηn ∈ (0, 1) such that for any s ∈ [1− ηn, 1) the following statement holds true.

Let u be a solution of (−∆)s/2u = u− u3 in Rn.

Suppose that
∂u

∂xn
(x) > 0 for any x ∈ Rn and lim

xn→±∞
u(x′, xn) = ±1.

Then, u is 1D.
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The full proofs of the results mentioned above are given in [12]. Here, we present the details of a series of pivotal
results of geometric type that will be exploited in [12].

Related results on symmetry problems with possible applications to nonlocal phase transitions have been re-
cently announced in [19] and obtained in [20] (we stress that the range of fractional parameter dealt with
in [19, 20] is complementary to the one of this paper and [12]).

2. SOME USEFUL FACTS ON THE DISTANCE FUNCTION

We collect here some ancillary results of elementary nature from the theory of convex sets and anisotropic
distance functions. For the convenience of the reader, we give full details of the results we need, that are stated
in a convenient form for their use in the forthcoming paper [12].

For this, we consider a continuous and degree 1 positively homogeneous function h : Rn → [0,+∞) and the
convex set in (1.2). We assume that the boundary of C is of class C1. The set C in our setting plays the role of
an anisotropic ball, and so, for any r > 0, we set

Cr(y) := y + rC . (2.1)

This anisotropic ball induces naturally a norm, defined, for any p ∈ Rn, by the following formula:

‖p‖C :=
1

sup{τ > 0 s.t. τp ∈ C }
. (2.2)

We observe that, in view of (1.2), (2.1), and (2.2), for any R > 0 and z0 ∈ Rn,

CR(z0) =
{
x ∈ Rn s.t. ‖x− z0‖C 6 R

}
. (2.3)

Also, we have the following elementary inequality of Cauchy-Schwarz type:

Lemma 2.1. For any x, y ∈ Rn, we have that x · y 6 h(y) ‖x‖C .

Proof. If either x = 0 or y = 0 we are done, so we can suppose that y 6= 0 and x 6= 0. We set ω := y
|y| ∈ S

n−1

and η := x
‖x‖C

. Then η ∈ C , thus by (1.2)

x

‖x‖C
· y = η · ω |y| 6 h(ω) |y| = h

(
y

|y|

)
|y| = h(y),

which gives the desired result. �

Now we show that, in the terminology of convex geometry, the function h is the “support function” of the convex
body C .

Lemma 2.2. For any ω ∈ Sn−1,
h(ω) = sup

x∈C
x · ω. (2.4)

Proof. From (1.2), we have that, for any x ∈ C and any ω ∈ Sn−1, x · ω 6 h(ω), and so

sup
x∈C

x · ω 6 h(ω), (2.5)

for any ω ∈ Sn−1. In particular, this implies that C is bounded in any direction. Therefore, to check the opposite
inequality to the one in (2.5), and thus to complete the proof of the desired result, we can fix ω ∈ Sn−1 and
slide a hyperplane with normal direction ω till it touches C at some point P ∈ ∂C . That is, we have that for any
x ∈ C it holds that ω · (x− P ) 6 0 and so

sup
x∈C

ω · x = ω · P. (2.6)
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Also, since P ∈ ∂C , we deduce from (1.2) that there exists $ ∈ Sn−1 for which

$ · P = h($). (2.7)

Notice that {$ · (x− P ) = 0} is a supporting hyperplane for C , since, for any x ∈ C ,

$ · (x− P ) = $ · x− h($) 6 0,

thanks to (1.2).

Since ∂C has been assumed to be aC1 manifold, the two supporting hyperplanes at P , namely {ω ·(x−P ) =
0} and {$ · (x− P ) = 0}, must coincide, and so ω = $.

As a consequence of this, recalling (2.6) and (2.7), we obtain that

sup
x∈C

ω · x = ω · P = $ · P = h($) = h(ω),

as desired. �

As a counterpart of Lemma 2.1, we also have

Lemma 2.3. Let z0 ∈ Rn, R > 0 and z ∈ ∂CR(z0). Let ω0 ∈ Sn−1 be the inner normal of ∂CR(z0) at the
point z. Then

ω0 · (z0 − z) = Rh(ω0).

Proof. Let

ζ :=
z − z0

R
.

By Lemma 2.3, we know that
ζ ∈ ∂C . (2.8)

Also, since CR(z0) is convex, we know that CR(z0) ⊂ {x ∈ Rn s.t. ω0 · (x− z) > 0} and so

C ⊂ {y ∈ Rn s.t. ω0 · (y − ζ) > 0}.
Hence, by (2.4),

h(ω0) = h(−ω0) = sup
y∈C

(−y · ω0) 6 −ζ · ω0.

On the other hand, by Lemma 2.1,

−ζ · ω0 6 h(ω0) ‖ − ζ‖C = h(ω0),

and so

h(ω0) = −ζ · ω0 =
(z0 − z) · ω0

R
,

as desired. �

Given a nonempty, closed and convex set K ⊂ Rn, we define the anisotropic signed distance function from K
as

dK(x) := inf
{
`(x) : `(x) = ω · x+ c, hL(ω) = 1,

c ∈ R and ` > 0 in all of K
}
.

(2.9)

Notice that dK is a concave function, since it is the infimum of affine functions. Also, we have that dK is a
Lipschitz function, with Lipschitz constant 1 with respect to the anisotropic norm, as stated in the following result:

Lemma 2.4. For any p, q ∈ Rn,
|dK(p)− dK(q)| 6 ‖p− q‖C .
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Proof. Up to exchanging p and q, we suppose that dK(p) > dK(q). Fixed δ > 0, we let `δ(x) = ωδ · x + cδ
be such that h(ωδ) = 1, cδ ∈ R, `δ(x) > 0 for any x ∈ K , and with dK(q) > `δ(q) − δ. Then, we have
that dK(p) 6 `δ(p) and so, by Lemma 2.1,

|dK(p)− dK(q)| = dK(p)− dK(q) 6 `δ(p)− `δ(q) + δ

= ωδ · (p− q) + δ 6 h(ωδ) ‖p− q‖C + δ = ‖p− q‖C + δ.

Hence, taking δ arbitrarily close to 0 we obtain the desired result. �

It is also useful to observe that the minimum in (2.9) is attained, namely:

Lemma 2.5. For any p ∈ Rn there exists an affine function `p, of the form `p(x) = ωp ·x+ cp, with h(ωp) = 1,
cp ∈ R, such that `p > 0 in K and dK(p) = `(p).

Moreover, if t0 ∈ R and z0 ∈ {dK > t0} are such that p ∈ ∂CR(z0)∩{dK = t0}, with CR(z0) ⊂ {dK > t0},
and ω0 is the interior normal of CR(z0) at p, we have that

ωp =
ω0

h(ω0)
(2.10)

and cp = t0 −
ω0

h(ω0)
· p. (2.11)

Proof. The existence of the optimal affine function `p follows from the direct methods of the calculus of variations,
so we focus on the proof of the second claim. We have that, for any x ∈ CR(z0),

ωp · p+ cp = dK(p) = t0 6 dK(x) 6 ωp · x+ cp,

that is
min

x∈CR(z0)
ωp · x = ωp · p.

Hence, by Lagrange multipliers, the gradient of the map ωp · x is parallel to (and in the same direction of) ω0,
that is

ωp = cω0, (2.12)

for some c > 0. Hence, since h is homogeneous,

1 = h(ωp) = c h(ω0).

This gives that c = 1
h(ω0)

, which, combined with (2.12), proves (2.10). Then, we write t0 = dK(p) = ωp · p+ cp
and we obtain (2.11). �

In case of tangent anisotropic spheres to level sets of the anisotropic distance function, a useful comparison
occurs with respect to Euclidean hyperplanes, as stated in the following result:

Lemma 2.6. Let K be convex, z0 ∈ {dK > t0}, t0 ∈ R. Suppose that CR(z0) ⊂ {dK > t0} and let z ∈
∂CR(z0) ∩ {dK = t0}.
Let ω0 be the interior normal of CR(z0) at z and {dK > t0} ⊂ {x ∈ Rn s.t. ω0 · (x − z) > 0}. Then, for
any x ∈ Rn it holds that

dK(x) 6
ω0

h(ω0)
· (x− z) + t0.

Proof. We let
d̃(x) :=

ω0

h(ω0)
· (x− z) + t0. (2.13)

We claim that
d̃(x) > 0 for any x ∈ K . (2.14)
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For this, we use Lemma 2.5 (with p = z, according to which the affine function

`z(x) := ωz · x+ cz,

with ωz = ω0

h(ω0)
and cp = t0 − ω0

h(ω0)
· z satisfies `z(z) = dK(z) and `z(x) > 0 for any x ∈ K . In particular,

for any x ∈ K , we have that d̃(x) = `z(x) > 0, which proves (2.14).

In addition, from the homogeneity of h we have that

h

(
ω0

h(ω0)

)
=
h(ω0)

h(ω0)
= 1.

Using this and (2.14), we obtain the desired result from (2.9). �

Now we show that the function dK , as defined in (2.9), coincides with the signed distance from the boundary of
K , namely:

Proposition 2.7. Let K ⊂ Rn be nonempty, closed and convex. Then it holds that

dK(x) =

{
+ inf

{
‖z − x‖C : z ∈ ∂K

}
for x ∈ K

− inf
{
‖z − x‖C : z ∈ ∂K

}
for x ∈ Rn \K.

(2.15)

Proof. First, we show that

dK > 0 in K . (2.16)

For this, let ` be any affine function in (2.9). Since ` > 0 in K , the claim in (2.16) plainly follows.

Now we show that

dK 6 0 in Rn \K . (2.17)

To this aim, let p ∈ Rn \K . SinceK is convex, we can separate it from p, namely there exists an affine function
`o(x) = ωo · x + co, for suitable ωo ∈ Rn \ {0} and co ∈ R, such that `o > 0 in K and `o(p) 6 0. So, we
define

ω :=
ωo

h(ωo)
, c :=

c

h(ωo)
and `(x) := ω · x+ c.

In this way, we have that `(x) = `o(x)
h(ωo)

> 0 for any x ∈ K , and `(p) 6 0. In addition, we have that h(ω) = 1

and so ` is an admissible affine function in (2.9). This implies that dK(p) 6 `(p) 6 0, which gives (2.17).

From (2.16), (2.17) and the continuity of dK (recall Lemma 2.4), it follows that dK = 0 along ∂K . Hence, to
complete the proof of (2.15), we can restrict to the case in which x 6∈ ∂K . Hence, it suffices to check that, for
any P 6∈ ∂K ,

|dK(P )| = inf
{
‖z − P‖C : z ∈ ∂K

}
. (2.18)

To check this, we first observe that, from Lemma 2.4, for any z ∈ ∂K ,

|dK(P )| = |dK(P )− dK(z)| 6 ‖z − P‖C
and therefore

|dK(P )| 6 inf
{
‖z − P‖C : z ∈ ∂K

}
.

Thus, to complete the proof of (2.18), we only need to show that

|dK(P )| > inf
{
‖z − P‖C : z ∈ ∂K

}
. (2.19)

For this, we set R(P ) := inf
{
‖z − P‖C : z ∈ ∂K

}
> 0 and we notice that CR(P )(P ) is contained either

in K (if P ∈ K) or in the closure of the complement of K (if P ∈ Rn \ K), and there exists p ∈ ∂K with
‖p− P‖C = R(P ).
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So, if P ∈ K , we use Lemma 2.5 to find see that the affine function `p(x) := ωp · x+ cp, with ωp = ω0

h(ω0)
and

cp = − ω0

h(ω0)
· p, satisfies `p > 0 in K and dK(p) = `(p). Accordingly, by (2.9) and Lemma 2.3,

|dK(P )| = dK(P ) > `(P ) =
ω0

h(ω0)
· (P − p) = ‖P − p‖C > inf

{
‖z − P‖C : z ∈ ∂K

}
.

This proves (2.19) when P lies inside K , so we now deal with the case in which P lies in Rn \K .

For this, we let p ∈ K ∩ ∂CR(P )(P ) and we denote by ω0 ∈ Sn−1 the inner normal of ∂CR(P )(P ) at p. Then,
since K is convex, we have that ω0 · (x− p) 6 0 for any x ∈ K . Hence, the affine function

`(x) :=
−ω0

h(ω0)
· (x− p)

satisfies ` > 0 in K and so it is admissible in (2.9). Consequently, by Lemma 2.3,

−|dK(P )| = dK(P ) 6 `(P ) = − ω0

h(ω0)
· (P − p) = −R(P )

and so

|dK(P )| > R(p) > inf
{
‖z − P‖C : z ∈ ∂K

}
.

This completes the proof of (2.19), as desired. �

3. THE DISTANCE FUNCTION FROM A GRAPH

For convenience, we give here two results on the Euclidean distance function from a graph (the anisotropic case
follows also from this results directly, up to changing constants, thanks to the equivalency of the norms). For this,
we denote by d∗ the distance function dK in (2.9) when h is identically 1 (hence C in (1.2) is the Euclidean unit
ball B1) and K is the portion of space lying above a function ζ ∈ C1(Rn−1), that is K := {xn > ζ(x′)}.
Notice that, in this case, the anisotropic norm ‖ · ‖C in (2.2) is simply the Euclidean norm and, by (2.15), d∗ is
simply the signed distance function from the graph of ζ .

Then we have the following results:

Lemma 3.1. Let b ∈
(
0, 1

2

)
. Assume that ζ(0) = 0 and that |∇ζ(x′)| 6 b for every x′ ∈ Rn−1 with |x′| 6 2.

Then, for any x ∈ B1 with xn > ζ(x′)

d∗(x) >
1

2

(
xn − ζ(x′)

)
.

Proof. We let R := d∗(x) > 0 and we observe that BR(x) lies above the graph of ζ and it is tangent to it at
some point z = (z′, zn) ∈ ∂BR(x) with zn = ζ(z′). We also denote by ω the interior normal of BR(x) at z.
Then, by construction,

x− z
R

= ω =

(
−∇ζ(z′), 1

)√
1 + |∇ζ(z′)|2

. (3.1)

Also, since the origin belongs to the graph of ζ , we have that R = d∗(x) 6 |x| 6 1. Therefore |z| 6
|z − x|+ |x| = R + |x| 6 2. Accordingly, we deduce from (3.1) that

|x′ − z′|
R

=
|∇ζ(z′)|√

1 + |∇ζ(z′)|2
6 |∇ζ(z′)| 6 b.
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Thus, using again (3.1),

1 >
1√

1 + |∇ζ(z′)|2
=
xn − zn
R

=
xn − ζ(x′) + ζ(x′)− ζ(z′)

R

>
xn − ζ(x′)− b |x′ − z′|

R
>
xn − ζ(x′)− b2R

R
.

Therefore
xn − ζ(x′) 6 (1 + b2)R 6 2R = 2d∗(x). �

Given r ∈ R, we use the notation r− := max{−r, 0}.

Lemma 3.2. Let α ∈ (0, 1), b ∈
(
0, 1

2

)
and r > 1, with brα 6 1

2
. Assume that ζ(0) = 0 and that |∇ζ(x′)| 6

brα for every x′ ∈ Rn−1 with |x′| 6 3r.

Suppose also that
ζ(x′) > 0 for every x′ ∈ Rn−1. (3.2)

Let x ∈ Rn with |x′| 6 r. Then (
d∗(x)

)
− > 4

(
xn − ζ(x′)

)
−.

Proof. We can suppose that xn < ζ(x′), otherwise
(
xn − ζ(x′)

)
− = 0 and the desired claim is obvious.

Then, we takeR := −d∗(x) > 0 and we consider the ballBR(x). By construction,BR(x) lies below the graph
of ζ and it is tangent to it at some point z = (z′, zn) ∈ ∂BR(x) with zn = ζ(z′). Notice that, in view of (3.2),

zn > 0. (3.3)

We also denote by ω the interior normal of BR(x) at z, and so

x− z
R

= ω =

(
∇ζ(z′), −1

)√
1 + |∇ζ(z′)|2

. (3.4)

We claim that
znxn 6 brα+1 zn. (3.5)

Indeed, if xn 6 0, then (3.5) follows from (3.3). If instead xn > 0, then we know that

ξ(x′) = ξ(x′)− ξ(0) 6 brα |x′| 6 brα+1

and thus xn ∈ (0, ξ(x′)) ⊆ (0, brα+1), which gives (3.5).

From (3.3) and (3.5) we obtain that

z2
n − 2xnzn > z2

n − 2brα+1zn > inf
t>0

t2 − 2brα+1t = −b2r2(α+1).

Consequently, using that the origin lies on the graph of ζ ,

r2 + x2
n > |x′|2 + x2

n = |x|2 > |d∗(x)|2 = |x− z|2

= |x′ − z′|2 + |xn − zn|2 = |x′ − z′|2 + x2
n + z2

n − 2xnzn

> |x′ − z′|2 + x2
n − b2r2(α+1),

and thus |x′ − z′|2 6 r2 + b2r2(α+1) 6 2r2.

Therefore |z′| 6 |x′|+ |x′ − z′| 6 r +
√

2 r 6 3r. Hence, we deduce from (3.4) that

|x′ − z′|
R

=
|∇ζ(z′)|√

1 + |∇ζ(z′)|2
6 |∇ζ(z′)| 6 brα
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and
1

2
6

1√
1 + b2r2

6
1√

1 + |∇ζ(z′)|2
=
zn − xn
R

=
ζ(z′)− ζ(x′) + ζ(x′)− xn

R

6
brα |z′ − x′|+ ζ(x′)− xn

R
6
b2r2αR + ζ(x′)− xn

R
.

That is, (
d∗(x)

)
−

2
6
R

2
6 (1− b2r2α)R 6 2(ζ(x′)− xn) = 2

(
xn − ζ(x′)

)
−,

which gives the desired result. �
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