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Abstract 

Using the formalism defined by R. Lauterbach and M. Roberts [21], we develop a 
geometric approach for the problem of forced symmetry breaking for periodic orbits 
in G-equivariant systems of ODE's. We show that this problem can be studied as 
the perturbation of the identity mapping on the double coset space L\G/K where 
K is the maximal subgroup of G acting on the periodic orbit and L the symmetry of 
the perturbation. We exhibit some example where this kind of symmetry breaking 
allows to show the existence of heteroclinic cycles between periodic solutions. 

1 Introduction 
The modelisation of physical phe'nomena leads often to take in account symmetries which 
are "first order" symmetries of the physical system i.e. symmetries of an ideal model 
bigger than those of the real physical system. However if the real physical system is a 
small perturbation of its ideal model, we can expect that the studiof .t.he ideal model gives 
a "first oder" description of the real model. For instance, the spherical Benard problem can 
be a model for the problem of onset of convection in stars. This "ideal" model as described 
in [7], assumes that the star is perfectly spherical. Furthermore, it is often supposed to be 
not rotating ([4, 9]). It is clear that these assumptions are rough descriptions of the reality 
and a more realistic model should include at least a small rotation of the star and the 
induced slight flatness of poles. This forces to break the symmetry from 0(3) to S0(2). 
A natural question is then how to relate the various solutions of the ideal G-symmetric 
model with those of a more realistic model where the symmetry group is a subgroup H 
of G. Several approaches where used to investigate the persistence of equilibria solutions 
[15, 5, 16, 6]. More recent works ([21, 19, 20, 14]) consider the possible dynamics induced 
by forced symmetry breaking on relative equilibria and show in particular the existence 
of heteroclinic cycles. In this paper, we use the formalism defined in [21] to investigate 
the possible dynamics resulting from a forced symmetry breaking on G-orbits of periodic 
orbits. 
In order to motivate this work, we recall in section 2 some general facts concerning the 
perturbation of normally hyperbolic, flow and group invariant submanifolds. We restrict 
our attention to the simplest flow and G invariant manifolds, namely to group orbits of 
a time orbit of a point. In section 3 we give generalities about this kind of invariant 
manifolds. We restrict the study in 3.2 to a G-orbit M of a time periodic orbit and show 
that M can be provided with a natural fibration by S1 . We also investigate the geometry 
of L-equivariant flows on M for a subgroup L C G and the corresponding orbit space L \M. 
In section 4.5 results similar to results given in [21] are obtained (see propositions 4.22, 
4.23 and 4.24). They pave the way to localize heteroclinic cycles between periodic orbits 
after L-equivariant perturbation of the G-equivariant flow. In the last section, we exhibit 
an example of symmetry breaking for periodic solution in S0(3)-equivariant problems 
leading to the possibility of heteroclinic cycles between periodic orbits. 
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2 Perturbation of G-invariant manifolds 
As we emphasized in the introduction, the question of perturbation of G-invariant man-
ifolds had been investigated from a theoretical point of view by R. Lauterbach and 
M. Roberts ([21]). Their results were applied to orbits of fixed points with 80(3) sym-
metry ([21, 20]). In this section, we recall without proofs some of their results. 

Let X be a smooth, finite dimensional manifold provided with a smooth action of a 
compact Lie group G 

GxX r+ X 
(g, x) --+ gx (2.1) 

Let f : X !:-+ TX be a G-equivariant vector field on X and ~ : Xx 1R r+ X the corresponding 
fl.ow. Let M be a G and ~ invariant submanifold of X. M is supposed to be normally 
hyperboli_c ([17]), i.e. roughly speaking, the dynamics near M is_.governed by dynamics 
transversal to M). Note that this condition is not very restrictive. For example, if M is a 
relative periodic orbit, we have the following result : 

Proposition 2.1 {[13} Prop. 8.2) Let ~ : X x IR r+ X be a smooth and G-equivariant 
flows on X and M C X be a relative periodic orbit of ~. There exist arbitrary smooth 
perturbations ~1 of~ such that M is a normally hyperbolic relative periodic orbit of ~1 • 

The essential result for this approach of symmetry breaking perturbations states : 

Theorem 2.2 ({21} Prop. 1.1} Assume f : X r+ TX is a G-equivariant er -vector field 
on X, r 2:: 1. Let M C X be a compact submanif old which is invariant under the flow ~ 
corresponding to f and under the action of G. Assume that M is normally hyperbolic. Let 
L c G be a subgroup and g: x r+ TX be a L-equivariant er -vector field with Ilg- !lie,. < €. 

Then, if E is sufficiently small, there exists a unique er-manifold Me near M which is 
invariant under the flow ~ € corresponding to w. Moreover there exists a er diff eomorphism 
M--+ Me which is L-equivariant. 

This allows the study of the perturbed dynamic by means of L equivariant vectors fields on 
M instead of L-equivariant on the a priori unknown manifold M€. Since Mis G-invariant 
it could be easily characterized in some simple cases like in the case of relative equilibria. 
A natural question is whether it is possible or not to realise a L-equivariant fl.ow on Mas 
the restriction of a L-equivariant perturbation of a G-equivariant fl.ow on X. The answer 
is given by the following proposition : 

Proposition 2.3 ({21} Proposition 1.3) Let ~ be a L-equivariant flow on X, ~M be its 
restriction to M. For each compact neighborhood W of M and for all € > 0 there exists a 
8 > 0 such that for any flow WM on M with 

II WM - ~M llci< 8 
there exists a L-equivariant flow W on X such that WIM = WM and II W - ~ llc1 (w)< E. 
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3 Simple G-invariant manifolds 

3.1 A general setup 
In this section, we give some general results concerning simple flow and G-invariant sub-
spaces. By "simple", we mean G-orbit of a unique integral manifold of a vector field. We 
show that there are three classes of such subspaces : direct product, relative equilibria 
and relative periodic orbits. Most of the material of this section can be read "between 
the lines" in [12] and [13]. 
In the following, f : X --+ TX is a G-equivariant vector field on X and {P : X x 1R --+ X 
is the corresponding flow on X. By equivariance of f, we have 

g{P( x, t) = {P(gx, t) V g E G, Vt E 1R 

We denote Ux the integral curve of 4> passing through x E X at the time t = 0, Mx its 
group orb._it 

Mx = {gy /YE Ux,9 E G} 
Finally, we denote by Hx C G the isotropy subgroup of x relatively to the action (2.1) 
and K~ C G the maximal subgroup acting on Ux, i.e. 

Proposition 3.4 If y E Mx then there is g E G such that 

Proof: By flow invariance of Fix(Hx), Hx' = Hx for any x1 E Ux. Let y = {P(g x, t). Then 

. and 

Since f is a smooth vector field, the integral line Ux0 for any given Xo E X corresponds 
either a fixed point, a periodic orbit or a non compact trajectory. Respectively to these 
three cases, Mx0 can be provided with a left action of G x P with P= ][, S1, IR 

GxPxMx0 

((g,p), x) 
--+ Mxo 
--+ (g,p) · x = ¢(gx,p) (3.2) 

This action is clearly transitive. 
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Since Kxo acts on Ux0 , there is a group homomorphism 

(): Kx0 -1- P 

such that for any k E Kx0 , kxo = ¢(xo, B(k)). 

Lemma 3.5 The isotropy subgroup r xo c G x p of Xo for the action (3.2} is 

Furthermore, if x E Mx0 , then r x ~ r xo . 

(3.3) 

Proof: Let (g,p) E rxo· Then (g,p). Xo = <P(gxo,B(p)) = Xo. By definition, g is an 
element of Kxo. We can write 

(g,p) · xo = <P(gxo,p) = <P(xo, B(g) + p) 
and, since () is a group homomorphism, t = B(g-1 ). The group G x P' acts transitively on 
Mx0 • Since r x is the isotropy subgroup of x for this action, r x is conjugated to r xo. I 

Simple G-orbit can be characterised as follows : 

Lemma 3.6 The G-orbit Mxo can be characterized by : 

1} Kx0 /Hx0 =JI and Mx0 is diffeomorphic to the direct product G/H X Ux0 

2} Kx0 /Hx0 =/. JI. Then Mx0 is a compact manifold and either Mx0 / G ~ JI and Mx0 

corresponds to a relative equilibrium or a Mx0 /G ~ S1 and Mxo is a relative periodic 
orbit 

Proof: If Kx0 /Hx0 ~ JI, then the isotropy subgroup of x 0 with respect to the action of 
G X P is Hx0 X ][. Then 

Mxo ~ (G x P)/(Hxo x JI)~ G/H x p ~ G/H x Uxo 
the free action of P on Ux0 yielding the last identity. 
Let us now assume that Kx0 /Hx0 ~ JI and let k E K - H. Then there is an element tk in 
1R such that kxo = <P(xo, tk)· Clearly, for any element x E Uxo there is n E Z such that 
x E <P( Xo, [ntk, ( n + 1 )tk]) and Mx0 is the G-orbit of the subset V = <P( xo, [O, tk]) of Ux0 • 

Using theorem 3.12 in [20], Gx0 n Vis discrete or all of V (theorem 3.12 in [20] is stated 
for V homeomorphic to S1 but it is true for any compact V). If 7r: Mx0 --+ Mx0 /G is the 
canonical projection, then Mx0 is the saturation of V, i.e. Mx0 = 7r-1 07r(V). If Gx0 n Vis 
all of V then V/G ~JI and Mx0 /G ~JI. Thus Mxo is a relative equilibrium. If If Gx0 n V 
is discrete, then V/G ~ S1 ~ Mx0 and Mx0 corresponds to a relative periodic orbit. I 

Remark that the case where Mxo ~ G/H x U::c0 can be useful for the study of symmetry 
breaking for heteroclinic connections. A classification of the possible dynamics on relative 
equilibria and relative periodic orbit can be found in papers of M. Field [12, 13]. 
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3.2 The case of G-orbit of periodic orbits 
In this section, we investigate more precisely the geometric structure of group orbits of 
periodic solutions. 
Let f : X 1-t TX a G-equivariant vector field on X and q> : X x IR -+ X a fl.ow associated 
to the system 

dx =f(x) 
dt (3.4) 

We assume the existence of a point Xo E X and a strictly positive real number T such 
that Xo = q>(x0 , T). Clearly 

Ux0 = { q)(xo, t), t E IR} 

Up to a scaling of time in (3.4), we assume T=l. We denote M- = ... Mx0 , H = li:r:o and 
K = Kx0 • In 3.1, we defined a transitive left G x 81 action on M: . 

G x 81 x M i--t 
(g, a, x) -+ 

M 
(g, a)· x = q>(gx, a) (3.5) 

Since the kernel of the homomorphism (3.3) e : K---+ 81 is equal to H, B(K) is isomorphic 
to a closed subgroup of 80(2), i.e. K/H ~ ][, Zm for any integer m or K/H~ 80(2). In 
the last case, Ux0 is included in Gxo and Mx0 corresponds to a relative equilibrium. We 
restrict our attention to the case K/H,,u 80(2). The isotropy subgroup r xo c G x 81 of 
x 0 under the action (3.5) is given by 

We can now give a more precise characterization of M : 

Proposition 3. 7 The manifold M is diffeomorphic to the quotient manifold G x 81 /r xo. 

Proof: This is a standard result (see [3] proposition 4.2). 

This diffeomorphism is given by : 

µxo : G x s 1 ;r xo -+ M 
[g, a] -+ (g, a)· xo = q>(g xo, a) 

where [g, a] is a representative of the coset of (g, a) in the quotient. 

We can consider G x 81 as a right K-space with the action defined by 
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(g, a) k = (g k, fJ ( k-1) · a) (3.7) 

Then G x S1 /r xo is precisely the orbit space of K acting by (3. 7) on G x S1 and this is by 
definition ([10] page 32) the fiber product G XK S1. The canonical projection G x S1 --7 
G XK S1 realizes the identification : 

[gk, a]= [g, fJ(k) ·a] (3.8) 

For a general study of fiber bundles and fiber products, see [11] or [24]. More concise 
expositions can be found in [2] or [3]. In the following, we note fibre bundles p : E --+ B 
with fibre F and structure group G in the form (E,B,p,F,G) or simply (E,B,p,G) for a 
principal G-bundle. 

We recall the following result : 

Proposition 3.8 Let G be a Lie group and K a closed subgroup. The operation of K 
on G by right multiplication defines a differentiable K-principal bundle (G, G/K, p, K). 
In particular, G /K is a differentiable manifold and the projection p : G --7 G /K is a 
submersion. 

Proof: See [3] theorem 4.3 or [11] (16.14.1.1). I 

Recall that, by definition, for a family {Uj,j E J} is of open sets covering the base G/K, 
there exists a bundle atlas {'l/;j: Ui x K--+ p-1(Uj),j E J}. If we view Ui x Kasa right K-
space with K acting by ( u, h) · k = ( u, hk ), then each 'lj;i is an equivariant diffeomorphism 
i.e 'l/;j( u, h )k = 'if;( u, hk ). Two bundle charts 'l/;i and 'l/;j give rise to a transition function 
f3i,i : ( Ui n Ui) --+ K such that 

'lj;i(u, k) = 'lj;;(u, kf3i,Au)) 

We can now characterize more precisely the geometric structure of M. 

Theorem 3.9 If p is the K-principal bundle defined in the previous proposition, then the 
mapping p o µ;

0
1 : M --7 G /K defines a differentiable 1-sphere bundle with structure group 

K, i.e. a fibre bundle (M, G/K,p o µ;
0
1 , S1, K). 

Proof: Since the mapping µ;01 : M --7 G XK S1 is a diffeomorphism, we only have to show 
that there is a mapping 7r such that (G XK S1, 'If, S1, K) is a differentiable fibre bundle. 
This is a well known result since 7r : G XK S1 --7 G/K is a fiber bundle associated with 
the K-principal bundle G/K (see [11] 16.14.7). Let us just recall the main points. The 
mapping p: G--+ G/K defines the differentiable K-principal bundle (G, G/K, p, K). Then 
'If : S1 XK G 1--7 G/K given by 7r([a,g]) = p(g) defines the differentiable fiber bundle. 
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Indeed, 7r is a submersion. Furthermore, if { Uj, j E J} and { 'l/;j, j E J} are defined as 
before, then a bundle atlas for 7r: 81 XK G i--+ G/K is given by {-¢j,j E J} such that 

;pj : ui x 81 --+ 7r-1(uj) 
(u,a) --+ ['lf;j(u,e),a] 

where e is the identity in 81 . 

Each ;j;j defines a diffeomorphism. Indeed ;j;j is differentiable and its inverse, given by 

'¢j1 
: 7r-1(Uj) --+ Uj x 81 

[u,a] --+ (7r(u,a),a) 
is also differentiable. 
Now if -j;i and -j;j aretwo charts then we have 

-j;i( u, a) ['l/;j(u, e), a]= ['l/Ji(u, ef3ij(u)), a] 
['l/Ji(u, e) f3ij(u), a]= ['l/;i(u, e), B(f3ii(u))'~ a] 
-j;i( u, B(f3ij( u)) · a) 

and K is the structure group of the fibre bundle. Now 7r o µ;;; : M --+ G/K defines a 
bundle projection and the bundle chart over Ui c G/K is given by µx0 o 'l/Ji· Clearly, the 
transition functions are the same for this bundle as for the bundle (G XK 81, 7r, 81, K). 

I 

The fibers in M correspond to periodic orbits. Indeed, if gK is an element of G/K, then 

Corollary 3.10 The manifold M is orientable. 

Proof: Let Ui and Ui two open subsets of G/K provided with the two bundle charts ;j;i 
and ;j;i· Let now u be a point in Ui n Ui· We have seen that for any element a in 81 we 
have 

with f3i,i(u) E K. The point -j;i(u, a) is expressed in local coordinates in Ui n Ui either as 
(u, a) or as (u, B(f3i,j(u)) ·a) and the change of chart is the diffeomorphism 

-¢;1 a ;pi : ui x 81 --+ uj x 81 

(u, a) --+ (u, B(f3i,j(u))a) 
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Since Im B cS0(2) and S0(2) acts by rotations on 81 , the Jacobian of ,(fa;1 o ;fai is equal 
to 1. As a consequence, M is orientable. I 

It is well known that groups of the form GxS1 are relevant for the study of equivariant 
Hopf bifurcations with symmetry group G. This allows to consider periodic solutions that 
exhibit spatial or temporal symmetry as well as a mixing of both kinds of symmetries.The 
group G provides spatial symmetries and S1 temporal symmetries. The standard reference 
for this topic is Golubitsky et al. [16], chapter XVI. 

There exists an alternative approach adopted by M. Field [13] based on the fibration 
(G XN(H) S1, G/H,p, 81, N(H)/H). Following this approach, Mis fibered by group orbits. 
In our model, it is fibered by periodic orbits. Our idea is to use the sections of the fiber 
bundle to obtain a "Poincare section" and a "Poincare mapping" which allow the study 
of perturbations of the flow on M. 

Before we end this section, we will consider the simple case where K/H= JI. We also 
consider the case K/H= 80(2). Even if this case does not fit with the.definition of relative 
periodic orbit, the results obtained previously remain correct. This example allows us to 
recover the case of relative equilibria. 

• If K/H= JI, then Mis diffeomorphic to G x S1 /(H, JI). Thus for two elements (91 , ai) 
and (92 , a 2), the identification (3.8) yields [gi, a 1] = [g2 , a2-] iff there exists h E H 
such that 91 = 92h and a 1 = a 2 • Thus M ~ G/H x 81. - -• If K/H=S0(2), then K can be written K = H x 80(2) with S0(2) C G isomorphic 
to S0(2) and each k E K can be written in a unique way as k = ha with h E H - -and a E S0(2). Furthermore, the mapping e = BISo'('2) is an isomorphism and for 

any k E K, B(k) = B(ha) = B(a). Now the subgroup ~xo has the form ~xo 
- -{(ha, B(a-1 )), h EH, a E S0(2)} . Let us consider the following mapping 

q : G x S 1 ---+ G = P1 ( G x S 1 ) 

(g,B(a)) ---+ 9a-1 =p1 (ga-1 ,0) (3.9) 

with p1 the projection on the first component. q is clearly a diffeomorphism. Let 
?To : G x S1 ---+ (G x S1 )/r xo and 7r1 : G---+ G/H be the canonical projections and 
q the mapping 

q : ( G x s 1) / r xo 

[9 , e( a)] (3.10) 

It is easily checked that q is well defined and bijective. Let f : G/H ---+ lR be a 
smooth mapping (i.e. f o?T1 is smooth). Since f 01T1 oq = f oqo?T0 with the left-hand 
side smooth, q is smooth (see section 4.2). The same result is true for q-1 and q is 
a diff eomorphism. 
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4 Perturbation of periodic orbits 
Let f : X i--+ TX be the G-equivariant vector field defined in the previous section and L 
be a closed subgroup of G. If M is a normally hyperbolic, flow invariant and G-invariant 
submanifold of X, then by the theorem (2.2), we know that for any small enough L-
equivariant perturbation fe of f, there exist a flow and L-invariant manifold Me closed to 
M. In [21], R. Lauterbach and M. Roberts have shown that if M is a normally hyperbolic 
relative equilibrium, the study of possible dynamics on Me can be advantageously brought 
back to the study of strata preserving vector fields on the quotient manifold L \ G /H. In 
this section, we obtain a similar kind of reduction in the case where M is a normally 
hyperbolic group orbit of periodic orbits of (3.4) 

4.1 Action of subgroups of G on G XK S1 

We first characterize the action of subgroups of G on G XK 81 . Remark that although the 
frame is slightly different, the results obtained are quite similar to those obtained in [21] 
section 1.2. 

Let H, K and M defined as in the previous section. The mapping µxo defined in (3.6) is 
a diffeomorphism from G XK 81 to M. We can define a left G-action on G XK 81 by 

9 · [go, a:] -+ [ggo, a] (4.11) 

and we consider its restriction to a subgroup L C G. 

Proposition 4.11 The action of L on Me and G XK 81 are equivariantly diffeomorphic. 

Proof: By (2.2), there exists a L-equivariant diffeomorphism µe from M to Me and the 
action of L on Me is induced by the action of G on X. For go in G, we have : 

9o · µx0 ([g, a:]) = 9 · q,(gxo, a) = q,(gogxo, a) = µx0 ([gog, a]) 

and µxo o 9 = 9 o µxo . 
Thus µ:r:o is G-equivariant and the diffeomorphism µeoµ:r:0 : G XKS1 --+Me is L-equivariant. 

I 

Now, we shall show that the study of the dynamics depends only on conjugacy classes 
of groups. In the following we will denote [g, a:] the elements of G XK 81 and [g, a:JK, the 
elements of G XK' 81 

Proposition 4.12 Let K and K' = 91Kg11, Land L' = g1Lg11 be subgroups of G, with 
go, gl E G. Then G XK 81 and G XK' 81 are isomorphic as fibre bundles and the mapping 

v : G xK s1 -+ G xK' 81 

[g, a:J -+ (g1 · g · g11
, a]K1 
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realizes a diffeomorphism. The actions of L on 81 XK G and of L' on 81 XK' G are 
diff eomorphic and there exists a diff eomorphism Tg0 : K H- K' such that : 

v(k · [a,g]) = Tg0 (k)v([a,g]) 

Proof: First, it is clear that if H is an isotropy subgroup of K then for any g E G, 
H' == gHg-1 is also an isotropy subgroup and N(H') == gN(H)g-1 • For any k E K, let 
k' =go kg01 EK'. We have 

and B(k) = B(k'). 
Let v be the mapping 

gok Xo = CJ!(go xo, B( k)) 
k' go Xo = CJ!(go Xo, 0( k')) 

v : G XK 81 -+ 
[g, a] -+ 

G XK' 81 

[go g 90 -l, a]K1 

Then v is a well defined diffeomorphism. Indeed let 

then 

[gag' g01, a']K, == [gogk-1 g01, B( k )a]K, == [gogg01 gok-1 g01, B( k )a ]K, 
= [g0 gg;1 , B(gok-1 g01 )B( k )a]K, = [gogg01

, a]K, 
where the last equality is-due to the fact that B(g0k-1g01 ) == B(k-1 ). 

In the same way, we can show that the mapping 

v : G/K -+ G/K' 
[g]K -+ [goggQ"1 ]K1 

· is a well defined diffeomorphism. Now if 7r: G XK 81 -+ G/K and 7r1
: G XK' 81 -+ G/K', 

then the following diagram commutes 

G/K ~ G/K' 

and (v, v) defines a fibre bundle isomorphism. 

Let L C G act on G XK 81 and L' = g1Lg11 act on G XK' 81. 
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I 

We will now determine some properties of the action of a subgroup 1 C G on the manifold 
G XK 81 similar to those given in proposition 1.7 and 1.8 in [21]. We recall that if 11 
and 12 are two subgroups of G, the set N(11, 1 2) introduced in Ihrig & Golubitsky [18] is 
defined by 

N(11, 12) = {g E Gl11 c g12g-1} 
if N (11, 1 2) # 0 then 11 is said to be subconjugated to 12 

Proposition 4.13 Let 1 act on G XK S1 by the restriction of the action (4.11) and let 
L' be a subgroup of L. We have : 

(a) Fix(L') # 0 {:==:} L' subconjugated to H 

(b) Fix(L') = [N(L', H), 81 J 

The isotropy subgroup stab([g, a]) of the element [g, a] is given by 

stab([g, a]) = L n gHg-1 

Proof: Let l EL' and [a,g] E G XK 81. Then l · [a,g] = [a,g] if and only if there exist 
k E K such that 

l·g = g·k 
a - B(k-1 )·a 

The second condition is equivalent to k E H since H = ker B. Then the first condition 
yields l = g · k · g-1 and thus l E 1 n gHg-1 • I 

Note that this result is formally identical to the proposition 1. 7 obtained in [21]. 
The flow of the perturbed vector field f e on Me can be studied on G x K 81 through the 
diffeormorphism µ:z:o oµe. If the fibers of the bundle GxK81 --7 G/K correspond to periodic 
orbits off in M, this is no longer the case for fe on the manifold Me. However, there 
is a "remainder" of this structure since all points of a given fiber are in the same fixed 
point subspace after the perturbation. More precisely, we have the following corollary of 
the previous theorem : 

Corollary 4.14 For a fixed g E G, all points [g, a] E G XK S1 possess the same isotropy 
subgroup respectively to the action of a subgroup 1 C G on M. 

Proof: This is immediate since stab([g, a]) doesn't depend on a. I 
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4.2 Orbit spaces and stratum preserving vector fields 
Our strategy to study L-equivariant vector fields on the manifold G XK S1 is to define 
cross-sections to the bundle 7r : G x K S1 -+ G /K and to use them as Poincare sections for 
the initial G-equivariant fl.ow to define a Poincare mapping. However, the study on GxKS1 

leads to consider "L-equivariant" Poincare mapping and their lift to L-equivariant flows 
on G XK S1 could be tricky. Instead, we will use an orbit space projection with respect to 
the action of L to avoid such complications since only strata preserving flows and maps 
have to be considered. We will show that the orbit space L\(G XK S1) inherits a smooth 
fibration. More precisely, the mapping p : L \ ( G XK S1) -+ L \ G /K defines a smooth 
1-sphere bundle with structure group K. 

Let us recall that if Mis a smooth left G-manifold, then the orbit space G\M is in general 
not a smooth manifold but rather a semi-algebraic variety (see [2, 1, 23]). Let p : M -+ 
G\M be the canonical projection (the orbit map). If H CG is an isotropy subgroup for 
this actio~, we denote M(H) the union of all orbits of type H and l~t ( G \ M) (H) = p (M(H)). 
Then (G\M)(H) is naturally a smooth manifold and the restriction p = Pl((M)(H)) defines 
a smooth principal G bundle ((M)(H)' (G\M)(H)'p' G). G\M possesses a natural smooth 
stratification which corresponds to the stratification by isotropy types. 
A smooth structure can be given on G\M using the following definitions : a function 
f : G\M -+ IR. is smooth if its composition with the orbit map is smooth. If M and N are 
two smooth G-manifolds, a mapping f : M -+ N is smooth if its composition with any 
smooth function on G \ N is smooth. 
If we denote by X 00 (M)G the set of G-equivariant vector fields on M and X 00 (G\M) 
the set of strata preserving vector fields on G\M, then there exists a well defined and 
surjective map : X 00 (M)G -+ X00 (G\M) (see [23]). In other words, every smooth strata 
preserving vector field on G\M can be lifted to a G-equivariant vector field on M. An 
important point is that this projection is continuous. This allows to study perturbations 
of equivariant vector fields on M as perturbations of stratum preserving vector fields on 
G\M. 

4.3 Structure of the orbit space 
In this section, we investigate the structure of the orbit space L \M. The main result of 
this section is theorem ( 4.17). Before we state it, we need two elementary results. 

Proposition 4.15 Let X and Y be right and left G-spaces respectively. Let Z be the fibre 
product Z = X x G Y. If X is reduced to a single point with a trivial action of G then Z is 
diffeomorphic to G\ Y. 

Proof: Two points (x1, y1) and (x2, y2 ) in XxY are identified in Z is there is an element 
g E G such that 
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If Xis reduced to a single point xo with the trivial action of G, then clearly (x0 , y 1 ) and 
(xo, Y2) are identified in Zif and only if there are in the same G-orbit. I 

Proposition 4.16 {[2} Proposition 2.3 p. 14} Let X be a right H-space , Y be a left H-
and right K-space and Z a left K-space. Then there is a canonical homeomorphism 

(X XH Y) XK z -+ x XH (Y XK Z) 

given by [[x,y],z] = [x, [y,z]]. 

We can now characterize the structure of L\M : 

Theorem 4.17 The mapping 7ro : L \ ( G x K 81 ) -+ L \ G /K defines a 1-sphere bundle with 
structure group K. 

Proof: Let X be a right L space provided with the action 

z ox= x z-1 

This action extends trivially to a left action on XxG defined by 

l 0 (x,g) = (x z-1 , lg) 

The orbit space of XxG under this action is XxLG. Let us consider the space XxGx81 

provided with the action of Lon XxG and the action of Kon Gx81. Then by projecting 
successively on the orbit spaces, we obtain the two homeomorphic spaces 

x XL (G XK 81
) ~(XXL G) XK 81 

Now reducing X to a single point x 0 with the trivial action of L yields 

Xo x L ( G x K 81) '.:::'. L \ ( G x K 81) 

( Xo x L G) x K 81 '.:::'. (L \ G) x K 81 

Thus there is an homeomorphism f: L\(G XK 81)-+ (L\G) XK 81 which is given by 

L [g, a] -+ [ L[g], a] 
and p: L\(G XK 81) -+ L\G/K possesses a structure of a fibre bundle with fibre 81 and 
structure group K induced by that of the fiber bundle 7r1: (L\G) XK 81 -+ L\G/K. I 

The previous fibre bundle is a priori a continuous one. We will show that it is in fact 
smooth. 

Theorem 4.18 The l-sphere bundle p: L\(G XK 81)-+ L\G/K is smooth. 
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Proof: Let us consider the following diagram 

G XKS1 ~ G/K 

~o 1 1 ~1 ( 4.12) 

L\(GxKS1) ~ L\G/K 

where 7ro and 71"1 are the canonical orbit maps. This diagram is clearly commutative. Let 
now f : L \ G /K --+ 1R be a smooth function. This means that f o 71"1 is smooth. Since 7r 

is a smooth fibre bundle, the composition f o 71"1 o 7r is smooth. By commutativity of the 
diagram, f o 71"1 o 7r = f o p o 7ro and p is a smooth mapping. I 

4.4 Projection of the unperturbed vector field on the orbit space 
We would like to study L-equivariant vector fields on M closed to the restriction f1M of the 
G-equivariant vector field (3.4). First, we will show that the projection of f1M on the orbit 
space L\(G XK S1) defines a vertical vector field, i.e a vector field tangent to fibre in each 
point. Let us just recall that if X is a smooth G-manifold, then the ring of real valued 
polynomial invariants PG(X) is finitely generated ([1, 22, 23]). Ils generators p1, · · · , Pr 
can be chosen homogeneous. The mapping p : X--+ 1Rr induces an homeomorphism of 
X/G with V=Im p which is smooth on each stratum [1]. If 7r: X--+ X/G is the canonical 
projection, then p o 71"-1 realises this homeomorphism. Let x = F( x) a vector field on X. 
Then· its projection on V is given by 

{ 

~1 
Pr 

(gradxP1lx) 

(gradxPrlx) 

Let X be the manifold M where is defined the G-equivariant vector field (3.4). Let 
Pi,· · · , Pr be the generators of PL(M) for the action of L on M, 71"2 : M --+ L \M and 
p : M --+ V the canonical projection. We denote h the homeomorphism h = po 7r21. Since 
p: L\M--+ L\G/K defines a fibre bundle, the mapping p = poh-1 : V--+ L\G/K induces 
clearly a natural fibration with fibre S1 and structure group K on V. Furthermore, p is 
smooth over each stratum. In particular the image by h of a fibre in L \M is a fiber in 
V. In the following, we denote J the projection of the restriction JIM of the unperturbed 
vector field. This unperturbed vector field JIM satisfies the following pro~erty : 

Theorem 4.19 The projection J of the vector field JIM on Vis a vertical vector field. 

Proof : Two elements [g, a 1] and [g, a 2] in M are projected in L \ M on the same 
element L[g]K in L\G/K. Then a variation of a in an element [g, a] corresponds in L\M 
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to a variation along a fiber. Equivalently, a variation of a in p([g, a]) corresponds to a 
variation along a fiber in V. Now the unperturbed vector field on M is vertical. It can 
formally be written in the form 

0 
q(g, a) ( 4.13) 

Its projection on V satisfies 

. ( d ) a Pi . a Pi . a Pi . 
Pi = gra Pi, x = 8g . g + 8a . a = 8a . a 

Then, it is vertical in V. 

The fact that solutions of JIM are T-periodic is also reflected in the orbit space by the 
following fact : 

Proposition 4.20 Let n be the order of the cyclic group B(L n K) .' Then every solution 
of J is T /n periodic. 

Proof: Let k be an generator of LUK and q> the flow associated to f. Let x be any 
point in the periodic orbit P. Since Bis a group homomorphism, we have 

kn· q>( x, t) = q>(x, B(kn).t) = q>(x, n · B(k) + t) = q>(x, t) 
Clearly, if T is the period of P, then B ( k) = T / n. Let now <I> be the flow associated to 
J. Since f lifts back to f under the tangent map p* of p, then <I> op = po q>_ For any 
element x in P, k · x = q>(x, B(k)) and p(x) = p(q_}(x, B(k)). Thus p(x) = <i>(p(x), B(k)). If 
t1 and t2 are two elements in I= [O, T/n[ then p(q_)(xo, t1)) =/:- p(q_)(x0 , t 2 )) and the vector 
field on L\M is not trivial. Since all solutions of JIM are T-periodic, all solutions of J are 
T / n periodic. I 

Remark that in the case of 0(K) =S0(2), then the orbit space take the form 

L\(G XHxS0(2) S1
) ~ L\G/H 

and perturbations of the G-equivariant vector field can be studied as perturbations of the 
initial strata preserving vector fields on L \ G /H. We recover here the result of R. Lauter-
bach and M. Roberts [21]. However, in this case, the orbit space L\(G XK S1) is no more 
a 1-sphere bundle since all periodic orbits in G XK S1 are collapsed to one point. 
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4.5 Perturbation of periodic orbits 
Let us summarize the results of the previous sections. Let P be a T-periodic solution of 
the system of the G-equivariant system 

x = f(x) ( 4.14) 

defined in (3.4) and H be the isotropy subgroup of points in P. Let K be the maximal 
subgroup of G acting on P. Its action is isomorphic to the action of a cyclic subgroup 
B(K) ~ zm on S1 . The G-orbit M of p is diffeomorphic to G XK S1 and the mapping 
'Tr: G XK S1 --+ G/K is a smooth 1-sphere bundle. The restriction to M of the vector field 
corresponding to ( 4.14) is vertical, without fixed point. Let L be a subgroup of G. The 
mapping p: L\M----+ L\G/K is a smooth 1-sphere bundle. The projection J off on L\M 
defines a vertical and strata preserving vector field where all solutions are T /n-periodic 
with n = I B(L n K) I· Small L-equivariant perturbations of ( 4.14) can be studied as small 
strata preserving perturbations of the vector field J. 
The fact that the unperturbed vector field is vertical in L \M could allow in some cases 
a further reduction of dimension for the study of its perturbations. The idea is to use 
differentiable cross-sections of the fiber bundle p : L \M ----+ L \ G /K over each stratum 
to ·define a Poincare section and a Poincare mapping. The projection of the Poincare 
mapping to the base of the bundle leads to the study of stratum preserving perturbations 
of the identity mapping on L \ G /K. Of course, it is probably not possible to obtain 
a global result concerning mappings f : L \ G /K ~ L \ G /K when the dimension d of 
L \ G /K exceeds 2. Even it the case d = 2, it is not clear whether there does or does 
not exist a cross-section for p and the study should be done case by case. The answer 
to this question depends on the characteristic class of the bundle and thus strongly of 
the particular action of G and its subgroups K and L. For example, there is no global 
cross-section for the oriented 1-sphere bundle p : S3 --+ S2 which constitutes the Hopf 
fibration of S3 • Since S0(3)/S0(2)~ 82 , this configuration could occur for perturbations 
with trivial symmetry of periodic solutions with S0(2) symmetry in S0(3)-equivariant 
problems. On an other hand, the study of flows restricted to 1 and 2 dimensional strata 
in L\M, i.e. strata that are preimages by p of 0 or 1 dimensional stratum in L\G/K can 
be useful. Similarly to [21] and [20], this restriction allows the localisation of interesting 
dynamics such as heteroclinic cycles. In this case, these cycles will involve periodic orbits. 
In the remainder of this section, we restrict our attention to these cases. 

Let us consider the set A(L,G/K) of connected components of the strata for the action 
of Lon G/K. We denoter the following set 

r = LJ A such that A E A and dim A = 0 or dim A = 1 

Our goal is to construct a cross-section to the bundle p over r, i.e. a map s : r --+ L\M 
such that s o p = lir. We will see that it is possible to find a differentiable section over r 
even if this is not always true over strata of dimension greater than one. 
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Proposition 4.21 There exists a smooth cross-sections to the fiber p over r. 

Proof: First, we point out that since pis a smooth bundle, then a continuous section over 
r, if it exists, can be approximated with a smooth section ([24], p. 25). Now, the usual 
way to prove the existence of continuous cross sections for a fibre bundle b: X-+ B with 
fibre F is the following ([24],ch. III) : Find a triangulation of B. Let U = {U0 , U1 , ••• } 

where each Uk is the corresponding k-skeleton, i.e. the union of k-dimensional simplicies. 
Determine a cross-section s0 : U0 -+ X. Such a cross-section can obviously always be 
found. Try to extend So to a continuous cross-section S1 : U 1 -+ x. If it is possible, try 
to extend s1 to a continuous cross-section s2 and so on. It is possible to see that the 
extension of sk to Sk+i is possible as long the k-th homotopy group of the fibre 1rk(F) is 
trivial. If this is not the case, nothing can be concluded. This is the primary obstruction 
to the prolongation of the cross-section. In our case, the fibre is S1 and its homotopy 
groups satisfy ([24]) : 

( 4.15) 

So it is only possible to ensure existence of a cross-section over a 1-dimensional skeleton 
of L\G/K. Now, by a result of C.T. Yang ([25]), for any G-manifold M, the orbit space 
G\L can be triangulated in such a way that all points in the interior of a simplex belong 
to the same orbit type. In our case, we can find a triangulation U = {U0 , U1, · ·.} of 
L\G/K such that any 0-dimensional (resp. 1-dimensional) element of A corresponds to 
an element of U0 (resp. U1). Applying the previous construction, we can find a cross-
section S1 over U1. The restriction of S1 tor gives a cross-sections : r -+ L \M continuous 
over each connected component of r. I 

Now, by differentiability of s, its graph 9s is a surface which is transversal to each line of 
the flow associated to ( 4.14) and it defines a global Poincare section for the unperturbed 
flow over r. We denote P~ : 9s--+ 9s the corresponding Poincare mapping for a vertical 
flow ~ without fixed point on M. Remark that P~ is a diffeomorphism. 

We assume now that the manifold M is normally hyperbolic and let g : X -+ TX a smooth 
L-equivariant vector field such that If g - f 11 coo< e, for E E lR+ small enough. Using the 
results of section 2, there exist a unique smooth manifold Me near M which is invariant 
under the L-equivariant flow ~'" associated to g. This flow can be studied as a small 
L-equivariant perturbation on M of the flow ~ associated to f. The flow ~'" induced a 
smooth strata preserving flow on the orbit space L\M which is close to the flow induced 
by~. We have then the following obvious result : 

Proposition 4.22 Let~ a vertical flow on M without fixed points. For each E > 0, there 
is a 8 > 0 such that for each flow ~ 8 on M with 11 ~ - ~ 8 11 c1 < 8, there exists a strata 
preserving diff eomorphism d8 : r --+ r with 11 Hr - d8 11 Cl < € which is smoothly conjugated 
to the P oincare mapping P~ 0 • 
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Proof: We use the convention~= ~o- Let d0 : r--+ r be defined by d0 =po P~0 o s. 
Clearly, d0 = Ilr. By smoothness of p, P~0 and s, d0 is strata preserving and we can 
choose o small enough such that II Ilr - d0 II c1 < E. I 

The converse to this proposition is given by the following result : 

Proposition 4.23 Let ~ be a vertical vector field without fixed points on M and d : 
r --+ r the mapping associated P~ . For each e > 0, there is a o > 0 such that for each 
diff eomorphism da : r --+ r with II d - da II Cl < 0 J there exists a smooth flow ~a on M 
such that II ~ - ~ 0 II c1 < E and such that P~ 

0 
is smoothly conjugated to d0 . 

Remark that since ~a is smooth, it is necessarily strata preserving on r. 
Proof: Since II d - d0 llc1 < o, there is a smooth isotopy joining from d to d0, i.e. a 
smoo!_h mapping .6.. : r x [O, 1] --+ r such that .6..( x, 0) = d( x) and .6..( x, 1) = d0 ( x ). Let 
now .6.. the following mapping : 

Li . { 9s x [O, 1] 
· (x, t) 

--+ 9s 
--+ s 0 .6..(p( x)' t) ( 4.16) 

and consider the flow ~a defines by ~0(x, t) = ~(Li(x, t), t). Clearfy ~a is smooth and then 
strata preserving. Furthermore, ~0 (x, 0) = x and ~0(x, 1) = ~0 (s o d0(x), 1) =so d0 (x). 
The mapping d0 is then associated to the Poincare mapping P~0 • By smoothness of all 
maps involved in the construction of ~ 0 , we can choose o small enough in such a way that 
the condition II ~ - ~a lla1 < E holds. I 

The question whether the flow ~e given in the previous proposition can or can not be 
realised as the restriction of a perturbation W : L \M --+ T(L \M) of ~ is given by the 
following result which is an extension theorem in the same spirit as the proposition 1.3 
in [21] : 

Theorem 4.24 Let ~ a flow on L \M and ~r its restriction to p-1 (r). For each neigh-
borhood ff of p-1 (I') and for all E > 0, there exist a o > 0 such that for any flow W 0 on 
p-1(r) with 

11 ~r - W o II ci < o 
there is a flow W on L \ M such that W lp-1 (r) = W 0 and 

Proof : In section ( 4.4), we defined a homeomorphism h : L \ M --+ V where V is a 
semi-algebraic variety embedded in IR.n for a sufficiently big n. The mapping p = p o h is 
a smooth fiber bundle. Furthermore, a smooth flow ~ on L \M induces a smooth flow ~ 
on V with h o ~ = ~ o h. For simplicity, we identify V with L \M and ~ with ~. 
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Since V is compact, there exists a finite set I and a covering of V by open subsets 
{Ua:, a E I}. Let U = {U a:, a E I] and {¢0: : U a: --t IR, a E I} be a smooth partition of 
the identity associated to U. We define now I' C I, such that I' = {a, 3 x E ;p-1 (I'), x E 
'Ua:}, U = {Ua: = Ua: n p-1(r), a E I'} and P = {J°a: = <Plua' a E J'}. The set P is a 
smooth partition of the identity associated to the closed neighborhood U of ;p-1 (I') in V. 
Let us suppose now, that a fl.ow <l? is defined on V and that a fl.ow <1?8 is defined on p--1(r) 
with II <l?r - W8 llc1 < 8. The fl.ow W8 defines a cross section over ;p-1 (r) for the tangent 
bundle TV --t V. By the same arguments used in the proof of proposition 4.21, this 
section can be extended .E..° a s_mooth cross-section over V and then W 8 can be extended 
to a smooth vector field W on V. Let us define the flow W by : 

{ 
w(x) = <l?(x) 
w(x) = <l?(x) + J°a:(x)(\J!(x) - <l?(x)) 

if x ¢ u 
if x E Ua. ( 4.17) 

Clearly, this fl.ow coincides with W8 on ;p-1(r) and for a given€> 0, we can choose 8 small 
enough such that .11 <l? - W llc1 < €. 

I 

5 Applications 
We consider now some examples where symmetry breaking perturbations for periodic 
orbits can lead to heteroclinic cycles involving periodic orbits. Our purpose here is not 
to prove the existence of such cycles but just to localize configurations where they could 
exist. Furthermore, we don't take into account the problem of their structural stability. 
Let us consider the L-equivariant perturbations of a H-symmetric periodic orbit for G-
equivariant problem where KcN(H) is the maximal subgroup acting on the periodic orbit. 
using the notations of the previous section, we write the set r with the form r = r 0 u r 1 

where ri ={A Er, dimA = i}. We consider now the fl.ow<]? on L\M = L\(G XK S1 ) and 
<]?8 a fl.ow on L \M such that II <]? - <]?8 llc1 < 8 for a small 8 > 0. Let d8 : r --t r the 
corresponding mapping given in proposition 4.22. , 
We can realize a heteroclinic cycle in the following way : let P = { e0 , • • • , en-l} a set 
of elements of ro and c = {170, ... '7Jn-1} a set of elements in r1 such that ei u ei+l 

mod n C fii in r. Assume now that for all i = 0 · · · , n - 1, 1Ji is the unstable manifold 
of ei and the unstable manifold of ei+l for the mapping d8 and the points { e0 , • • • , en-l} 
the only fixed point for d8 on P u C. Then P U G c r will realize a heteroclinic cycle 
for d8 and the corresponding fl.ow <l? 8 will show a heteroclinic cycle between periodic 
solutions. Following Lauterbach and al. [20], such a heteroclinic cycle will be called 
forced heteroclinic cycle if n = 0. 
We will consider problems with G=S0(3). Let us just recall that the subgroups of S0(3) 
are either planar or exceptional subgroups. The planar subgroups are conjugated to 
Zn, Dn, S0(2) and 0(2). The subgroup Zn is generated by a rotation Rn of angle 27r/n 
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around an arbitrary axis a in IR 3 . Dn is generated by Rn and a rotation K, of angle 7r around 
an axis f3 perpendicular to a. S0(2) is the group containing all rotations around a. 0(2) 
is obtained by adding of K, to S0(2). The exceptional subgroups are conjugated to the 
tetrahedral group 'F, the octahedral group 0 and the icosahedral group :JI corresponding 
respectively to the groups of rotational symmetries of the tetrahedron, the octahedron 
and the icosahedron. For a more detailed account of S0(3) and its subgroups, see [18, 16] 
or [8]. 
Remark that formally, the occurrence of a forced heteroclinic cycle for this problem is 
equivalent to the occurrence of a forced heteroclinic cycle in the problem of L-equivariant 
perturbations for K-symmetric relative equilibria in G-equivariant problems. Thus, even 
although both problems are quite different, the geometry of the group action imposes 
a strong similarity between the two problems. Using this remark and the classification 
of forced heteroclinic cycles for relative equilibria performed in [20] yields the following 
result : 

Proposition 5.25 Let f : X --+ TX a S0(3) equivariant vector fieltf, on X. We assume 
that the system 

z = f(z) (5.18) 

possesses a periodic solution and let M its S0(3) orbit which is supposed to be normally 
hyperbolic. Let K be the maximal subgroup of G acting on the periodic orbit. Let fe: X--+ 
TX be a L equivariant vector field for any subgroup L of S0(3) which is close to f in the 
0 1 topology. We note Me the flow invariant manifold close to M. Then forced heteroclinic 
cycles can only occur for fe on Me if (L, K) E {('F, 'F), ('F, 0), (0, 'F), ('F, 0(2)), (0(2), 'F)}. 
The periodic solutions involved in these cycles would be 'F symmetric if (L, K) = ('F, 'F), 
'F or~ symmetric if (L, K) E {('F, 0), (0, 'F)} and~ symmetric in the remaining cases. 

Proof: See theorem 4.30 in [20]. We just draw in figure 5.1 the sets r, the corresponding 
isotropy types and possible diffeomorphisms realising heteroclinic cycles. 

In the left case in figure 5.1, a cycle can be realized if there is a diffeomorphism d : r --+ r 
close to the identity and without fixed point in 11 or in 13 . In the second case, a cycle can 
be realized with a diffeomorphism d : r --7 r close to the identity without fixed points 
inm. 

I 

Let us remark that the heteroclinic cycles given by the previous proposition are not the 
only possible heteroclinic cycles but only the forced ones. More complicated possible 
cycles can be found. If K = 0(2) and L = ~ a the corresponding set r is pictured in 
figure . An heteroclinic cycle will occur with a diffeomorphism without fixed point in the 
three strata of type Z 2 and such that each fixed point possesses a stable and an unstable 
manifold. 
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(L,K) X1 X2 li l2 

(Jr' Jr) 1r 1r .Z3 .Z2 
(Jr' 0) 1r Di .Z3 .Z2 
(0, 'Jr) 1r Di .Z3 .Z2 

l3 
.Z3 
.Z2 
.Z2 

~ mu 
(L,K) Y1 Y2 

(Jr' 0(2)) .Z3 Di 
(0(2), Jr) .Z3 Di 

m 
Z2 
.Z2 

Fig_ure 5.1: The set r for L, KE {(Jr, Jr), (Jr, 0), (0, Jr), (O(~), 'Jr), ('Jr, 0(2))} 

Di 

Figure 5.2: The set r in Di \80(3)/0(2) 

5.1 A particular case 
Let us consider the case G=S0(3), K=0(2) and L = 'Jr. We will show that it is pos-
sible to find a diffeomorphism close to the identity on L\M='Jr\80(3)/0(2) realising an 
heteroclinic cycle. Let us first remark that the orbit space L \M is contractible. As a 
consequence, the space Mis the direct product M ~ L\G/K x 81 ([24] prop 11.4). We can 
then define a global section for the unperturbed flow f on M ([24]). In other word, any 
mapping closed to the identity on the whole base L\M can be lifted as a smooth vector 
field on M. 
We want to prove that there is a smooth diffeomorphism d8 on L\M such that the re-
striction on r is close to the identity on L \M and realizes a heteroclinic cycle. We know 
(section 4.4) that L\M can be embedded in IRr as a semi-algebraic variety V via an home-
omorphism p-1 : V --+ L\M. The integer r is the dimension of a Hilbert basis of the 
ring PL(M) of invariant polynomials for the action of L on M. Furthermore, the smooth 
structure on L \M is induced by that of IRr. If we refer to the figure 5.1, let G be the 
disk bordered by m U y 2 • The points y1 and Y2 correspond respectively to the isotropy 
types .Z3 and Di, m to the type .Z2 and G - (m U Y1 U Y2) to the trivial isotropy stra-
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tum. The variety V is clearly defined once we know it in a neighborhood of the points 
p-1 (y1 ) and p-1 (y2). Let x be a point in the L-manifold M and S a differentiable slice 
for its orbit Lx. Let 'l/;1, · • · , 'l/Jk a Hilbert basis for the action of the isotropy group Lx on 
S. Then there exists a real analytic isomorphism of a neighborhood of the origin in the 
space 'lj;(S) = ('l/;1 (S), · · · ,'lj;k(S)) C IRk with a neighborhood of the image 7r(x) C L\M 
( [1] ,proposition 1). In our case, since L is discrete, so is the orbit of x and a slice in x 
is just a small enough open neighborhood of x in M. Now, using the picture 5.3, we see 
that the slice action of Di in y1 is generated the two elements 

P1 : z 1-7 z, 11, : z 1-1- -z 

and the slice action of Z3 in y2 is generated by a rotation 

P2 : z 1-7 e2-rr/3 

Figure 5.3: Action of Ton 80(3)/0(2)~ IRIF2 before the identification of opposite points 
· of the sphere 

The corresponding rings of invariants are given by 

and 

fDi (V) =< B~ = zz, B~ = z2 + z2 > 
respectively. In a neighborhood of p(y1 ), the semi-algebraic variety V is defined by the 
system 
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and it is a cusp. 
In a neighborhood of p(y2), Vis defined by the system 

{ e~ > o 
e~ > o 

and it is the neighborhood of the origin in the positive quadrant. 
Let us recall that we denote by m the Z2 stratum the in L\M, by y2 the~ stratum and 
by p: L\M ----7 V the embedding of the orbit space in IRn. Then we have the following 
result : 

Proposition 5.26 For any 8 > 0, there exists a diffeomorphism d : IRn --j- IRn such 
that the restriction d8 to V is stratum preserving without fixed point on p( m) and such 
that 

II Kv - d8 llco< 8 

Proof: The mapping 8 can easily be found using the time-1 mapping of a smooth flow 
possessing an homoclinic connection. For example, let us consider the system 

i = f(z) (5.19) 

which is a extension in IRn of an oscillator equation with a cubic non-linearity , i.e 

{ 

x = y 
iJ = x - x 3 

ii = - Zi for i = 3, ... , n 
(5.20) 

For this system, the ( x, y) plane is invariant and the vector field restricted to this plane 
exhibits two connections C+ c JR+ x IR and C_ c IR- x IR homoclinic to the hyper-
bolic point 0. Find now in IRn two tubular neighborhoods U1 and U2 of C+ which are 
respectively close and open with U1 C U2 and a function h: U2 ----7 IR satisfying 

{ 

h(x) = 1 
0 ::; h( x) ::; 1 

h(x) = 0 

if x E U1 

if x E U2 - U1 
if x ¢ U2. 

(5.21) 

Let ¢ : IRn x IR ----7 IRn be the flow corresponding to the vector field j ( x) = h( x) f ( x) and 
J : IR.n ----7 IRn the time-one diffeomorphism associated to it i.e. d( x) = ¢( x, 1). Clearly 
C+ is a homoclinic connection ford and this diffeomorphism is non-zero only in U1. Let 
now W1 be an open tubular neighborhood of p(y2 U m) E IRn. Since a neighborhood of 
p(y2) in Vis isomorphic to a neighborhood of the origin of the positive quadrant in IR.2 , 

there exists a diffeomorphism s : U1 --j- W1 mapping 0 on Y2 and C + onto m. Then by 
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choosing correct sizes for U1 and W1 , we can take d0 = s-1 o dos (remark that s can be 
chosen such that V is d0 invariant). 

I 

The heteroclinic cycle of the previous example is a structurally stable phenomenon (in the 
class of 'F-equivariant perturbations). Indeed, the only fixed point on y 2 nm is hyperbolic 
and then will persist under small enough 'F-equivariant perturbations. 
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