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Abstract

In the framework of non-equilibrium thermodynamics we derive a new model for porous
electrodes. The model is applied to LiFePO4 (LFP) electrodes consisting of many LFP
particles of nanometer size. The phase transition from a lithium-poor to a lithium-rich phase
within LFP electrodes is controlled by surface fluctuations leading to a system of stochastic
differential equations.

The model is capable to derive an explicit relation between battery voltage and current
that is controlled by thermodynamic state variables. This voltage-current relation reveals
that in thin LFP electrodes lithium intercalation from the particle surfaces into the LFP par-
ticles is the principal rate limiting process. There are only two constant kinetic parameters
in the model describing the intercalation rate and the fluctuation strength, respectively. The
model correctly predicts several features of LFP electrodes, viz. the phase transition, the
observed voltage plateaus, hysteresis and the rate limiting capacity. Moreover we study
the impact of both the particle size distribution and the active surface area on the voltage-
charge characteristics of the electrode. Finally we carefully discuss the phase transition for
varying charging/discharging rates.

1 Introduction

In recent years there is increasing need for powerful and effective batteries due to rapidly grow-
ing electro mobility. Currently the most promising battery type are lithium-ion batteries. In the
last decades big progress has been made in the development of both new electrode materials
and new electrolytes. In order to properly apply and improve the existing materials and their
combination a deep understanding of the materials constitutive properties is mandatory. To this
end mathematical models embodying the physical and chemical behavior of battery materials
from the micro to the macro scale are essential.

Atomistic models are needed to identify the relevant reaction and transport mechanisms. On the
other hand the battery developer needs continuum models to effectively describe and predict the
processes on the scale of battery cells. In particular only continuum models are capable to de-
scribe the interactions between macroscopic phenomena like heat and charge transport which
are accompanied by mechanical deformations. Moreover, continuum models provide powerful
tools to study the impact of these processes on battery voltage and currents.

Many classical continuum models for lithium-ion batteries rely on the framework that was de-
veloped by Newman et al. [DFN93, DN97, SN04]. Here diffusion processes within electrodes
and electrolytes are described by simplified diffusion equations, and the transfer of charge is
modeled by Butler-Volmer kinetics [Fra13, HSB11, SD11, FD11, FSP+14]. For known model
parameter, these models are capable to determine the influence of the battery geometry on
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the cell voltage and thus configure a suitable battery design. Although the Newman models are
quite popular they exhibit the following drawbacks:

1 The dependency of the model parameter on temperature, salt concentration, state of
charge and geometry of the electrode are often unclear.

2 The microstructure of the electrode is included via empirical model parameter.

3 The incorporation of volume changes and elastic deformation is severely limited in New-
man models.

Thus many experimental measurements of the parameter are necessary. These drawbacks
imply a restricted applicability of Newman models.

More useful models are those where

1 the number of model parameter is as minimal as possible,

2 all model parameter must have a simple physical basis,

3 physical restrictions on the model parameter must be known.

These requirements are guaranteed if the battery model is embedded in non-equilibrium ther-
modynamics that discriminates between universal principle and the constitutive properties for
the material at hand [MR59, dM63, Mül85, Bed86]. In this framework numerous phenomena can
be consistently coupled. In particular, non-equilibrium thermodynamics is capable to construct
a hierarchy of models on different levels of abstraction, ranging from models spatially resolving
the electrodes until impedance models [Baz13, LZ11, LZ13, DGH11].

In this study we use non-equilibrium thermodynamics to develop a simple battery model with
only a few constant(!) model parameter that comprises already a multitude of different phe-
nomena. The model exemplarily describes the cathode material lithium iron phosphate (LFP).
Modeling of LFP represents a challenge because during charging and discharging LFP exhibits
a two-phase system with lithium-rich and lithium-poor phases [PNG97, DMC+08, CEGS+13].
The characteristic horizontal voltage plateaus in the voltage-capacity diagram is due to this
phase transition, Figure 1right. The task to design a model becomes ambitious here because the
LFP electrode consists of an ensemble of nano-sized storage particles with the consequence
that there are two different phase transition in competition [DJG+10]: (i) There is a phase tran-
sition in the individual particles, and (ii) the ensemble of storage particles also shows a phase
transition, where the particles consists with high and with low lithium filling, respectively. More-
over, the phase transition happens in a sequential order, in other words, the particles are filled
according to the rule one after the other [DJG+10]. Detailed studies of the phenomenon have
revealed that the kind of phase transition depends on the charging speed and the size of the
storage particles [LEGF+14, LWG+15, CEGS+13].

Models for both kinds of phase transitions do already exist. The phase transition within a storage
particle is usually described by a phase field model [ZB14, SCB08, BCB11]. Here the interface
between a lithium-rich and a lithium-poor phase is spatially resolved. This kind of model allows a
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detailed study of the interface motion in the particle. In particular, it is possible to investigate the
influence of that motion to mechanical degradation of the particle [KR16]. Moreover, simulations
on this level are quite involved and only possible for a few storage particles. There is a further
drawback that is more serious than the problem of simulation capabilities. In fact, phase field
models are able to represent the horizontal voltage plateaus. However, due to spinodal decom-
position of the phases, which is an inherent property of any kind of phase field model, these
models exhibit jumps of the battery voltage. This behavior is related to the fact that many phase
field treatments do not physically judge the actual properties at the interface. Already such sim-
ple models as the Cahn-Hilliard model show inconsistencies here [DG15]. On the other hand
careful experimental studies unambiguously show that the time scale of the phase transition
within a nanosized particle happens is much smaller than the charging time of the battery cell.
Thus on the time scale of charging the phase transition within the ensemble of storage particles
is the dominant one [LML+15].

The first model describing the phase transition within the ensemble was formulated by some
of the current authors in [DJG+10, DGH11]. Here so-called many-particle models are formu-
lated, where the LFP electrode is described by an ensemble of communicating storage particles.
These models are capable to correctly predict the inset of the phase transition during charging
and they lead to the observed voltage-capacity plot with horizontal plateaus. In [DGH11] the
mathematical setting consists of a single partial differential equation of Fokker-Planck type. This
first model relies on some simplifications: i) There is no phase transition within the particles of
the ensemble, i.e. in a LFP particle the lithium is homogeneously distributed, ii) the storage par-
ticles have equal size, iii) diffusion in the electrolyte, diffusion in the particles and diffusion along
the surfaces of the particles have infinite mobilities, and iv) Adsorption processes and surface
reactions on the particles have also infinite mobilities. However, these assumptions strongly
restrict the applicability of a many-particle model that is based on a single Fokker-Planck equa-
tion. On the other hand, to remove those assumptions an extension of the Fokker-Planck setting
would lead to a coupled system of Fokker-Planck equation. Its treatment is cumbersome and
perhaps not possible at all.

For this reason in this paper we introduce a new many-particle model that does not rely on
the above assumptions and which is fully developed within non-equilibrium thermodynamics. In
particular, the LFP electrode is represented by a system of stochastic differential equations. It
can be shown that under suitable assumptions including those from above the new stochastic
model is then equivalent to the Fokker-Planck model. Despite its simplicity the stochastic model
embodies already many properties of LFP electrodes. In particular we may predict the influence
of the size distribution of the storage particles on the battery voltage.

The paper is organized as follows. We start in Section 2 with a phenomenological description
of the functionality of a battery consisting of a LFP electrode as cathode and a metallic lithium
electrode as anode. The stochastic model is introduced in Section 3. In Section 4 we discuss
the relation between the phase transition and the battery voltage on the basis of a variety of
simulations. The detailed derivation of the model including a list of model assumptions is the
content of Section 5.
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Figure 1: Left: Sketch of the LFP battery, Right: Typical voltage-capacity profile for a LFP elec-
trode at low charging/discharging rate C/20 (Fig. 2 from [DJG+10])

2 Description of the battery

Design of the battery. We consider a battery consisting of a LFP many-particle cathode,
a liquid electrolyte and metallic lithium as the anode. The many-particle electrode consists of
carbon coated LFP particles. The carbon coating improves the electric conductivity of the LFP
particles [MDCK+07, DBG+05]. Usually carbon black is added to the LFP electrode such that
the particles are electrically connected to each other. We neglect the carbon black and model the
electron transport by the assumption that carbon coated LFP particles form an electric network.
Thus the electron transport is achieved along the carbon coated particle surfaces. Moreover
some LFP-particles are attached to a metal based current collector. Here usually aluminum is
utilized. The electrolyte is a mixture of some lithium salt dissolved in some liquid organic solvent,
e.g. LiPF6 dissolved in a mixture of ethylene and dimethyl carbonate. The passive components
of the battery such as binder, separator and further additives are ignored in this study. A sketch
of the battery is shown in Figure 1.

Processes within the battery. During discharging of the battery lithium is transferred from the
lithium anode to the LFP many particle cathode and vice versa for the charging process. The
transport of lithium is the main limiting phenomenon that controls the functionality of the battery.
The transport process itself consists of a combination of several rate limiting phenomena. In
particular, we have to distinguish between surface and bulk transport.

The main bulk phenomena are ion diffusion within the liquid electrolyte and lithium diffusion and
phase separation within the LFP particles.

At the particle surface we have: i) tangential mass transport, in particular electron transport, ii)
adsorption of electrolytic species, iii) an electron transfer reaction of the form Li+ +e− −−⇀↽−− Li,
and iv) the intercalation of lithium into the iron-phosphate lattice.

At the lithium anode the situation is more simple. Lithium is deposited on or dissolved from the
electrode surface for the charging and the discharging process, respectively.

Further processes such as heat generation and transport, mechanical deformation, dendrite
growth or aging processes are not among the topics of this work. However, the thermodynamic
approach of Sect. 5 can be used to incorporate these phenomena as well.
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Model restrictions. In this work we introduce a LFP battery model which describes the exper-
imentally observed features of the battery and is easy to solve. Therefore we must restrict the
full thermodynamic model of Sect. 5 by some simplifying assumptions. The main assumptions
are:

� Large porosity of the LFP electrode and whose thickness is in the micro meter scale.

� Nano-sized LFP particles.

� Rigid LFP particles, i.e. volume and surface of a particle do not change for a varying
charging state.

� Constant temperature due to high heat conduction, which is appropriate in small cells.

� Lithium is exclusively stored in the LFP particles and in the lithium anode.

� The lithium anode is equipped with a large surface.

� Fast surface diffusion.

The full and a more detailed list of assumptions can be found in Sect. 5.

In either case these assumptions allow the applicability of our model to micro batteries and/or
to high power batteries. However, in the case of moderate charging-discharging times there is a
much larger class of batteries where the assumption are appropriate.

3 The many-particle electrode model

In this section we introduce the many-particle model for a lithium ion battery as described above.
The model consists of (i) a system of stochastic differential equations (SDE), (ii) a constraint pre-
scribing the state of charge of the battery, and (iii) voltage and current relations. In the following
we describe the main ingredients of the battery model. The detailed derivation of the model is
postponed to Sect. 5.

Notations. The many-particle electrode consists of NP storage particles indexed by i =
1, 2, ..., NP. The particles have volumes V i and active surface areas AiE, which are time in-
dependent due to the model assumption. The total volume and the total active surface area of
the LFP particles are denoted by

VP =
NP∑
i=1

V i and AE =
NP∑
i=1

AiE . (1)

The surface area of the lithium anode electrolyte interface is denoted by AAE.
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Thermodynamic state. The number of stored lithium atoms in particle Pi at time t ≥ 0 is
denoted byN i

Li(t). The number of FePO4 units forming the matrix lattice of particle Pi is time
independent and denoted by N i

FePO4
. Each particle has the same time independent number

density nFePO4
. The number densities of the intercalated lithium niLi are time dependent but

constant in space. The number densities are related to the number of stored lithium and to the
number of FePO4 units byN i(t) = niLi(t)V

i andN i
FePO4

= nFePO4
V i.

Each FePO4 unit provides a free lattice site that may be occupied by a lithium atom. Then the
mole fraction yi ∈ [0, 1] of occupied lattice sites of particle Pi is defined as

yi(t) =
niLi(t)

nFePO4

. (2)

The thermodynamic state of the many-particle electrode is exclusively represented by the lithium
mole fractions of the particles, (yi)i=1,2,...,NP

.

3.1 The deterministic model for the many particle electrode

The evolution of the thermodynamic state of the many-particle electrode is described by the
ODE system

dyi

dt
=

1

τ i
mLi

kBT
(µs,Li − µLi(y

i)) with
1

τ i
=

kLi

mLinFePO4

AiE
V i

. (3)

As shown in Sect. 5 the system (3) relies on mass balance equations of the stored lithium in
the LFP particles. The right hand site of (3) arises from the desorption flux jiLi describing the
intercalation of lithium atoms from the surface of particle Pi into the FePO4 lattice,

jiLi = kLi
mLi

kBT

(
µLi(y

i)− µs,Li

)
. (4)

The lithium flux is driven by the chemical potential difference µLi(y
i) − µs,Li, where µs,Li rep-

resents the surface chemical potential of freely moving lithium on the particle surface and µLi is
the chemical potential of LiyFePO4, i.e. of intercalated lithium. The kinetic parameter kLi has
the unit kg/(m2s) and represents the (constant) rate of intercalation of lithium atoms into the
FePO4 lattice.

The assumption of fast surface diffusion implies that the surface chemical potential µs,Li is the
same for all LFP particles. The chemical potential of intercalated lithium, µLi, is a function of
the lithium mole fraction yi of the corresponding LFP particle. In order to model the phase
separating behavior of LiyFePO4, [SCB08, BCB11, DGH11], we choose the widely used non-
monotone function

µLi = µref
Li + L

mLi
(1− 2y) + kBT

mLi
ln
( y

1− y

)
. (5)

The chemical potential consists of three contributions. The first part µref
Li is a constant material

parameter depending on the properties of LiyFePO4. The second part is an energetic contri-
bution, where L has the unit J (Joule) and denotes the heat of solution. The constant quantity L
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controls the energy barrier between the lithium-poor and the lithium-rich phase. Finally there is
a third contribution that takes into account the entropy of mixing of lithium atoms on the available
lattice sites. Figure 2 depicts the chemical potential function µLi(y)−µref

Li for a typical choice of
L = 94.4× 10−22 J.

Figure 2: Non-monotone chemical potential of lithium in iron-phosphate.

State of charge - charging rate. The total mole fraction q ∈ [0, 1] of the many-particle
ensemble describes the state of charge of the battery,

q(t) =

∑NP

i=1N i
Li(t)∑NP

j=1N
j
FePO4

=
NP∑
i=1

V i

VP
yi(t) . (6)

The battery is fully charged for q = 0 and the state q = 1 corresponds to a fully discharged
battery. The charging rate of the battery is given by the time derivative of the total mole fraction.

We assume that lithium can be stored exclusively in the LFP particles and not elsewhere. Thus
in a galvanostatic charging/discharging process the total mole fraction q is the external control
parameter. Consequently, the equation (6) represents a constraint on the evolution of the lithium
mole fractions y1(t), y2(t), ..., yNP(t). According to (3) and (6) we have

dq

dt
=

mLi

kBT

NP∑
i=1

V i

VP

1

τ iLi

(
µs,Li − µLi(y

i)
)
. (7)

Then this equation must be used to determine the surface chemical potential µs,Li. In this con-
text µs,Li may be interpreted as a Lagrange multiplier. See also the analogue situation in Sect.
3.4 where the Fokker-Planck model of the many-particle electrode is described.

Electric current. There is a universal relation between the charging rate dtq of the LFP parti-
cles and the electric current I which flows through the battery,

I = e0nFePO4
VP
dq

dt
. (8)

Here the physical unit of I is A (Ampere). The relation (8) will be derived in Section 5. It relies
on bulk and surface mass balance equations.
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Battery voltage. The battery voltage U is defined as the electric potential difference between
cathode and anode. Based on the constitutive relations of Sect. 5 we obtain the relation

U = U ref − mLi

e0

NP∑
i=1

AiE
AE

(
µLi(y

i)− µref
Li

)
− kBT

e0

( 1

AEjP
+

1

AAjA

)
I. (9)

The total exchange currents corresponding to the LFP particles and the lithium anode, respec-
tively, are constants and they are defined as

1

jP
=
( 1

jPic
+

1

jPad

+
1

jPre

)
and

1

jA
=
( 1

jAad

+
1

jAde

)
. (10)

The battery voltage consists of three contributions:

1 The first contribution is a constant voltage U ref = 1
e0

(me−µe− |SC + mLi+µLi+|SA −
mLiµ

ref
Li) characterizing the current collector of the cathode, the lithium anode and the

LFP particles.

2 The second contribution is time dependent and depends on the intercalation process
within the LFP many particle electrode. It nonlinearly depends on the electric current I
via the mole fractions yi.

3 The third contribution is linear in I and describes five different interfacial dissipative mech-
anisms. We have five constant material parameter due to lithium intercalation, jPic, surface
reaction, jPre, adsorption at the LFP particles, jPad, adsorption at the lithium anode, jAad,
and lithium deposition at the anode, jAde. The parameter jPic is related to the intercalation
rate kLi by

jPic = e0
mLi

kLi . (11)

The linearity of the third contribution results from linear flux-driving force constitutive laws for ad-
sorption, reaction and intercalation processes. It is easy to extend the model by corresponding
nonlinear constitutive equations of Butler-Volmer type [DGM15, DGM16]. In this case we would
obtain logarithmic voltage-current relations.

3.2 The stochastic model for the many-particle electrode

In this section we extend the ODE model of the last paragraph by adding some noise. The noise
may be understood as small fluctuations occurring during the intercalation process.

To this end we assume that the lithium mole fractions y1, y2, ..., yNP represent possible values
of a vector-valued random variable Y = (Y 1, Y 2, ..., Y NP).

The set {Y (t)| t ≥ 0} defines a stochastic process that is determined by the SDE system

Y i(t)− Y i(t0) =
1

τ i
mLi

kBT

∫ t

t0

(
µs,Li(s)− µLi(Y

i(s))
)
ds

+ νi
√

2

τ i
(
W i(t)−W i(t0)

)
− 1

τ i
(
Z(t)− Z(t0)

)
. (12)

With respect to the deterministic system described above, we have the following differences:
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� The difference W i(t) − W i(t0) represents the increment of a Wiener process which
models small lithium fluctuations on the surface of the particles. All W i are independent
processes. The strength of the noise is controlled by the constant parameter ν0 which is
related to νi by

νi =
ν0√
V i

. (13)

� The difference Z(t) − Z(t0) is introduced to obtain a relation for the chemical potential
µs,Li which corresponds to (7) in the deterministic setting: without the termZ , the formula
for µs,Li would contain the white noise term Ẇ i which is infinite.

From a thermodynamic point of view the fluctuations are introduced by a modification of the
lithium flux jLi. Later on in Sect. 5.5 we show that this modification is consistent with the 2nd law
of thermodynamics, i.e. the extended lithium flux guarantees a non-negative entropy production
as well.

The Wiener process (or Brownian motion) W = W (t, ω) is a particular stochastic process,
which is, roughly speaking, a random function of time. The Wiener process is the process whose
time increments are independent, i.e., for any r < s < t,W (s)−W (r) andW (t)−W (s) are
independent, and have Gaussian probability law, with mean 0 and variance given by the time
increment, i.e. W (t) −W (s) has the law N (0, t − s). The Wiener process is characterized
as the process whose (distributional) time derivative is the white noise in one dimension. More
details are given in Section 5.9.

State of charge. As in the deterministic case the state of charge is given by the total mole
fraction q defined as

q(t) =
NP∑
i=1

V i

VP
Y i(t) . (14)

In the galvanostatic regime the function q is given and leads to a constraint on the mole fractions.
The surface chemical potential µs,Li can here be interpreted as a Lagrange multiplier, which has
to be chosen such that the constraint (14) is satisfied. To obtain a similar relation for the surface
chemical potential µs,Li as in the deterministic case, we define the function Z as

Z(t) =

∑NP

i=1
V i

VP
νi
√

2
τ i
W i(t)∑NP

j=1
V j

VPτ j

. (15)

Note that Z is a Gaussian process with covariance
(∑NP

i=1(V
i

VP
νi)2 2

τ i

)
/
(∑NP

j=1
V j

VPτ j

)2

, which

is infinitesimal for NP large.

Finally the SDE system (12) and the constraint (14) imply an explicit relation for the surface
chemical potential µs,Li,

dq

dt
=

mLi

kBT

NP∑
i=1

V i

VP

1

τ iLi

(
µs,Li(t)− µLi(Y

i(t))
)
. (16)
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After inserting this relation into the SDE (12), we see that the particles are interacting through
the term µs,Li.

Electric current. The relation (8) between the electric current and the total mole fraction is
derived from general balance equations without using any constitutive equations. Therefore the
relation (8) holds also in the stochastic case,

I = e0nFePO4
VP
dq

dt
. (17)

Battery voltage. The derivation of the battery voltage results from the constitutive equation,
in particular from the constitutive equation of the lithium flux jLi which depends on the Wiener
process. However, we will show in Section 5 that the same relation holds as in the deterministic
setting, i.e.

U = U ref − mLi

e0

NP∑
i=1

AiE
AE

(
µLi(Y

i)− µref
Li

)
− kBT

e0

( 1

AEjP
+

1

AAjA

)
I. (18)

3.3 Some features of the many particle electrode model

Both the deterministic model and the stochastic model are thermodynamically consistent. In
other words, both models are fully derived in the context of non-equilibrium thermodynamics.
Concerning the stochastic model this is a remarkable feature, because up to now there was
no possibility to apply non-equilibrium thermodynamics [MR59, dM63, Mül85] on a scale where
stochastic fluctuation can be observed. For the first time we found that stochastic elements can
be introduced within surface thermodynamics but not within non-equilibrium thermodynamics
of the bulk. This fact fits to the observation that stochastic effects are more likely to influence
surface phenomena rather than bulk phenomena. A prominent example concerns nucleation
processes.

Our assumptions from Section 2 reduce the relevant kinetic phenomena to pure surface phe-
nomena. For this reason we are able to embody the complex charging-discharging process of
a LFP battery in a model of remarkable simplicity with only few phenomenological parameter.
For example, the dynamics of the many-particle electrode is only controlled by the intercala-
tion rate kLi and the strength of the stochastic fluctuations ν0. Consequently the experimental
determination of the two parameter is an easy task.

In contrast, the battery voltage, see (9) and (18), is controlled by further parameters, viz. the
constant exchange currents jP and jA. Both parameter produce an observable shift of the volt-
age plateau in the voltage-current diagram if the charge current is changed [SD11]. This shift is
clearly depicted by Figure 13.

Moreover Figure 13 shows the effect of a rate limiting battery capacity. An increase of the charge
current apparently decreases the maximal possible state of charge. This phenomenon emerges
from the appearance of non-monotone chemical potentials of the LFP particles. Numerical sim-
ulations in Sect. 4 impressively confirm this observation.
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3.4 Stochastic model in the Fokker-Planck setting

It is possible to associate the system of SDEs to a family of Fokker-Planck equations, which give
an equivalent description of the SDE system in the limit of large number of particles.

To understand the link between SDEs and Fokker-Planck equations, we start by recalling the
following well-known fact [Szn91]: given a drift b, a number σ and a Wiener process W , if a
real-valued stochastic process Y satisfies the SDE

Y (t) = Y (t0) +

∫ t

t0

b(s, Y (s)) ds+ σ(W (t)−W (t0)), (19)

then, for every t > 0, the probability law of Y admits a density p(t, ·) which satisfies the
Fokker-Planck equation

∂tp(t, y) = −∂y(b(t, y)p(t, x)) +
σ2

2
∂2
yp(t, y) . (20)

Now we consider the case of single size particles. Here we will ignore both the Z term in (12),
and the boundary conditions Y i ∈ (0, 1). We suppose for a moment that the chemical potential
µs,Li do not depend on the particle numberNP nor on the specific realization of the noise. Then
all particles would be identically distributed, i.e. they have the same probability law, and would
behave independently. Then the system of SDEs (12) with (16) would converge, in a suitable
sense, to the single Fokker-Planck equation, viz.

∂tp(t, y) =
1

τ

mLi

kBT
∂y
(
(µLi(y)− µs,Li(t))p(t, y)

)
+
ν2

τ
∂2
yp(t, y) , (21)

where µs,Li is given by

µs,Li(t) = τ
kBT

mLi

dq

dt
+

∫ ∞
−∞

µLi(y) p(t, y) dy . (22)

The main point here for the SDE system (12), and more general for mean field SDEs, is that this
convergence remains true, even if the particle are interacting, since µs,Li is not fixed. Therefore,
in the case of single size particles, this Fokker-Planck equation can be used for our model in the
limit of large number of particles.

This Fokker-Planck equation is identical to the Fokker-Planck equation in [DGH11] for a LFP
many particle electrode. In [DGH11] a statistical approach is used to derive the Fokker-Planck
equation. Existence and uniqueness of the Fokker-Planck equation is proved in [DHM+15] and
a detailed discussion of the different time regimes can be found in [HNV12, HNV14]. It is shown
in [DGH11] that the Fokker-Planck equation (21) is capable to predict and explain the voltage-
capacity diagram and the phase transition within the many particle system. But the Fokker-
Planck equation and the model approach of [DGH11] has two import drawbacks: Firstly the
Fokker-Planck equation is difficult to extend to systems with different particle sizes and to in-
clude phenomena like charge transport in the electrolyte and heat transport. Secondly a precise
physical interpretation of the parameter τ and ν is missing. Both drawbacks are fully removed
by the approach of this paper. In Sect. 5 the stochastic model is fully derived in the context of
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non-equilibrium thermodynamics and all quantities have a physical interpretation. In particular,
in [DGH11] a Lagrange multiplier Λ was introduced to satisfy the constraint (14) which reads in
the Fokker-Planck setting for identical particle sizes

q(t) =

∫ ∞
−∞

y p(t, y) dy . (23)

The derivation of the SDE system yields that the Lagrange multiplier is the surface chemical
potential of lithium, i.e. Λ = µs,Li. Moreover, in [DGH11] the coefficient τ was interpreted as
the relaxation time of the many particle system, however, dependence on the particle size was
missing in [DGH11]. Here we can show that τ is related to the intercalation process of lithium
into the iron phosphate lattice and how τ is related to the particle size.

In the case of different size particles, the particles are no more identically distributed, since small
particles behave differently from large ones. However, the convergence result remains true, pro-
vided we replace the single Fokker-Planck equation (21) by a family of Fokker-Planck equations,
parametrized by the radii R of the particles and coupled via the potential µs,Li, namely

∂tp(t, y, R) =
1

τ(R)

mLi

kBT
∂y
(
(µLi(y)− µs,Li)p(t, y, R)

)
+
ν(R)2

τ(R)
∂2
yp(t, y, R) , (24)

where now µs,Li is given by

µs,Li =
VP

dq
dt

+
∫ ∫

µLi(y) V (R)
τ(R)

p(t, y, R) dydR∫ V (R)
τ(R)

ρ(R) dR
, (25)

V (R) is the volume of the particle of radius R, and τ(R) and ν(R) are suitable functions of
the radius. This can be shown for example by a randomization procedure, see [FHM14]. In a
second paper we prove rigorously this convergence in the different size case and with boundary
conditions [DFG+16].

3.5 Discussion and choice of model parameter

There are three kinds of distinguished model parameter. In fact in our model we have energetic
parameter, kinetic parameter and structural parameter. Their meaning and selected values will
be now discussed.

Energetic parameter. There are three energetic parameter in the various chemical potentials
of the battery model. The chemical potential µLi of the LFP particles contains the parameter
L representing the heat of solution. The parameter L controls the height of the energy barrier
between the lithium-rich and the lithium-poor phase. For LFP the parameter has to be cho-
sen such that the chemical potential µLi becomes non-monotone allowing phase separation. A
typical value for L is

L = 94.4× 10−22J . (26)
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A further energetic parameter is the constant reference voltage U ref. Its value depends on the
material properties of both the LFP many-particle electrode and the lithium anode and can be
read off from a volt-capacity diagram. A typical value is

U ref = 3.4V . (27)

The third parameter ν0 controls the intensity of the fluctuation at the particle surfaces. For the
Fokker-Planck setting a suitable choice of ν0 is derived in [DGH11],

ν0 =
√

kBT
LnFePO4

≈ 10−15m
3
2 (28)

Kinetic parameters. Our constitutive model embodies five distinguished kinetic mechanisms
with dissipation. Each mechanism is controlled by a corresponding mobility coefficient. It is
convenient to write the mobilities in the form of exchange currents.

jPic lithium intercalation

jPre surface reaction

jPad adsorption at the LFP particles

jAad adsorption at the lithium anode

jAde deposition of lithium at the anode .

The kinetic parameter are either determined from atomistic theories or they can be read off
from measurements. However, measurements with LFP particles of nano-size are difficult due
to the phase transition in LFP. Moreover, the interaction of different surface processes and the
experimental handling of composite electrodes bring further complexities.

In particular only a measurement of the total exchange currents jP and jA of the cathode and
the anode are available in the literature, which appears in our model as the combinations (10) of
the kinetic parameter. However, values for jP differ by several orders of magnitude. Values for jP
in LFP which range from 10−6 A m−2 to 10−1 A m−2 are reported [LEGF+14]. In this study we
assume that the rate limiting process in the cathode is the lithium intercalation, i.e both lithium
adsorption and electron transfer reaction are fast compared to the intercalation process,

jPic � jPre, j
P
ad =⇒ jP ≈ jPic . (29)

For the numerical investigations we choose the value

jPic ≈ jP = 0.15 A
m2 . (30)

According to (11) the kinetic coefficient kLi for the lithium intercalation is

kLi = mLi

e0
jPic = 108 kg

m2s
. (31)

The exchange current jA describes lithium ion adsorption and lithium deposition at the anode.
Assuming that the adsorption process at the lithium metal electrode has no significant impact
on the battery voltage, we state

APjP � AAEjA . (32)
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According to these assumptions the voltage-current relation (9) for the deterministic model sim-
plifies to

U = U ref − mLi

e0

NP∑
i=1

AiE
AE

(
µLi(y

i)− µref
Li

)
+ mLi

e0

kBT
e0

1

AEkLi

I . (33)

The voltage-current relation (18) for the stochastic simplifies correspondingly.

Structural parameters. There are three geometric parameter encoding the specific structure
of the LFP electrode, i.e. the morpholgy of the battery, viz.

V i the individual volumes of the LFP particles ,

AiE the individual active surface area of the LFP particles and

AAE the surface area of the metallic lithium anode .

The particle volume can be determine by an analysis of the electrode composition. Fig. 4 depicts
a typical particle size distribution from where the particle volumes can be read off.

The active surface area, more precisely the area where the lithium can intercalate into the iron
phosphate lattice cannot be read off from an analysis of the electrode geometry. Coating of the
particles as well as the formation of unwanted depositions at particle electrolyte interfaces could
be responsible for a decrease of the active surface area. Thus the active surface area is might
be smaller as the full particle area. Without further knowledge of the active area we choose for
simplicity the full particle surface area corresponding to its volume.

The surface area AAE of the metallic lithium anode is roughly determined by its macroscopic
size. But due to the dissolution and deposition of lithium during charging and discharging, the
surface is quite rough and AAE might be several orders higher as the macroscopic size. More-
over, in real application the surface area AAE will presumably change and then becomes time
dependent. However, this phenomenon is currently not included here.

4 Behavior of the many-particle-electrode model

In this section we show some selected results of numerical simulations of the LFP battery model.
We study the influence of (i) charging time, (ii) stochastic noise, (iii) particle size distribution and
(iv) active surface areas on the dynamics of the SDE system. Finally we compare our simulations
with experimental data.

4.1 Comparison of Fokker-Planck equation and SDE system

A crucial parameter for the simulations is the number of particles NP. Preferable for fast simu-
lations are particle numbers of the order 104 whereas in physical reality 1017 is a more realistic
number. The previously described convergence of the SDE system to the Fokker-Planck system
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implies that for NP large enough, the results of the SDE simulations will be stable and close to
the solution of the Fokker-Planck system. In order to determine how largeNP must be, we com-
pare in this section the simulations via SDE systems with different number of particles and also
the simulations of the Fokker-Planck system when available. We select the number NP such
that the simulations are stable and close to the Fokker-Planck solution. We assume that such
a number NP is the one predicted by the convergence result, and that a simulation with NP is
close to the physical reality.

In the case of particles of the same size, simulations are available for both the SDE system
and the Fokker-Planck equation [DGH11]. These simulations are in agreement with the conver-
gence of the SDE system to the Fokker-Planck equation. Moreover the simulations show that
the (dimensionless) mean chemical potentials for single sized particles obtained from the SDE
and the Fokker-Planck equation are related by

〈µLi〉(t) = mLi

kBT

NP∑
i=1

µLi(Y
i(t))

NP→∞−→ mLi

kBT

∫ 1

0

µLi(y)p(t, y) dy. (34)

Then (34) is used to calculate the cell voltage by (18). We observe that the limit (34) is even
satisfied for a relatively low number of particles. Figure 3 shows a comparison between the
mean chemical potential obtained from the SDE system and from the Fokker-Planck equation
for a charging rate of C/20000. Even though in the SDE simulation only 100 particles are used
the mean chemical potential according to the SDE system shows qualitatively the same behavior
as the mean chemical potential obtained from the Fokker-Planck equation. The SDE simulation
shows small fluctuations around the Fokker-Planck simulation due to the stochastic noise term.
These fluctuations vanish for an increased number of particles. For more than 3000 particles
the fluctuations are not observable anymore.

In the different size case the simulations for the Fokker-Planck system are more difficult and not
available at the moment. But the simulations of the mean chemical potential driven by the SDE
system are stable for a large number of particles, and actually even for a relatively low number
less than 1000 particles. Therefore we assume that simulations with about 5000 particles should
be sufficient for the single sized particles and for a particle size distribution as well.

The convergence of the SDE particle system to the Fokker-Planck system, both in the case of
single size and different size distribution, will be the topic of a subsequent paper [DFG+16].

4.2 Comparison of single size storage particles and varying storage par-
ticle sizes

In this subsection we investigate the microscopic behavior of the system, i.e. the behavior of
individual storage particles, as well as the macroscopic behavior, i.e. the battery voltage U , for
different charging rates and different particle size distributions.

To study the macroscopic behavior it is convenient to use the (dimensionless) mean chemical
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Figure 3: Comparison of Fokker-Planck equation (red) and SDE system with NP = 100 (blue).
Full charge-discharge cycle at charging rate 1/20000 C

potential

〈µLi〉(t) = mLi

kBT

NP∑
i=1

AiE
AE
µLi(Y

i(t)) , (35)

which is related to the battery voltage U by

U = U ref + mLi

e0
µref

Li − kBT
e0
〈µLi〉 − kBT

e0

( 1

AEjP
+

1

AAjA

)
I . (36)

Thus the characteristic voltage plateaus of LFP electrodes exclusively are a consequence of the
mean chemical potential behavior.

Already in the single size case simulations via the Fokker-Planck equation show diverse dy-
namics sensitively depending on the charging rate and on the stochastic strength [DGH11]. By
introducing storage particle size distributions another strong influence on the evolution is added.
Here we exclusively study particle size distributions which occur in real life LFP electrodes
[SD11, LML+15]. The particle size distribution in Figure 4 serves as a reference distribution.
Further distributions are generated by stretching and shifting the reference distribution.

To compare a particle size distribution and a particle system with identical particles we choose
the particle size so that the total particle volumes of both systems are equal.

The following simulations are done with approximately 5000 particles.

An analysis of the SDE system shows that a solution (Y charge
i )i=1,...,N of a charging process

with qcharge can be used to define a solution of discharge process by (Y discharge
i )i=1,...,N and

qdischarge = 1 − qcharge due to the symmetric chemical potential (5). For this reason a simula-
tion of charge and discharge processes with the same charging rate is symmetric. This leads
to a symmetric voltage-state of charge plot as it is shown in Figure 3. For this reason we only
consider discharge curves. An asymmetry between charging and discharging, which is experi-
mentally observed [SD11], may result from an asymmetric chemical potential µLi.

Impact of the particle size distribution. In Figure 5 the mean chemical potential 〈µLi〉
against the state of charge q is plotted for different charging rates. The solution of an ensemble
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Figure 4: Typical particle size distribution of a LFP electrode.

of identical particles is compared to the solution of the corresponding system with the particle
size distribution of Figure 4. In the case of identical particles only the 〈µLi〉-q plot for the extreme
slow charging rate C/20000 shows a plateau that corresponds to the observed voltage plateau
in LFP batteries, see Figure 1right. However, the other simulations with single sized particles
show strong oscillations and a non-monotone behavior. On the other hand all simulation with a
particle size distribution exhibit flat plateaus and show bare oscillations. From this observation
we conclude that a particle size distribution has a strong impact on the dynamics of the SDE
system. Furthermore the simulations show that the SDE system with a particle size distribution
predicts the experimental observed voltage plateaus in different charging regimes.

Impact of stochastic fluctuations. In the slow charging regime C/100 the solution of the
SDE system for single sized particles depends heavily on the magnitude of the fluctuations,
i.e. the choice of the parameter ν0. Figure 6 shows the influence of the stochastic fluctuations
on the mean chemical potential 〈µLi〉. In the case of the SDE system with identical particle
size the differences are severe. Opposed to this there is nearly no observable influence of the
fluctuations on the mean chemical potential for the system with a particle size distribution.

For the SDE system with particle size distribution the fluctuations do not produce a relevant
effect in the 〈µLi〉-q-plot but it does produce effects at the level of the phase transition.

Phase separation. We start with a simulation with stochastic fluctuations and a charging rate
C/500. In the single size case, the simulations exhibit a pronounced phase separation, see
Figure 7left. Almost all particles are either in the lithium rich phase or in the lithium poor phase.
The SDE system with a particle size distribution also shows a pronounced phase separation for
a charging rate C/500, see Figure 7right. These findings are in agreement with experiments on
LFP electrodes [LML+15, LEGF+14, DMC+08].

The simulation with a particle size distribution shows that small particles undergo the phase
transition first while larger particles exhibit the phase transition later. However, Figure 7right like-
wise shows that the phase transition do not exclusively depend on the particle size. There exist
a broad region where small and large particles coexist in the same phase. The two-phase re-
gion is an effect of the fluctuations and, as we will see, this region vanishes if fluctuations are
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Figure 5: Comparison of simulations with particles of the same size and size distribution. Mean
chemical potential 〈µ〉 over state of charge q for single size particles (blue) and particle size
distribution (green); Charging rate: a) 1/20000 C, b) 1/500 C, c) 1/100 C, d) 1/25 C.

absent, Figure 8right. Furthermore the simulation shows that several large particles remain in an
intermediate phase even for a macroscopic time period, i.e. these particles are neither in the
lithium rich nor in the lithium poor phase.

In the charging regime C/500 with single size particles, but without stochastic fluctuations, the
behavior drastically changes. All particles behave identical and no phase separation is observ-
able anymore, Figure 8left. Conversely, for the SDE system with a particle size distribution a
two-phase system is established. Figure 8right shows that the set in of the phase transition is
ordered by the particle size.

We consider now the fast charging regime 1C . In the single size case there is, even under
the influence of stochastic noise, no phase separation in the particle system. Figure 9left shows
that all particles behave identical. This is in contrast to the slow charging regime where phase
separation occurs. In case of a size distribution only small particles reach a lithium rich phase,
while the larger particles remain in an intermediate phase, Figure 9right. As before the order
of particles undergoing a phase transition depends on the particle size. The same behavior is
observed in the slow charging regime.

To summarize, both the particle size distribution and the stochastic fluctuations have a strong
impact on the microscopic dynamics of the SDE systems, particularly on the phase separation.
In the case of single size particles the simulations without fluctuations or for fast charging do
not show phase separation. This is in contrast to experiments on LFP, where phase separa-
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Figure 6: Impact of the stochastic fluctuations on the mean chemical potential 〈µLi〉. Left: Single
size particles without (blue) and with stochastic fluctuations (dashed green), Right: Particle size
distribution without (blue) and with stochastic (dashed green). Charging rate 1/100 C.

Figure 7: Impact of the particle size distribution on the phase separation at charging rate 1/500
C. Particles are ordered by size. Simulations with stochastic fluctuation. Mole fraction y of the
individual storage particles at the state q = 0.5. Left: single size particles, Right: particle size
distribution.

Figure 8: Impact of the particle size distribution on the phase separation at charging rate 1/500
C. Particles ordered by size. Simulations without stochastic fluctuations. Mole fractions y of the
individual storage particles at the state q = 0.5. Left: single size particles, Right: particle size
distribution.
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Figure 9: Impact of the particle size distribution on the phase separation at charging rate 1 C.
Simulations with stochastic fluctuation. Mole fraction y of the individual storage particle at the
state q = 0.5. Left: single size particles, Right: particle size distribution (particles ordered by
size).

tion is observed. However, all simulations with the particle size distribution from Figure 4 show
phase separation within the LFP particle system. The simulations also predict a dependence
of the phase transition on the particle size. This finding is experimentally only observed in LFP
electrodes where the electric conduction is improved by addition of carbon black [LML+15]. Fur-
thermore the simulations show that larger particles seem to prefer an intermediate state and this
behavior is even stronger pronounced for large charging rates. Likewise this finding is in agree-
ment with experiments. Chueh et al. show that in LFP electrodes with small ellipsoidal particles
of mean size 230nm two coexisting phases exist whereas electrodes with large platelet particles
of mean size 3µm are homogeneous and they are simultaneously filled [LWG+15].

Various particle size distribution. Next we study the effects of different particle size distri-
butions. For simplicity we set the fluctuation strength to zero and we exclusively consider the
fast charging regime 1C . We start with the reference particle size distribution from Figure 4.
To generate new size distributions the original distribution ranging from 25nm up to 400nm is
now stretched and shifted, respectively. Figure 10 depicts three discharging processes with rate
1C for increasingly stretched size distributions. Both the height of the voltage plateau and the
value of q, where a sharp drop of the voltage occurs, decrease for increasingly stretched size
distributions, i.e. the battery capacity is limited by the charing rate.

In Figure 11 identical size distributions are shifted by a fixed value. Here the voltage decreases
as the distribution is shifted to bigger sized particles. However, the rate dependent capacity
remains the same if the distribution is shifted.

It is important to recall that particle size distributions with a mean particles size in the micrometer
range do not satisfy the assumption of nano-sized LFP particles. However, this assumption
is necessary in order to ignore the lithium diffusion within the LFP particles. We expect that
diffusion limitation occurs in LFP electrodes if particle sizes above one micrometer are involved.
In particlular, for high charging rates diffusion limitation will lead to a further capacity loss. Note
that these observations are crucial for a more detailed study on the effects of particle size
distributions on the performance of batteries.
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Figure 10: Impact of stretched size distribution: 25−400nm (red), 25−1000nm (green), 25−
1500nm (blue); Left: particle size distributions, Right: corresponding voltage for a discharge
process at rate 1C .

Figure 11: Impact of shifted size distribution: 25 − 400nm (red), 525 − 900nm (green),
1025 − 1400nm (blue); Left: particle size distributions, Right: corresponding voltage for dis-
charge process with rate 1C.

Impact of the active intercalation area. A crucial parameter in our model is the active area
AiE, which is the area of particle P i where lithium can intercalate. In batteries this active area
depends on the ionic and electronic conductivity of the particle to both the electrode and the
electrolyte. Aging processes within the battery such as the formation of solid-electrolyte inter-
faces may affect the active area. By comparing simulated voltage/capacity plots to experimental
data it became clear that a particle size dependent active area shows a more realistic behavior
than taking the whole particle area as active. In fact, reducing the active area produces a re-
duction of the rate depending capacity which is closer to the experimental data. To us it seems
reasonable that small particles have a larger ratio of active area to the full particle surface area
as large particles. Figure 12left shows three different ratios of active area-particle surface area
that are used in the simulations depicted in Figure 12right. The effect of the active area on the
battery voltage is shown for a discharge process with rate 1C.

The simulation shows that the active area has a strong impact on the rate depending battery
capacity. On the other hand the active area can be positively affected by improving the ionic and
electronic conductivity of the particles, for example by surface coating [MDCK+07].
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Figure 12: Impact of the active areas: Left: ratio between active area and total area, Right:
corresponding voltage for 1C discharge process.

Figure 13: Comparison between simulation and experiment for different charging rates: 1/25 C
(red), 1C (green), 3C (blue); Experimental data taken from [SD11]

Impact of the charging rate and fit to the experiments. Figure 13 shows a comparison of
experimental data from [SD11] and simulations of the SDE system with the particle size distri-
bution of Figure 4. Three discharging processes with C-rates C/25, 1C and 3C are simulated.
The simulations are performed without stochastic fluctuations, since their impact is very limited
in moderately fast regime. The active area used for this simulation corresponds to the green
curve in Figure 12.

Observe that the maximal possible state of charge q, where the voltage apparently drops, de-
creases with increasing charging rates. Thus there is a drastic loss of battery capacity for in-
creasing charging rate. Moreover, the height of the voltage plateau decreases for faster rates,
i.e. faster charging rates lower the efficiency.

5 Thermodynamic model of a many-particle electrode and its
coupling to the surrounding

In this section both the SDE system and the cell voltage- current relation will be derived on a
thermodynamic basis. In a first step we describe an electrochemical system in a general ther-
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modynamic framework. The model equations are grouped into two different classes: i) universal
equations of balance for mass, momentum, energy and entropy and Maxwells equations and ii)
constitutive equations that describe the special material properties of the system at hand.

We restrict ourselves to a non-viscous, isothermal, non-polarizable and non-magnetizable sys-
tems where accelerations and the magnetic field can be ignored, i.e. the temperature is as-
sumed to be constant, the quasi-static version of the momentum balance and the electrostatic
approximation of Maxwells equations is applicable.

Here we present only a brief introduction of the thermodynamic framework, which is absolutely
necessary to understand the derivation of the battery model. A detailed description of non-
equilibrium thermodynamics and its coupling to electrodynamics can be found in [MR59, dM63,
Bed86, Mül85, Guh15].

5.1 General thermodynamic setting

In the general setup we consider an arbitrary domain Ω that is separated by a surface S into
two subdomains Ω± so that S = ∂Ω+ ∩ ∂Ω−. In order to indicate whether a generic quantity
u is defined in the bulk domains Ω± or on the surface S we write u± and us, respectively.

A point on S is equipped with a surface normal ν pointing by convention into the domain Ω+.

The boundary ∂S of S is assumed to be a closed line on S that is characterized by a unit vector
e lying tangential to S and normal to ∂S.

Constituents and basic quantities. Within the domains Ω± and on the surface S we have
general mixtures consisting of (N± + 1) and (Ns + 1) constituents, which are denoted by
A0, A1, ..., AN± and As,0, As,1, ..., As,Ns . Each constituent of Ω± is also present on S, but
here there may be additional constituents that are exclusively present on S, i.e. N+ + N− ≤
Ns. The set of constituents of the bulk domains and of the surface are denoted byM± and
Ms, respectively. Further we assume that the constituents of the bulk domains are different,
i.e.M+ ∩M− = ∅. In case of identical chemical species in both bulk domains, we treat these
species as different constituents. This is reasonable and necessary because a constituent may
have different physical and chemical properties in the domains Ω±.

The general thermodynamic setting is the same for both domains Ω±. Thus for a simplified
notation we omit the superscripts ± and indicate the corresponding domains only if necessary.

The constituent A0 plays a special role. For example, in an liquid electrolyte A0 indicates the
solvent and in solid electrode A0 represents the constituent forming the crystal lattice.

In the isothermal and electrostatic setting the thermodynamic state of the bulk mixture is char-
acterized by the number densities (nα)α∈M± , the barycentric velocity v and the electric po-
tential ϕ. On the surface the thermodynamic state is given by the surface number densities
(ns,α)α∈Ms , the barycentric surface velocity vs and the surface electric potential ϕs. These
variables may be functions of time and space.

Each constituent Aα of the bulk or surface has the atomic mass mα and may be carrier of
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charge zαe0, where zα is the charge number and e0 is the elementary charge.

Among the surface constituents we may have Ms surface chemical reactions of the general
form

ai
0As,0 + · · ·+ ai

ns
As,Ns

Ris,f−−−⇀↽−−−
Ris,b

bi
0As,0 + · · ·+ bi

Ns
As,Ns

for i ∈ {1, · · · ,Ms} . (37)

The constants aiα, b
i
α are positive integers and γiα = biα − aiα denote the stoichiometric co-

efficients of the reaction i. Ri
s,f and Ri

s,b denote the forward and backward reaction rates,
respectively. The net reaction rate is defined as Ri

s = Ri
s,f −Ri

s,b.

Multiplication of the number densities nα by the masses mα gives the partial mass densities in
the bulk and on the surface:

ρα = mαnα and ρs,α = mαns,α . (38)

For the bulk and surface mixture, the mass densities are defined by

ρ =
N∑
α=0

ρα and ρs =
Ns∑
α=0

ρs,α . (39)

Finally, the free charge densities are defined by

nF =
N∑
α=0

zαe0nα and nF
s =

Ns∑
α=0

zαe0ns,α . (40)

Jumps at the surface. We introduce the boundary values, the jump and the mean value of a
generic bulk function u(t, x) ∈ Ω± at S as

u|±S = lim
x∈Ω±→S

u and [[u]] = u|+S − u|
−
S and 〈u〉 = 1

2
(u|+S + u|−S ) . (41)

In case that the function u is not defined in Ω+ or in Ω−, the corresponding value in (41) is set
equal to zero.

5.2 Balance of mass and momentum

Customarily non-equilibrium thermodynamics uses the local equations of balance. However, for
the derivation of the SDE system it is convenient to use the global version of the mass balances,
i.e. in terms of integrals. On the other hand, the momentum balances, Maxwell’s equations and
the constitutive equations are still represented by their local forms.

Bulk mass balance. The determination of the mass densities ρα = mαnα relies on the
balance equations of mass. The mass of constituent Aα, α = 0, 1, ..., N , changes due to
convection, diffusion and chemical reactions,

d

dt

∫
Ω

mαnα dx = −
∫
∂Ω

jα · ν da+

∫
Ω

rα dx with jα = ρα(v −w) + Jα . (42)
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The quantities rα are the mass production densities. Here we do not consider chemical reac-
tions in the bulk domains, i.e. we have rα = 0. The velocity of the boundary ∂Ω is denoted by
w and Jα is the bulk diffusion flux of constituent Aα. To guarantee the total mass conservation
the diffusion fluxes satisfy the side condition [MR59, dM63, Mül85]

N∑
α=0

Jα = 0 . (43)

Surface mass balance. The surface mass density ρs,α = mαns,α, of the surface constituent
As,α is determined by surface mass balance equation,

d

dt

∫
S

mαns,α da = −
∫
∂S

js,α · e dl −
∫
S

[[jα · ν]] da+

∫
S

rs,α da. (44)

The line integral gives the tangential mass flux normal to the line ∂S into the surface S, while the
normal flux from the bulk domains across the surface S is represented by the double bracket.
The tangential mass flux density is denoted by js,α and consists of convection and diffusion,

js,α = ρs,α(vτ,s −wτ ) + Js,α , (45)

where vτ,s and wτ represent the tangential parts of the surface barycentric velocity vs and of
the surface velocity w of S, respectively. The tangential diffusion flux of constituent As,α on S
is denoted by Js,α. As in the bulk the diffusion fluxes must satisfy the side condition

Ns∑
α=0

Js,α = 0 . (46)

The third term on the right hand side of (44) represents surface chemical reactions with surface
mass production densities rs,α. The production densities are related to the reaction rates by

rs,α =
Ms∑
i=1

γis,αmαR
i
s . (47)

Bulk momentum balance. In the quasi-static setting the Cauchy stress σ of the matter is
balanced by the electrostatic force −nF∇ϕ,

−div(σ) = −nF∇ϕ in Ω . (48)

Here the force density due to gravitation is ignored. An alternative formulation of the momentum
balance reads, [Mül85, DGM13],

divΣ = 0 in Ω , (49)

where the newly introduced quantity Σ is the total stress tensor,

Σ = σ + ε0

(
∇ϕ⊗∇ϕ− 1

2
|∇ϕ|21

)
. (50)
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Surface momentum balance. The quasi-static surface momentum balance equation is rep-
resented by, [Mül85, CA65],

[[Σ · ν]] = −2kMγsν −∇sγs on S , (51)

where γs denotes the surface tension and kM is the mean curvature of the surface S.

5.3 Maxwells equations and electric current

In the quasi-static regime Maxwells equations are significantly reduced. The equations for the
electric fieldE can be solved by introducing an electric potential ϕ,

E = −∇ϕ . (52)

Without polarization the solely relevant Maxwell equation in the bulk is the Poisson equation,

div(ε0E) = nF . (53)

The quantity ε0 is the dielectric constant. Maxwells equations for the surface S separating the
bulk domains Ω± are satisfied by (i) a continuous electric potential,

ϕs = ϕ|+S = ϕ|−S (54)

and (ii) by the jump condition for the electric field

[[ε0E]] · ν = nF
s . (55)

A further crucial equation in electrochemical systems is the electric charge balance,

d

dt

∫
Ω

nedx = −
∫
∂Ω

je · ν da with je = ne(v −w) + J e . (56)

where ne is the electric charge density and J e is the electric current density. In a non-polarizable
and non-magnetizable system charge density and electric current density are represented by

ne = nF and J e =
N∑
α=0

zαe0
mα
Jα , (57)

i.e. they are determined by the number densities and the diffusion fluxes of the constituents. For
the surface S the corresponding charge balance reads

d

dt

∫
S

ne
s da = −

∫
∂S

je
s · e dl −

∫
S

[[je · ν]] da with je
s = ne

s(vτ,s −wτ ) + J e
s .

(58)

In an analogous manner to the bulk the surface electric charge density ne
s and the surface

electric current density J e
s are given in a non-polarizable and non-magnetizable system by

ne
s = nF

s and J e
s =

Ns∑
α=0

zαe0
mα
Js,α . (59)
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5.4 Constitutive model

The balance equations for mass and momentum have to be supplemented by constitutive equa-
tions for the mass fluxes Jα, Js,α and for the surface reaction rates Ri

s. The constitutive equa-
tions are restricted by the principle of material objectivity and the 2nd law of thermodynamics
consisting of a list of axioms. In the following most results are derived in [dM63, Bed86, BD14,
Guh15].

Free energy, chemical potentials and electrochemical potentials. The crucial quantities
of a constitutive model are the free energy functions for bulk and surface materials. The free
energy functions must be given at first. Then all other constitutive quantities can be represented
by the free energy functions and their derivatives in a thermodynamically consistent manner.
For the different mixtures of the current study we use free energy functions of the general form

ρψ = ρψ(T, ρ0, . . . , ρN) and ρsψs = ρsψs(Ts, ρs,0, . . . , ρs,NS) . (60)

Note that in non-polarizable and non-magnetizable materials, the free energy functions do not
explicitly depend on the electromagnetic fields. The interested reader might consult [Mül85,
DGM15, Guh15] where more details on polarization and magnetization can be found. In the
isothermal setting surface temperature Ts and bulk temperature T are constant and equal in
each phase. Therefore the temperature occurs here only as a constant parameter.

The chemical potentials of bulk and surface materials are defined by

µα =
∂ρψ

∂ρα
and µs,α =

∂ρsψs
∂ρs,α

. (61)

In addition to the chemical potentials there are electrochemical potentials which play the cen-
tral role in the constitutive equations, particularly in the isothermal case. The electrochemical
potentials are defined by

µeα = µα + zαe0
mα

ϕ and µes,α = µs,α + zαe0
mα

ϕs . (62)

Diffusion fluxes for the bulk domains. The N + 1 diffusion fluxes Jα must satisfy the side
condition (43) so that only N constitutive equations can be given. In the isothermal setting the
2nd law of thermodynamics is guaranteed by the choice [dM63]

Jα = −Mα∇(µeα − µe0) , α = 1, · · · , N . (63)

The mobility coefficients Mα > 0 are non-negative material parameters.

Cauchy stress tensor and pressure. For simplicity, we assume that the viscosity has a minor
impact on the battery performance and can be neglected. Then the simplest thermodynamically
consistent constitutive equation for the Cauchy stress tensor reads

σ = −p1 , (64)
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where p is the material pressure satisfying the Gibbs-Duhem equation

p = −ρψ +
N∑
α=0

ραµα . (65)

Diffusion fluxes for the surface S. The equations of surface mass balances (44) have to
be supplemented by constitutive equations for the tangential diffusion fluxes Js,α and the nor-
mal components of the mass fluxes jα. As in the volume the surface constitutive relations are
related to the surface electrochemical potentials. We choose the following thermodynamically
consistent constitutive equations for the mass fluxes, [Bed86, Guh15],

Js,α = −Ms,α∇s(µ
e
s,α − µes,0) , α = 1, · · · , Ns , (66a)

jα · ν|±S = ∓M±
s,α

(
(µeα − µe0)|±S − (µes,α − µes,0)

)
, α = 1, · · · , N± , (66b)

ρ(v −w) · ν|±S = ∓L±s (µe0|±S − µ
e
s,0 +±f) , (66c)

where Ms,α, L±s and M±
s,α denote non-negative material parameter, the so called kinetic coef-

ficients. These constitutive equations embody surface diffusion, (66a), and adsorption from the
bulk to the surface S, (66b) and (66c). The newly introduced quantities f± will be used to model
stochastic processes on the particle surfaces in Section 5.9 .

Note that the surface constitutive equations (66b) and (66c) depend on the constitutive as-
sumptions that were made for the bulks, [Bed86, Guh15]. For example, if we were to consider a
viscous material so that viscous term occurs in the constitutive equation for the Cauchy stress
(64), then additional viscous terms would likewise arise in the constitutive equation (66c).

Surface tension. The constitutive equation for the surface tension is similar to the Gibbs-
Duhem equation for the pressure in the bulk,

γs = ρsψs −
Ns∑
α=0

ρs,αµs,α . (67)

Surface reaction rates. We use a linear relation between the reaction rate and the corre-
sponding driving force,

Ri
s = −Ri

0

NS∑
α=0

γis,αmαµ
e
s,α . (68)

The kinetic coefficients Ri
0 > 0 are called exchange rates.

We refer the reader to [BD14, DGM15, DGM16] where exponential non-linearities of Arrhenius-
type were introduced in the constitutive equations for the surface reaction rates so that Butler-
Volmer type equations result instead of (68).
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5.5 Introduction of stochastic objects in the constitutive model

The constitutive equations for the mass fluxes, reaction rates and stresses have been chosen so
that the entropy production becomes a non-negative bilinear form which is zero in equilibrium.
In this sense the constitutive equations are compatible with the 2nd law of thermodynamics.

The introduction of the quantities f± in the total mass fluxes (66c) is crucial in this work. For
this reason we describe here the essential steps for the derivation of the constitutive relations
(66b) and (66c).

Let us consider the entropy production ξνs due to the normal fluxes of momentum, heat and
mass across the interface:

ξνs =
1

Ts

[[(
σij −

(
ρψ −

N∑
α=0

ραµα

)
δij −

(
Tsρ
(µe0
T
− µes,0

Ts

))
δij
)

(vi − vis)νj
]]

+
[[(
qν +

(
Tρη +

N∑
α=0

ραµα
)
(vν − wν)

)( 1

T
− 1

Ts

)]]
−
[[ N∑
α=1

jα,ν

(
1
T

(µeα − µe0)− 1
Ts

(µes,α − µes,0)
)]]

. (69)

A derivation of the entropy production including tangential fluxes and surface reaction can be
found in [Bed86] and in the full case of coupled electro- and thermodynamics in [Guh15]. Here
qν denotes the normal heat flux and ρη is the entropy density of the corresponding bulk domains.
The entropy density is related to the free energy by ρη = −∂ρψ/∂T .

The entropy production can be extended by the following observation. The substitution

µeα|±S → µeα|±S + f̂± (70)

leaves the surface entropy production invariant. Here f̂± are arbitrary functions of time and
space defined at S that do not depend on the constituent index α.

Next we insert the constitutive equations (64) and (65) for the stress tensor and the pressure,
respectively, in (69). Then we choose linear relations for the normal fluxes and obtain the rela-
tions

ρ(v −w) · ν|±S = ∓L±s Ts(
µe0
T
|±S −

µes,0
Ts

+ f±) , (71)(
qν +

(
Tρη +

N∑
α=0

ραµα
)
(vν − wν)

)
|±S = ±

(
κ±s ∓

(
ρ(vν − wν)f

)
|±S
)( 1

T |±S
− 1

Ts

)
,

(72)

jα · ν|±S = ∓M±
s,αTs

(
1
T

(µeα − µe0)|±S −
1

Ts
(µes,α − µes,0)

)
,

(73)

where we have replaced f̂ by f which is defined as f̂ = ( 1
T |±S
− 1

Ts
)f . Here we are only

interested in the isothermal case, thus we set κ±s → ∞. Furthermore we assume that f̂ is
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non-zero in the isothermal case. Thus we have a continuous temperature across the interface,

Ts = T |±S . (74)

Then we obtain the constitutive equations (66b), (66c).

5.6 Special cases of the constitutive model

The constitutive equations for the mass fluxes can be written in the general form

F = KD , (75)

where F represents a mass flux,K > 0 is the corresponding kinetic coefficient andD denotes
the corresponding thermodynamic driving force.

In this section we consider two important regimes where the kinetic coefficients of the constitu-
tive equations for the mass fluxes assume extreme values, viz.

� K → 0 slow regime for diffusion and adsorption ,

� K →∞ fast regime for diffusion and adsorption.

In the slow regime K → 0 the flux is zero and the driving force is independent of the flux. In
the fast regime K → ∞ the driving force is zero and the flux is determined by the balance
equations. In particular the fast regime leads to some implications, which we study now in more
detail.

Infinite bulk mobilities. If the bulk mobility is very large, the fast regime Mα →∞ is appro-
priate. For finite diffusion fluxes we must have

∇(µeα − µe0) = 0 , α = 1, 2, ..., N . (76)

The equations (76) can be further simplified by the condition

N∑
α=0

mαnα∇µeα = 0 . (77)

This condition follows from a combination of (i) an identity between the spatial gradients of
chemical potentials, (ii) the Gibbs-Duhem equation, and (iii) the local form of the quasi-static
momentum balance [DGM13].

Inserting (76) into (77) leads to

∇µeα = 0 , α = 0, 1, ..., N . (78)

Thus the electrochemical potentials µeα are the same in every point of the mixture.
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Infinite surface mobilities. If the surface mobility is very large, the fast regime Ms,α → ∞
is appropriate. In an analogous manner as in the last paragraph we obtain constant surface
electrochemical potentials,

∇s µ
e
s,α = 0 , α = 0, 1, ..., Ns . (79)

We conclude that the surface electrochemical potentials µes,α assume the same value in every
point of a surface S.

Fast adsorption. The rate of an adsorption process, i.e. the transport of bulk matter to the
surface, is determined by the kinetic coefficients L±s and M±

s,α. We talk about fast adsorption of
constituent A0 if L±s assumes a large value. In the fast regime L±s →∞, we have

µe0|±S − µ
e
s,0 + f± = 0 . (80)

Insertion into the constitutive equations (66b) of the other constituents then yields

jα · ν|±S = ∓M±
s,α(µeα|±S − µ

e
s,α + f±) . (81)

If additionally the constituents Aα were also fast adsorbed so that the fast regime M±
s,α → ∞

is appropriate, the adsorption relation (81) would implying

µeα|±S − µ
e
s,α + f± = 0 . (82)

However the latter case is not considered here.

5.7 Application of the thermodynamic model to the LFP battery

In this section we apply the thermodynamic model to the battery system presented in Figure 1.
To this end several assumptions on both the balance equations and the kinetic coefficients are
involved to simplify the general thermodynamic model of the last section. The final result will be
the LFP battery model introduced in Section 3.

Composition. The LFP battery consists of the many-particle cathode, an electrolyte and a
metallic lithium anode as shown in Figure 1 and described in Section 2. For the modeling we
decompose the total domain of the battery into volume domains and surface domains.

The NP LFP particles occupy the volume domains Ωi, i = 1, 2, ..., NP. The volume domains of
the metallic substrate of the cathode, the electrolyte and the anode are denoted by ΩC, ΩE and
ΩA, respectively.

The total domain is bounded by the upper and lower surfaces SU and SL and by the two elec-
trode surfaces SA and SC. A LFP particle Pi has a common interface with the electrolyte, SiE,
and may have an interface with another particle Pj , which is indicated by Sij . Moreover, the
particle Pi may be in contact with the metallic substrate of the cathode via the interface SiC.
Thus the total interface of a particle Pi is given by Si = SiC ∪SiE ∪

∑
j S

ij , where the sum runs
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over all particle-particle interfaces of particle Pi. The interface between the metallic substrate
of the cathode and the electrolyte, and the interface between the anode and the electrolyte are
denoted by SCE and SAE respectively.

By convention the normal vector ν of the surfaces SiE, SCE, SAE always points into the electrolyte.
The normal vector of the surface SiC points into the metal substrate.

Each of the four bulk materials are mixtures with the following constituents: The metal substrate
of the cathode and the lithium anode are binary mixtures of metal ions and electrons. We have
(Al+, e−) in the metal substrate of the cathode and (Li+, e−) in the anode. A LFP particle is
formed by the FePO4 lattice and neutral lithium atoms Li. The constituents of the electrolyte
are the lithium cations, Li+, a solvent S and anionsA−. The constituentA0 indicates (i) FePO4

in the LFP particles, (ii) the metal ions Al+ and Li+ in cathode and anode, respectively, and (iii)
in the electrolyte A0 represents the solvent.

As assumed in the general setting the constituents of the bulk domains are likewise present on
the various interfaces. Moreover, the carbon coating of the LFP particles is a part of the LFP
surface. Therefore we have additional surface constituents, viz. (i) C+ and free electrons e− on
the LFP surfaces.

On the LFP surfaces only one chemical reaction is considered,

Li+ + e− −−⇀↽−− Li on Si . (83)

Model equations for the LFP particles. The masses of lithium and iron phosphate within a
particle Pi changes due to the normal component of the fluxes jLi and jFePO4

, respectively. The
corresponding mass balances (42) read

d

dt

∫
Ωi
ρLi dx = −

∫
Si
jLi · ν da ,

d

dt

∫
Ωi
ρFePO4

dx = −
∫
Si
jFePO4

· ν da . (84)

The surface Si of particle Pi consists of subsurfaces, viz. Si = SiC ∪ SiE ∪
∑

j S
ij .

To simplify the mass balances and to specify the lithium flux for the various subsurfaces of the
particles we make the following assumptions:

A1 The phase transition within the LFP particles is not observable on the time scale of charg-
ing/discharging.

A2 The diffusion of lithium within the LFP particles is fast, i.e. we assume that the fast diffu-
sion regime applies in Ωi.

A3 There is no lithium exchange between the metal cathode substrate and the particles, i.e.
the slow regime for lithium adsorption applies at SiC.

A4 The contact surface between to particles i and j is small compared to the total particle
surface, thus the lithium exchange between to neighboring particles is not significant. The
slow regime for lithium adsorption applies on Sij .
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A5 The surface constituent FePO4 is in equilibrium with the bulk constituent FePO4 of the
particles, i.e. we assume that the fast adsorption regime for FePO4 adsorption applies
on the LFP particle surface Si.

Due to Assumptions A1 and A2 we can apply the reasoning leading to equation (78) of Section
5.6. The chemical potentials within the LFP particles (78) are constant in space, thus

∇µLi = 0 and ∇µFePO4
= 0 in Ωi . (85)

The chemical potentials µLi and µFePO4
only depend on the number densities of lithium and

iron phosphate. We conclude

∇nLi = 0 and ∇nFePO4
= 0 in Ωi . (86)

Thus Assumptions A1 and A2 imply that the particles are homogeneous. Note that the value of
the number densities depend on the particle index, i.e the number densities assume different
values in the particles.

Moreover Assumptions A3 and A4 imply that the normal component of the lithium fluxes are
zero at SiC and Sij . Thus we have

mLi
d

dt
(V iniLi) = −

∫
SiE

jLi · νda and mFePO4

d

dt
(V iniFePO4

) = −
∫
SiE

jFePO4
· νda .

(87)

Due to Assumption 4 for FePO4 we obtain the adsorption relation

µFePO4
− µs,FePO4

+ f− = 0 on SiE. (88)

Then the lithium flux on SiE is given by

jLi · ν|−SiE = mLi

kBT
kLi(µLi − µs,Li + f−) on SiE with kLi = M−

s,Li
kBT
mLi

. (89)

Two remarks: i) Li and FePO4 have no electric charge, thus in equations (88) and (89) the elec-
trochemical potentials are equal to the chemical potentials. ii) Up to now only the bulk chemical
potentials µα are constant in space, the surface quantities µs,α and f− may still variate on the
particle surface.

Model equations for surfaces of the LFP particles. Next we apply the surface mass balance
(44) for lithium to the surface Si of particle Pi.

For its exploitation we introduce further assumptions:

A6 The tangential transport of the surface constituents Li,Li+, e−, S, A is fast, i.e. we apply
the fast regime for surface diffusion.

A7 The surface constituents C+ and FePO4 move with the particle surfaces, i.e. the tangen-
tial fluxes js,C, js,FePO4

are zero.
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A8 On Si the change of masses of all surface constituents are determined by stationary
processes.

A9 The chemical reaction Li+ + e− −−⇀↽−− Li exclusively occurs on the subsurface SiE.

A common exploitation of Assumptions A6 and A7 and the reasoning from Section 5.6 imply
that the surface electrochemical potentials µes,α do not depend on the position of the surface Si,

∇sµ
e
s,α = 0, for α = Li,Li+, e−,C+, S, A,FePO4 on SiC, S

i
E, S

ij . (90)

The Assumptions A8 and A9 simplify the surface mass balances for surface constituents. For
α = Li,Li+, e−, S, A we obtain∫

∂S

js,α · e dl = −
∫
S

[[jα · ν]] da+mαγs,α

∫
S

Rs da for S = SiC, S
i
E, S

ij . (91)

These equations are used to determine the corresponding tangential fluxes js,α. The Assump-
tions A7 and A8 yield that the surface mass balance for C+ is identically satisfied, and we have
for FePO4 ∫

S

jFePO4
· ν da = 0 for S = SiC, S

i
E, S

ij . (92)

Finally due to equation (68) and Assumption A7 the surface reaction rate reads

Rs = RE
0(mLi+µ

e
s,Li+ +me−µ

e
s,e− −mLiµ

e
s,Li) on SiE . (93)

Model equations for the electrolyte. The boundary of the electrolyte domain ΩE is given by
SE =

∑
i S

i
E ∪ SCE ∪ SAE ∪ SU ∪ SL.

We characterize the electrolyte by the Assumptions

A10 The diffusion of the electrolytic constituents is fast.

A11 The masses of the electrolytic constituents are determined by a stationary process.

A12 There is no adsorption on the surface SCE of the metallic substrate and on the upper and
lower surfaces SU and SL, respectively. Thus we assume for the electrolytic constituents
the slow adsorption regime at SCE, SU, SL.

A13 On both the particle-electrolyte surface SiE and the anode substrate surface SAE we have
fast adsorption of the solvent and the anions.

A14 The quantity f+ is set to zero at the anode surface, i.e. we ignore stochastic effects on
the anode surface.
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According to Section 5.6 the fast diffusion regime, Assumption A10, implies constant electro-
chemical potentials of the electrolyte species,

∇µeα = 0 for α = Li+, A, S in ΩE . (94)

In contrast to the LFP particles there are charged constituents in the electrolyte. Thus we cannot
replace the electrochemical potentials by the chemical potential. Moreover we cannot conclude
that the corresponding number densities are constant.

Assumptions A11 and A12 simplify the bulk mass balance in the electrolyte to

0 =
NP∑
i=1

∫
SiE

jα · ν da+

∫
SAE

jα · ν da α = Li+, A, S . (95)

Finally due to Assumption A13 the anions and the solvent must satisfy

µeα − µe
s,α + f+ = 0 for α = A, S on SiE , SAE . (96)

Then the adsorption fluxes of lithium are represented by

jLi+ · ν|+SiE = −ME
s,Li+(µeLi+ − µ

e
s,Li+ + f+) on SiE , (97)

jLi+ · ν|+SAE = −MAE
s,Li+(µeLi+ − µ

e
s,Li+) on SAE . (98)

Note that we may have different kinetic coefficients Ms,Li+ on SiE and SAE. This is indicated by
the superscripts. The representation (98) relies on Assumption A14.

Model equations for the electrolyte-anode interface. Both the electrolyte and the metal
lithium anode contain lithium ions with the same electric charge number. Even so lithium ions
in the liquid electrolyte and the solid lithium anode, respectively, are treated as different con-
stituents in this model because lattice ions have different electrochemical properties as solute
ions. At the interface SAE the different lithium ions are indicated by the subscripts E and A. The
electrolytic lithium ions Li+E can freely move on SAE whereas the metallic lithium ions of the an-
ode Li+A are fixed in the crystal lattice of the lithium metal. In this context on the anode surface
SAE we have the surface reaction

Li+E −−⇀↽−− Li+A on SAE . (99)

The surface SAE is characterized by the Assumptions

A15 The tangential surface transport of all surface constituents is fast, i.e. the fast regime for
surface diffusion is assumed.

A16 On SAE the masses of all surface constituents are determined by a stationary processes,
and there is no tangential mass flux over the boundary ∂SAE.
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Assumption A15 implies that the surface electrochemical potentials do not depend on the sur-
face point,

∇sµ
e
s,α = 0 for α = Li+A ,Li+E , e

−, A, S on SAE. (100)

Assumption A16 yields for the electrolytic constituents

0 = −
∫
SAE

jLi+E
· ν da−mLi+

∫
SAE

Rs,AE da and 0 =

∫
SAE

jα · ν da α = A, S ,

(101)

and for the anode constituents

0 =

∫
SAE

jLi+A
· ν da+mLi+

∫
SAE

Rs,AE da and 0 =

∫
SAE

je− · ν da . (102)

According to (68) the reaction rate Rs,AE reads

Rs,AE = RAE
0 mLi+(µe

s,Li+E
− µe

s,Li+A
) on SAE . (103)

Model equations for the metal substrate-electrolyte interface. Here we assume

A17 The tangential transport of all surface constituents on SCE is fast, i.e. we apply the fast
regime for surface diffusion.

This Assumption implies that on SCE the electrochemical potentials are constant in space,

∇sµ
e
s,α = 0 for α = Al+, e−,Li+, A, S on SCE . (104)

Model equations for the metals. Both the anode and the substrate of the cathode are metals.
We assume

A18 The diffusion of the electrons is fast.

A19 There is global charge neutrality in both metals.

A20 On metal surfaces we have fast adsorption of both electrons and metal ions.

Assumption A18 implies in the bulk domains

∇µeα = 0 α = e−,Li+,Al+ in ΩA,ΩC . (105)

We conclude from Assumption A19 that the volume integral under the time derivative of the
charge balance (56) vanishes. Thus the charge balance for the anode reads

0 =

∫
SA

je · ν da+

∫
SAE

je · ν da . (106)
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The charge balance for the metal substrate of the cathode is represented in a similar manner.

Assumption A20 is now applied to the constitutive equations (66b) and (66c) for adsorption. For
the anode it follows

µeα = µes,α α = e−,Li+ on SAE, SA , (107)

and for the metal substrate of the cathode we obtain

µeα = µes,α α = e−,Al+ on SiC, SC, SCE . (108)

Properties of electrochemical potentials at the contact lines. So far our thermodynamic
model exclusively treated bulk and surface domains. Additionally we meet contact lines between
the different subsurfaces. However, here we will not enter a careful thermodynamic treatment of
line phenomena, rather we simply proceed with the Assumption

A21 The electrochemical potentials of electrons, lithium ions and lithium atoms of the two
intersecting surfaces are continuous at the corresponding contact line.

This assumption can be derived within thermodynamics of lines if one assumes that the contact
line is itself not a carrier of mass, momentum and energy.

The Assumption A21 has far-reaching consequences here: The surface electrochemical poten-
tials of electrons, lithium ions and lithium atoms, respectively, assume the same values on the
LFP particle surfaces, i.e. they do not depend on the particle index,

µes,α|Si = µes,α for α = e−,Li+,Li on Si . (109)

Remarks on the momentum balance equation. At first glance the reader may think that until
now the momentum balance has not been used. However, this is not the case. Particularly the
exploitation of the fast diffusion regime heavily relies on the momentum balance. For example,
the momentum balance is needed to conclude that ∇(µeα − µe0) = 0 for α = 1, 2, ..., N
implies∇µeα = 0 for α = 0, 1, 2, ..., N , see [DGM13, DGM15] for more details.

Constitutive theory. Until now explicit constitutive equations for the chemical potentials and
the pressure were not needed. Moreover an inspection of the model equations reveals that in
this study explicit constitutive equations are exclusively needed for the LFP particles. These will
be given now. Recall both chemical potentials and pressure are derived from a single free en-
ergy function. In [DGG+10, DGH11] a free energy function for LFP is introduced, incorporating
(i) the mixing entropy of the distribution of lithium over the interstitial lattices sites of the iron
phosphate lattice and (ii) the mechanical deformation of LFP due to the intercalation process.
The resulting representations of chemical potentials and the pressure are

µLi = µref
Li(T, p) + 1

mLi

(
L(1− 2y) + kBT

(
ln(y)− ln(1− y)

) )
, (110)

µFePO4
= µref

FePO4
(T, p) + 1

mFePO4

(
Ly2 + kBT ln(1− y)

)
, (111)

p = pref +K
(
(vref

FePO4
nFePO4

+ vref
LinLi)− 1

)
. (112)
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The reference chemical potentials µref
α are in general function of temperature and pressure.

Here the µref
α are calculated by µref

Li(T, p) = gLi(T ) + vLi(p
ref + K ln(p−p

ref

K
+ 1)) and

µref
FePO4

(T, p) = gFePO4
(T ) + vFePO4

(pref + K ln(p−p
ref

K
+ 1)). Thus the temperature de-

pendence is left unspecified and the pressure contribution describes linear elastic behavior with
volume expansion due to intercalation. The positive constants vref

FePO4
and vref

Li are the specific

volumes of iron phosphate and lithium in LFP. Here pref is a reference pressure and K is the
bulk modulus of LFP. In general the bulk modulus is a function of the lithium content in LFP. For
simplicity this is ignored here and K is assumed to be constant.

Volume expansion and surface momentum balance. The intercalation of lithium into the
iron phosphate lattice is accompanied by a volume expansion. This is incorporated into the
model by the constitutive relation (112). In this study, however, we want to keep the model as
simple as possible and neglect the volume expansion. We thus assume

A22 The volume expansion due to intercalation of lithium is negligible, i.e. we set vref
Li = 0.

It is important to note that the pressure in each particle is still different due to surface tension and
mean curvature of the particles. To avoid this complexity a further model simplification becomes
necessary. It concerns the surface balance of momentum (51). We assume

A23 The normal component of the total stress Σ is continuous at the particle surfaces Si, i.e.

[[ν ·Σ · ν]] = 0 at Si . (113)

This assumption is satisfied if the product of mean curvature and surface stress is small com-
pared to the total stress.

The outer pressure p0 acting on the battery surface, i.e. the pressure on SC ∪ SA ∪ SU ∪ SL, is
constant. Under the Assumptions A22 and A23 the momentum balance equation yields that the
pressure within each particles is given by the outer pressure,

p = p0 . (114)

This implies that the particle density nFePO4
of the iron phosphate lattice of the particles is

determined by the constant specific volume,

nFePO4
= (vref

FePO4
)−1 for all Ωi . (115)

Moreover we conclude from the mass balance equations (87) and (92) of FePO4 that the vol-
umes of the LFP particles are time independent,

d
dt
V i = 0 for all i = 1, . . . , NP . (116)

Constant number density of iron phosphate and constant pressure within the particles imply
that the chemical potentials of lithium only change if the lithium mole fraction y = nLi/nFePO4

changes,

µLi = µLi(y) . (117)
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5.8 Evolution equations for the lithium mole fractions of the LFP battery
model

The balance equation (87) and the corresponding constitutive equation for the mass flux (89)
form the basis of the LFP battery model.

Due to the assumptions of the last subsection, the lithium mass flux normal to the surface SiE is
spatially constant if we assume a spatially constant f− on SiE,

jLi · ν|−SiE = mLi

kBT
kLi

(
µLi(y

i)− µs,Li + f i,−
)

at SiE . (118)

Finally we use (115),(116) and (118) so that the lithium mass balance equations (89) becomes
the central evolution equation of this study: For i = 1, . . . , NP

dyi

dt
=

1

τ i
mLi

kBT

(
µs,Li − µLi(y

i)− f i,−
)

with
1

τ i
=

kLi

mLinFePO4

AiE
V i

. (119)

5.9 Wiener process

In this section we will use the objects (f i)(i=1,...,NP) to represent some stochastic phenomena
within the LFP model. Note that in Section 5.5 the f i are introduced in a thermodynamically
consistent manner as free objects in the constitutive theory. For the following discussion we
write the evolution equations (119) in the generic form

dyi

dt
= ai(t, y1, .., yNP) + bi(t, y1, .., yNP)ξi(t). (120)

Assuming that the quantities ai and bi are classical functions and ξi are stochastic forces repre-
senting white noise, then the equations (120) are called Langevin equations. Roughly speaking
ξi(t) is called white noise if its time mean is zero and if the time mean of (ξi(t)ξj(t′)) is given
by a Dirac distribution, δ(t − t′)δij . In other words, the values of ξi(t) at different times and
for different i, j are not correlated. However, in the next two paragraphs we will sketch that for
white noise the derivatives dyi

dt
do not exist. For this reason it is only possible to consider (120)

in the integral form

yi(t)− yi(t0) =

t∫
t0

ai(s, y1(s), .., yNP(s))ds+

t∫
t0

bi(s, y1(s), .., yNP(s))ξi(s)ds. (121)

Moreover, the second integral cannot be considered as a Riemann integral, because the Rie-
mann integral over white noise, for example

∫ t
0
ξ(s)ds, does not exist but must be newly inter-

preted as an Ito integral, see [Gar96] for more details.

Definition of the Wiener process. For t ≥ 0 we consider the vector-valued stochastic pro-
cess

Y (t) = (Y 1(t), ..., Y NP(t)) with values y(t) = (y1(t), ..., yNP(t)) . (122)
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We are interested in a stochastic process that is a special case of a Markov process: the Wiener
process.

In this paper we characterize the Wiener process by the conditional probability density p(y, t|y0, t0) ≥
0. The quantity p(y, t|y0, t0)dy determines the probability that the stochastic variable Y as-
suming the value y0 at time t0 ≤ t is at time t in the interval y + dy. A stochastic process
Y (t) is called Wiener process if the possible values of the process are distributed according to
the probability density

p(y, t|y0, t0) =
1√

2π(t− t0)
NP

exp

(
−(y − y0)2

2(t− t0)

)
. (123)

The probability density is normalized,

∞∫
−∞

p(y, t|y0, t0)dy = 1, (124)

and mean value and variance, respectively, are given by

∞∫
−∞

y p(y, t|y0, t0)dy = y0,

∞∫
−∞

(yi− yi)(yj− yj) p(y, t|y0, t0)dy = (t− t0)δij. (125)

Some properties of the Wiener process. We follow Gardiner, [Gar96], to show that a Wiener
process,W (t) with values w(t), is continuous but not differentiable. Obviously we deduce from
(123):

lim
h→0

p(w, t+ h|w0, t)
1

h
= 0 uniformly in w, w0, t (126)

for |y − y0| ≥ ε > 0. Next we calculate the probability of the inequality |W (t + h) −
W (t)|/h > C with h,C > 0. Particularly we are interested in the limit h → 0 for arbitrary
chosen positive C . In other words, we ask for the differentiability of the Wiener process. To this
end it suffices to consider a single stochastic variable. We calculate

prob{|W (t+ h)−W (t)

h
| > C} =

−hC∫
−∞

p(w, t+ h|0, t)dy +

∞∫
hC

p(w, t+ h|0, t)dw

= 2

∞∫
hC

p(w, t+ h|0, t) =
2√
2πh

∞∫
hC

exp

(
−w

2

2h

)
dw

=
2√
π

∞∫
C
√

h
2

exp
(
−w2

)
dw

h→0→ 1 . (127)

Thus at any time the derivative of the Wiener process is arbitrary large with probability one.
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White noise and Wiener process. In [Gar96] it is shown that the Riemann integral
∫ t

0
ξ(s)ds

is equal toW (t). However, the last paragraph reveals that Ẇ does not exist. Thus in our context
we need a new interpretation and new rules for the integral

∫ t
t0
bi(s, y1, .., yNP)ξi(s)ds. We

write
∫ t
t0
bi(s, y1, .., yNP)dW i and interpret this integral as an Ito integral with a new calculus,

Ito-calculus, that must be used for exploitation, see again Gardiner [Gar96].

In our case the functions bi are given by constants, viz. bi = νi
√

2/τ i, so we have

t∫
t0

bi(s, y1, .., yNP)ξi(s)ds = νi
√

2

τ i
(W i(t)−W i(t0)). (128)

5.10 Charge transport

The charge is transported by the lithium ions from the anode to the cathode, whereby the elec-
trons have to flow through an electric device. The electric device is connected to the battery via
the surfaces SA and SC.

We define the electric current I of the battery by the electric current density je which flows
through the outer anode surface SA., viz.

I =

∫
SA

je · ν da with je =
∑

α=e−,Li+

e0zα
mα

jα . (129)

Using the mass balances (106), (101), (102), (95) and (91) we conclude

I =
e0

mLi+

∫
SAE

jLi+ ·ν da = − e0

mLi+

NP∑
i=1

∫
SiE

jLi+ ·ν da = − e0

mLi

NP∑
i=1

∫
SiE

jLi ·ν da . (130)

In a further step we replace the lithium fluxes of the electrolyte side by the fluxes of stored lithium
in the LFP particles. To this end we use equation (87) and then obtain a relation between the
current and the total lithium mole fraction that we seek for,

I = e0nFePO4
VP
d

dt

( NP∑
i=1

V i

VP
yi
)

= e0nFePO4
VP
dq

dt
. (131)

This equation expresses the intuitive relation that the electric current is directly related to the
amount of stored lithium in the ensemble of LFP particles.

A further important observation is that the relation (131) is exclusively derived from balance
equations. Thus the equation (131) is independent of the constitutive equations and especially
of the materials at hand. Note, we have assumed that the mass balances at the surfaces, in both
metals and electrolyte are stationary. This implies that the electric charge is exclusively stored
in the LFP particles. In particular without the stationary balance equations for the LFP particles,
a surface contribution would appear in (131).
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5.11 Battery voltage

The electric potential difference between the metallic substrate of the cathode at the surface SC

and of the anode at SA defines the cell voltage

U = ϕ|SC − ϕ|SA . (132)

Herein we use the electrochemical potentials, µeα = µα + e0zα
mα

ϕ, for the electrons in the
substrate of the cathode and for lithium ions in the anode to obtain

U =
me−

e0
(µe− − µee−)|SC +

mLi+

e0
(µLi+A

− µe
Li+A

)|SA . (133)

The assumptions of fast diffusion and fast adsorption for the electrons in the cathode imply that
its electrochemical potential µee− is the same everywhere in the cathode where electrons exist.
In particular we have µes,e−|SE = µee−|SC , where SE is an abbreviation for SE = ∪iSiE. The fast
diffusion assumption for the anode implies that the electrochemical potential of the lithium ions
in the anode is everywhere the same and thus we have µe

s,Li+A
|SAE = µe

Li+A
|SA .

Thus we may write

U =
me−

e0

(
µe−|SC − µes,e−|SE

)
+

mLi+

e0

(
µLi+A
|SA − µes,Li+A

|SAE
)
. (134)

In order to generate differences that can be represented by adsorption fluxes and the reaction
rate, respectively, we add some new terms that cancel each other,

U = 1
e0

(
mLi+µLi+A

|SA +me−µe−|SC
)

− 1
e0

(
mLi+µ

e
s,Li+A
|SAE −mLi+µ

e
s,Li+|SAE

)
− 1

e0

(
mLi+µ

e
s,Li+|SAE −mLi+µ

e
Li+|

+
SAE

)
− 1

e0

(
mLi+µ

e
Li+ |

+
SAE
−mLi+µ

e
Li+ |

+
SE

)
− 1

e0

(
mLi+µ

e
Li+ |

+
SE
−mLi+µ

e
s,Li+|SE

)
− 1

e0

(
mLi+µ

e
s,Li+|SE +me−µ

e
s,e− |SE −mLiµ

e
s,Li|SE

)
− mLi

e0

NP∑
i=1

AiE
AE

(µes,Li − µeLi)|SiE −
mLi

e0

NP∑
i=1

AiE
AE

µeLi|SiE . (135)

Next we use the relations (103),(98),(94),(97),(93), (89) and (117) to replace in (135) the chem-
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ical potential differences,

U = 1
e0

(
mLi+µLi+A

|SA +me−µe− |SC
)

1
e0RAE

0
Rs,AE

−
mLi+

e0MAE

s,Li+

1
AAE

∫
SAE

jLi+ · ν da

+
mLi+

e0ME

s,Li+

NP∑
i=1

AiE
AE

(jLi+ · ν)|SiE + mLi

e0

NP∑
i=1

AiE
AE
f+|SiE

− 1
e0RE

0
Rs

+ kBT
e0

1
kLi

NP∑
i=1

AiE
AE

jLi · ν|SiE −
mLi

e0

NP∑
i=1

AiE
AE
f−|SiE −

mLi

e0

NP∑
i=1

AiE
AE
µLi(y

i) . (136)

Note that a choice of the function f+ has not been made up to now. Therefore we can use
f+ = f− to eliminate f− in (136). In the next step we replace the mass fluxes and the reaction
rate by the current I . To this end we use the equations (101), (130) and (91) and obtain

U = 1
e0

(
mLi+µLi+A

|SA +me−µe− |SC
)

−
(

1
e20R

AE
0

1
AAE

+
(mLi+ )2

e20M
AE

s,Li+

1
AAE

+
(mLi+ )2

e20M
E

s,Li+

1
AE

+ 1
e20R

E
0

1
AE

+ mLikBT
e20

1
kLi

1
AE

)
I

− mLi

e0

NP∑
i=1

AiE
AE

µLi(y
i) . (137)

Finally we introduce the abbreviations

U ref = 1
e0

(
mLi+µLi+A

|SA +me−µe− |SC −mLiµ
ref
Li

)
(138)

and

jPic = e0
mLi

kLi , jPad =
e0kBTM

E

s,Li+

(mLi+ )2
, jPre = e0kBTR

E
0 ,

jAde = e0kBTR
AE
0 , jAad =

e0kBTM
AE

s,Li+

(mLi+ )2
. (139)

Then we obtain a relation that relates the thermodynamic state of the battery to the battery
voltage,

U = U ref − mLi

e0

NP∑
i=1

AiE
AE

(
µLi(y

i)− µref
Li

)
− kBT

e0
1
AE

(
1
jPad

+ 1
jPre

+ 1
jPic

)
I − kBT

e0
1
AAE

(
1
jAde

+ 1
jAad

)
I .

(140)

6 Discussion and outlook

The numerical investigations of this paper demonstrate the adequate representation of the LFP
battery by our stochastic battery model. The model embodies both the phase transition and the
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battery voltage for varying charging speeds. Special emphasis is placed to predict the influence
of the particle size distribution on the battery voltage.

The dynamics of the model are determined by the size distribution of storage particles and fur-
thermore by only two constant kinetic parameter, viz. the intercalation rate kLi and the strength
of the fluctuations, ν0. These parameter play quite different roles in the model. The simula-
tions reveal that the intercalation rate determines the macroscopic behavior of the electrode,
i.e. the battery voltage as a function of the state of charge of the battery. The derived voltage-
current relation (18) likewise shows that intercalation is the dominant phenomena to predict the
discharging-charging process.

On the other hand the strength of fluctuations on the particle surfaces characterizes the inset
of the phase transition which is additionally influenced by the size distribution of the particles.
However, the size distribution effect is weaker pronounced in the experiment, [LML+15], com-
pared to the model. Certainly this difference between experiment and model is induced by our
assumption of fast tangential charge transport on the particle surfaces, see Assumption 10 on
page 34. If the surface charge transport was limited by a finite surface mobility, the phase tran-
sition would be more affected by the coupling of the LFP electrode to the electrolyte than by the
size distribution of the particles.

A further model assumption states that charge transport within the electrolyte is fast with respect
to the surface processes. Then the general constitutive equations imply constant electrochemi-
cal potentials in the electrolyte. For known geometry of the electrodes we could use the Poisson
equation and the constant electrochemical potentials to determine the electric potential and
the distribution of ions in the electrolyte. In particular, by means of suitable electrolyte models
[DGM13, DGM15] the dimension of the electric double layer within the pore space of the LFP
electrode could be studied. Then it could be tested if the assumption of electroneutrality in the
electrolyte, which is met in many other battery models, is appropriate.

The stochastic model of this paper is not restricted to a LFP electrode against a metallic lithium
anode. For example, it is possible to substitute the lithium anode by a graphite anode, LixC6,
that is likewise to be represented by a many-particle model. In this case our stochastic model
can be applied, only the kinetic coefficients and the chemical potentials must be interchanged
accordingly. Then simulations of commercial cells become possible.
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[DBG+05] R. Dominko, M. Bele, M. Gaberšček, M. Remskar, D. Hanzel, S. Pejovnik, and
J. Jamnik. Impact of the carbon coating thickness on the electrochemical per-
formance of LiFePO4/C composites. Journal of The Electrochemical Society,
152(3):A607–A610, 2005.

[DFG+16] W Dreyer, P.K. Friz, P Gajewski, C. Guhlke, and M. Maurelli. to be published. WIAS
Preprint, 2016.

[DFN93] M. Doyle, T.F. Fuller, and J. Newman. Modeling of galvanostatic charge and dis-
charge of the lithium/polymer/insertion cell. Journal of The Electrochemical Soci-
ety, 140(6):1526–1533, 1993.

[DG15] W. Dreyer and C. Guhlke. Sharp limit of the viscous Cahn–Hilliard equation and
thermodynamic consistency. Continuum Mech. Thermodyn., page 22, 2015.
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