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Abstract

We present a theoretical approach to model the dynamics of a dispersive nonlinear system using a set of
delay differential equations with distributed delay term. We illustrate the use of this approach by considering
a frequency swept laser comprising a semiconductor optical amplifier (SOA), a tunable bandpass filter and
a long dispersive fiber delay line. We demonstrate that this system exhibits a rich spectrum of dynamical
behaviors which are in agreement with the experimental observations. In particular, the multimode modula-
tional instability observed experimentally in the laser in the anomalous dispersion regime and leading to a
turbulent laser output was found analytically in the limit of large delay time.

1 Introduction

Time-Delay Dynamical Systems (TDDS) have been successfully used to describe a variety of problems ranging
from population and neural dynamics in biological sciences [4,5,22] to short pulse formation and appearance of
instabilities in laser physics [13, 16, 18, 26]. They also appear in control [19], modelling of climate [10], modern
computational methods [3,17], and the dynamics of coupled oscillators [11,12]. In each of these problems, delay
is a direct consequence of wave propagation without dispersion. However, waves of different physical origin such
as electromagnetic, acoustic, or water waves are subject to dispersion when propagating in a medium with the
phase velocity depending on the frequency of the wave. In nonlinear medium the interplay between dispersion
and nonlinearity can give rise to a modulational instability [28] and soliton formation [29]. A commonly adopted
approach to describe these phenomena is based on the application of NLS and CGLE-type equations where
the second and higher order chromatic dispersions are described by time derivatives of different orders. This
letter aims to provide a framework to study the effect of chromatic dispersion on the dynamics of TDDS.

2 Chromatic dispersion in TDDS

In the case of TDDS model equations depend not only on the current state vector U(t), but also on the past
states Uk(t − Tk), where Tk are the delay times, k = 1, ..., n. Without the loss of generality we can assume
that we have only a single delayed variable U1(t− T ) and a single delay time T1 = T in the model equations.
To introduce chromatic dispersion we first consider a complex variable u(t, z) = u(t− z/c, 0) satisfying linear
homogeneous unidirectional wave equation (1/c)ut + uz = 0 on the interval 0 ≤ z ≤ L and postulate
that the current state variable U1(t) and its delayed value are given, respectively, by the values of u(t, z)
at the beginning and at the end of the dispersionless delay line of length L = cT , U1(t) ≡ u(t, 0) and
U1(t− T ) ≡ u(t, L) = u(t− T, 0). Next, when the dispersion is present we replace the homogeneous wave
equation with non-homogeneous one:

1

c

∂u

∂t
+
∂u

∂z
= p(t, z), (1)

where p is the linear “polarization” describing the dispersive properties of the delay line medium. In the frequency
domain p̂ is proportional to û(ω, z) via the susceptibility χ(ω, z) as

p̂(ω, z) = χ(ω, z)û(ω, z). (2)
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Equations (1) and (2) are integrated in the co-moving reference frame (t′ = t − z/c and z′ = z) in order to
obtain û(ω, L)

û(ω, L) = û(ω, 0)e
∫ L
0 χ(ω,z)dz, (3)

and u(t, L) is obtained by performing the inverse-Fourier transform of (3).

In this paper, we assume that χ(ω, z) = χ(ω) is homogeneous in z, hence without loss of generality χ(ω) can
be decomposed in a sum of Lorentzians

χ(ω) = −
∫

n(ω0)

Γ(ω0) + i(ω + ω0)
dω0, (4)

where n(ω0) is the density of states.

For a single Lorentzian,

χ(ω) =
−σ

Γ + i(ω + Ω)
, (5)

with central frequency Ω and full-width at half-maximum Γ, corresponding to n(ω0) = σδ(ω0 − Ω), one can
write

u(t, L) = u(t− T, 0) + P (t− T ) = U1(t− T ) + P (t− T ), (6)

where

P (t) = σL

∫ t

−∞
e−(Γ+iΩ)(t−s)

J1

[√
4σL(t− s)

]
√
σL(t− s)

u(s, 0)ds. (7)

The relation (6) gives an expression for the output field from the dispersive delay line. Therefore, in order to
account for the effect of dispersion in the model equations we need to replace in these equations the output
field U1(t − T ) from a dispersionless delay line with that calculated in the presence of chromatic dispersion:
U1(t − T ) + P (t − T ). The resulting set of equations with distributed delay describes the behaviour of the
TDDS in the presence of dispersion and the usual tools of non-linear dynamics theory can be applied to study
the stability and bifurcations of various solutions.

3 Experimental study of a FDML laser

To illustrate the application of our method to a specific physical problem, we shall now consider the example of a
ring laser with a long dispersive fiber line and compare the experimental results with those obtained theoretically.
Such a laser operating in Fourier Domain Mode-Locking (FDML) regime [8] generates frequency swept light
commonly used in Optical Coherence Tomography and can be described by a set of two DDE’s [20]. In addition,
it has recently been shown that the coherence properties of this laser depend strongly on the dispersion of the
fiber delay line [1].

The schematic of the experimental setup is shown in Fig. 1(a) (it is the same as in [20]). The gain medium
was provided by an SOA (Thorlabs, BOA1132) with an amplified spontaneous emission peak wavelength of
1303.8nm. A tunable element was a Fabry-Pérot tunable narrow band (50 pm) optical bandpass filter (Mi-
cronOptics) with about 20 THz free spectral range. The filter transmission was controlled by an AC source. The
isolator incorporated into the cavity ensured unidirectional propagation of light and excluded any parasitic back
reflections. The overall cavity length, mostly formed by the fiber pigtails of the cavity components, was estimated
17m. The amount of dispersion was controlled by including additional SMF fiber delays of various lengths thus
allowing for the cavities ranging from 17m to 20km. For the 20km cavity length the wavelength of the mini-
mum group velocity of the system was measured 1317nm. The laser dynamics was analysed by a DC-coupled
broadband 12 GHz photoreceiver (Newport, 1554-B) and a real time oscilloscope of 12 GHz bandwidth.
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When the filter transmission was set at a fixed wavelength (static regime) within the range of the normal disper-
sion (i.e. wavelengths below 1317nm), the laser exhibited bistability demonstrating a random switching between
the constant wave (CW) and chaotic solutions as shown in Fig. 1(c). A minor shift of the filter transmission
towards longer wavelengths stabilised the CW solution while a shift towards shorter wavelengths destabilised
the CW solution giving way to a turbulent output. The observed hysteresis lead to the asymmetry of the laser
intensity for the case when the filter transmission was periodically modulated at a slow frequency (quasi-static
regime) to scan a range of wavelengths in the normal dispersion region. This is illustrated in Fig. 2(a). The
top black curve schematically shows the direction of the filter sweep near its turning point (corresponds to 0
value on the time axis) where the filter was changing its transmission wavelength from the decreasing (negative
time values) to increasing (positive time values). The time trace (a) shows the change in the laser intensity
depending on the sweep direction: for the decreasing wavelengths the laser displayed chaotic oscillations while
the increase of the wavelengths lead to a series of the power dropouts. The stability analysis for this case is
presented in [20].
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Figure 1: (a) Experimental set-up of the ring laser. SOA: Semiconductor Optical Amplifier; ISO: Isolator; SMF:
Single Mode Fiber (0m, 300m, 2km, 10km, 20km); FFP-TF: Fiber Fabry-Pérot Tunable Filter; WG: waveform
generator. (More details on the components can be found in [20]). (b) Bistability between the chaos and CW
observed at a static wavelength for the case of the normal dispersion. (c) Chaotic dynamics observed at a static
wavelength for the case of the anomalous dispersion. (b) Threshold division for the modulational instability for
various fiber lengths. The bistability regime is observed to the left of the threshold line and chaos to its right.

When the filter transmission was set at a fixed wavelength in the range of the anomalous dispersion, the laser
output remained always chaotic as shown in Fig. 1(d), and was not influenced by any slight variations of the
filter transmission. When the filter was quasi-statically tuned in the region of the anomalous dispersion, the laser
output showed a strong dependence on the filter speed: at a slow modulation frequency the laser exhibited
chaotic output regardless of the sweep direction (Fig. 2(b)) while as the filter modulation frequency increased,
an asymmetry appeared (Fig. 2(c)), however, the CW output had never been stabilized.

These results indicated the influence of the fiber dispersion on the stability of the laser. To investigate this point
further, the wavelength at which the transition from the bistable to chaotic dynamics occurred was measured
as a function of the cavity length (Fig. 1(c)). In particular, for the cavity length of 20km, the transition occurred
at 1346nm while the minimum system group delay was measured 1317nm, thus demonstrating that the laser
can become chaotic even without dispersion. The fact that the CW solution was no longer observed at long
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wavelengths indicated that the dispersion led to an additional instability.
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Figure 2: Experimentally measured dynamics of the laser operating in a quasi-static regime at the turning point
of the filter transmission (the top curve) for the case of (a) the normal dispersion region (tuning around 1303nm,
100mHz modulation frequency); (b) the anomalous dispersion region (tuning around 1328nm, 200mHz mod-
ulation frequency); (c) the anomalous dispersion region (1600mHz modulation frequency). Black: the intensity
measured with 12GHz bandwidth, white: the numerically filtered intensity.

4 Theoretical analysis of a FDML laser

4.1 Time-delay model

To model this system theoretically, let us consider a laser consisting of an SOA as an amplifying medium, a
tunable spectral filter, and a dispersive fiber delay line in a ring cavity. We assume that the chromatic dispersion
of the delay line material is caused by a Lorentzian absorption line with the central frequency detuned with
respect to the reference frequency associated with the central wavelength of the amplification line of the SOA.
Using this approach we can describe both the case of normal dispersion (blue-shifted absorption line, positive
detuning Ω > 0 in (5)) and anomalous dispersion case (red-shifted absorption line, negative detuning Ω < 0
in (5)). We use the lumped element approach similar to that applied in [26], and apply the formalism discussed
above to describe the propagation of light in a dispersive medium with detuned Lorentzian absorption line
using the equation (6), where u(t, z) represents the slowly varying electric field envelope in the delay line.
Then assuming that the total length of the SOA and tunable filter can be neglected as compared to the delay
line length L = cT , we derive the following set of DDEs for the complex envelope of the electric field at the
entrance of the SOA, A(t), and the saturable gain of the SOA, G(t) [25]:

dA

dt
+ (γ − iw)A = γ

√
κe(1−iα)G/2 [AT + PT ] , (8)

dG

dt
= γg

[
g0 −G− (eG − 1) |AT + PT |2

]
, (9)
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where AT = A(t − T ), PT = P (t − T ), T is the cold cavity round trip time, γ is the tunable filter width, w
is the relative position of the central frequency of this filter. The parameters κ, α, and g0 describe, respectively,
attenuation factor related to nonresonant loss per cavity round trip, linewidth enhancement factor, and the pump
parameter. Finally,

P (t) = −d
∫ t

−∞
e−(Γ+iΩ)(t−s)

J1

[√
4d(t− s)

]
√
d(t− s)

A(s)ds. (10)

where d = σL. In the case of zero dispersion P = 0 the DDE system (8) and (9) contains a single discrete
delay and coincides with model equations studied in [20,21].

4.2 Stability analysis of CW solutions

To investigate theoretically the appearance of modulational instability in the system (8)-(10) let us consider a CW
solution in the formA(t) = A0e

iνt andG(t) = G0, which together with (7) implyP (t) =
(
e−d/[Γ+i(Ω+ν)] − 1

)
A0e

iνt.
Substituting these relations into (9) and (8) we obtain the following expression for the CW intensity and stationary
value of the carrier density

|A0|2 =
g0 −G0

eG0 − 1
e

2dΓ
Γ2+(Ω+ν)2 , (11)

G0 = ln

[
γ2 + (w − ν)2

γ2κ
e

2dΓ
Γ2+(Ω+ν)2

]
, (12)

where the frequencies ν of CW solutions satisfy a transcendental equation.

Next, following the approach described in [27] we perform linear stability analysis of CW solutions (11)-(12) in
the limit T → ∞. We linearize the system near the steady state A =

(
A0 + δAeλt

)
eiνt, G = G0 + δGeλt,

and P1 =
(
P0 + δPeλt

)
eiνt, with the relation δP = δA

(
e−d/[Γ+λ+i(Ω+ν)] − 1

)
following from (7). Then we

can obtain the following characteristic equation for the eigenvalues λ describing the stability of CW solutions:

a(λ)Y (λT )2 + b(λ)Y (λT ) + c(λ) = 0, (13)

where Y (λT ) = e−λT , and a(λ), b(λ), c(λ) are coefficients independent of the delay time T (see Appendix
A).

Finally, in the limit of large delay time T → ∞ we can represent the eigenvalues belonging to the pseudo-
continuous spectrum in the form λ = iµ+ Λ

T
+O(1/T 2) with real µ [27]. Then, keeping only the single leading

term iµ in a(λ),b(λ), c(λ) and two leading terms iµ + Λ
T

in Y (λT ), we obtain two branches of pseudo-
continuous spectrum Λ±(µ). Real parts of these eigenvalue branches are shown in Fig. 3 (a) indicating the
presence of modulational instability in the anomalous dispersion regime. As it can be seen from Fig. 3(a),
appearance of the modulational instability is associated with the change of the sign of the curvature of one
of the two eigenvalue branches at the origin µ = 0, which allows us to derive analytically the condition for
modulational instability of the CW solution [25,27]

−
(
γ − α(w − ν)

γ2 + (w − ν)2

)2

− αD2 + F (w, ν, d,Ω) > 0, (14)

where second-order dispersion coefficient is represented by

D2 = Im
d2

dν2

(
−d

Γ + i(Ω + ν)

)
.
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Here the last term in the left hand side is almost independent of the chromatic dispersion above the lasing
threshold for |Ω| � 1: F (w, ν, d,Ω) ≈ F (w, ν, 0,Ω). In the absence of dispersion this term is responsible
for the appearance of modulational instability at negative detunings w < ν, which is symmetric with respect to
the zero detuning point ν = w, F (w,w, 0,Ω) = 0 and F (w,w + δν, 0,Ω) = F (w,w − δν, 0,Ω) [20] (see
Appendix A).

In the absence of dispersion (d = D2 = 0) a CW solution is always stable with respect to modulational
instability when the central frequency of the spectral filter is tuned exactly to the frequency of this solution,
w = ν (− 1

γ2 < 0) [20]. In the case of dispersive delay line d > 0, the necessary condition for the modulational
instability at w = ν is

αD2 < −
1

γ2
. (15)

This condition resembles the modulational instability criterion for the complex Ginzburg-Landau equation [24].
The sign of the second-order dispersion coefficient D2 is determined by the sign of Ω for large enough |Ω| >
Γ
√

3. In particular, modulational instability (15) occurs only for the case of anomalous dispersion Ω < 0.
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Figure 3: (a) Real parts of two branches of the pseudo-continuous spectrum ReΛ±(µ) in the case of strong
anomalous dispersion, Ω = −13, d = 1000.0, ν = 0. (b) Modulational instability boundary (black) and
Turing-like instability boundary (light/red color) in anomalous dispersion regime on the plane of two parameters,
dispersion strength d and the relative frequency of the CW regime w − ν. The gray region denotes stable CW
solutions. Other parameter values: γ = 1, g0 = 3.0, α = 2, κ = 0.2, γg = 0.1, w = 0, and Γ = 0.001.

Stability analysis of the CW solution (11) for various values of w − ν in the static regime w = const allows
us to understand the asymmetry of the dynamical output of the laser with respect to the sweeping direction in
the quasi-static and FDML regimes [20]. Indeed, in the case of moderate normal or weak anomalous dispersion
(see Fig. 3(b)), similarly to the case without dispersion, for w > ν we observe a Turing-type instability of the
CW solution, which leads to a jump from one longitudinal mode to another for positive sweep direction, whereas
for w < ν and sufficiently high α-factor CW regime looses stability via a weak modulational instability, which
results in the chaotic output of the laser for negative sweep direction [20]. It can be seen from Fig. 3b that, when
the strength of the anomalous dispersion d is increased above a certain threshold, the Turing-type instability
at w > ν is replaced by modulational instability, so that for both signs of the detuning w − ν the CW solution
is destabilized via a modulational instability. With further increase of the dispersion strength two modulational
instability boundaries in Fig. 3b merge with one another and the CW regime becomes always unstable for any
values of w − ν. Noteworthy, examination of first two terms in (14) implies that for w > ν the modulational
instability threshold value of the dispersion strength is lower, and for some 0 < ν − w < αγ it is higher than
for ν = w. This explains the asymmetry of the black curve in Fig. 3(b) with respect to w − ν = 0.
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4.3 Numerical simulations

To investigate the effect of anomalous dispersion on the dynamics of FDML laser in the quasi-static regime
numerically, we assumed that the central frequency of the filter is swept periodically in time, w = w(t) =
∆ sin ρt [20], where ρ � 1. In our simulations the narrow filter was swept over the window of several filter
bandwidths. In order to keep second-order dispersion constant inside the sweeping window we chose the central
frequency of the Lorentzian Ω = ±13γ + w moving together with the central frequency of the filter. The effect
of normal and anomalous dispersion on symmetry properties of the FDML laser output with respect to the
sweep direction is illustrated by Fig. 4. In particular, it can be seen from Fig. 4(c) that for d = 600γ, when
the small interval of detunings w − ν, where the CW regime is stable, is limited by two modulational instability
points (see Fig. 3(b)), a chaotic output is observed for both sweep directions at low sweep speed ρ = 10−7.
On the contrary, for higher sweep speed ρ = 5 × 10−6 one can see a weak attraction towards a CW regime
and corresponding jumps in the numerically filtered field intensity |A|2(t), see Fig. 4(b) that match closely the
jumps shown in Fig. 4(a) for the case of normal dispersion. Thus, our numerical results are in good qualitative
agreement with the experimental results presented in Fig. 2.
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Figure 4: Numerical solution of the system (8)-(10) for ∆(t) = ∆0 sin ρt at the turning point of the filter
transmission sin ρt = −1 (top) in case of (a) normal dispersion Ω = 13 (modulation frequency ρ = 10−6); (b)
anomalous dispersion Ω = −13 (modulation frequency ρ = 5 × 10−6); (c) anomalous dispersion Ω = −13
and modulation frequency ρ = 10−7. The black traces are the recorded time traces and the white traces
are numerically filtered signals. Here, d = 600, ∆ = 5, and other parameters are as in Fig. 3. Numerical
discretization of the system (8)-(9) was performed using Heun’s method, where the integral (10) was calculated
using Levin’s method for highly oscillatory integrals [14] (see Appendix B).
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5 Conclusion

To conclude, we have provided a theoretical framework to describe the effect of dispersion in a non-linear system
modelled by a set of DDEs. This approach was applied to successfully describe the emergence of modulation
instability observed experimentally in a ring cavity laser containing a long fibre delay line. In particular, we have
shown that in the anomalous dispersion regime the dispersion of the fiber delay line can destabilize the CW laser
operation leading to a turbulent behavior. We believe that this framework could be used to investigate the impact
of dispersion on the dynamics of a broad class of systems commonly described by DDE’s. For example, this
approach could be used to understand the effect of linear chromatic dispersion on the characteristics of mode-
locked regime in monolithic multi-section lasers and other non-linear photonic devices [2,3,6,7,9,15,16,18,23].
Our framework can be also applied to much more general systems like Stuart-Landau equation with delayed
feedback [9] (see Appendix C).

6 Appendix A. Modulational instability in the delayed model of FDML
laser

We consider the characteristic equation (13) for the eigenvalues λ describing the stability of CW solutionA(t) =
A0e

iνt, where

a(λ) = −γ2κe
G0− 2aΓL(Γ+λ)

(Γ+λ)2+(ν+Ω)2

[
λ+γg

(
1 + |A0|2e

− 2aΓ2L
Γ2+(ν+Ω)2

)]
,

c(λ) = −
[
(γ + λ)2 + (w − ν)2

] [
λ+ γg

(
1 + |A0|2e

G0− 2aΓ2L
Γ2+(ν+Ω)2

)]
,

b(λ) = e
− aΓL(Γ+λ)

(Γ+λ)2+(Ω+ν)2 {p(λ) cos [Ψ−Θ(λ)] + q(λ) sin [Ψ−Θ(λ)]} ,

p(λ) = γeG0/2
√
κ

{
2(γg + λ)(γ + λ) + γg|A0|2e

− 2aΓ2L
Γ2+(ν+Ω)2

[(
eG0 + 1

)
(λ+ γ) + α

(
eG0 − 1

)
(ν − w)

]}
,

q(λ) = γeG0/2
√
κ

{
2(γg + λ)(w − ν) + γg|A0|2e

− 2aΓ2L
Γ2+(ν+Ω)2

[(
eG0 + 1

)
(w − ν) + α

(
eG0 − 1

)
(γ + λ)

]}
,

and

Ψ =
αG0

2
+ νT, Θ(λ) =

aΓL(ν + Ω)

(Γ + λ)2 + (ν + Ω)2
.

In the limit of large delay two branches of pseudo-continuous spectrum Λ±(µ) are given by

Λ±(µ) + iµT = − ln

[
−b(iµ)±

√
b(iµ)2 − 4a(iµ)c(iµ)

2a(iµ)

]
. (16)

Therefore, we assume y(µ) = −Re ln Ŷ (µ), Ŷ (µ) = Y (iµ), hence the modulational instability threshold
can be found using the condition y′′(0) = 0. Since

y′′(0) = Re

[
Ŷ ′(0)2

Ŷ (0)2
−

ˆ̂Y ′′(0)

Y (0)

]
,
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we can find Ŷ (0), Ŷ ′(0), Ŷ ′′(0) from (13), first and second derivative of (13) at µ = 0. One can see that for
the corresponding branch of eigenvalues Ŷ (0) = 1,

Ŷ ′(0) = i

[
γ − α(w − ν)

γ2 + (w − ν)2
+

d

Γ2 + (Ω + ν)2

(
1−

2Γ
(
Γ− α(Ω + ν)

)
Γ2 + (Ω + ν)2

)]
,

and, finally, we obtain the condition (14) for modulational instability above the lasing threshold, where F =
−rs + ru,

D2 =
2d(Ω + ν)

(
−3Γ2 + (Ω + ν)2

)(
Γ2 + (Ω + ν)2

)3 ,

rs =
2dΓ

(
3(Ω + ν)2 − Γ2

)(
Γ2 + (Ω + ν)2

)3 > 0,

ru =
(
1 + α2

) [( w − ν
γ2 + (w − ν)2

)2

+

(
−1 +

2

r1

+
2

r2

)(
w − ν

γ2 + (w − ν)2
− 2dΓ(Ω + ν)

(Γ2 + (Ω + ν)2)2

)2]
.

Here, r1 and r2 are the parts of the CW field A0 =
√

r1κ
r2

, where

r2 =
γ2 + (w − ν)2

γ2
− κ exp

−2dΓ

Γ2 + (Ω + w)2
,

r1 = g0 + lnκ+ ln
γ2

γ2 + (w − ν)2
− 2dΓ

Γ2 + (Ω + ν)2
.

One can see that the term rs > 0 increases MI threshold, however for Ω� 1 this term is small (rs � 1). The
term ru destabilizes the CW regime atw = ν for any type of dispersion (normal or anomalous) in a small vicinity
of the lasing threshold where 0 < g0 +lnκ−2dΓ/

(
Γ2 +(Ω+ν)2

)
� min(Γ, 1

Γ
) and y′′(0) > 0 (for Ω� 1

we have to assume Γ� 1 in order to avoid unrealistically large losses at ν = w, hence this vicinity is negligibly
small). For larger g0 the term ru becomes sufficiently small and the CW regime gains stability (y′′(0) < 0) till
another modulational instability threshold is reached (y′′(0) > 0) and the CW regime is destabilized once again.

7 Appendix B. Numerical simulations of FDML model

In our simulations, we are interested in the effect of second-order dispersion on the dynamics of the laser,
hence we choose our parameters in order to maximize the magnitude of second-order dispersion parameter
D2 and to minimize all other effects of the Lorentzian dispersion line (10). In particular, we assume Ω � 1
large enough so that the Lorentzian is outside of the gain profile, and Γ � 1 to minimize the losses due to
Lorentzian absorption line. Finally, we solve the equation (8) in the reference frame of the filterA := Aei

∫
∆(t)dt

by approximating the original system with the system

dA

dt
+ γA = γ

√
κe(1−iα)G/2+iϕ−i

∫ T
t−T ∆(s)ds [AT + PT ] , (17)

(9),(10). The approximation is valid for very slow sweep speed ∆′(t) ∼ ρ � 1 under assumption of varying
Ω = Ω0 + ∆(t). We note that the last assumption is purely technical and allows us to consider smaller values
of Ω and larger discretization steps. Numerical solution of original system (8)-(9),(10) with fixed large Ω gives
us qualitatively similar results for the same discretization steps, which are subject to higher numerical noise that
limits our understanding of the underlying dynamics.
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7.1 Levin’s method for highly oscillatory integrals

It is possible to apply Levin’s method [14] for numerical evaluation of highly oscillatory integrals to the integral
(10). For that, we consider this integral at a finite interval [0,mT ] of m delays, and make a change of variable
under the integral s :=

√
s to obtain the integral in the following form

P (t) = −
√
d

∫ √mT
0

A(t− s2/4)e−(Γ+iΩ)s2/4J1

[√
ds
]
ds =

M∑
j=1

∫ √tj

√
tj−1

f(s)g(s)ds, f(s) = (0, A(t− s2/4)),

where tj are points of discretization, f(s) is a slow function, and the highly oscillatory kernel g(s) satisfies a
linear system of ODEs with variable coefficients

g′(s) = B(s)g(s), B(s) =

(
−(Γ + iΩ) s

2
−
√
d√

d −(Γ + iΩ) s
2
− 1

s

)
.

We look for the function p(s) such that (pT (s)g(s))′ ≈ f(s)g(s), then the integral can be approximated by∫ √tj

√
tj−1

f(s)g(s)ds ≈ pT (
√
tj−1)g(

√
tj−1)− pT (

√
tj)g(

√
tj).

From the relation (pT (s)g(s))′ = pT
′
g + pTg′ = (p′ +BTp)Tg ≈ f(s)g(s) it follows that p ≈ q, where q is

the solution of the inhomogeneous linear system

q′ +BT q = f.

We solve this system numerically using a collocation method.

8 Appendix C. Modulational instability in Stuart-Landau equations with
dispersive delayed feedback

We can use the proposed approach to include the effect of chromatic dispersion into the universal Stuart-Landau
equation that describes dynamics near a Hopf bifurcation with delayed feedback [9]

dA

dt
= (c1 + ic2)A− (1 + ic3)A|A|2 + κeiφ(A(t− T ) + P (t− T )) (18)

for c1 > 0 with the term (10) that accounts for the dispersion in delay line. We study the stability of the CW
regime A(t) = A0e

iνt in the case of resonant feedback into the maximum gain external cavity mode, where

c2 = c3

(
c1 + e

− dΓ
Γ2+Ω2 κ

)
and φ = dΩ

Γ2+Ω2 . Therefore, we obtain

A2
0 = γ + κe

− Γd
Γ2+Ω2 ,

10



and the characteristic equation (13), where

a(λ) = κ2e
− 2Γd

Γ2+Ω2 ,

b(λ) = 2κe
−

(2Γ+λ)d

(
Γ(Γ+λ)+Ω2

)
(Γ2+Ω2)

(
(Γ+λ)2+Ω2

)[(
2κ+ e

Γd
Γ2+Ω2 (c1 + λ)

)
cos Ψ + c3

(
κ+ e

Γd
Γ2+Ω2 c1

)
sin Ψ

]
,

Ψ =
λ(2Γ + λ)dΩ

(Γ2 + Ω2)
(
(Γ + λ)2 + Ω2

) ,
c(λ) = 3κ2e

− 2Γd
Γ2+Ω2 + 2κe

− Γd
Γ2+Ω2 (c1 + 2λ) + λ(2γ + λ).

Therefore, for y(µ) = −Re ln Ŷ (µ), Ŷ (µ) = Y (iµ) we obtain

y′′(0) = − 1

κ2e
− 2Γd

Γ2+Ω2

−D2c3 −
2ΓΩ3(3Ω2 − Γ2)

(Γ2 + Ω2)3
+

2ΓΩ5

(Γ2 + Ω2)4

(
1 + c2

3

)(
1 +

κ

c1e
Γd

Γ2+Ω2 + κ

)
.

Finally, we obtain the necessary condition for modulational instability for the mode ν = 0 similarly to the
necessary condition for complex Ginzburg-Landau equations and for FDML laser

D2c3 < −
1

κ2e
− 2Γd

Γ2+Ω2

. (19)
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