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Abstract

We show that all Lindblad operators (i.e. generators of quantum semi-
groups) on a finite-dimensional Hilbert space satisfying the detailed balance
condition with respect to the thermal equilibrium state can be written as a
gradient system with respect to the relative entropy. We discuss also ther-
modynamically consistent couplings to macroscopic systems, either as damped
Hamiltonian systems with constant temperature or as GENERIC systems.

1 Introduction

In many situations the evolution of quantum systems is dictated not only by the
system Hamiltonian but also by dissipative effects, i.e. the time-dependent density
matrix ρ(t) satisfies a dissipative evolution equation of the form

ρ̇ =
i

~
[
ρ,H

]
+ Lρ, (1.1)

where we will set ~ = 1 in the sequel. The dissipative part L of this Lindblad equation
has to be a completely positive operator, which is enforced by the structure of quantum
mechanics. In this work we additionally ask for the condition of detailed balance
with respect to the equilibrium state ρ̂β in the sense of Alicki [Ali76] and [KF∗77], by
which we mean that Lρ̂β = 0 and that L∗ is symmetric with respect to the weighted
operator scalar product (A,B) 7→ Tr(A∗Bρ̂β), see (2.4). We call such L shortly DBC
Lindbladians with respect to ρ̂β. Equations like (1.1) where already derived in [Dav74]
as the weak coupling limit of a given quantum system with a large heat bath. It was
observed in [Spo78] that this class of models satisfies the detailed-balance condition
(DBC) and that the relative entropy (also called free energy)

F(ρ) = Tr
(
ρ (log ρ− log ρ̂β)

)
= Tr

(
ρ (log ρ+ βH)

)
+ logZβ

is a Liapunov function, i.e. it decays along solutions. Here β > 0 is a suitable inverse
temperature and

ρ̂β =
1

Zβ
e−βH with Zβ = Tr

(
e−βH

)

is the thermal equilibrium.
The aim of this work is to show that (1.1) can be written as a damped Hamiltonian

system, namely
ρ̇ =

(
J(ρ)−K(ρ)

)
DF(ρ), (1.2)

where the operator J(ρ) : ξ 7→ i
β
[ρ, ξ] generates a Poisson bracket, while the operator

K(ρ) should be purely dissipative, i.e. K(ρ) = K(ρ)∗ ≥ 0. We will call such dissipative
operators simply Onsager operators, because of Onsager’s fundamental work in
[Ons31].

Thus, our aim is the construction of an Onsager operator K which generalizes the
Wasserstein operator KWass(u) : µ 7→ − div

(
ρ∇µ

)
for the Fokker-Planck equation

and the Markov operator KMv(p) for jump processes constructed in [Mie11b, Maa11,
ErM12, Mie13b], cf. Section 3.1. The crucial point is that K(ρ) has to depend on ρ
in a very specific way to obtain the relation

−K(ρ)
(

log ρ+ βH
)

= Lρ,

1



where the right-hand side is linear in ρ. In the Fokker-Plank equation this is achieved
by the chain rule u∇

(
log u+V ) = ∇u+u∇V , and for jump processes it follows from

Λ(a, b)(log a− log b) = a− b, see Section 3.1.
For quantum systems first steps in this direction were done in [Ött10, Ött11,

Mie13a, CaM14, Mie15]. They involve the use of the Kubo-Mori operator

Cρ : L(h)→ L(h); A 7→ CρA :=

∫ 1

0

ρsAρ1−sds,

which satisfies for all Q ∈ L(h) the fundamental relation

Cρ
[
Q, log ρ

]
=
[
Q, ρ

]
, (1.3)

which we will call the miracle relation. Obviously, we need a generalization allowing
for commutators of the form [Q, log ρ + βH], which is nontrivial if βH 6= α1h. In
[CaM14] the infinite-temperature case βH = 0 is treated, while in [Ött10, Ött11,
Mie13a, Mie15] the nonlinear terms ρ 7→ Cρ[Q,H] are admitted.

Here, we show that in the general case with DBC it is possible to find a suitable
K in a rather natural way. The starting point is a tensor-product representation of
Lindblad operators. We set h1 = h and choose an arbitrary second Hilbert space
h2 and assume that h1 and h2 are finite-dimensional. For an arbitrary Hermitian
Q ∈ L(h1⊗h2) and a σ̂ ∈ L(h2) with σ̂ = σ̂∗ > 0 one sees that

Lρ = −Trh2

([
Q, [Q, ρ⊗σ̂]

])
(1.4)

is indeed a Lindblad operator. Moreover, it can be shown easily that this L satisfies
the DBC with respect to ρ̂β if the commutation relation

[
Q , ρ̂β ⊗ σ̂

]
= 0

holds, see Section 2.3. Under this condition it is now straightforward to show the
following generalization of the miracle identity:

Cρ⊗σ̂
[
Q , (log ρ+βH)⊗ 1h2

]
=
[
Q , ρ⊗ σ̂

]
.

Indeed, it suffices to use the fact that Q also commutes with log(ρ̂β⊗σ̂) = −βH⊗1h2
+

1h1
⊗ log σ̂ and then apply the classical miracle identity (1.3), see Theorem 3.4 for the

details. Now we can define the Onsager operator

K(ρ)ξ = Trh2

([
Q, Cρ⊗σ̂[Q, ξ⊗1h2

]
)
, (1.5)

which is a symmetric and positive semidefinite operator and satisfies the desired re-
lation

−K(ρ)
(

log ρ+ βH
)

= −Trh2

([
Q, [Q, ρ⊗σ̂]

])
= Lρ. (1.6)

In Theorem 2.7 we show that every DBC Lindbladian with respect to ρ̂β can be
written in the form (1.4) with h2 = h = h1 and either σ̂ = ρ̂β or σ̂ = ρ̂−1

β . Here we
rely on the classical characterization of DBC Lindblad operators in [Ali76, KF∗77].

In Sections 4 and 5 we consider a few applications and discuss the general prob-
lem of modeling the interaction of a macroscopic system described by a state variable
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z ∈ Z. We show that it is possible to set up a coupled system in the framework
of GENERIC, which is an acronym for “General Equations for Non-Equilibrium Re-
versible and Irreversible Coupling”. This framework is based on an energy functional
E , an entropy functional S, a Poisson operator J, and an Onsager operator K such
that the evolution is(

ρ̇

ż

)
= Jcoupl(ρ, z)

(
DρE(ρ, z)

DzE(ρ, z)

)
+ Kcoupl(ρ, z)

(
DρS(ρ, z)

DzS(ρ, z)

)
.

This is complemented by the fundamental non-interaction conditions JDS ≡ 0 ≡
KDE that defines a thermodynamically consistent system with energy conservation
and entropy production. The typical choice for the functionals is

E(ρ, z) = Tr(ρH) + E(z) and S(ρ, z) = −kB Tr
(
ρ log ρ

)
+ S(z).

To describe the coupling of the quantum system with the variable z it is essential
to model the different dissipation mechanisms separately, which we do by the minimal
building blocks SW and Mβ

Q for Lindblad operators, where Q must satisfy [Q,H] =

ωQ for some ω ∈ R. The associated Onsager operators KβQ can then be obtained from
the construction (1.5) by choosing

Q = Q∗ ⊗
(

0 1
0 0

)
+Q⊗

(
0 0
1 0

)
and σ̂ =

(
eβω/2 0

0 e−βω/2

)
.

With the above choice for E we have DρE(ρ, z) = H, which forces us to use fixed
eigenpairs (ω,Q). However, we may assume that the effective coupling temperature
may depend on z and may differ for different coupling mechanisms. Hence, a typical
Onsager operator for the coupled system may have the form

Kcoupl(ρ, z) =
M∑

m=1


 Kβ̃m(z)

Qm
(ρ) 〈�, bm(z)〉ZKβ̃m(z)

Qm
(ρ)H

〈
Kβ̃m(z)
Qm

(ρ)�
∣∣H
〉
bm(z)

〈
Kβ̃m(z)
Qm

(ρ)H
∣∣H
〉
bm(z)⊗bm(z)


 .

For an application to the thermodynamically consistent modeling of the Maxwell-
Bloch system as considered in [JMR00, Dum05] we refer to Section 5.4, where the
macroscopical variable z = (E,H) contains the electric and the magnetic field. For
more applications, also involving the coupling to drift-diffusion equations we refer to
[Mie15, Sec. 5].

For the sake of notational simplicity and to avoid technical complications, we have
restricted ourselves to the finite-dimensional case dimh < ∞. Many results have an
immediate generalization to the infinite-dimensional case, e.g. the relations (1.3) to
(1.6). However, the full characterization of all DBC Lindbladians, which is given in
Theorem 2.7 or Proposition 2.2, would require much more delicate considerations and
thus remains an open question.

2 Dissipative quantum mechanics

2.1 General notations and setup

Here we recall the standard theory and introduce our notation. The quantum mechan-
ical system is described by states in a complex Hilbert space h with scalar product
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〈a|b〉. For a Hamiltonian operator H ∈ Herm(h) (the set of Hermitian operators
on h) the associated Hamiltonian dynamics is given via the Schrödinger equation
ψ̇ = −iHψ, which has the solution ψ(t) = e−itHψ(0).

To couple a quantum system to a macroscopic one we need to describe it in sta-
tistical terms using the density matrices

ρ ∈ RN := { ρ ∈ L(h) | ρ = ρ∗ ≥ 0, Tr ρ = 1 }.

Each ρ ∈ RN has the representation

ρ =
N∑

j=1

rj ψj ⊗ψj, (2.1)

where rj ≥ 0,
∑N

1 rj = 1, and {ψj | j = 1, ..., N } is an orthonormal set. Note that in

our notation (ψ⊗φ) a := 〈φ|a〉ψ and (ψ⊗φ)A = ψ⊗ (A∗φ).
On operators we define the Hilbert-Schmidt scalar product

〈
A
∣∣B
〉

= Tr(A∗B)
satisfying the following identities, which will be used below without further notice:

〈
A
∣∣B
〉

=
〈
B∗
∣∣A∗
〉

=
〈
B
∣∣A
〉
,

〈
λA
∣∣µB

〉
= λµ

〈
A
∣∣B
〉
,〈

A
∣∣BC

〉
=
〈
AC∗

∣∣B
〉

=
〈
B∗A

∣∣C
〉
,
〈
A
∣∣[B,C]

〉
=
〈
B∗
∣∣[C,A∗]

〉
=
〈
C∗
∣∣[A∗, B]

〉
,

where λ, µ ∈ C and A,B,C ∈ L(h).

2.2 The Lindblad equations

Using the Schrödinger equation the evolution of ρ is given via the Liouville-von Neu-
mann equation

ρ̇ = −i[H, ρ], where [ρ,H] := ρH−Hρ. (2.2)

For open systems, dissipative versions of the Hamiltonian Liouville–von Neumann
equation are used. The most general linear master equation preserving complete
positivity is the well-known Lindblad equation

ρ̇ = −i[H, ρ] + Lρ with LA =
N2−1∑

n,m=1

an,m
(
[Qn, AQ

∗
m] + [QnA,Q

∗
m]
)
, (2.3)

where Qn are arbitrary operators in L(h) := Lin(h,h), and (an,m) is a Hermitian
positive semi-definite matrix. Note that L in the Lindblad equation is evaluated only
on ρ ∈ R, while we prefer to define L as an operator mapping from all of L(h)
into L(h). It is easily seen that every L is a ∗-operator, i.e. it satisfies L(A∗) =
(LA)∗. The set of all Lindblad operators forms a cone of real dimension (N2−1)2

in the set of linear operators from L(h) into itself. Characterizing the steady states
and the dynamics of a general Lindblad operator remains a field of ongoing research
[BNT08, BaN08, BaN12].

In this work we are mainly interested in Lindblad operators satisfying the detailed
balance condition (DBC), shortly called DBC Lindbladians. We follow the definition
in [Ali76, KF∗77] and refer to [AJ∗06] for a discussion of other versions of the DBC.
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Let L∗ denote the adjoint of L defined via
〈
L∗A

∣∣B
〉

=
〈
A
∣∣LB

〉
. The condition of

detailed balance with respect to the equilibrium state ρ̂β is defined via the relation

(DBC)

{
Lρ̂β = 0,〈
L∗(A)

∣∣Bρ̂β
〉

=
〈
A
∣∣L∗(B)ρ̂β

〉
for all A,B ∈ L(h),

(2.4)

i.e. L∗ is symmetric with respect to the weighted scalar product (A,B) 7→
〈
A
∣∣Bρ̂β

〉
.

The characterization of all operators lying in the class of DBC Lindbladians for a
fixed ρ̂β is given in [Ali76, Eqn. (20)]. See also [JPW14] for a modern characterization
of DBC Lindblad operators, while there the main goal is a large deviations theory
for the asymptotics for t → ∞. We will derive a new and compact representation of
these operators in Section 2.3. Clearly, the DBC is equivalent to

L(Aρ̂β) = L∗(A)ρ̂β for all A ∈ L(h). (2.5)

Before discussing the general form of all DBC Lindbladians, we will construct
minimal building blocks. They are useful in their own right for the modeling of
dissipative couplings as discussed in Sections 4 and 5. The main observation is that
the property of detailed balance with respect to ρ̂β = 1

Zβ
e−βH involves operators Q

having the property ρ̂βQ(ρ̂β)−1 = µQ, which can be characterized by the following
elementary result.

Lemma 2.1 For ω ∈ R, H ∈ Herm(h) and Q ∈ L(h) we have the equivalences:

(i) [Q,H] = ωQ ⇐⇒ (ii) ∃ β 6= 0 : e−βHQeβH = eβωQ

⇐⇒ (iii) ∀ γ ∈ R : e−γHQeγH = eγωQ.
(2.6)

We note that operators with the commutator property (i) can easily be constructed
when using the spectral representation of the Hamiltonian H, namely

H =
N∑

n=1

εnhn⊗hn, and hence ρ̂β =
1

Zβ

N∑

n=1

e−βεnhn⊗hn with Zβ =
N∑

n=1

e−βεn .

For a given eigenvalue εn we define the spectral projector Pn via

Pn =
∑

k:εk=εn

hk⊗hk, giving Pn = P 2
n = P ∗n and PnH = HPn = εnPn.

Now we can take any operator V ∈ L(h) and choose spectral projectors Pn and Pm.
Then

Q = PnV Pm satisfies [Q,H] = (εm−εn)Q.

We emphasize that this relation is linear in Q, so that a general Q satisfying [Q,H] =
ωQ may have the form

Q =
∑

(n,m): εm−εn=ω

PnVn,mPm,

thus possibly more than two energy levels εk may be involved. This is trivial for the
case ω = 0 but may also occur in the case ω 6= 0, see Example 2.4.2.
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We introduce the spectrum Ω(H) of the map A 7→ [A,H] and the set E(H) of
eigenpairs via

Ω(H) := spec([ · , H]) =
{
εm−εn

∣∣ εn, εm ∈ spec(H)
}
,

E(H) :=
{

(ω,Q) ∈ R× L(h)
∣∣ [Q,H] = ωQ

}
.

Let us further define the multiplicities of the eigenspaces via

dω = dim
{
Q ∈ L(h)

∣∣ [Q,H] = ωQ
}
.

If H has only one-dimensional eigenspaces and no pairs of eigenvalues εm, εn (m 6= n)
have equal differences εm−εn = εm′−εm′ , then dω = 1 for ω 6= 0 and d0 = N .
However, in the most degenerate case H = 0 we find d0 = N2 and dω = 0 for all
ω. The following result provides the building blocks for all DBC Lindbladians with
respect to ρ̂β = 1

Zβ
e−βH .

Proposition 2.2 (Building blocks SW and Mβ
Q) Let H and ρ̂β be given as above.

(a) Consider any W ∈ Herm(h) with [W,H] = 0, then the operator SW defined by

SWA := [W,AW ] + [WA,W ] =
[
W, [A,W ]

]

is a Lindblad operator satisfying SW = S∗W and the DBC for ρ̂β.

(b) Consider any pair (ω,Q) ∈ E(H), then the operator Mβ
Q defined via

Mβ
QA := eβω/2

(
[Q,AQ∗] + [QA,Q∗]

)
+ e−βω/2

(
[Q∗, AQ] + [Q∗A,Q]

)

is a DBC Lindbladian for ρ̂β.
(c) Every Lindbladian L satisfying the DBC (2.4) can be written in the form

L =
J∑

j=1

SWj
+

M∑

m=1

Mβ
Qm
, where

{
Wj = W ∗

j , (0,Wj) ∈ E(H), and

(ωm, Qm) ∈ E(H) with ωm > 0.

The numbers J and M of necessary terms is bounded by J ≤ d0−1 and M ≤∑
ω∈Ω(H)\{0} dω.

Proof. Part (a): Obviously, SW is a special case of L in (2.3) by choosing a1,1 = 1
and Q1 = W and an,m = 0 for (n,m) 6= (1, 1), so it is a Lindblad operator. We also

see that the DBC S ρ̂βW = SW holds, since ρ̂βWρ̂−1
β = W by using Lemma 2.1.

Part (b): It is obvious thatMβ
Q has the form of L in (2.3) with Q1 = Q, Q2 = Q∗,

a1,1 = eβω/2, and a2,2 = e−βω/2, while all other terms are 0. Moreover,
(
Mβ

Q

)ρ̂β
can be

calculated explicitly by using Lemma 2.1 and ρ̂βQ
∗ρ̂−1
β = e−βωQ∗, so the DBC follows.

Part (c): From [KF∗77, Eqn. (2.16)-(2.20)] (where Ls corresponds to our L∗) we
know that every DBC Lindbladian with respect to ρ̂β can be written as

LA =
N∑

k,j=1

Dkj

(
[XkjA,X

∗
kj] + [Xkj, AX

∗
kj]
)
, (2.7)
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where Dkj ≥ 0 and Xkj ∈ CN×N satisfy the conditions (with r̂j = e−βεj/Zβ > 0)

(i) Dkj r̂j = Djkr̂k and X∗kj = Xjk for r̂j 6= r̂k; (ii)
〈
Xkj

∣∣Xlm

〉
= δklδjm;

(iii) X∗kj = Xkj for r̂j = r̂k; (iv) ρ̂βXkj(ρ̂β)−1 =
r̂k
r̂j
Xkj.

(2.8)

We decompose the set I = {1, .., N}2 into I6= := { (k, j) ∈ {1, .., N}2 | r̃j 6= r̂k } and
I= := { (k, j) ∈ {1, .., N}2 | r̃j = r̂k }. For (j, k) ∈ I6= the second condition in (i) gives
Xjk = X∗kj, while (iv) and Lemma 2.1 imply (εk−εj, Xkj) ∈ E(H). Using now the

first condition in (i) as well and setting Qkj = eβ(εk−εj)/4Xkj, we find the relation

Dkj

(
[XkjA,X

∗
kj] + [Xkj, AX

∗
kj]
)

+Djk

(
[XjkA,X

∗
jk] + [Xjk, AX

∗
jk]
)

=Mβ
Qkj
A.

For (k, j) ∈ I= conditions (iii) and (iv) yield Xkj = X∗kj and [Xkj, H] = 0. Thus,

Dkj

(
[XkjA,X

∗
kj] + [Xkj, AX

∗
kj]
)

= SWkj
A with Wkj =

√
DkjXkj.

In summary, we find that L in (2.7) can be written in the form

L =
∑

(k,j)∈I=

SWkj
+

∑

(k,j)∈I 6=, j<k
Mβ

Qkj
,

which is the desired result.

Note that the representation of L in terms of the Kraus operators Qn in (2.3) is not
unique. Correspondingly, our representation in terms of SWj

andMQj is not unique.
Moreover, for a minimal representation one may ask for additional orthogonality con-
ditions. We also remark that the operators SW can be obtained fromMQ as a special
case allowing ω = 0 and asking for Q = Q∗. More precisely, if (0, Q) ∈ E(H) then
also (0, Q∗) and (0, 1

2
(Q+Q∗)) lie in E(H). In particular, we have

(0, Q) ∈ E(H) and Q = Q∗ =⇒ Mβ
Q = 2Sβ,Q = Sβ,√2Q.

Moreover, (ω,Q) ∈ E(H) if and only if (−ω,Q∗) ∈ E(H) and Mβ
Q = Mβ

Q∗ . Thus,
Proposition 2.2(c) tells us that all DBC Lindbladians can be written in the form

Lρ =
N∑

n=1

Mβ
Qn
ρ where (ωn, Qn) ∈ E(H) and ωj ∈ Ω(H). (2.9)

We will see specific examples in Sections 2.4 and 5. The above representation in terms
of the building blocks is especially useful for modeling, while the next section provides
a form that is more elegant and compact.

2.3 A compact form of all DBC Lindblad operators

In this section we will write Lindblad operators and our building blocks 2.2 in another
way. The basic idea is to write them as the partial trace of a double commutator on a
larger space. This will prove useful in Section 3 when writing down entropic gradient
structures for the Lindblad equations with DBC. In what follows h1 and h2 denote

7



finite-dimensional Hilbert spaces, and for A ∈ L(h1) and B ∈ L(h2) we denote the
tensor product by A⊗B ∈ L(h1)⊗L(h2) = L(h1⊗h2). We also introduce the notion
of a partial trace

Trh2
: L(h1)⊗L(h2)→ L(h1) defined via Trh2

(A⊗B) = Tr2(B)A

on direct products and extended by linearity to the whole space L(h1⊗h2). Here Tr2

is the trace in L(h2).
The next result shows that all Lindblad operators on L(h1) can be written in a

compact form by a double commutator on L(h1)⊗L(h2) and a partial trace. Moreover,
this form allows for a simple criterion for the DBC with respect to the equilibrium ρ̂β.

Proposition 2.3 (Compact representation for L) Consider two finite dimensio-
nal Hilbert spaces h1 and h2. Assume that Q ∈ Herm(h1⊗h2), σ̂ ∈ Herm(h2) and
σ̂ ≥ 0. Then

L(ρ) = −Trh2

([
Q, [Q, ρ⊗σ̂]

])
(2.10)

is a Lindblad operator in L(h1), i.e. the generator of a completely positive semigroup.
If in addition Q and σ̂ satisfy the commutator relation

[
Q, ρ̂β⊗σ̂

]
= 0, (2.11)

then L satisfies the DBC with respect to ρ̂β.

Proof. Since σ̂ ≥ 0 we can write σ̂ =
∑J

j=1 σjej⊗ej with σj ≥ 0. Let us define

Qkl = 〈ek |Q| el〉h2
= Trh2

(1h1
⊗(el⊗ek)Q) giving Q =

∑

k,l

Qkl ⊗ (el⊗ek).

Then Qkl = Q∗lk and using Trh2

(
B ⊗

(
(ek⊗el)⊗(em⊗en)

))
= δknδlmB we find

Lρ =
J∑

k,l=1

(
2σlQklρQlk − σk{QklQlk, ρ}

)
=

J∑

k,l=1

σl
(
[Qklρ,Q

∗
kl] + [Qkl, ρQ

∗
kl]
)
. (2.12)

which is clearly of Lindblad form.
The commutation relation (2.11) immediately implies Lρ̂β = 0, which is the first

relation in the DBC (2.4). The second relation is written in terms of the dual operator
L∗ that takes the form

L∗(A) = Trh2
(1h1
⊗σ̂

[
Q,
[
Q, A⊗1h2

]]
).

We have to show Tr
(
(L∗A)∗Bρ̂β)

)
= Tr(A∗L∗(B)ρ̂β). Using (L∗A)∗ = L∗(A∗) the

left hand side is equivalent to

Trh1
(L∗(A∗)Bρ̂β) = Trh1⊗h2

(1h1
⊗σ̂

[
Q,
[
Q, A∗⊗1h2

]]
(Bρ̂β)⊗1h2

)

= Trh1⊗h2
(
[
Q,
[
Q, A∗⊗1h2

]]
(B⊗1h2

)ρ̂β⊗σ̂).

Again using the commutator condition (2.11) we obtain, for all A, the identity

[Q,A(ρ̂β⊗σ̂)] = + [Q,A] ρ̂β⊗σ̂ + A [Q, ρ̂β⊗σ̂] = [Q,A] ρ̂β⊗σ̂,
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which we use twice, namely once with A = B⊗1h2
and once with A =

[
Q, B⊗1h2

]
.

Thus, we can move the Q operators to the right and obtain

Trh1
(L∗(A∗)Bρ̂β) = Trh1⊗h2

(A∗⊗1h2

[
Q,
[
Q, (B⊗1h2

)
]]
ρ̂β⊗σ̂)

= Trh1
(A∗Trh2

(
[
Q,
[
Q, (B⊗1h2

)
]]
1⊗σ̂)ρ̂β)

= Trh1
(A∗L∗(B)ρ̂β),

which is the desired DBC.

The above result shows that the commutator relation (2.11) is crucial for the study
of DBC Lindbladians. In the following lemma we give an alternative characterization
which will be useful later, when studying the associated gradient structures.

Lemma 2.4 (Equivalent commutation relation) Consider Q ∈ Herm(h1⊗h2),
ρ̂ ∈ Herm(h1), and σ̂ ∈ Herm(h2) with ρ̂, σ̂ > 0. Then we have

[Q, ρ̂⊗σ̂] = 0 ⇐⇒ [Q, log ρ̂⊗1h2
] + [Q,1h1

⊗ log σ̂] = 0. (2.13)

Proof. We simply note that a Hermitian operator Q commutes with a Hermitian
operator B > 0 if and only if it commutes with its logarithm logB. We apply this to
B = ρ̂⊗σ̂, for which we have

log(ρ̂⊗σ̂) = log ρ̂⊗ 1h2
+ 1h1

⊗ log σ̂.

This gives the desired result.

The above proposition demonstrates that the definition (2.10) together with (2.11)
generates DBC Lindbladians. The following corollary shows that the building blocks
SW andMβ

Q from Proposition 2.2 can be written in the compact form (2.10) as well.

Corollary 2.5 (Building blocks in compact form) Consider ρ̂β = 1
Zβ

e−βH with

H ∈ Herm(h1).
(1) Choosing h2 = C and QW = W for W ∈ Herm(h1) we have the identity

SWA = [W,AW ] + [WA,W ] = −
[
W, [W,A]

]
= −

[
QW , [QW , A]

]
.

The commutator relation (2.13) for QW is simply [H,W ] = 0.
(2) Choosing h2 = C2 and (ω,Q) ∈ E(H) we define

QQ =

(
0 Q∗

Q 0

)
σ̂βω =

(
eβω/2 0

0 e−βω/2

)
.

Then, the commutation relation (2.13) holds and we have

Mβ
QA = −Trh2

([QQ, [QQ, A⊗σ̂βω]])

= eβω/2([Q, ρQ∗] + [Qρ,Q∗]) + e−βω/2([Q∗, ρQ] + [Q∗ρ,Q]).
(2.14)
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Proof. (1) is trivial. For (2) the relation (2.14) follows from a direct calculation of
the partial trace. In order to check the commutation condition (2.11) we observe

[QQ, ρ̂β⊗σ̂βω] =

(
0 e−

βω
2 Q∗ρ̂β − e

βω
2 ρ̂βQ

∗

e
βω
2 Qρ̂β − e−

βω
2 ρ̂βQ 0

)
.

By Lemma 2.1 the relation [Q,H] = ωQ is equivalent to eβω/2ρ̂βQ = e−βω/2Qρ̂β, so
indeed the commutator [QQ, ρ̂β⊗σ̂βω] vanishes.

As a last step we want to show that all DBC Lindbladians can be written in
the form (2.10) with a particular choice of σ̂, namely either σ̂ = ρ̂β or σ̂ = ρ̂−1

β .
Therefore, we introduce a partial transpose on L(h1⊗h2) that acts on the h2 part
and is associated with a fixed σ̂ = σ̂∗ > 0, namely

Tσ̂ : L(h1⊗h2)→ L(h1⊗h2) is defined via Tσ̂(A⊗B) := A⊗B>σ̂ (2.15)

and by linearity on the whole space L(h1⊗h2). To define the σ̂-transpose B>σ̂ we
write σ̂ =

∑J
j=1 σjej⊗ej, where { ej ∈ h2 | j = 1, .., J } is an orthonormal basis in

h2, set Pjk = ej⊗ek, and set P>σ̂jk = Pkj, which defines B>σ̂ by linearity. Clearly,

Tσ̂
(
Tσ̂Q

)
= Q and Tσ̂Q is Hermitian if and only if Q is Hermitian.

Moreover, we define a σ̂-related operator Yσ̂ from L(h1⊗h2) into itself via

Yσ̂Q := (1h1
⊗σ̂1/2)

(
Tσ̂Q

)
(1h1
⊗σ̂1/2), (2.16)

With Pjk = ej⊗ek from above, every Q ∈ L(h1⊗h2) has the unique representation

Q =
∑J

j,k=1Qjk⊗Pjk, and we obtain the formulas

Tσ̂Q =
J∑

j,k=1

Qkj⊗Pjk and Yσ̂Q =
J∑

j,k=1

Q̃jk⊗Pjk with Q̃jk = (σjσk)
1/2Qkj. (2.17)

The following result indicates how the partial σ̂-transpose interacts with the com-
mutator of two Hermitian operators. It shows that a representation (2.10) for L in
terms of Q and σ̂ is equivalent to a representation in terms of Yσ̂Q and σ̂−1.

Lemma 2.6 Consider σ̂ ∈ Herm(h2) with σ̂ > 0. For Q ∈ L(h1⊗h2) we have

Tσ̂
(
[Q, A⊗σ̂]

)
=
(
1h1
⊗σ̂1/2

)
[Yσ̂Q, A⊗σ̂−1]

(
1h1
⊗σ̂1/2

)
for all A ∈ L(h1). (2.18)

In particular, we have an equivalence between the commutation relations

[Q, ρ̂β⊗σ̂] = 0 ⇐⇒ [Yσ̂Q, ρ̂β⊗σ̂−1] = 0 (2.19)

and the dual representations of the compact representation of Lindblad operators:

Trh2

[
Q, [Q, A⊗σ]

]
= Trh2

[
Yσ̂Q, [Yσ̂Q, A⊗σ̂−1]

]
. (2.20)

Proof. To simplify the notation we abbreviate Mσ̂ := 1h1
⊗σ1/2.

For establishing (2.18), we can use linearity such that it is sufficient to consider
the case Q = Qkl⊗Pkl, which gives

Tσ̂
[
Q, A⊗σ̂

]
= σl(QklA)⊗Plk − σk(AQkl)⊗Plk.
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Moreover, using Yσ̂Q = (σkσl)
1/2Qkl⊗Plk, we find

[
Yσ̂Q, A⊗σ̂−1

]
= (σl/σk)

1/2(QklA)⊗Plk − (σk/σl)
1/2(AQkl)⊗Plk.

Since multiplying this expression from the left and from the right by Mσ̂ reduces to
multiplying by (σkσl)

1/2, we see that identity (2.18) is established.
Clearly, (2.19) follows from (2.18) by choosing A = ρ̂β and using that Mσ̂ is

invertible.
Identity (2.20) follows by recalling the relation (2.12), which gives

−Trh2

[
Q, [Q, A⊗σ]

]
=
∑J

k,l=1
σl
(
[QklA,Q

∗
kl] + [Qkl, AQ

∗
kl]
)
.

Applying the same formula but with Q and σ̂ replaced by Yσ̂Q and σ̂−1 we simply
have to replace Qkl by Q̃kl = (σkσl)

1/2Qlk and the eigenvalues σl by 1/σl. We then
find the same result, and (2.20) is proved.

We now come to our representation of DBC Lindbladians with the choice σ̂ = ρ̂β or
σ̂ = ρ̂−1

β , which are both useful and have a natural interpretation. In the first case, we
can use the fact that for all ρ ∈ R ⊂ L(h) the tensor product ρ⊗ρ̂β is again a density
matrix, but now on the Hilbert space h⊗h. In the second case the matrix ρ⊗ρ̂−1

β can
be seen as a non-commutative counterpart of the relative density %(x) = u(x)/U eq(x)
in the Fokker-Planck equation or of the relative density (pn/w

eq
n )n=1,..,N for discrete

Markov processes, see Section 3.1. Note also that the two commutator relations

[Q, ρ̂β⊗ρ̂β] = 0 and [Q̃, ρ̂β⊗ρ̂−1
β ] = 0

look quite different, since ρ̂β⊗ρ̂β has the eigenvalues 1
Zβ

e−β(εj+εk) while ρ̂β⊗ρ̂−1
β has

the eigenvalues 1
Zβ

e−β(εj−εk). So the latter appears closer to the relevant eigenpairs

(ω,Q) ∈ E(H). However, we will see in the following theorem that there is a one-to-

one correspondence between all possible Q and Q̃. Its proof is based on the previous
lemma.

Theorem 2.7 (Compact representation of L with DBC) Let L be a DBC Lind-
blad operator with respect to ρ̂β ∈ L(h). Then, there exists Q ∈ Herm(h⊗h2) with
h2 = h satisfying the commutator relation [Q, ρ̂β⊗ρ̂β] = 0 such that the representation

Lρ = −Trh2

([
Q, [Q, ρ⊗ρ̂β]

])

holds. Moreover, choosing Q̃ = Yρ̂βQ as in Lemma 2.6, we have the alternative
representation

Lρ = −Trh2

([
Q̃, [Q̃, ρ⊗ρ̂−1

β ]
])
.

Proof. By [KF∗77] every DBC Lindblad operator can be written in the form

L(ρ) =
∑

ij,mn

Mij,mn([Pijρ, P
∗
mn] + [Pij, ρP

∗
mn])
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with Pij = hi⊗hj, where hi are the eigenvectors of ρ̂β, and Mij,mn satisfy

(i) Mmn,ij = Mij,mn, (ii) εj − εi 6= εn − εm =⇒ Mij,mn = 0,

(iii) Mnm,ji = e−βωMij,mn with ω = εj − εi = εn − εm.

We construct the Hermitian operator Q in the form Q =
∑

i,j,m,nAij,klPij⊗P ∗kl. Hence,

[Q, ρ̂β⊗ρ̂β] = 0 ⇐⇒
(
Aij,kl = 0 whenever εj−εi 6= εl−εk

)
,

Q∗ = Q ⇐⇒ Aij,kl = Aji,lk.

To this end we define
M̃ij,mn = Z2

β eβ(εi+εm)/2Mij,mn.

Then M̃ij,mn = M̃nm,ji = M̃ ji,mn. This symmetry property remains true for all powers

of M̃ and thus for M̃
1
2 as well. Define Aij,kl = eβ

εk−εi
2 (M̃

1
2 )ij,kl. Then,

Aji,lk = eβ
εl−εj

2 (M̃
1
2 )ji,lk = eβ

εl−εj
2 (M̃

1
2 )ij,kl

= eβ
εl−εk

2
−β εj−εi

2 Aij,kl = eβ
ω−ω
2 Aij,kl

Thus the corresponding Q is Hermitian and Aij,kl = 0 if εj − εi 6= εl − εk follows
from condition (2) on Mij,mn. Finally

1

Z2
β

∑

k,l

Aij,klAmn,kle
−βεk =

1

Z2
β

∑

k,l

eβ
εk−εi

2 (M̃
1
2 )ij,kl · eβ

εk−εm
2 (M̃

1
2 )mn,kle

−βεk

= e−β
εi+εm

2
1

Z2
β

∑

k,l

(M̃
1
2 )ij,kl(M̃

1
2 )kl,mn = e−β

εi+εm
2

1

Z2
β

M̃ij,mn = Hij,mn

which means that

Lρ =
∑

ij,mn

Mij,mn

(
[Pijρ, P

∗
mn] + [Pij, ρP

∗
mn]
)

= −Trh2

([
Q, [Q, ρ⊗ρ̂β]

])
.

This establishes the first representation based on Q and ρ̂β. The second representation

involving Q̃ρ̂β and ρ̂−1
β follows simply by applying (2.20) to the case σ = ρ̂β.

2.4 Examples of Lindblad operators and equations

Here we give two elementary examples to highlight the structures and to come back
to them in later sections.

2.4.1 The Bloch sphere for the case N = 2

For the case h = C2 and H = diag(ε1, ε2) with ε1 6= ε2 we characterize all DBC
Lindbladians L with respect to ρ̂β. For this we use the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
.
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and the operators σ± = 1
2
(σ1 ± σ2). Then, all L satisfying the DBC have the form

Ld(ρ) =
γ

2

(
e−βε1

(
[σ+ρ, σ−] + [σ+, ρσ−]

)
+ e−βε2

(
[σ−ρ, σ+] + [σ−, ρσ+]

))

+
δ

2

(
[σ3ρ, σ3] + [σ3, ρσ3]

)
, (2.21)

which are simply two building blocks with Q = σ+, Q∗ = σ−, and W = σ3.
It is more convenient to write the above generator in terms of real-valued Bloch

coordinates a ∈ R3 via ρ(a) = 1
2
id + 1

2

∑3
i=1 ai · σi. The positivity ρ ≥ 0 is equivalent

to |a| ≤ 1. The Lindblad equation ρ̇ = Ld(ρ) reads ȧ = Ra + k in Bloch coordinates
with

R =



−(γ+2δ) 0 0

0 −(γ+2δ) 0

0 0 −2γ


 , k =




0

0

2γw


 (2.22)

and with wβ = e−βε1 − e−βε2 . This is the dissipative part of the well-known phe-
nomenological Bloch equations. The longitudinal and transverse relaxation times T1

and T2 are given by T1 = 1
2γ

and T2 = 1
γ+2δ

. They satisfy the inequality T1 ≥ 1
2
T2.

2.4.2 A nontrivial case

In this example we give a case where an eigenvalue ω 6= 0 of A 7→ [A,H] is not simple,
which allows for a nontrivial coupling between four energy levels.

In h = C4 we choose H =
∑4

i=1 εihi with ε4 = 10, ε3 = 9, ε2 = 2, ε1 = 1, and
Q = h1⊗h2 + h3⊗h4. Using ε4−ε3 = ε2−ε1 = 1 we have (1, Q) ∈ E(H). Then, by
Proposition 2.2(b) we see that

ρ̇ =Mβ
Qρ = e

β
2 ([QA,Q∗] + [Q,AQ∗]) + e−

β
2 ([Q∗A,Q] + [Q∗, AQ]) (2.23)

satisfies the DBC with respect to ρ̂β. Let us rewrite the above equation in coordinates.
The diagonal elements form a Markov chain

ρ̇11 = −e−
β
2 ρ11 + e

β
2 ρ22 ρ̇33 = −e−

β
2 ρ33 + e

β
2 ρ44

ρ̇22 = +e−
β
2 ρ11 − e

β
2 ρ22 ρ̇44 = +e−

β
2 ρ33 − e

β
2 ρ44

and the evolution of the off-diagonal elements is given by

ρ̇13 = −e−
β
2 ρ13 + e

β
2 ρ24 ρ̇24 = +e−

β
2 ρ13 − e

β
2 ρ24

and ρ̇kl = − cosh β
2
ρkl for (k, l) /∈ {(1, 3), (3, 1), (2, 4), (4, 2)} . This example shows,

that non-diagonal elements (here ρ13 and ρ24) can couple, if the energy differences are
the same. Note that ρ11 and ρ22 are decoupled from ρ33 and ρ44. Thus ρ̂β is not the
only equilibrium of (2.23). This is also the reason why ρ13 and ρ24 do not decay to 0,
contrary to the other off-diagonal elements. See [BNT08, BaN08, BaN12] for a more
details.
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3 An entropic gradient structure for the Lindblad

equation

3.1 Entropic gradient structures for classical Markov pro-
cesses

The entropic gradient structure for master equations for classical Markov processes
goes back to the seminal work [JKO97, JKO98], where the Fokker-Planck equation

u̇ = div
(
a(x)

(
∇u+ u∇V (x)

))

for the probability density u(t, x) ≥ 0 was written as a gradient system with respect
to the Wasserstein distance. Here a(x) ∈ Rd×d is a symmetric and positive definite
diffusion matrix. The gradient structure has the form

u̇ = −KW(u) DF(u),

where F is the free energy (or relative entropy with respect to the equilibrium density
U eq(x) = e−V (x)) and KW is the Onsager operator associated with the Wasserstein
distance, namely

F(u) =

∫

Rd

(
u(x) log u(x) + V (x)u(x)

)
dx =

∫

Rd
u(x) log

(
u(x)/U eq(x)

)
dx,

KW(u)ξ = − div
(
u a(x)∇ξ

)
.

A related gradient structure for time-continuous Markov processes on a discrete
state space {1, . . . , N} was found independently by the three groups [Maa11, ErM12],
[CH∗12], and [Mie11b, Mie13b]. In this case the Kolmogorov forward equation for the
probability vector p(t) ∈ { (p1, . . . , pN) ∈ [0, 1]N | ∑N

n=1 pn = 1 } is the linear system

ṗ = Lp, where Lnm ≥ 0 for n 6= m and L>(1, 1, .., 1)> = 0.

The detailed balance condition for L and the equilibrium weq reads

Lweq = 0 with weq
n > 0 and κnm := Lnmw

eq
m = Lmnw

eq
n for all n,m ∈ {1, .., N}.

The entropic gradient structure is defined in terms of the relative entropy E(p) =
H(p|weq) and the Onsager operator KM(p) with

E(p) =
N∑

n=1

pn log
(
pn/w

eq
n

)
and KM(p) =

∑

m>n

κnmΛ
( pn
weq
n
,
pm
weq
m

)(
en−em

)
⊗
(
en−em

)
,

where Λ(a, b) ≥ 0 denotes the logarithmic mean of a and b:

Λ(a, b) =

∫ 1

0

as b1−sds =
a − b

log a− log b
. (3.1)

Note that using DE(p) =
(

log pn− logweq
n

)
n=1,..,N

, the relation Λ(a, b)
(

log a− log b
)

=

a−b, and the detailed balance condition easily yield the identity Lp = −KM(p)DE(p).
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3.2 The Kubo-Mori operator Cρ and the generalization Dα
ρ

The development of an analogous gradient structure for the dissipative part of the
Lindblad equation was less successful. The attempts in [Ött10, Ött11, Mie13a, Mie15]
produced nonlinear terms, unless the Hamiltonian H is a multiple of 1h (as in [CaM14]
or more generally only the building blocks SW in Proposition 2.2 are used). All of
these works involve the Kubo-Mori operator Cρ : L(h) → L(h) as a generalization of
the multiplication with u in the Fokker-Planck equation and the logarithmic mean
Λ( pn

weq
n
, pm
weq
m

). It is defined via

CρA :=

∫ 1

0

ρsAρ1−sds =
N∑

n,m=1

Λ(rn, rm) 〈ψn|Aψm〉ψn⊗ψm,

if ρ is given by (2.1).
One major property of Cρ is that it satisfies the analog of the identities

u∇ log
(
u/e−V

)
= ∇u+ u∇V and Λ(a, b)(log a− log b) = a− b (3.2)

for the classical Markov setting. Note that the right-hand sides are linear in u and
(a, b), respectively. For all Q ∈ L(h) the operator Cρ satisfies a similar “miracle
identity”, namely

Cρ[Q, log ρ] = [Q, ρ], (3.3)

see [Ött10, Ött11, Mie13a, Mie15]. We will provide a proof of a more general version
of this identity in Proposition 3.1.

This relation works well (see [CaM14]) if we are using the total entropy S0(ρ) =
−Tr(ρ log ρ) which has the derivative DS(ρ) = − log ρ (up to an identity which
is irrelevant since Tr ρ = 1). However, for relative entropies of the form Sβ(ρ) =
−Tr(βHρ+ ρ log ρ) we have

DSβ(ρ) = −βH − log ρ  Cρ [Q,DSβ(ρ)] = −[Q, ρ]− Cρ[Q,H].

Thus, the right-hand side is no longer linear, unless Q commutes with H. The Fokker–
Planck equation studied in [CaM14] has H = 0 and hence falls into this class, i.e. the
Fokker-Planck equation is indeed a linear Lindblad equation. However, the models
studied in [Ött10, Ött11, Mie13a, Mie15] include the nonsmooth term Cρ[Q,H], which
is continuous but not Hölder continuous, so the existence theory developed in [Mie13a,
Sec. 21.6] is nontrivial and uniqueness of solutions couldn’t be established.

We now show that it is possible to use variants of Cρ such that for (ω,Q) ∈ E(H)
we obtain a suitable counterpart of (3.2). Indeed we will be able to show that all
DBC Lindbladians can be written in terms of these variants of Cρ. The variant of Cρ
we are using is defined in terms of the tilted operator Dαρ , where α ∈ R will be related
to an energy difference:

DαρA := e−α/2
∫ 1

0

esαρsAρ1−sds =
N∑

n,k=1

Λ
(
eα/2rn , e−α/2rk

)
〈ψn|A|ψk〉ψn⊗ψk, (3.4)

if ρ is given by (2.1). Again the logarithmic mean Λ(a, b) from (3.1) is involved, but
now weighted with e±α/2.
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The generalized miracle identity is given in the following result (3.7), which again
shows that applying Dαρ to a commutator with log ρ plus a suitable correction provides
a linear expression, i.e. the nonlinearities involved in log ρ and Dαρ cancel each other.

Proposition 3.1 For all α ∈ R, A,Q ∈ L(h), and ρ ∈ RN we have the identities

(
Dαρ
)∗

= Dαρ and
(
DαρA∗

)∗
= D−αρ A, (3.5)〈

A
∣∣DαρA

〉
≥ 0, (3.6)

Dαρ
(
[Q, log ρ]− αQ

)
= e−α/2Qρ− eα/2ρQ. (3.7)

Proof. The relations in (3.5) follow directly from the definition. For (3.6) we use

〈
A
∣∣DαρA

〉
= e−α/2

∫ 1

0

esα
〈
A
∣∣ρsAρ1−s〉ds

=

∫ 1

0

eα(s−1/2) Tr
(
(ρs/2Aρs/2)∗ρs/2Aρs/2ρ1−2s

)
ds ≥ 0,

since the integrand is non-negative for all s ∈ [0, 1].
For (3.7), we generalize the simple proof of (3.3) from [Mie13a, Prop. 21.1], write

Λ = log ρ, and use the fact that the integrand defining Dαρ can be written as a total
derivative with respect to s ∈ [0, 1]:

Dαρ
(
[Q, log ρ]− αQ

)
= e−α/2

∫ 1

0

eαsesΛ
(
QΛ− ΛQ− αΛ

)
e(1−s)Λ ds

= −e−α/2
∫ 1

0

(
eαsesΛ(Λ+αI)Qe(1−s)Λ + eαsesΛQ

(
−Λ
)
e(1−s)Λ

)
ds

= −e−α/2
∫ 1

0

d

ds

(
e(Λ+αI)sQe(1−s)Λ

)
ds = e−α/2

(
QeΛ − eΛ+αIQ

)

= e−α/2Qρ− eα/2ρQ.

This is the desired result.

The following result follows immediately from the above proposition by setting α =
−βω. It will be the basis for our construction of the entropic gradient structure.

Corollary 3.2 Assume β > 0 and that (ω,H) ∈ E(H), that is [Q,H] = ωQ, then

D−βωρ

[
Q , log ρ+ βH

]
= eβω/2Qρ− e−βω/2ρQ. (3.8)

The next lemma shows that Dαρ appears naturally if we tensorize ρ with a diagonal
matrix, and thus connects our construction with that in Section 2.3.

Lemma 3.3 For all ρ ∈ R and all α ∈ R we have

C
 eα/2ρ 0

0 e−α/2ρ




(
A B
C D

)
=

(
eα/2CρA DαρB
D−αρ C e−α/2CρD

)
.
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Proof. This follows simply by using the identity (for a, b > 0)
(
aρ 0
0 bρ

)s
=

(
asρs 0

0 bsρs

)

and the definitions of C(ρ1 0
0 ρ2

) and Dαρ from above.

As was pointed out in Section 2.3 every Lindblad operator can be written as the
sum of partial traces of double commutators on a larger tensor product space. This
enlarged space has the advantage, that the miracle identity (3.7) becomes very elegant
and more transparent, when taking the original miracle identity for granted.

Theorem 3.4 (Generalized miracle identity) Consider Q ∈ Herm(h1⊗h2), ρ̂ ∈
Herm(h1) and σ̂ ∈ Herm(h2) with ρ̂, σ̂ > 0 satisfying the commutator relation (2.11),
i.e. [Q, ρ̂β⊗σ̂] = 0. Then, for all ρ ∈ R we have the identity

Cρ⊗σ̂
[
Q, (log ρ− log ρ̂β)⊗1h2

]
= [Q, ρ⊗σ̂] . (3.9)

Proof. Using Lemma 2.4 in “
?
=” below we obtain the following chain of identities:

Cρ⊗σ̂[Q, (log ρ− log ρ̂)⊗1h2
] = Cρ⊗σ̂[Q, (log ρ)⊗1h2

]− Cρ⊗σ̂[Q, (log ρ̂)⊗1h2
]

?
= Cρ⊗σ̂

[
Q, (log ρ)⊗1h2

] + Cρ⊗σ̂[Q,1h1
⊗(log σ̂)

]

= Cρ⊗σ̂
[
Q, (log ρ)⊗1h2

+1h1
⊗(log σ̂)

]
= Cρ⊗σ̂ [Q, log(ρ⊗σ̂)]

◦
= [Q, ρ⊗σ̂] ,

where “
◦
=” uses the classical miracle identity (3.3).

We note that relation (3.8) in Corollary 3.2 is a direct consequence of Theorem
3.4 by setting

Q =

(
0 Q∗

Q 0

)
σ̂ =

(
eβω/2 0

0 e−βω/2

)
.

3.3 Dissipation potential and Onsager operator

We now complete the task of writing the dissipative part L of any DBC Lindblad
operator with respect to ρ̂β as a gradient of the relative entropy, namely

F(ρ) = H(ρ|ρ̂β) := Tr
(
ρ
(

log ρ− log ρ̂β
))

= Tr
(
ρ log ρ+ ρ βH) + logZβ.

The aim is to construct an Onsager operator K(ρ) such that

Lρ = −K(ρ)DF(ρ) = −K(ρ)
(

log ρ+ βH
)
.

The symmetric and positive definite Onsager operator K(ρ) is most easily defined
in terms of a non-negative and quadratic dual dissipation potential

R∗(ρ, ξ) =
1

2

〈
ξ
∣∣K(ρ)ξ

〉
.

Such a structure is conveniently written down in the compact tensor product formu-
lation for Lindblad operators L as developed in Section 2.3, namely

Lρ = −Trh2

([
Q, [Q, ρ⊗σ̂]

])
. (3.10)
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As a corollary we will also obtain the corresponding gradient structures for the building
blocks of Proposition 2.2, namely

Lρ =
J∑

j=1

Mβ
Qj
ρ where (ωj, Qj) ∈ E(H).

Indeed, each building block can be expressed in tensor form with σ̂j = 1 or σ̂n ∈
R2×2. If we construct a suitable Kj(ρ) for each of the building blocks, we can use

the additivity principle for Onsager operators, i.e. the sum K(ρ) :=
∑J

j=1Kj(ρ) is the
desired total Onsager operator.

The tensorial representation (3.10) for DBC Lindblad operators with respect to
ρ̂β and the tensorial miracle identity (3.9) lead us to the following general result.

Proposition 3.5 (Onsager operators and dissipation potentials) For given Q,
ρ̂β, and σ̂ satisfying the commutation relation [Q, ρ̂β⊗σ̂] = 0, we define the On-
sager operator K(ρ) : Herm(h1) → Herm(h1) and the dual dissipation potential
R∗(ρ, ·) : Herm(h1)→ R via

K(ρ)ξ := Trh2

([
Q, Cρ⊗σ̂[Q, ξ⊗1h2

]
])

R∗(ρ, ξ) :=
1

2

〈[
Q, ξ⊗1h2

]
, Cρ⊗σ̂

[
Q, ξ⊗1h2

]〉
.

Then,
K(ρ)(log ρ− log ρ̂β) = Trh2

([Q, [Q, ρ⊗σ̂]]) (3.11)

as well as

K(ρ) = K(ρ)∗ ≥ 0, K(ρ)ξ = DξR∗(ρ, ξ), 〈ξ,K(ρ)ξ〉 = 2R∗(ρ, ξ) ≥ 0.

Proof. We first observe that relation (3.11) follows by employing Theorem 3.4. The
positivity of R∗ is a special case of Proposition 3.1 for α = 0, i.e. Cρ⊗σ̂ ≥ 0. Finally,
we obtain K(ρ)ξ = DξR∗(ρ, ξ) by noting that Trh2

is adjoint to A 7→ A⊗1h2
. This

then shows K = K∗ ≥ 0.

Note that the operators Q and σ̂ strongly depend on H and β since they have
to satisfy the commutation relation [Q, ρ̂β⊗σ̂] = 0. The relation (3.11) shows that
the above gradient structure leads indeed to DBC Lindbladians. A direct corollary of
the above gradient structure are the Onsager operators for the building blocks Mβ

Q

introduced in Proposition 2.2.

Corollary 3.6 (Simple Onsager operators) For H and ρ̂β as above and (ω,Q) ∈
E(H), we define KβQ(ρ) : Herm(h) → Herm(h) and R∗β,Q : Herm(h) → [0,∞[ as
follows:

KβQ(ρ)ξ :=
[
Q∗,D−βωρ [Q, ξ]

]
+
[
Q,Dβωρ [Q∗, ξ]

]

Then KβQ is an Onsager operator as in Proposition 3.5 and satisfies the identity

Mβ
Qρ = −KβQ(ρ)

(
log ρ+ βH) (3.12)
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Proof. Choose

Q =

(
0 Q∗

Q 0

)
σ̂ =

(
eβω/2 0

0 e−βω/2

)
.

Then equation (3.12) follows directly from (3.11) and Lemma 3.3.

Our main result concerning the representation of general DBC Lindbladians is
now simply stated by collecting the previous results. We have two forms, the first is
based on the compact tensor representation and the second is based on the additive
form L =

∑M
m=1Mβ

Qm
in terms of the building blocks Mβ

Qm
, which will be reflected

in an additive structure for the Onsager operator K, whereas the relative entropy as
the driving functional is independent of the M different dissipative mechanisms.

Theorem 3.7 (Gradient structure for L with DBC) Consider H ∈ Herm(h)
and ρ̂β as above. Then, for any Lindblad operator L satisfying the DBC (2.4) there
exists an Onsager operator K such that L can be written as K-gradient of the relative
entropy Fβ = H(·|ρ̂β).

(1) If Lρ = −Trh2

(
[Q, [Q, ρ⊗ρ̂β]] = −Trh2

(
[Q̃, [Q̃, ρ⊗ρ̂−1

β ]] with Q̃ = Yρ̂βQ, we can
choose

K(ρ)ξ = Trh2

([
Q, Cρ⊗ρ̂β [Q, ξ⊗1h2

]
])

= Trh2

([
Q̃, Cρ⊗ρ̂−1

β
[Q̃, ξ⊗1h2

]
])
.

(2) If L =
∑M

m=1Mβ
Qm

with (ωm, Qm) ∈ E(H), we can choose K(ρ) =
∑M

m=1KβQm(ρ).

Proof. The result (1) follows by combining the tensor representation in Theorem 2.7
and Proposition 3.5. The result (2) follows by combining the additive representation
in Proposition 2.2(c) and Corollary 3.6.

4 Dissipative quantum mechanics via GENERIC

GENERIC is an acronym for General Equations for Non-Equilibrium Reversible Irre-
versible Coupling, which was introduced by Öttinger and Grmela in [GrÖ97, ÖtG97].
It describes a thermodynamically consistent way of coupling Hamiltonian (=reversible)
dynamics with gradient-flow (irreversible) dynamics. It is a variant of metriplectic
systems introduced in [Mor84, Mor86], see also [Mor09]. We refer to [MiT16] for an
introductory survey of this framework and applications in a large variety of appli-
cations. After our general introduction in Section 4.1 we will mainly dwell on the
quantum mechanical papers [Ött10, Ött11, Mie13a].

4.1 General setup of GENERIC

A GENERIC system is defined in terms of a quintuple (Q, E ,S, J,K), where the
smooth functionals E and S on the state spaceQ denote the total energy and the total
entropy, respectively. Moreover, Q carries two geometric structure, namely a Poisson
structure J and a dissipative structure K, i.e., for each q ∈ Q the operators J(q) and
K(q) map the cotangent space T∗qQ into the tangent space TqQ. The evolution of the
system is given by the differential equation

q̇ = J(q)DE(q) + K(q)DS(q), (4.1)
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where DE and DS are the differentials taking values in the cotangent space.
The basic conditions on the geometric structures J and K are the symmetries

J(q) = −J(q)∗ and K(q) = K(q)∗ (4.2a)

and the structural properties

J satisfies Jacobi’s identity,

K(q) is positive semi-definite, i.e., 〈ξ,K(q)ξ〉 ≥ 0.
(4.2b)

Thus, the triples (Q, E , J) and (Q,S,K) form a Hamiltonian and an Onsager or gradi-
ent system, respectively, with evolution equations q̇ = J(q)DE(q) and q̇ = K(q)DS(q),
respectively. Finally, the central condition states that the energy functional does not
contribute to dissipative mechanisms and that the entropy functional does not con-
tribute to reversible dynamics, which is the following non-interaction condition
(NIC):

∀ q ∈ Q : J(q)DS(q) = 0 and K(q)DE(q) = 0. (4.2c)

A first observation is that (4.2) implies energy conservation and entropy increase:

d

dt
E(q(t)) = 〈DE(q), q̇〉 = 〈DE(q), JDE + KDS〉 = 0 + 0 = 0, (4.3)

d

dt
S(q(t)) = 〈DS(q), q̇〉 = 〈DS(q), JDE + KDS〉 = 0 + 〈DS,KDS〉 ≥ 0. (4.4)

Note that we would need much less than the three conditions (4.2) to guarantee these
two properties. However, the next property needs (4.2c) in its full strength.

Namely we show that equilibria can be obtained by the maximum entropy
principle. If xeq maximizes S under the constraint E(q) = E0, then we obtain a
Lagrange multiplier λeq ∈ R such that DS(qeq) = λeqDE(qeq). Assuming λeq 6= 0 we
immediately find that xeq is an equilibrium of (4.1). Indeed,

J(qeq)DE(qeq) = 1
λeq

J(qeq)DS(qeq) = 0 and K(qeq)DS(qeq) = λeqK(qeq)DE(qeq) = 0,

where we used the NIC (4.2c).
Vice versa, for every steady state qeq of (4.1) we must have

J(qeq)DE(qeq) = 0 and K(qeq)DS(qeq) = 0. (4.5)

Thus, in a steady state there cannot be any balancing between reversible and irre-
versible forces, both have to vanish independently. To see this we recall the entropy
production relation (4.4), which implies 〈DS(qeq),K(qeq)DS(qeq)〉 = 0 for any steady
state. Since K(qeq) is positive semidefinite, this implies the second identity in (4.5).
The first identity then follows from q̇ ≡ 0 in (4.1).

Very often one is only interested in isothermal systems with fixed temperature
θ∗ > 0, where the free energy F(q) = E(q) − θ∗S(q) is a Liapunov function. The
associated structure is then that of a damped Hamiltonian system, namely

q̇ =
(
J(q)− 1

θ∗
K(q)

)
DF(q), (4.6)
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where again J and K are Poisson and Onsager structures, respectively. However, there
are no longer any non-interaction conditions, since only one functional F is left.

As in [Mie11a, DPZ13] we note that (4.6) can be converted to a GENERIC system

by introducing a scalar slack variable e and defining Ẽ(q, e) = F(q) + e, S̃(q, e) = e
θ∗

,

J̃(q, e) =

(
J(q) 0

0 0

)
, and K̃(q, e) =

(
K −KDF

−(KDF)> 〈DF ,KDF〉

)
.

Clearly, the NIC (4.2c) are satisfied. The variable e can be seen as the entropic part
of the energy. Of course, in concrete cases it is usually easy to find a physically more
reasonable splitting into entropy and energy.

4.2 Coupling a dissipative and a quantum system

Since GENERIC systems are closed systems with energy conservation and entropy in-
crease, we need to model all couplings to the quantum system by suitable macroscopic
variables. For this aim we introduce the macroscopic variables z lying in a Hilbert
space Z. The macro-variable z may include Hamiltonian parts (like the Maxwell
equations) as well as dissipative parts producing entropy. The important point of this
work is the thermodynamically consistent coupling of the macroscopic system to the
quantum system in such a way that energy can be exchanged via Lindblad-like terms.

Following [Ött10, Ött11, Mie13a] we consider an energy and an entropy in the
decoupled form

E(ρ, z) = Tr(ρH) + E(z) and S(ρ, z) = −kB Tr(ρ log ρ) + S(z). (4.7)

Whenever suitable we abbreviate the full state with q = (ρ, z) and choose a Poisson
structure as follows. Consider a constant macroscopic Poisson operator Jma(z) : Z∗ →
Z and a constant coupling operator Γ : L(h)→ Z, then

J(q) =

(
Jqs(ρ) −Jqs(ρ)Γ∗

−ΓJqs(ρ) Jma+ΓJqs(ρ)Γ∗

)
with Jqs(ρ)µ = i[ρ, µ], (4.8)

is a Poisson structure, which easily follows by transforming the decoupled structure
diag(Jqs, Jma) via the linear mapping (ρ, z) 7→ (ρ, z−Γρ).

Using the relation DS(q) = (−kB log ρ,DzS(z)) and [ρ, log ρ] = 0, the first NIC
J(q)DS(q) ≡ 0 follows by asking

Jma(z)DzS(z) ≡ 0 and Γ∗DzS(z) ≡ 0. (4.9)

The choice for the Onsager operator K is more delicate, since we do not want to
generate nonlinear (non-smooth) terms arising from −kB log ρ in the term K(q)DS(q).
This will be achieved by using the theory from above concerning the gradient struc-
tures for the Lindblad equation for a fixed quantum Hamiltonian H and coupling
operators Qc, where c ∈ C is a finite set of couplings. Throughout we assume that
(ωc, Qc) ∈ E(H) are fixed, while the inverse coupling temperatures βc(z) may depend
on the state of the macroscopic system.
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More precisely we use the ansatz

P∗(ρ, z ; µ, ζ) =
1

2
〈ζ , Kma(z)ζ〉Z

+
∑

c∈C

1

2

〈
µ−〈ζ, bc(z)〉H

∣∣K̂c(z)
(
µ−〈ζ, bc(z)〉H

)〉
.

(4.10)

for the dual entropy-production potential of the coupled system. Here Kma(z) : Z∗ →
Z is a symmetric and positive semi-definite macroscopic Onsager operator. The cou-
pling vectors bc(z) ∈ Z are chosen to satisfy the conditions

∀ c ∈ C ∀ z ∈ Z : 〈DzE(z), bc(z)〉Z = 1 and 〈DzS(z), bc(z)〉Z > 0 (4.11)

where the first ensures the NIC K(ρ, z)DE(ρ, z) ≡ 0 and the second the positivity of

the temperature. The Onsager operators K̂c(z), which couple the quantum system
via the vector bc to the macroscopic system, are constructed with the help of the
operators KβQ(ρ) : L(h)→ L(h) from Corollary 3.6 as follows:

K̂c(z) = κc(z)Kβ̂c(z)Qc
(ρ), where β̂c(z) :=

1

kB

〈DzS(z), bc(z)〉Z and κc(z) ≥ 0. (4.12)

Hence, the full Onsager operator takes the form

K(q) =

(
0 0
0 Kma(z)

)
+
∑

c∈C

(
K̂c −〈�, bc〉ZK̂cH

−
〈
H
∣∣K̂c�

〉
bc

〈
H
∣∣K̂cH

〉
bc⊗bc

)
, (4.13)

where � indicates where the corresponding argument has to be inserted. Using the
definition of β̂c in (4.12) we easily see that the NIC K(ρ, z)DE(ρ, z) ≡ 0 holds, if we
assume Kma(z)DzE(z) ≡ 0. We emphasize that K depends highly nonlinearly on ρ

through Kβc(z)Qc
(ρ), which in turn depends on D±β̂c(z)ωcρ .

Proposition 4.1 (GENERIC structure) Let X = R × Z and let E and S be
given in the decoupled form (4.7). Moreover, consider the Poisson structure J de-
fined in (4.8) and the Onsager structure K defined in (4.13). Assuming additionally
(4.11), JmaDS ≡ 0, Γ∗DS ≡ 0, and KmaDE ≡ 0 the quintuple (X, E ,S, J,K) forms a
GENERIC system.

So far, we have not used the special form of K̂c defined in terms of KβcQc . The
advantage of this choice is of course dictated by the aim to obtain a linear Lindblad
equation for ρ. Indeed, using the relation (3.12) relating KβQ andMβ

Q we see that the
equations obtained from the GENERIC system have the explicit form

(
ρ̇

ż

)
= J(ρ, z)DE(ρ, z) + K(ρ, z)DS(ρ, z)

=

(
Jqs(ρ) −Jqs(ρ)Γ∗

−ΓJqs(ρ) Jma+ΓJqs(ρ)Γ∗

)(
H

DE(z)

)
+

(
0

Kma(z)DS(z)

)

+
∑

c∈C

(
K̂c −〈�, bc〉ZK̂cH

−
〈
H
∣∣K̂c�

〉
bc

〈
H
∣∣K̂cH

〉
bc⊗bc

)(−kB log ρ

DS(z)

)
.

(4.14)
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Introducing the effective Hamiltonian H̃(z) through

H̃(z) = H − Γ∗DE(z).

and using the construction of K̂c(ρ, z) via Kβ̂c(z)Qc
(ρ) we arrive at a coupled system for

ρ and z that is indeed linear in ρ, namely

(
ρ̇

ż

)
=

(
i
[
ρ , H̃(z)

]

JmaDE(z)− iΓ
[
ρ , H̃(z)

]
)

+

(
0

Kma(z)DS(z)

)

+
∑

c∈C

(
kBκc(z)Mβc(z)

Qc
ρ

−kBκc(z)
〈
H
∣∣Mβc(z)

Qc
ρ
〉
bc(z)

)
.

(4.15)

Moreover, the coupling of the linear quantum system for ρ with the macroscopic sys-
tem for z is given in a very particular manner reflecting the DBC, as the vectors bc(z)
occur twice, namely (i) in the definition of βc(z) = 〈DS(z), bc(z)〉/kB in (4.12) and (ii)
in the equation for z, i.e. the second component of (4.15). The fact that this equation
is obtained from the GENERIC system (R×Z, E ,S, J,K) implies energy conservation
and entropy production along solutions q(t) = (ρ(t), z(t)), namely d

dt
E(q(t)) ≡ 0 and

d

dt
S(q(t)) = 2P∗(q(t),DS(t))

= 2〈DS,KmaDS〉Z + 2k2
B

∑

c∈C

〈
log ρ+β̂cH

∣∣Kβ̂cQc(log ρ+β̂cH)
〉
≥ 0.

5 Examples and applications

We discuss the above construction and give a few examples and applications to high-
light the concept of the operators Dαρ and the relevance of the corresponding Lindblad
operators. From a modeling point of view we expect that the dissipative mechanics
in the macroscopic system and in the quantum system are given building blocks that
have to be combined in a suitable way to obtain thermodynamically correct system,
either a GENERIC system or a damped Hamiltonian system.

5.1 The isothermal, damped quantum system

For a general DBC Lindbladian L with respect to ρ̂β = 1
Z

e−βH Proposition 2.2 shows

that it can be written as a sum of operators Mβ
Q as defined in Proposition 2.2(b).

Indeed, we have

ρ̇ = i[ρ,H] + Lρ = i[ρ,H] +
∑

c∈C
Mβ

Qc
ρ, (5.1)

where the coupling operator Qc satisfy (ωc, Qc) ∈ E(H).
We are now able to state that all dissipative quantum generators satisfying the

DBC can be written as a damped Hamiltonian system (R,F , J,K), namely

ρ̇ = i[ρ,H] + Lρ =
(
Jqs(ρ)−K(ρ)

)
DF(ρ),
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where we can use the following choices

F(ρ) = Tr
(
βH + ρ log ρ

)
, Jqs(ρ) = i

[
ρ,�

]
, and K(ρ) =

∑

c∈C
KβQc(ρ).

For this we simply use that (ω,Q) ∈ E(H) implies KβQ(log ρ+βH) =Mβ
Qρ, see (3.12).

5.2 Coupling to simple heat baths

We consider a quantum system coupled to a finite number of finite-energy heat baths
indexed by m = 1, ..,M . We set Z = RM with elements z = θ = (θm)m, where θm > 0
denotes the absolute temperature of the mth heat bath. We assume each heat bath
to have a constant specific heat cm. Hence, we let

E(θ) =
M∑

m=1

cmθm and S(θ) =
M∑

m=1

cm log θm.

For the coupling vectors bm we choose

bm(θ) =
1

cm
e(m) ∈ RM , where e(m) = (0, .., 0, 1, 0, .., 0)>

is the mth unit vector. Clearly we find

bm(θ) ·DE(θ) ≡ 1 and β̂m(θ) =
1

kB

bm(θ) ·DS(θ) =
1

kBθm
,

which is the usual inverse temperature of the mth heat bath.
Assuming Jma ≡ 0 and Γ = 0, we can choose a symmetric and positive semi-

definite matrix Kma ∈ RM×M such that Kmac = 0, where c is the constant vector
DE(θ) = (1/cm)m=1,..,M . The construction in Section 4.2 provides a GENERIC system
for q = (ρ,θ) in the following form:

ρ̇ = i[ρ,H] +
M∑

m=1

M1/(kBθm)
Qm

ρ,

θ̇ = KmaDS(θ) +
M∑

m=1

1

cm

〈
H
∣∣M1/(kBθm)

Qm
ρ
〉
e(m).

(5.2)

It is now easy to see that we may take the heat capacities very large, such that the
temperatures θm do not change any more, or at least not on the time scale where
the typical changes of ρ occur. Thus, it is possible to investigate in a natural way
non-equilibrium steady states where energy is exchanged between heat baths with
different temperatures.

5.3 An isothermally coupled system

Here we return to an isothermally system where the quantum state ρ is coupled to a
macroscopic variable z in such a way that we obtain a damped Hamiltonian system.
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In contrast to the simple model in Section 5.1 we now allow the effective inverse
temperatures β̂c to depend on the state z. However, for the definition of the free
energy F we choose the fixed equilibrium temperature θ∗ and obtain

F(ρ, z) =
1

kBθ∗
E(ρ, z)− 1

kB

S(ρ, z) = Tr
(
ρ log ρ+

1

kBθ∗
ρH
)

+ F (z).

We may take J as in (4.8) but need to choose a special K to obtain equations linear
in ρ, namely

K(ρ, z) =

(
0 0
0 Kma(z)

)
+
∑

c∈C

(
K̃c 〈�, ac〉Z K̃cH〈

H
∣∣K̃c�

〉
ac
〈
H
∣∣K̃cH

〉
ac⊗ac

)

with coupling vectors ac(z) ∈ Z and Onsager operators K̃c(ρ, z) = κc(z)Kβ̃c(z)Qc
(ρ),

where

κc(z) ≥ 0 and β̃c(z) =
1

kBθ∗
+ 〈DF (z), ac(z)〉Z > 0.

Hence, the equations q̇ =
(
J(q)−K(q)

)
DF(q) take the form

ρ̇ = i
[
ρ,H−Γ∗DF (z)

]
+
∑

c∈C
κc(z)Mβ̃c(z)

Qc
ρ,

ż = JmaDF (z)− iΓ
[
ρ,H−Γ∗DF (z)

]
+
∑

c∈C
κc(z)

〈
H
∣∣Mβ̃c(z)

Qc
ρ
〉
ac(z).

Again F (Z), ac(z), and β̃c(z) are intrinsically linked to each other in order to generate
this evolutionary equation from the damped Hamiltonian system (R×Z,F , J,K).

5.4 Maxwell-Bloch model

In this section we discuss a nonlinear PDE model, where the Maxwell equations on R3

as the macroscopic Hamiltonian system are coupled to a spatially localized domain
Ω ⊂ R3, where at each macroscopic point x ∈ Ω there is a quantum system that is
coupled to the electromagnetic fields E and H , but not to the neighboring quantum
systems. Such models are called Maxwell-Bloch systems (cf. e.g. [JMR00, Dum05])
and are commonly used to model the interaction of light and matter. We refer to
[Mie15] where even the coupling to the drift-diffusion system for electrons and holes
is described in terms of the GENERIC framework.

The macroscopic system is described by z = (E,H) ∈ Z := L2(R3;R3)2 denoting
the electric and the magnetic fields. The optically active material is described by
a bounded Lipschitz domain Ω ⊂ R3, where the quantum state is described via ρ :
Ω → RN ⊂ Herm(h). The quantum state determines the macroscopic polarization
P : Ω → R3 via a polarization operator Γ : L(h) → R3 in the form P (x) = Γρ(x).
The electric displacement field then is given by D = ε0E+P , and Maxwell equations
take the form

ε0Ė + Ṗ = curlH , µ0Ḣ = − curlE, div
(
ε0E+P

)
= 0, divH = 0. (5.3)
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The main difficulty is to model the coupling of the quantum systems ρ(t, x) ∈ RN

in a consistent way. We derive the system for q := (ρ,E,H) in the form of a damped
Hamiltonian system with the free energy

F(q) =

∫

Rd

1

2
|E|2 +

1

2
|H|2 dx+

∫

Ω

Tr
(
ρ log ρ+ βHBρ

)
dx,

where HB is called the Bloch Hamiltonian and where we have set the constants ε0

and µ0 to 1 for notational simplicity. Moreover, we define a Poisson structure J and
an Onsager operator K in the form

J(q) =




i[ρ,�] −i
[
ρ,Γ∗�

]
0

−iΓ
[
ρ,�] iΓ

[
ρ,Γ∗�] curl

0 − curl 0


 and K(q) =




Kqs(q) −Kqs(q)Γ
∗ 0

−ΓKqs(q) ΓKqs(q)Γ
∗ 0

0 0 0


 .

The importance of this choice for J and K is that the first row of each of the block
operators is replicated in the second row, but premultiplied with −Γ. This is needed
to obtain the correct first equation in the Maxwell system (5.3), namely

Ė = curlH − Ṗ = curlH − Γρ̇.

By the symmetries J = −J∗ and K = K∗ this also implies that the first columns are
replicated in the second columns, but now post-multiplied by −Γ∗.

We emphasize that the optically active material is restricted to the bounded do-
main Ω, while the fields E and H are defined on all of R3. This is hidden in our
operator Γ, which should be understood as an operator that maps ρ defined on Ω
to vector fields P = Γρ that are defined not only in Ω, but that are extended by 0
outside of Ω. Similarly, the adjoint operator Γ∗ acts on E by restricting it first to Ω
and then applying the adjoint map of Γ.

Thus, using [ρ, log ρ] = 0 the induced equation for ρ reads

ρ̇ = i
[
ρ, βHB − Γ∗E

]
− Kqs(ρ,E,H)

(
log ρ+ βHB − Γ∗E

)
.

Having derived this structure it is now our task to choose Kqs in such a way that the
equation for ρ is a Lindblad equation that is linear in ρ with coefficients depending on
E and H . For this, we assume that there exists a family (Qc)c∈C of couplings such
that

(ωc, Qc) ∈ E(HB) and [Qc,Γ
∗E] = ωc (gc·E)Qc, (5.4)

for some vectors gc ∈ R3. Note that this is a non-trivial condition, since it implies
that for all E ∈ R3 the matrix Γ∗E ∈ Herm(h) commutes with all matrices Q that
commute with H.

Based on the assumption (5.4) we are now able to choose Kqs in the form

Kqs(ρ,E,H) =
∑

c∈C
κc(E,H)Kβ̃c(E)

Qc
(ρ), where β̃c(E) := β − gc·E.

Since by construction we have [Qc, βHB−Γ∗E] = ωcβ̃c(E)Qc we can apply Proposition
3.6 (cf. (3.12)) and obtain the equation

ρ̇ = i
[
ρ, βHB − Γ∗E

]
+
∑

c∈C
κc(E,H)Mβ̃c(E)

Qc
ρ,
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which is linear in ρ for fixed E and H . Note that for the above constructions it
is not necessary to have β̃c ≥ 0, since KβQ and Mβ

Q are well defined for all β ∈ R.
Altogether we conclude that under the rather restrictive assumption (5.4) the damped
Hamiltonian system (L2(Ω;RN)×Z,F , J,K) generates the following coupled Maxwell-
Bloch system

ρ̇ = i
[
ρ,HB−Γ∗E

]
+
∑

c∈C
κc(q)Mβ

Qc
ρ,

Ė = curlH − Γ
(

i
[
ρ,HB−Γ∗E

]
+
∑

c∈C
κc(q)Mβ

Qc
ρ
)
,

Ḣ = − curlE.

It is easy to see that condition (5.4) holds, if Γ has the form ΓE =
∑N

n=1(bn·E)hn⊗hn
for arbitrary polarization vectors bn ∈ R3, where H =

∑N
1 εnhn⊗hn. It remains open

to model the case of interaction between different energy levels, for which ΓE needs
to contain terms like hm⊗hn with m 6= n.
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[Dum05] É. Dumas. Global existence for Maxwell-Bloch systems. J. Diff. Eqns., 219(2), 484–509,
2005.

[ErM12] M. Erbar and J. Maas. Ricci curvature of finite Markov chains via convexity of the
entropy. Arch. Rational Mech. Anal., 206(3), 997–1038, 2012.
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