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Abstract

In this paper, we consider a quasilinear parabolic system of equations describing coupled
bulk and interface diffusion, including mixed boundary conditions. The setting naturally
includes non-smooth domains Ω. We show local well-posedness using maximal Ls-regularity
in dual Sobolev spaces of type W−1,q(Ω) for the associated abstract Cauchy problem.

1. Introduction

We consider a parabolic system of equations describing coupled bulk and interface diffu-
sion. The equations are related to the classical Stefan problem, and they are derived for a
number of different dissipative processes taking place on both a bulk domain and part of its
boundary in [20] and [9]. In [5, Examples 3.4 and 3.5], for a large class of problems of this
type on smooth domains, maximal Ls-regularity has been shown. We give an extension of
these results for a specific setting, where the main point is that the interface cuts the bulk
into two parts, naturally creating non-smooth domains, cf. Figure 1.

Figure 1. Cutting a smooth domain by a hyperplane does not create two
smooth domains in general, but, in many cases, two Lipschitz domains.

More precisely, the situation is the following. Let Ω ⊂ Rd, d = 2, 3, be a bounded domain,
divided into two open disjoint subdomains Ω+ and Ω− by an Rd−1-plane. The intersection
of Ω and the plane is denoted by Γ. We choose coordinates such that Γ ⊂ {(y, 0) ∈ Rd :
y ∈ Rd−1} and write x = (y, x′) for x ∈ Ω, x′ ∈ R and y ∈ Rd−1. We consider the evolution
of the quantities u+ : (0, T ) × Ω+ → R, u− : (0, T ) × Ω− → R and uΓ : (0, T ) × Γ → R
satisfying

{
∂tu+−div(k+∇u+) = f+, in (0, T )× Ω+,

(k+∇u+)ν+−m+(u+−uΓ)−mΓ(u+−u−) = 0, on (0, T )× Γ,
(1.1)

on the upper bulk part and interface,
{

∂tu−−div(k−∇u−) = f−, in (0, T )× Ω−,
(k−∇u−)ν−−m−(u−−uΓ)−mΓ(u−−u+) = 0, on (0, T )× Γ,

(1.2)

on the lower bulk part and interface, coupled with the evolution

∂tuΓ−div(kΓ∇uΓ)−m+(u+−uΓ)−m−(u−−uΓ) = fΓ, in (0, T )× Γ, (1.3)

on the interface Γ, where ν+, ν−, νΓ denote the outer normal vector fields of Ω+, Ω− and
Γ and f+, f− and fΓ are given external forces. The system is complemented with mixed
boundary conditions on ∂Ω in the following way. There is a Dirichlet part of the boundary
D ⊂ ∂Ω which splits into three parts D+ = D∩∂Ω+, D− = D∩∂Ω− and DΓ = D∩∂Γ and
there are Neumann boundary parts for each subdomain, N+ = ∂Ω+ \D+, N− = ∂Ω− \D−
and NΓ = ∂Γ \ DΓ. Since the conditions on Γ as a boundary of Ω+ and Ω− have already
been fixed, it remains to set

{
(k+∇u+)ν+ = 0, on (0, T )× {∂Ω+\(Γ ∪D+)},

u+ = 0, on (0, T )×D+,
(1.4)
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on Ω+ \ Γ, {
(k−∇u−)ν− = 0, on (0, T )× {∂Ω−\(Γ ∪D−)},

u− = 0, on (0, T )×D−, (1.5)

on Ω− \ Γ, and {
(kΓ∇uΓ)νΓ = 0, on (0, T )× {∂Γ\DΓ},

uΓ = 0, on (0, T )×DΓ,
(1.6)

on ∂Γ. In the following, we often use the shorthands

u = (u+, u−, uΓ), f = (f+, f−, fΓ), . . .

The matrix-valued coefficient functions k and scalar transmission coefficients m may depend
on the space variable and the solution u. More precise assumptions on k and m as well as
on the domain Ω and on D and N are given in Subsection 2.1 below.

Note here that the system is essentially scalar, except on the interface Γ where the three
unknowns (u+, u−, uΓ) interact.

As an example from applications, this system may describe non-linear heat conduction in
a bulk material which is divided into two parts by a thin metal plate and heated or cooled
from the outside only on specific parts of its boundary, cf. Figure 2.

Figure 2. An example domain.

In [6], a similar system is being studied, with a focus on its gradient or Onsager structure,
cf. [20] and [9], leading to more complex but also more specific nonlinearities and to partic-
ular questions concerning long-term behaviour. In contrast, in this work, we do not require
the system to be isolated but allow for general exterior forcing f and mixed Dirichlet and
Neumann boundary conditions, but only show local-in-time well-posedness. Mathematically,
the question of how non-smooth paroblic and elliptic problems can be treated is strongly
connected to the question of how to treat these problems with mixed boundary conditions.
It thus seems natural to use recent result in this direction and see how they can be made to
apply in the present situation. We focus on the two- and three-dimensional problems and
use the results derived in [14] and [7]. The results of these works are conditions on a domain
ω ⊂ Rd and coefficient function k : ω → Rd×dto guarantee that the elliptic operator

div(k∇·) : W 1,q
δ (ω)→ W−1,q

δ (ω) (1.7)

is an isomorphism for some q ≥ d and W 1,q
δ (ω) the Sobolev space realizing mixed boundary

conditions. This isomorphism property is particularly important in the study of quasilinear
problems as it turns out to be stable for many k, cf. the discussion of Assumption 4.1,
and yield sufficient regularity on u to allow for unique solutions given by a Banach fixed
point argument. The main point is that since the problem is assumed to be quasilinear, it
requires particular regularity properties to establish well-posedness, which are non-trivial to
establish for non-smooth domains.
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The paper is organized as follows. In the next Section, we fix some notation, precise
assumptions on the domain and on coefficients and establish a functional analytic framework
in which equations (1.1)-(1.6) can be recast as a quasilinear abstract Cauchy problem. In
particular, we give a precise definition of the spaces in (1.7). In Section 3, it is shown that
the linear problem has the property of maximal Ls-regularity in the dual Sobolev space
W−1,q

D . In Section 4, the linear result is used to show local well-posedness of the system and
remark on simple extensions following from the theory of maximal Ls-regularity.

2. Notation, assumptions and an abstract framework for the system

The aim of this Section is to introduce notation and precise assumptions on Ω, k and
m and to set up a functional analytic framework in which the problem can be recast as a
quasilinear abstract Cauchy problem.

2.1. Assumptions on Ω, D and N . Following the ideas in [14] and e.g. [3], [7, 16, 18,
15, 12, 11], we pose assumptions on the domains Ω+, Ω− and Γ which will guarantee the
property in (1.7).

Assumption 2.1 (d = 2, 3). We suppose that Ω+, Ω− and Γ are bounded Lipschitz domains,
cf. [13, Def. 1.2.12], and that their Neumann boundary parts N+ := ∂Ω+ \ D+, N− :=
∂Ω− \D− and ∂Γ \DΓ are relatively open subsets of their respective boundaries ∂Ω+, ∂Ω−
and ∂Γ. Moreover, Γ must be contained in both N+ and N−.

Remark 2.2. Note that we do not need to assume that Ω+, Ω− or Γ are strong, or equiva-
lently, graph Lipschitz domains, cf. [1, Def. 4.5].

If d = 2, Assumption 2.1 is sufficient for the remainder of the paper. If d = 3, we must
put additional restrictions on Ω+ and Ω−, following the approach in [7].

Assumption 2.3 (d = 3). If d = 3, then in addition to Assumption 2.1, we ask that Ω+,
with given N+ and D+ must locally at the boundary be bi-Lipschitz diffeomorphic to one of
the model constellations given in [7, Sect. 3]. In particular, this includes conditions on the
discontinuities of the coefficient matrix κ+ near the boundary of Ω+. The same must hold
for Ω−, N−, D− and κ−.

Remark 2.4. We refer to [7] for the precise formulation and an extensive discussion of
Assumption 2, including its necessity in many cases for proving the property (1.7). We note
here that Assumption 2 is (trivially) satisfied if κ+ is continuous and D+ = ∅ or if ∂Ω+ is
smooth and D+ = ∅, i.e. it mainly concerns the problems of how N+ and D+ are allowed to
meet and of how non-smoothness of κ+ and non-smoothness of ∂Ω+ are allowed to meet.

2.2. Function spaces. For q ∈ [1,∞] and ω ∈ {Ω+,Ω−,Γ}, we denote by Lq(ω) the usual
real Lebesgue space of q-integrable functions and denote the norm by ‖ · ‖q if the domain is
known. For δ ∈ {D+, D−, DΓ} corresponding to ω, we define

C∞δ (ω) := {v ∈ C∞c (ω) : supp v ∩ δ = ∅}
and denote by

W 1,q
δ (ω) := C∞δ (ω)

W 1,q(ω)

the closure of C∞δ (ω) with respect to the usual Sobolev norm, which is denoted by ‖ · ‖1,q.

Note that ω is assumed to be sufficiently regular to guarantee that W 1,q
∅ (ω) = W 1,q(ω),

where W 1,q(ω) denotes the usual Sobolev space, cf. [14, Def. 3].
For the full unknown function u, we define the spaces

Lq := Lq(Ω+)× Lq(Ω−)× Lq(Γ) ' Lq(Ω, dΩ + dΓ)
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and

W1,q
D := W 1,q

D+
(Ω+)×W 1,q

D−(Ω−)×W 1,q
DΓ

(Γ).

Note also that since Γ is a smooth part of the boundaries of Ω+, the trace operator

trΓ : W 1,q
D+

(Ω+)→ Lq(Γ) (2.1)

is well-defined and continuous (likewise for Ω−). We write

trΓ u = (trΓ u+, trΓ u−, uΓ) (2.2)

for the trace components of u on the interface Γ.
Deviating slightly from the usual notation for δ = ∂ω, the dual spaces of W 1,q

δ (ω) and

W1,q
D are denoted by

W−1,q′

δ (ω) := (W 1,q
δ (ω))

′
and W−1,q′

D := (W 1,q
D )

′

with 1
q

+ 1
q′ = 1.

2.3. Assumptions on k and m. The coefficient functions k± may depend on x ∈ Ω± as
well as on u±(x) and kΓ,m±,mΓ may depend on y ∈ Γ and trΓ u(y) ∈ R3. We assume that
k is given by positive semi-definite matrices,

k± : Ω± × R→ Rd×d
≥0 and kΓ : Γ× R3 → R(d−1)×(d−1)

≥0 , (2.3)

and that the transmission coefficients are also positive, satisfying

mΓ,m+,m− : Γ× R3 → R+. (2.4)

Let κ and µ denote coefficients of this type but independent of u. Then with slight abuse
of notation, by µ we denote the transmission coefficent matrix

µ =




µ+ + µΓ −µΓ −µ+

−µΓ µ− + µΓ −µ−
−µ+ −µ− µ+ + µ−




where µ±, µΓ : Γ→ R+ are as in (2.4) but independent of u.

Assumption 2.5 (Assumptions on κ). The coefficients κ are bounded, measurable and
uniformly elliptic, i.e. there is a constant κ0 > 0 such that for all x ∈ Rd, y ∈ Rd−1, almost
everywhere in Ω±,Γ,

1

κ0

|x|2 ≤ xTκ±x ≤ κ0|x|2 and
1

κ0

|y|2 ≤ yTκΓy ≤ κ0|y|2.

Assumption 2.6 (Assumptions on µ). The coefficients µ±,µΓ are bounded, measurable and
there is a constant µ0 > 0 such that almost everywhere in Γ,

µ0 ≤ µ±, µΓ.

Note that under Assumption 2.6, the matrix µ is positive semi-definite and for r =
(r+, r−, rΓ)T ∈ R3,

rTµr = 0 a.e., iff r+ = r− = rΓ. (2.5)
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2.4. A bilinear form and an elliptic operator associated to this problem. We define
the bilinear form aκ,µ : W1,2

D ×W1,2
D → R by

aκ,µ(u, ϕ) = lκ(u, ϕ) + mµ(u, ϕ),

where
lκ(u, ϕ) =

∫
Ω+

(κ+∇u+,∇ϕ+)Rd dx+
∫

Ω−
(κ−∇u−,∇ϕ−)Rd dx

+
∫

Γ
(κΓ∇uΓ,∇ϕΓ)Rddy,

and

mµ(u, ϕ) =

∫

Γ

(µtrΓ u, trΓ ϕ)R3dy.

By (2.1), the trace operator trΓ : W 1,q
D (Ω±)→ Lq(Γ) is well-defined and bounded and thus,

the form aκ,µ is continuous and bounded from below by 0 by the assumptions on κ and µ.
In particular,

aκ,µ(u, u) = 0 iff u+ = u− = uΓ ≡ c, (2.6)

due to (2.5). The form aκ,µ induces an operator Aκ,µ : W1,2
D →W−1,2

D by

〈Aκ,µu, ϕ〉W−1,2
D ×W1,2

D
:= aκ,µ(u, ϕ).

By the Lax-Milgram theorem, for every λ > 0, Aκ,µ + λ has a bounded inverse and for

q ∈ [2,∞), let Aq,κ,µ be the closed and densely defined restriction of Aq,κ,µ to W−1,q
D . We

write Lq,κ for the divergence operator in W−1,q
D analogously induced by lκ and we writeMq,µ

for the bounded transmission operator given by

〈Mq,µu, ϕ〉W−1,q
D ×W1,q′

D

:= mµ(u, ϕ), u ∈ dom(Lq,κ), ϕ ∈W1,q′
D , (2.7)

so that

Aq,κ,µ = Lq,κ +Mq,µ.

In the quasilinear case, we use the notation ak,m instead of aκ,µ to indicate that the form de-
pends on u(t) and we similarly write Aq,k,m,Lq,k andMq,m for the corresponding operators.
The assumptions on κ and q will guarantee that dom(Lq,κ) and thus Mq,µ are independent
of κ. We interprete the set of equations (1.1), (1.2), (1.3) complemented by (1.4), (1.5) and
(1.6) as the quasilinear problem

u̇+Aq,k,mu = f, u(0) = u0, (2.8)

posed in W−1,q
D , q ≥ 2. In the next section, we show that the linear problem

u̇+Aq,κ,µu = f, u(0) = u0, (2.9)

is well-posed. In Section 4, we show that under additional assumptions on q and k, this
result transfers to the quasilinear equation (2.8).

3. Well-posedness for the linear problem

The aim of this section is to prove the following result.

Theorem 3.1. If all the assumptions in Section 2 hold, and 2 ≤ q < ∞, then Aq,κ,µ has

maximal Ls(0, T ; W−1,q
D )-regularity.

Let us first briefly recall the notion of maximal Ls(0, T ;X)-regularity for a Banach space
X.
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Definition 3.2. Let 1 < s < ∞, let X be a Banach space and let JT = [0, T ], T > 0, be a
bounded interval. Assume that B is a closed operator in X with dense domain dom(B) ⊂ X,
equipped with the graph norm. We say that B satisfies maximal Ls(JT ;X)-regularity if for
all u0 ∈ (dom(B), X)1− 1

s
,s and f ∈ Ls(0, T ;X) there is a unique solution

u ∈ Ls(JT ; dom(B)) ∩W 1,s(JT ;X) =: Hs(JT ; dom(B);X)

of the abstract Cauchy problem {
u̇+Bu = f,

u(0) = u0,

posed in X, satisfying

‖u̇‖Ls(JT ;X) + ‖Bu‖Ls(JT ;X) ≤ C(‖u0‖(dom(B),X)
1− 1

s ,s
+ ‖f‖Ls(JT ;X))

with a constant C > 0 independent of u0, f (see e.g. [2, Ch. III.1]).

Note that the wording in Theorem 3.1 is justified in the sense that the notion of maximal
Ls(JT ;X)-regularity is independent of 1 < s <∞ and T > 0, cf. [8]. In particular, Theorem
3.1 shows that problem (2.9) is well-posed for f ∈ Ls(JT ; W−1,q

D ) and

u0 ∈ Xs,q := (dom(Aq,κ,µ),W−1,q
D )1− 1

s
,s.

We can consider Theorem 3.1 as a corollary to the results in [17] and [3], where it is shown
that the operator Lq,κ = div(κ∇·) corresponding to the form tκ(u, ϕ) =

∫
ω
(κ∇u,∇ϕ)Rd dx

has maximal Ls-regularity in W−1,q
δ (ω) on domains ω with Dirichlet boundary part δ sat-

isfying the Assumptions 2.1 and 2.3, i.e. if Lq,κ provides an isomorphism of W−1,q
δ (ω) and

W 1,q
δ (ω), which is guaranteed by the results in [7]. Clearly, by [17, Remark 8.3], the result

carries over from Lq,κ to the diagonal “system” given by Lq,κ, i.e. we have shown

Proposition 3.3. Let 2 ≤ q <∞, then Lq,κ has maximal Ls(JT ; W−1,q
D )-regularity.

In order to prove Theorem 3.1, in the following lemma, it remains to treat the transmission
part Mq,µ by a perturbation argument, cf. [17, Lemma 5.15].

Lemma 3.4. Let 2 ≤ q <∞, then the operator Mq,µ defined in (2.7) is relatively bounded
with respect to Lq,κ, where the relative bound can be taken arbitrarily small.

Proof. For every u ∈ dom(Lq,κ) ⊂W1,2
D ,

‖Mq,µu‖W−1,q
D

≤ ‖µ‖L∞(Γ)3×3‖trΓu‖Lq(Γ)3 sup
‖ϕ‖

W1,q′=1

‖trΓϕ‖Lq′ (Γ)3 .

For every ε > 0, by the trace theorem [17, Thm. 3.6], interpolation and Young’s inequality,

‖u‖Lq(Γ)3

≤ C(‖u+‖1,q + ‖u−‖1,q)
1−1/q(‖u+‖q + ‖u−‖q)1/q + C‖uΓ‖Lq(Γ)

≤ C(‖u+‖1,q + ‖u−‖1,q)
1−1/2q(‖u+‖−1,q + ‖u−‖−1,q)

1/2q

+C ‖uΓ‖1/2
1,q ‖uΓ‖1/2

−1,q

≤ ε‖u‖W1,q + c(ε)‖u‖W−1,q .

�

From this lemma and Proposition 3.3, Theorem 3.1 follows for

Aq,κ,µ = Lq,κ +Mq,µ

by an abstract perturbation argument for maximal regularity shown in [19].
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4. Local well-posedness for the quasilinear equations

The aim of this section is to use Theorem 3.1 and solve the quasilinear problem (2.8)
under suitable assumptions on the coefficient functions k and m.

4.1. Preliminary assumptions and results. For α, α′ > 0, we define the Hölder space

Cα,α′ := Cα(Ω+)× Cα(Ω−)× Cα′(Γ),

where Cα(ω) are the uniform Hölder spaces of exponent α ≥ 0 with C0(ω) = C(ω) for
bounded domains ω.

We will make the following assumptions on the coefficient functions k,m as Carathéodory
functions:

Assumption 4.1. Let k and m be given as in (2.3) and (2.4).

(1) Uniformly in r ∈ R3,k(·, r) satisfies Assumption 2.5 and m(·, r) satisfies Assumption
2.6.

(2) The functions r ∈ R3 7→ m(y, r) and r ∈ R3 → k(x, r) are Lipschitz uniformly in
y ∈ Γ, x ∈ Ω.

(3) There exists a q > d such that for all u ∈ C,

dom(Lq,k(·,u(·))) = W1,q
D .

We discuss conditions on the validity of Assumption 4.13 in some more detail.
For d = 2, under Assumption 4.1(1), Assumption 4.1(3) is always satisfied, cf. [14]. If

d = 3, Assumption (3) is satisfied if all k+(·, u+(·)) and k−(·, u−(·)) satisfy Assumption
2.3, providing a uniform value of q > 3. As an example, this is guaranteed to hold if k+is
uniformly continuous in x ∈ Ω+ and Ω+, N+ and D+ are suitable, so that k+(·, u(·)) satisfies
Assumption 2.3 for some u ∈ C0(Ω+) and the same holds for k− on Ω−.

4.2. Main result. By the previous assumptions, dom(Aq,k,m) = W1,q
D for all u ∈ C and

suitable q > d. This implies the embedding

dom(Aq,k,m) ↪→ Cα,α′ ↪→ C (4.1)

for suitable α, α′ > 0. The following lemma shows that Hölder regularity carries over from
dom(Aq,k,m) to the time trace space

Xs,q = (W1,q
D ,W−1,q

D )1− 1
s
,s

for sufficiently large s. In particular, this ensures u ∈ C([0, T ]; C) for u ∈ Hs(JT ; W1,q
D ,W−1,q

D ).

Lemma 4.2. Let d < q < q∗, 2q
q−d < s < ∞ and T ∗ > T > 0. Then for all u ∈

Hs(JT ∗ ; W1,q
D ,W−1,q

D ), we obtain

u ∈ C([0, T ]; Cβ,β′),

where β = 1− 2/s− d/q, β′ = 1− 2/s− (d− 1)/q > 0.

Proof. By [2, Section III.4.10], it holds that W 1,s(W−1,q
D ) ∩ Ls(W1,q

D ) ↪→ C([0, T ];Xs,q). By

[10], interpolation and embedding results for W 1,q
δ (ω) work “as usual” for Sobolev spaces

and their duals. In particular,

(W 1,q
δ (ω),W−1,q′

δ (ω))1−1/s,s ⊂ B1−2/s
q,s (ω)

by [10] and [22, p. 186, (14)], where we do not give a precise definition of Br
q,s(ω) here, but

note that the definition may be based on the extension and retraction results also shown
in [10] and we obtain Xs,q ⊂ Br

q,s(Ω+) × Br
q,s(Ω−) × Br

q,s(Γ). It only remains to use the

embeddings B
d/q+β
q,s (Ω±) ↪→ Cβ(Ω±), B

(d−1)/q+β′
q,s (Γ) ↪→ Cβ′(Γ), cf. [22, 2.8.1]. �
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Theorem 4.3. Let Assumption 4.1 and the assumptions in Section 2 hold and let d < q < q∗,
s > 2q

q−d and u0 ∈ Xs,q and f ∈ Ls(0,∞; W−1,q
D ). Then there is a unique solution

u ∈ Hs(JT ; W1,q
D ; W−1,q

D )

to (2.8) which depends continuously on u0 and f in their respective norms. The regularity
of u holds for all times T smaller than a maximal time Tmax ∈ R+ ∪ {∞} with

‖u(t)‖Xs,q →∞ as t→ Tmax. (4.2)

Proof. We use the criteria in [4, Thm 2.1], cf. also [21], to show that the result follows from
Theorem 3.1, i.e. it essentially remains to verify that for all u ∈ Hs(JT ; W1,q

D ,W−1,q
D ),

u(t) 7→ Aq,k,m ∈ L(W1,q
D ; W−1,q

D )

is a well-defined Lipschitz continuous map. Given any

u ∈ Hs(JT ; W1,q
D ,W−1,q

D )

with u(0) = u0, Assumptions 4.1 on k,m and Lemma 4.2 guarantee that for all t ≥
0, the operators Aq,k,m have maximal Ls(JT ; W−1,q

D )-regularity by Theorem 3.1 and that

dom(Aq,k,m) = W1,q
D by Lemma 3.4. Moreover, by definition, Assumption 4.1(2) and 4.2,

given u1, u2 ∈ Xs,q,

‖Aq,k1,m1 −Aq,k2,m2‖L(W1,q
D ,W−1,q

D ) ≤ C‖u1 − u2‖L∞ ≤ C‖u1 − u2‖Xs,q ,

with C > 0 independent of u1, u2 ∈ Xs,q. This proves Theorem 4.3, where the characteriza-
tion of Tmax and continuous dependence on the data follow as in [21]. �
Remark 4.4. Also following [4, Thm 2.1] or [21], we can include the semilinear case of f
suitably depending on u.

Remark 4.5. The main result relies on the fact that Aq,k,m has maximal Ls-regularity. By
the result in [19], lower-order perturbations do not affect this property and may be included.
In particular, the non-negativity of Mq,m was not explicitly used for this result and much
more general transmission conditions may be considered. On the other hand, the particular
choice ofMq,m ensures the gradient structure of the isolated system, cf. [20] and it is crucial
for determining its long-time behaviour, cf. [6].
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[3] P. Auscher, N. Badr, R. Haller-Dintelmann, and J. Rehberg. The square root problem
for second order, divergence form operators with mixed boundary conditions on lp. J.
Evol. Eq., page to appear, 2014.

[4] Philippe Clément and Shuanhu Li. Abstract parabolic quasilinear equations and appli-
cation to a groundwater flow problem. Adv. Math. Sci. Appl., 3(Special Issue):17–32,
1993/94.

[5] Robert Denk, Jan Prüss, and Rico Zacher. Maximal Lp-regularity of parabolic problems
with boundary dynamics of relaxation type. J. Funct. Anal., 255(11):3149–3187, 2008.

[6] Karoline Disser. Analysis for gradient structures coupling diffusion processes in bulk
and interface. WIAS preprint, to appear, 2015.

[7] Karoline Disser, Hans-Christoph Kaiser, and Joachim Rehberg. Optimal sobolev regu-
larity for linear second-order divergence elliptic operators occurring in real-world prob-
lems. (1977), 2014.



9

[8] G. Dore. Maximal regularity in lp spaces for an abstract Cauchy problem. Adv. Differ-
ential Equations, 5:293–322, 2000.

[9] Annegret Glitzky and Alexander Mielke. A gradient structure for systems coupling
reaction-diffusion effects in bulk and interfaces. Z. Angew. Math. Phys., 64(1):29–52,
2013.
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