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Abstract

We consider a general class of nonlinear parabolic systems corresponding to thermody-
namically consistent gradient structure models of bulk-interface interaction. The setting
includes non-smooth geometries and e.g. slow, fast and “entropic” diffusion processes under
mass conservation. The main results are global well-posedness and exponential stability
of equilibria. As a part of the proof, we show bulk-interface maximum principles and a
bulk-interface Poincaré inequality. The method of proof for global existence is a simple
but very versatile combination of maximal parabolic regularity of the linearization, a priori
L∞-bounds and a Schaefer fixed point argument. This allows us to extend the setting e.g.
to Allen-Cahn dissipative dynamics and to include large classes of inhomogeneous boundary
conditions and external forces.

1. Introduction

We consider a parabolic system of equations describing coupled bulk and interface dissipative
processes of general quasi- and semilinear structure. This includes e.g. standard, slow and
fast diffusion with Neumann boundary conditions and extends to Allen-Cahn- or chemical
reaction-diffusion-type processes. The coupling of bulk and interface is of a general gradient
structure first derived in [26], providing thermodynamical consistency. More precisely, we
consider the following model equations.

1.1. Model equations. Let Ω ⊂ Rd, d = 2, 3, be a bounded bulk domain with boundary
∂Ω, divided into two open disjoint subdomains Ω+ and Ω− by an interface Γ of dimension
d−1. The scalar quantities u+ : (0, T )×Ω+ → R, u− : (0, T )×Ω− → R and uΓ : (0, T )×Γ→
R interact across the interface Γ, satisfying the evolution equations




u̇+−div(k+(u+)∇u+) = f+(u+), in (0, T )× Ω+,
(k+(u+)∇u+)ν++m+(u)(u+−uΓ)+mΓ(u)(u+−u−) = g+(u), on (0, T )× Γ,

(k+(u+)∇u+)ν+ = h+(u+), on (0, T )× {∂Ω+\Γ},
(1.1)

on the upper bulk part, and




u̇−−div(k−(u−)∇u−) = f−(u−), in (0, T )× Ω−,
(k−(u−)∇u−)ν−+m−(u)(u−−uΓ)+mΓ(u)(u−−u+) = g−(u), on (0, T )× Γ,

(k−(u−)∇u−)ν− = h−(u−), on (0, T )× {∂Ω−\Γ},
(1.2)

on the lower bulk part, coupled with the evolution
{
u̇Γ−divΓ(kΓ(u)∇ΓuΓ)−m+(u)(u+−uΓ)−m−(u)(u−−uΓ) = fΓ(u), in (0, T )× Γ,

(kΓ(u)∇ΓuΓ)νΓ = hΓ(uΓ), on (0, T )× ∂Γ,
(1.3)

on Γ. Here, ν+, ν−, νΓ denote the outer normal vector fields of Ω+, Ω− and Γ and we use
the shorthands

u = (u+, u−, uΓ), f = (f+, f−, fΓ), . . .

The coefficient matrices k, the scalar transmission coefficients m and the external forces
and inhomogeneous boundary conditions f, g, h may depend on the solution u and the space
variables with

k± : Ω± × R→ Rd×d
≥0 and kΓ : Γ× R3 → R(d−1)×(d−1)

≥0 , (1.4)

and

mΓ,m+,m− : Γ× R3 → R≥0. (1.5)
1



2

1.2. Examples and applications. Our main results on the system (1.1) – (1.3) are global
well-posedness for particular choices of f, g, h, Theorem 3.1, and exponential stability in the
case f, g, h = 0, Theorem 4.1. Our aim is to keep conditions on k and m very general, as
long as they provide uniqueness, some regularity, positivity, and global stability of solutions,
as these properties can be expected from a gradient flow structure. Particular examples of
possible k+, and likewise k−, kΓ, are k+(u+) = κ0u

ρ−1
+ with constants ρ ∈ R and κ0 > 0,

including the porous medium and fast diffusion equations with positive exponent and mass
conservation and also the case k+(u+) = 1

u2
+

which is motivated by the entropic structure

for the system in [26], cf. Subsections 5.1 and Corollary 5.1.
The transmission conditions m±, mΓ are assumed to be non-negative and it is sufficient that
two of them are positive. Their dependence of u ∈ R3 is assumed to be locally Lipschitz
for uniqueness, including, for example, the case m+(u) = 1

u2
+uΓ

. They model a wide range

of thermodynamically consistent reaction and adsorption processes between bulk and inter-
faces, motivated by the derivations in [26] and [21]. Again, we refer to Subsection 5.1 for
details.
We have in mind several model application of the system (1.1) – (1.3):

• heat conduction within some bulk material, e.g. a semiconductor, separated into two
parts by a thin active and heat conducting plate, e.g. made of metal. Particularly at
high and low temperatures, thermal conductivity of these bulk and plate materials
become non-linear in their dependence of temperature and non-equilibrium model-
ing of heat conduction across the plate leads to nonlinear transmission coefficients
m of the type above. We refer to [36] for an extensive list of thermal conductivities
for these materials and for a helpful introduction to and overview of experimen-
tal techniques and modeling principles for thermal conductivity. In technological
applications, the geometry often includes sharp edges and singularites, e.g. where
interface and boundary meet. A secondary aim of this work is thus to address these
non-smooth settings in which standard regularity theory is not available.
• our methods provide insights for models of diffusion and transport of electrical

charges in semiconductor devices, in particular in three spatial dimensions, for which
active interfaces often play a crucial role, cf. [21, 19].
• the quasi-linear structure of (1.1) – (1.3) may appear after a change of coordinates

in free boundary problems, e.g. in Stefan-type problems, [33].
• the interaction of chemical species across bulk and interface is included in this model

in a very general thermodynamically consistent form. We refer to [17] for the analysis
of a particular model of this type with linear bulk diffusion in the bulk-surface
situation Ω− = ∅. A related very active recent topic is the study of chemical reaction
kinetics for catalysis including surfactants, cf. e.g. [3].
• we show global existence and uniqueness including semilinear f, g, h, as long as the

maximum principle is preserved. This includes, for example, driving mechanisms of
Allen-Cahn-type, cf. Corollary 3.6.

1.3. Methods of proof and related work. Our main results are global existence and
uniqueness of regular solutions, Theorem 3.1, for the system (1.1) – (1.3) and exponential
decay to equilibrium in the case f, g, h = 0, Theorem 4.1.
Local well-posedness of systems of type (1.1) – (1.3) was proved in [9], including also mixed
boundary conditions. Here, we generalize the conditions on Γ and on the coefficients k,m.
A specific catch of the local theory is that our geometric setting naturally leads to only
Lipschitz regularity of Ω− and Ω+, as the separation of a smooth domain by an interface,
even a plane, will usually create a kink. Optimal elliptic regularity for the system is thus
not available in L2 or Lp. At the same time, using maximal parabolic reguarlity theory,
spatial regularity of the linearized problem and an identification of the domain of the elliptic
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operator are a key step for well-posedness of the quasilinear system. The choice of a W−1,q-
setting with q > d for the abstract Cauchy problem associated to (1.1) – (1.3), cf. Section
2, turns out to work very well, providing both regularity and an elliptic isomorphy, cf. [10],
and the flexibility to include inhomogenous Neumann boundary conditions in a natural way,
cf. Subsection 2.2. We refer to [8] for local-wellposedness of similar systems in an Lp-setting,
where the dynamic surface covers the whole boundary of a smooth domain. An additional
advantage of our functional analytic framework for (1.1) – (1.3) is that it has a very good
perturbation theory. It is straightforward to include lower-order terms, time-dependence of
coefficients and external forces, cf. Subsection 5.2. To obtain global existence of solutions,
we use a Schaefer fixed point argument, combined with results on non-autonomous maximal
parabolic regularity for the linear system and a maximum principle. Schaefer’s fixed point
theorem is a standard tool in the treatment of quasilinear elliptic problems [18], but it
seems to be seldomly used explicitly for parabolic problems, cf. [2]. Here, it seems a simple
but powerful tool for proving global existence, extending to regularity and uniqueness, and
providing a method that may easily be adopted to (bulk) systems in the future. The proof
of a maximum principle for system (1.1) – (1.3), Lemma 3.5, is quite elementary, but makes
exact use of the gradient structure of the bulk-interface interaction terms. In addition, it
is straightforward to extend the proof to other driving mechanisms like Allen-Cahn-type
energies, cf. Corollary 3.6. We refer e.g. to [6] for recent results on Allen-Cahn equations
with dynamic interface conditions. In contrast to the situation here, with an additional
variable on the interface, dynamic interface/boundary conditions have been studied much
more extensively. We refer e.g. to [35, 12, 28, 8] for recent results.
Under the assumption f, g, h = 0, we show exponential stability of equilibria of (1.1) – (1.3)
under the constraint of mass conservation. The result follows from a bulk-interface Poincaré
inequality,

‖u− u∞‖2
L2,2 ≤ C(‖∇u‖2

L2,2 + ‖u+ − uΓ‖2
L2(Γ) + ‖u− − uΓ‖2

L2(Γ) + ‖u+ − u−‖2
L2(Γ)),

in Lemma 4.2. Again, the proof is fairly straightforward, but it shows how the gradient
structure proposed in the modeling of bulk-interface interaction in [26] can be adapted in
the analysis and it shows that the coupling, in its generality, is sufficiently strong for pushing
the system into global equilibrium.

Outline. The paper is organized as follows. In the next section, we fix basic assumptions on
the geometry and coefficient functions in (1.1) – (1.3) and collect preliminary results on the
bilinear form of energy dissipation associated to the system. In Section 3, the main result
on existence and uniquenees of global weak solutions is proved, including a bulk-interface
maximum principle. In Section 4, we show the bulk-interface Poincaré inequality, providing
exponential stability for a global equilibrium under mass conservation. In the last Section
5, we discuss the relation of the model to the entropic Onsager system of heat diffusion and
transfer derived in [26] and comment on straightforward extensions of the main results like
the case of Ω− = ∅, higher regularity, dependence of coefficients on time, and the inclusion
of lower-order perturbations.

2. Basic assumptions and abstract framework

The aim of this section is to define a functional analytic framework for equations (1.1) –
(1.3) that works for very general geometric bulk-interface settings and transmission condi-
tions. We introduce basic assumptions on the geometry of the domains Ω±,Γ and coefficient
functions k,m that hold for the remainder of the paper. In Subsection 2.2, we construct a
suitable linearization of the problem and in Subsection 2.3, we recall basic facts on maximal
parabolic regularity, define suitable solution spaces and prove useful embedding results.
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2.1. Assumptions on geometry and coefficients. Our assumptions on the geometry
are quite general in the sense that only minimal smoothness is required and that bulk and
interface need only interact locally and may touch non-smoothly.

Assumption 2.1 (on Ω+, Ω− and Γ). The bulk domains Ω+ and Ω− are bounded Lipschitz
domains, cf. [22, Def. 1.2.12].
The interface Γ is a d− 1-dimensional C1-manifold with Lipschitz boundary ∂Γ ⊂ ∂Ω.

We note that even if Ω were smoother, at least one of the domains Ω+ and Ω− cannot
be smoother than Lipschitz as the division of Ω by Γ, e.g. by a plane, will usually create a
kink.

For q ∈ [1,∞], Lq(ω) denotes the usual real Lebesgue space of q-integrable functions
on a domain or manifold ω, Wm,q(ω) denote the usual Lq-Sobolev spaces of order m ∈ N
and Cα(ω) are the uniform Hölder spaces of exponent α ≥ 0 with C0(ω) = C(ω) if ω is
bounded. We introduce a convenient notation for function spaces related to (1.1) – (1.3).
For q, qΓ ∈ [1,∞], using Hd−1 the d− 1-dimensional Hausdorff measure on Γ, define

Lq,qΓ := Lq(Ω+)× Lq(Ω−)× Lq(Γ),

W1,q,qΓ := W 1,q(Ω+)×W 1,q(Ω−)×W 1,qΓ(Γ), and

Cα,αΓ := Cα(Ω+)× Cα(Ω−)× CαΓ(Γ),

where α, αΓ ≥ 0.
Note that since Γ is a smooth part of the boundary of Ω+, the trace operator

trΓ : W 1,q(Ω+)→ Lq(Γ) (2.1)

is well-defined and continuous (likewise for Ω−). We write

trΓ u = (trΓ u+, trΓ u−, uΓ) (2.2)

for the trace components of u on the interface Γ. Often, the operator trΓ is omitted in the
notation for integrals and as, for example, in the statement of the model equations (1.3) on
Γ.

With slight abuse of notation but consistent with notation for mixed boundary conditions
(cf. e.g. [9]), dual Sobolev spaces are denoted by

W−1,q(ω) := (W 1,q′(ω))
′
and W−1,q,qΓ := (W1,q′,q′Γ)

′

with 1
q

+ 1
q′ = 1

qΓ
+ 1

q′Γ
= 1. Additionally, for −∞ < l ≤ L < +∞ and n ∈ N, let

(RL
l )n := {v ∈ Rn : l ≤ vi ≤ L for i = 1, . . . , n}, and

CL
l = {u ∈ C0,0 : l ≤ u±(x), uΓ(y) ≤ L for all x ∈ Ω±, y ∈ Γ}.

Assumption 2.2 (Assumptions on k and m). Let k and m be given as in (1.4) and (1.5)
and let −∞ < l < L < +∞ be given constants.

(1) Uniformly in u ∈ (RL
l )3, the coefficient matrices k(·, u) are measurable, bounded and

elliptic, i.e. there are constants k, k > 0 such that

‖k(·, u)‖L∞ ≤ k, (2.3)

and such that for all x ∈ Rd, y ∈ Rd−1,

x · k±(·, u)x ≥ k|x|2 and y · kΓ(·, u)y ≥ k|y|2, (2.4)

almost everywhere in Ω±, Γ. In particular, k and k may depend on l, L, but not on
u ∈ (RL

l )3.
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(2) Uniformly in u ∈ (RL
l )3, the transmission coefficients m±,mΓ are measurable and

there are constants m,m > 0 such that

‖m(·, u)‖L∞(Γ) ≤ m (2.5)

and such that at least two of the three transmission functions, e.g. m+,mΓ are
positively bounded from below,

m ≤ m+(·, u),mΓ(·, u), (2.6)

and the third transmission function is non-negative,

0 ≤ m−(·, u),

almost everywhere in Γ. Note that again, m,m may depend on l, L, but not on
u ∈ (RL

l )3.
(3) The functions R 3 u± 7→ k±(x, u±), R3 3 u 7→ kΓ(y, u) and R3 3 u 7→ m(y, u) are

locally Lipschitz uniformly in y ∈ Γ, x ∈ Ω±.
(4) If d = 3, then k± are of the form k±(x, u±) = κ±(x, u±)κ±(x). The functions

κ± : Ω± × R → R are scalar, satisfy 2.2(3) and for all u± ∈ R, we have κ±(·, u±) ∈
C0(Ω±) with k ≤ κ±(·, u±). The functions κ± : Ω± → R3×3

≥0 satisfy 2.2(1) and are
uniformly continuous on Ω±.

For examples of coefficients k,m that satisfy Assumption 2.2, we refer e.g. to the in-
troduction, Subsection 1.2 and to Section 5.1. In particular, the original modelling in [26,
Sect. 4.2] is included as a special case. Note also that Assumption 2.2(4) may be relaxed,
cf. Remark 5.5.

2.2. A bilinear form and an elliptic operator associated to this problem. The
dissipation in (1.1) – (1.3) across Γ is governed by the transmission coefficient matrix m
given by

m =




m+ +mΓ −mΓ −m+

−mΓ m− +mΓ −m−
−m+ −m− m+ +m−


 .

Under Assumption 2.2(2), m is positive semi-definite and for r = (r+, r−, rΓ) ∈ R3,

r ·mr = 0 a.e., if and only if r+ = r− = rΓ. (2.7)

Let −∞ < l ≤ L < +∞. For fixed u ∈ CL
l , we define the bilinear form

au : W1,2,2 ×W1,2,2 → R
by

au(ψ, ϕ) := lu(ψ, ϕ) + mu(ψ, ϕ),

where
lu(ψ, ϕ) :=

∫
Ω+
∇ψ+ · k+(u+)∇ϕ+ dx+

∫
Ω−
∇ψ− · k−(u−)∇ϕ− dx

+
∫

Γ
∇ΓψΓ · kΓ(uΓ)∇ΓϕΓ dy,

=: lu,+(ψ+, ϕ+) + lu,−(ψ−, ϕ−) + lu,Γ(ψΓ, ϕΓ),

and

mu(ψ, ϕ) =

∫

Γ

trΓ ψ ·mtrΓ ϕ dHd−1.

By (2.1), the form au is well-defined and continuous. Due to (2.7) and Assumption 2.2,

au(ϕ, ϕ) ≥ 0 and au(ϕ, ϕ) = 0 if and only if ϕ+ = ϕ− = ϕΓ ≡ const. (2.8)

The form au induces an operator Au : W1,2,2 →W−1,2,2 by

Au(ψ)(ϕ) := au(ψ, ϕ), for all ψ, ϕ ∈ W 1,2,2.
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For q, qΓ ∈ [2,∞), let Aq,qΓu be the closed and densely defined restriction of Au to W−1,q,qΓ .
We write Lq,qΓu for the divergence operator in W−1,q,qΓ analogously induced by lu and Lq,qΓu,+ ,
Lq,qΓu,− and Lq,qΓu,Γ for the Neumann operators induced by lu,+, lu,− and lu,Γ on the domains Ω+,
Ω− and Γ, respectively. We write Mq,qΓ

u for the bounded transmission operator given by

Mq,qΓ
u (ψ)(ϕ) := mu(ψ, ϕ), ψ ∈ dom(Lq,qΓu ), ϕ ∈W1,q′,q′Γ , (2.9)

so that

Aq,qΓu = Lq,qΓu +Mq,qΓ
u .

The external forces and inhomogeneous Neumann boundary conditions f, g, h in (1.1)–(1.3)
are realized as a W−1,q,qΓ-functional F(u) with components F+(u) ∈ W−1,q(Ω+), F−(u) ∈
W−1,q(Ω−) and FΓ(u) ∈ W−1,qΓ given by

F+(u)(ϕ+) =

∫

Ω+

f+(u+)ϕ+ dx+

∫

Γ

g+(u)trΓ ϕ+ dHd−1 +

∫

∂Ω+\Γ
h+(u+)tr∂Ω+\Γ ϕ+ dHd−1

F−(u)(ϕ−) =

∫

Ω−

f−(u−)ϕ− dx+

∫

Γ

g−(u)trΓ ϕ− dHd−1 +

∫

∂Ω−\Γ
h−(u−)tr∂Ω−\Γ ϕ− dHd−1

FΓ(u)(ϕΓ) =

∫

Γ

fΓ(u)ϕΓ dHd−1 +

∫

∂Γ

hΓ(uΓ)tr∂Γ ϕΓ dHd−2,

for all ϕ ∈ W1,q′,q′Γ . Using suitable trace embedding results, it follows that F(u) is well-
defined, e.g. if

f(u) ∈ Lp,pΓ , with p > d
d+1− d

q′
, and pΓ >

d−1
d− d−1

q′
Γ

if d = 3,

or pΓ > 1 if d = 2,
g±(u), h±(u) ∈ Lρ(Γ), with ρ > d−1

d− d
q′
, and, if d = 3,

hΓ(uΓ) ∈ LρΓ(∂Γ), with ρΓ > 1.

We interpret the set of equations (1.1), (1.2) and (1.3) as the quasilinear problem

u̇(t) +Au(t)u(t) = F(u(t)), u(0) = u0, (2.10)

posed in W−1,q,qΓ , q, qΓ ≥ 2.

2.3. Maximal parabolic regularity and useful embeddings. For T > 0, let in the
following JT = (0, T ) be a bounded time interval. We briefly recall the notion of maximal
Lr(JT ;X)-regularity for a Banach space X.

Definition 2.3. Let 1 < r < ∞, let X be a Banach space and assume that B is a closed
operator in X with dense domain dom(B) ⊂ X, equipped with the graph norm. We say
that B satisfies maximal Lr(JT ;X)-regularity if for all u0 ∈ (dom(B), X)1− 1

r
,r and f ∈

Lr(0, T ;X) there is a unique solution

u ∈ Lr(JT ; dom(B)) ∩W 1,r(JT ;X)

of the abstract Cauchy problem {
u̇+Bu = f,

u(0) = u0,

posed in X, satisfying

‖u̇‖Lr(JT ;X) + ‖Bu‖Lr(JT ;X) ≤ C(‖u0‖(dom(B),X)
1− 1

r ,r
+ ‖f‖Lr(JT ;X))

with a constant C > 0 independent of u0 and f (see e.g. [1, Ch. III.1]).
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Note that the notion of maximal Lr(JT ;X)-regularity is actually independent of 1 < r <
∞ and T > 0, cf. [14]. In the following, for q, qΓ ≥ 2, 1 < r < ∞ and given u ∈ C0,0, we
consider maximal regularity of Aq,qΓu , so let

MRr
q,qΓ

:= Lr(JT ; dom(Aq,qΓu )) ∩W 1,r(JT ; W−1,q,qΓ)

be the corresponding solution space and let

Xr
q,qΓ

:= (dom(Aq,qΓu ),W−1,q,qΓ)1− 1
r
,r

be the corresponding time trace space.
In Lemma 3.2 below, we show that there are q > d, qΓ > d − 1, such that dom(Aq,qΓu ) =

W1,q,qΓ . The following lemma summarizes useful embeddings for the corresponding function
spaces.

Lemma 2.4. If dom(Aq,qΓu ) = W1,q,qΓ, then

(1) for α ≤ 1− d
q

and αΓ ≤ 1− d−1
qΓ

,

dom(Aq,qΓu ) ↪→ Cα,αΓ , (2.11)

(2) for any 1 < r <∞,

MRr
q,qΓ

↪→ C0(JT ;Xr
q,qΓ

). (2.12)

If q > d, qΓ > d− 1, and r > max( 2q
q−d ,

2qΓ
qΓ−d+1

), then

Xr
q,qΓ

↪→ Cβ,βΓ , (2.13)

where 0 < β ≤ 1− d
q
− 2

r
and 0 < βΓ ≤ 1− d−1

qΓ
− 2

r
.

(3) for q > d, qΓ > d−1, let 0 < δ < min( q−d
2q
, qΓ−d+1

2qΓ
) and r > max( 2q

q−2δq−d ,
2qΓ

qΓ−2δqΓ−d+1
),

then

MRr
q,qΓ

↪→ Cδ(JT ; Cγ,γΓ) (2.14)

with 0 < γ ≤ 1 − d
q
− 2

r
− 2δ and 0 < γΓ ≤ 1 − d−1

qΓ
− 2

r
− 2δ. In particular, the

embedding

MRr
q,qΓ

↪→ C0(JT ; C0,0) (2.15)

is compact.

Proof. Note that Ω+,Ω− and Γ are sufficiently regular for embedding and interpolation
results to work “as usual”, i.e. as in the whole space. The first embedding (2.11) is standard,
cf. e.g. [37, 2.8.1(c)]. For embedding (2.12), cf. [1, Section III.4.10]. Embedding (2.13)
follows by definition of Xr

q,qΓ
, combining e.g. the interpolation result [37, p. 186, (14)] and

the embedding [37, 2.8.1]. From [13, Lemma 3.4(b)], it follows that

MRr
q,qΓ

↪→ Cδ(JT ; (W−1,q,qΓ ,W1,q,qΓ)θ,1)

with 0 < θ ≤ 1 − 1
r
− δ. Embedding (2.14) then follows again by combining [37, p. 186,

(14)] and [37, 2.8.1]. �

We conclude this section with an assumption on the dependence of F on u in (2.10).

Assumption 2.5. Given 1 < r < ∞ and q, qΓ > 2, the function F : Xr
q,qΓ
→ W−1,q,qΓ is

locally Lipschitz in the sense that for all L̃ > 0, there exists a function φL̃ ∈ Lr(JT ; R) such

that for all u1, u2 ∈ Xr
q,qΓ

with ‖u1‖Xr
q,qΓ

, ‖u2‖Xr
q,qΓ
≤ L̃,

‖F(u1)−F(u2)‖W−1,q,qΓ ≤ φL̃(t)‖u1 − u2‖Xr
q,qΓ

.
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3. Global existence and uniqueness

The main result of this section is global existence and uniqueness of solutions of (2.10). For
local well-posedness, it is sufficient that F satisfies Assumption 2.5. For global existence, we
require that F preserves a maximum principle for (2.10). This assumption is fairly general
but remains vague. Examples for suitable F are given in Corollary 3.6.

Theorem 3.1. Let T > 0. Then there exist q > d, qΓ > d − 1 such that for all r >
max( 2q

q−d ,
2qΓ

qΓ−d+1
), u0 ∈ Xr

q,qΓ
and F satisfying Assumption 2.5 and preserving a maximum

principle, there is a unique global solution

u ∈ W 1,r(JT ; W−1,q,qΓ) ∩ Lr(JT ; W1,q,qΓ)

of (2.10). In particular, the solution is Hölder continuous in time and space,

u ∈ Cδ(JT ; Cγ,γΓ),

with δ, γ, γΓ as in Lemma 2.4.

The strategy of the proof is to use non-autonomous maximal regularity of the operators
Aq,qΓu(t) combined with Schaefer’s fixed point theorem and to obtain a priori bounds by a

maximum principle. The proof is divided into four steps:

(1) provisional reduction to bounded coefficients,
(2) preliminary results on the linearized non-autonomous problem,
(3) maximum principle,
(4) Schaefer argument and proof of the theorem.

(1) Provisional reduction to bounded coefficients. By Lemma 2.4, u0 ∈ Cβ,βΓ ⊂ C0,0.
Let −∞ < l0 ≤ L0 < +∞ be such that u0 ∈ CL0

l0
. Define

[f ]Ll (x) :=





L, f(x) ≥ L,

l, f(x) ≤ l,

f(x), otherwise.

and let L := L0 + 1, l = l0/2. Instead of the coefficient functions k and m, we consider

kLl (·, u(·)) = k(·, [u]Ll (·)) and mL
l (·, u(·)) = m(·, [u]Ll (·)) (3.1)

in the following. In Step (4) below, it is shown that kLl = k and mL
l = m along the orbits

of u0, thus concluding the proof of the theorem. Clearly, if k,m satisfy Assumption 2.2,
then also kLl , mL

l satisfy Assumption 2.2. In particular, the bounds in 2.2(1) and 2.2(2) hold
uniformly in u ∈ C0,0 for kLl , mL

l .

(2) Preliminary results on the linearized non-autonomous problem. In this step of
the proof and in Step (3), using Step (1), assume additionally that all coefficient functions
are such that the bounds in 2.2(1) and 2.2(2) hold uniformly in u ∈ C0,0.

Lemma 3.2. There exist q > d and qΓ > d − 1 such that for any u ∈ C0(JT ; C0,0), for all
t ∈ JT , for any λ > 0, the operator Aq,qΓu(t) + λ is an isomorphism

Aq,qΓu(t) + λ : W1,q,qΓ →W−1,q,qΓ . (3.2)

Proof. First note that Aq,qΓu(t) : dom(Aq,qΓu(t))→W1,q,qΓ is well-defined for all t ∈ JT .

Consider the case d = 2. By the Lax-Milgram theorem, the claim holds for q = qΓ = 2.
By Sneiberg’s theorem [34], the isomorphism property extrapolates to a neighbourhood of
W1,2,2 in the complex interpolation scale [W1,p,pΓ ,W1,p′,p′Γ ]1/p = W1,2,2Γ , 1 < p, pΓ < ∞, see
[23].
If d = 3, then Assumption 2.2(4) holds. If κ± ≡ 1, then k± = κ± is independent of
u and then by [24, Lemma 6.5], there is a q > 3 such that the isomorphism property
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Lu(t),± + λ : W 1,q(Ω±)→ W−1,q(Ω±) holds true. Using the same extrapolation argument as
in the case d = 2, there exists a qΓ > 2 such that Lu(t),Γ + λ : W 1,qΓ(Γ) → W−1,qΓ(Γ) is an
isomorphism. In [10, Theorem 6.3] it was shown that the domains of Lu(t),±,Lu(t),Γ remain
unchanged by a scalar multiplicative perturbation κ± ∈ C0(Ω±) that is positively bounded
from below. This proves the result for the operators Lu(t), t ∈ JT . By relative boundedness
of Mu(t), cf. [9, Lemma 3.4], the domains of Lu(t) + λ and Au(t) + λ coincide. This proves
the claim. �
Lemma 3.3. Let 2 ≤ q, qΓ < ∞, 1 < r < ∞ and let u ∈ C0(JT ; C0,0). Then Aq,qΓu(t) has

maximal Lr(JT ; W−1,q,qΓ)-regularity.

Proof. The result was shown in [9] if Γ is flat. It remains to check the maximal regularity
of the Neumann operator Lu(t),Γ on C1-manifolds. This follows from maximal regularity for
flat domains [23], using the usual localization methods, i.e. exploiting that the property of
maximal regularity is preserved under perturbations that occur when locally flattening the
domain and straightening the boundary with respect to a sufficiently fine covering and a
corresponding partition of unity, see [7] for the general strategy and [8] for this argument in
a similar context. �
Lemma 3.4. Let w ∈ C0(JT ; C0,0), q, qΓ as in Lemma 3.2. Then for every r, u0 ∈ Xr

q,qΓ
as

in Theorem 3.1 and f ∈ Lr(JT ; W−1,q,qΓ), there exists a unique global solution v ∈ MRr
q,qΓ

of

v̇(t) +Aq,qΓw(t)v(t) = f(t), in W−1,q,qΓ , (3.3)

v(0) = u0,

and the solution operator

(∂t +Aq,qΓw(·))
−1 : (f, u0) ∈ Lr(JT ;W−1,q,qΓ)×Xr

q,qΓ
7→ v ∈ MRr

q,qΓ
(3.4)

is continuous with Lipschitz dependence on w ∈ C0(JT ; C0,0).

Proof. For two Banach spacesX, Y , let B(X, Y ) denote the space of bounded linear operators
B : X → Y . By continuity of w and kLl and by Lemma 3.2, the map JT 3 t 7→ Aq,qΓw (t) ∈
B(W1,q,qΓ ,W−1,q,qΓ) is uniformly continuous. By Lemma 3.4, for all t ∈ JT , Aq,qΓw (t) has
maximal Lr(JT ; W−1,q,qΓ)-regularity, so existence and continuity of the solution operator
follow from [32, Theorem 2.5].
By Assumption 2.2(3), given w1, w2 ∈ C0,0, we obtain

‖Aq,qΓw1
−Aq,qΓw2

‖B(W1,q,qΓ ,W−1,q,qΓ ) ≤ C‖w1 − w2‖L∞ , (3.5)

with C > 0 independent of w1, w2 ∈ C0,0 and thus the dependence C0(JT ; C0,0) 3 w 7→
∂t + Aq,qΓw(·) ∈ B(MRr

q,qΓ
, Lr(JT ;W−1,q,qΓ) × Xr

q,qΓ
) is Lipschitz, and the dependence on w of

the inverse of the non-autonomous operator (∂t +Aq,qΓw(·))
−1 is Lipschitz as well. �

(3) Maximum principle. In this step, we prove uniform L∞-bounds on u from above and
below. With respect to standard results for the bulk problems, cf. Corollary 5.1, the point
is to show that the nonlinear bulk-interface interaction terms derived from a generalized
gradient structure preserve this property.

Lemma 3.5. (Bulk-Interface Maximum Principle) Let r, q, qΓ as in Theorem 3.1, F ≡ 0
and u0 ∈ Xr

q,qΓ
with u0 ∈ CL

l for some −∞ < l ≤ L < +∞. Assume that u ∈ MRr
q,qΓ

is a

solution of (2.10). Then for all t ∈ JT , u(t) ∈ CL
l .

Proof. Define ζl(t) = [(u(t)− l)−] and ζL(t) = [(L− u(t))−], where

[f−](x) :=

{
0, f(x) ≥ 0,

−f(x), f(x) < 0.
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Since [·−] is Lipschitz and r, q, qΓ ≥ 2, ζl, ζ
L ∈ Lr(JT ; W1,q,qΓ) ↪→ Lr

′
(JT ; W1,q′,q′Γ) with

∇ζL(t, x) =

{
0, u(t, x) ≤ L,

∇u(t, x), u(t, x) > L,

and ζl(0) = ζL(0) ≡ 0. For all s ∈ JT , testing (2.10) with ζL in space and time gives ζL ≡ 0
as ∫ s

0

u̇(t)(ζL(t)) dt =
1

2
‖ζL(s)‖2

L2,2 ≥ 0

and ∫ s

0

Aq,qΓu(t)u(t)(ζL(t)) dt =

∫ s

0

lu(t)(u(t), ζL(t)) + mu(t)(u(t), ζL(t)) dt ≥ 0. (3.6)

To show the estimate from below in (3.6), note that
∫ s

0

lu(t)(u(t), ζL(t)) dt =

∫ s

0

lu(t)(ζ
L(t), ζL(t)) dt ≥ 0

as k is bounded below by k and that∫ s

0

mu(t)(u(t), ζL(t)) dt =

∫ s

0

∫

Γ

m+(u)(u+ − uΓ)(ζL+ − ζLΓ )(t) (3.7)

+m−(u)(u− − uΓ)(ζL− − ζLΓ )(t)

+mΓ(u)(u+ − u−)(ζL+ − ζL−)(t) dHd−1 dt,

where m is bounded below by m and where∫

Γ

(u+ − uΓ)(ζL+ − ζLΓ )(t) dHd−1 =

∫

{x∈Γ: u+(x)>L>uΓ(x)}
(u+ − uΓ)(u+ − L)(t) dHd−1

+

∫

{x∈Γ: u+(x)<L<uΓ(x)}
(u+ − uΓ)(L− uΓ)(t) dHd−1

+

∫

{x∈Γ: u+(x),uΓ(x)>L}
(u+ − uΓ)(u+ − uΓ)(t) dHd−1 ≥ 0,

and non-negativity of the remaining terms on the right-hand-side of (3.7) follows analogously.
The proof of the lower bound, i.e. ζ l ≡ 0 follows analogously by testing (2.10) with ζ l.

�
If F 6= 0, Theorem 3.1 still requires that F preserves a maximum principle. A particular

example is given by terms of Allen-Cahn-type, treated in the following corollary.

Corollary 3.6. Let F satisfy Assumption 2.5 and let all the components ϕ of F , e.g.
ϕ = f+, g−, . . . in (1.1)–(1.3) be independent of x ∈ Ω+,Ω−, y ∈ Γ, respectively. Assume
that ϕ are continuously differentible in u and that g± depend only on u±, respectively, whereas
fΓ depends only on uΓ. Assume that all ϕ satisfy the dissipativity condition

lim inf
|v|→∞

−ϕ′(v) > 0. (3.8)

Then, under the assumptions of the maximum principle Lemma 3.5, given a solution u ∈
MRr

q,qΓ
of (2.10), there are constants −∞ < lf ≤ Lf < +∞, such that for all t ∈ JT ,

u(t) ∈ C
Lf

lf
.

Proof. Condition (3.8) guarantees that for every component ϕ, there exist constants −∞ <
lϕ ≤ Lϕ < +∞ such that ϕ(v) > 0 for all v < lϕ and ϕ(v) < 0 for all v > Lϕ. Let
lf := minϕ(lϕ) and Lf := maxϕ(Lϕ). In the choice of test functions ζl, ζ

L in the proof of
Lemma 3.5, replace l, L by lf , Lf . It is then straightforward to check that for all s ∈ JT ,
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∫ s
0
F(u(t))(ζLf (t)) dt ≤ 0 and that

∫ s
0
F(u(t))(ζlf (t)) dt ≥ 0. Combined with the calculations

in the proof of Lemma 3.5, this proves the claim. �
(4) Schaefer argument and proof of Theorem 3.1. Let q, qΓ be given by Lemma 3.2
and let r and u0 ∈ Xr

q,qΓ
be given as in Theorem 3.1. By embedding (2.13), u0 ∈ CL

l for
some −∞ < l ≤ L < +∞. In the following, let

C0
u0(JT ; C0,0) := {u ∈ C0(JT ; C0,0) : u(0) = u0}. (3.9)

Define
T : C0

u0(JT ; C0,0)→ C0
u0(JT ; C0,0)

by T w = v ∈ MRs
q,qΓ

the solution of (3.3) with v(0) = u0 given by Lemma 3.4. By
embedding (2.15), T is well-defined and compact. Moreover, T is Lipschitz continuous by
Lemma 3.4 and a fixed point of T would solve (2.10). To obtain existence of a fixed point
by Schaefer’s Theorem [16, Theorem 9.2.4], it suffices to show that the Schaefer set

S := {u ∈ C0
u0(JT ; C0,0) : u = λT (u) for some 0 ≤ λ ≤ 1}

is bounded. If uλ = λT (uλ) for some 0 < λ ≤ 1, then by definition of T , uλ ∈ MRs
q,qΓ

and uλ satisfies (2.10) with initial value uλ(0) = λu0 and right-hand-side λF(uλ). Thus, if
F ≡ 0 or if F is as in Corollary 3.6 or of a different form that uniformly bounds solutions,
then S is bounded. By the Lipschitz property (3.5), all conditions for [31, Theorem 3.1] are
satisfied, implying uniqueness of the solution u. In addition, the maximum principle shows
that in fact kLl = k and mL

l = m along orbits of u0, justifying step (1) a posteriori with
possible adjustments to the choice of l and L by Corollary 3.6, and concluding the proof of
Theorem 3.1.

4. Exponential decay to equilibrium and stability

In the previous section, in some sense, the point was to show that the interaction of bulk
and interface is sufficiently weak not to disturb the well-posedness of the Neumann problems
on bulks and interface. Here, the point will be to show that the interaction is sufficiently
strong for forcing the system into the uniform equilibrium given by

u∞ =
1

V

(∫

Ω+

u0
+(x) dx+

∫

Ω−

u0
−(x) dx+

∫

Γ

u0
Γ(y) dHd−1

)

associated to u0, where
V = |Ω+|+ |Ω−|+ |Γ|Hd−1

.

By a slight abuse of notation, u∞ also denotes the constant vector function u∞ = u∞(1, 1, 1) ∈
C0,0.

Theorem 4.1. Under the assumptions of Theorem 3.1 with F ≡ 0, given u0 ∈ Xr
q,qΓ

, the
solution u converges to u∞ at an exponential rate, in the sense that there is a δ > 0 depending
on u0, k,m,Ω and Γ, such that for all s ≥ 0,

‖u(s)− u∞‖L2,2 ≤ e−δs‖u0 − u∞‖L2,2 . (4.1)

Proof. Since for every solution u ∈ MRr
q,qΓ

and T > 0, au(s)(u(s), u∞) = 0, testing (2.10)
with u− u∞ shows the energy balance

‖u(s)− u∞‖2
L2,2 +

∫ s

0

au(t)(u(t), u(t)) dt = ‖u0 − u∞‖2
L2,2 , (4.2)

for all s > 0. By Lemma 3.5 and Assumption 2.2,

lu(t)(u(t), u(t)) ≥ C‖∇u(t)‖2
L2,2 , and

mu(t)(u(t), u(t)) ≥ m

(∫

Γ

(u+ − uΓ)2(t)

∫

Γ

(u− − uΓ)2(t) +

∫

Γ

(u+ − u−)2(t) dy)

)
.
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Hence, with the following Poincaré-type inequality, the claim follows directly from Gronwall’s
inequality. �
Lemma 4.2. (Bulk-Interface Poincaré Inequality) Let u ∈ W1,2,2 and u∞ the equilibrium
associated to u. Then there is a constant C > 0, independent of u, such that

‖u− u∞‖2
L2,2 ≤ C(‖∇u‖2

L2,2 + ‖u+ − uΓ‖2
L2(Γ) + ‖u− − uΓ‖2

L2(Γ) + ‖u+ − u−‖2
L2(Γ)). (4.3)

Proof. For any u ∈ L1,1, let in the following ū+ := 1
|Ω+|

∫
Ω+
u+, ū− := 1

|Ω−|
∫

Ω−
u− and ūΓ :=

1
|Γ|
∫

Γ
uΓ and let ū = (ū+, ū−, ūΓ) ∈ R3. To prove (4.3), we use the following two (standard)

versions of Poincaré’s inequality [4, Theorem 1 and Corollary 3]. For all u+ ∈ W 1,p(Ω+),

(1) there is a constant C̄+ > 0, such that

‖u+ − ū+‖2
L2(Ω+) ≤ C̄+‖∇u+‖2

L2(Ω+), and, (4.4)

(2) there is a constant CΓ
+ > 0, such that

‖u+‖2
L2(Ω+) ≤ CΓ

+(‖∇u+‖2
L2(Ω+) +

1

|Γ| |
∫

Γ

u+|2). (4.5)

Clearly, analogous statements hold for Ω− with constants C̄− > 0 and CΓ
− > 0 and (4.4)

holds for uΓ on the manifold Γ with constant C̄Γ > 0. An elementary calculation shows that

‖u− u∞‖2
L2,2 = ‖u− ū‖2

L2,2 − V (u∞)2 + |Ω+|ū2
+ + |Ω−|ū2

− + |Γ|ū2
Γ.

Inserting V u∞ = |Ω+|ū+ + |Ω−|ū− + |Γ|ūΓ gives

‖u−u∞‖2
L2,2 = ‖u−ū‖2

L2,2+
|Ω+||Ω−|

V
(ū+−ū−)2+

|Ω+||Γ|
V

(ū+−ūΓ)2+
|Ω−||Γ|
V

(ū−−ūΓ)2. (4.6)

By (4.4), ‖u − ū‖2
L2,2 ≤ (C̄+ + C̄− + C̄Γ)‖∇u‖2

L2,2 , so it remains to estimate the last three
terms in (4.6) by the right-hand-side in (4.3). By Hölder’s inequality and by (4.5),

(ū+ − ūΓ)2 =
1

|Ω+|2
(

∫

Ω+

u+ − ūΓ)2 ≤ 1

|Ω+|
‖u+ − ūΓ‖2

L2(Ω+)

≤ CΓ
+

|Ω+|
(‖∇u+‖2

L2(Ω+) +
1

|Γ| |
∫

Γ

u+ − ūΓ|2)

≤ CΓ
+

|Ω+|
(‖∇u+‖2

L2(Ω+) + ‖u+ − uΓ‖2
L2(Γ)).

The term (ū− − ūΓ)2 can be estimated analogously. In order to estimate the last term
(ū+ − ū−)2, simply insert −ūΓ + ūΓ and use the previous estimates. With this strategy,
it is clear that for (4.3) to hold, it is sufficient that two of the three coefficient functions
m+,m−,mΓ are positive, so not every pair of unknowns needs to interact across Γ. Note
that it is also sufficient for two of these coefficients to be positive to guarantee the structure
of the kernel of au in (2.8). This concludes the proof of Lemma 4.2 and thus of Theorem
4.1. �

In addition to exponential stability of u∞ within the sets of initial data with equal mass,
Theorem 4.1 immediately implies stability of u∞ in Xr

q,qΓ
:

Corollary 4.3. For every v∞ ∈ R+, ε > 0, if u0 ∈ Xr
q,qΓ

with ‖u0 − v∞‖L1,1 < εV , then
|u∞ − v∞| < ε.

Proof. A direct calculation shows that

|u∞ − v∞| = 1

V

∣∣∣∣
∫

Ω+

u0
+(x)− v∞ dx+

∫

Ω−

u0
−(x)− v∞ dx+

∫

Γ

u0
Γ(y)− v∞ dy

∣∣∣∣

≤ 1

V
‖u0 − v∞‖L1,1 .
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�

5. Extensions and concluding remarks

5.1. Entropic gradient structure for heat transfer (Onsager model). Originally, the
system in (1.1)–(1.3) was motivated by non-equibirum thermodynamical modeling of heat
transfer and diffusion processes across interfaces, [29], [25], and based on the results in [20]
and [27]. For example, in [27], it is shown that for flat interfaces Γ, the heat transfer Onsager
or gradient system associated to

θ̇ = K(θ)DS(θ) (5.1)

is represented by the set of equations




θ̇±+ 1
c±

div(K±(θ±)∇ 1
θ±

) = 0, in (0, T )× Ω±,

(K±(θ±)
c±
∇ 1

θ±
)ν±+M±(θ)( 1

θ±
− 1

θΓ
)+MΓ(θ)( 1

θ±
− 1

θm+
) = 0, on (0, T )× Γ,

(K±(θ±)∇ 1
θ±

)ν± = 0, on (0, T )× {∂Ω±\Γ},
(5.2)

on the bulk parts, and
{
θ̇Γ+ 1

cΓ
div(KΓ(θ)∇ 1

θΓ
)−M+(θ)( 1

θ+
− 1

θΓ
)−M−(θ)( 1

θ−
− 1

θΓ
) = 0, in (0, T )× Γ,

(KΓ(θ)∇ 1
θΓ

)νΓ = 0, on (0, T )× ∂Γ,
(5.3)

on the flat interface Γ, where c±, cΓ > 0 are the specific heats of bulk and interface materials,
respectively, and the coefficients K,M specify thermal conductivity within materials and
across Γ in an entropic modelling. In (5.1), S is the total entropy functional

S(θ) =

∫

Ω+

c+ log θ+ dx+

∫

Ω−

c− log θ− dx+

∫

Γ

cΓ log θΓ dy,

and K is the Onsager operator corresponding to the the dual dissipation potential

2Ψ∗(θ, φ) = 2Ψ∗+(θ+, φ+) + 2Ψ∗−(θ−, φ−) + 2Ψ∗Γ(trΓ θ, trΓ φ)

=

∫

Ω+

∇φ+

c+

·K+(θ+)∇φ+

c+

dx+

∫

Ω−

∇φ−
c−
·K−(θ−)∇φ−

c−
dx

+

∫

Γ

∇Γ
φΓ

cΓ

·KΓ(trΓ θ)∇
φΓ

cΓ

dy +

∫

Γ

MΓ(trΓ θ)(
trΓ φ+

trΓ c+

− trΓ φ−
trΓ c−

)2 dy

+

∫

Γ

M+(trΓ θ)(
trΓ φ+

trΓ c+

− trΓ φΓ

trΓ cΓ

)2 +M−(trΓ θ)(
trΓ φ−
trΓ c−

− trΓ φΓ

trΓ cΓ

)2 dy. (5.4)

Formally, (5.2), (5.3) are equivalent to (1.1)–(1.3) by differentiating ∇1
θ

to − 1
θ2∇θ and

writing 1
θΓθ+

(θ+ − θΓ) instead of ( 1
θΓ
− 1

θ+
), for every term of this kind. The coefficients

K and k and M and m are then related via m±(trΓ θ) = M±(trΓ θ)
θΓtrΓ θ±

, mΓ(trΓ θ) = MΓ(trΓ θ)
trΓ θ+trΓ θ−

,

k±(θ±) = K±(θ±)

θ2
±

and kΓ(trΓ θ) = KΓ(trΓ θ)

θ2
Γ

.

It is straightforward to check that K,M satisfy Assumption 2.2 if and only if k,m satisfy
Assumption 2.2. So if Assumption 2.2 on K,M is respected in an entropic modeling, well-
posedness and exponential stability follow directly. In particular, the positivity of two
components of M guarantees entropy production of the bulk-interface interaction.

Based on the previous analysis, we can retrieve information on the Onsager system given
by S and Ψ∗. Starting from positive intial values, l > 0, the regularity in Theorem 3.1
and the maximum principle a posteriori justify the equivalence of (5.2), (5.3) and (1.1)–
(1.3) and the solution provides the gradient flow of S with respect to the dual dissipation
metric Ψ∗. The entropy S(θ(t)) is well-defined along orbits and −S provides a strict Lya-
punov functional by the energy balance − d

dt
S(θ(t)) + 2Ψ∗

(
θ(t), c

θ(t)

)
= 0 and the fact that

2Ψ∗
(
θ(t), c

θ(t)

)
= 0 implies aθ(t)(θ(t), θ(t)) = 0 along positive orbits of θ. By Theorem 4.1,
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exponential stability holds in the sense that ‖cθ(t)− cθ∞‖L2,2 ≤ e−δt‖cθ0− cθ∞‖L2,2 for some
δ > 0.

5.2. Further remarks. A direct corollary of Theorems 3.1 and 4.1 is the well-posedness of
the porous medium and fast diffusion equation u̇ = ∆uρ on a bounded Lipschitz domain with
Neumann boundary conditions and ρ > 0. Although regularity and blow-up behaviour of the
porous medium and fast diffusion equations in the whole space and with Dirichlet boundary
conditions is complex and well-studied, [38, 30], the following simple result for Neumann
boundary conditions (i.e. in the case of mass conservation), based on the maximum principle,
doesn’t seem to be explicit in the literature, compare [5]. We consider equation (1.1) with
Γ = ∅ and call it (PME).

Corollary 5.1 (Porous medium equation and fast diffusion with Neumann boundary condi-
tions). Consider (PME) with f+, h+ = 0 and k+(u+) = κ0u

ρ−1
+ for some κ0 > 0 and ρ ∈ R.

Then for every q > d, r > 2q
q−d , and positive u0 ∈ (W 1,q(Ω+),W−1,q(Ω+))1− 1

r
,r, there is a

unique positive solution

u ∈ W 1,r(JT ;W−1,q(Ω+)) ∩ Lr(JT ;W 1,q(Ω+))

of (PME) with
∫

Ω+
u(t) dx =

∫
Ω+
u0 dx and

‖u(t)− ū‖L2(Ω+) ≤ e−δt‖u0 − ū‖L2(Ω+)

for some δ > 0 and for all t ≥ 0. Global existence and uniqueness of u extends to f+, h+ 6= 0
if they satisfy Assumption 2.5 and preserve the maximum principle for the equation.

The remaining remarks concern extensions of Theorem 3.1, mostly based on perturbation
theory for maximal parabolic regularity.

Remark 5.2. If the Lipschitz dependence of k, m and F on u in Assumptions 2.2(3) and
2.5 is improved to Cn, n ∈ N ∪ {∞, ω}, then the solution u in Theorem 3.1 gains time
regularity by [31, Theorem 5.1], i.e. it follows that

u ∈ Cn(JT ;Xr,q,qΓ) ∩ Cn+1−1/r(JT ; W−1,q,qΓ) ∩ Cn−1/r(JT ; W1,q,qΓ)

and that u ∈ C∞(JT ; W1,q,qΓ) if n =∞ and u is real analytic on JT if n = ω.

Remark 5.3. Clearly, the analysis above includes the simpler case of bulk-interface inter-
action with Ω− = ∅, without the variable u− and with m− = 0.

Remark 5.4. The coefficient functions k,m and external forces and inhomogeneous bound-
ary conditions f, g, h may additionally depend on time. For example, Theorems 3.1 and
4.1 continue to hold if Assumption 2.2 holds uniformly in t ∈ (0,∞) for k,m and t 7→
Au(t) ∈ B(W1,q,qΓ ,W−1,q,qΓ) is continuous for all u ∈ Xr

q,qΓ
and if Assumption 2.5 holds and

t 7→ F(t, u) ∈W−1,q,qΓ is measurable, cf. [31, Section 3].

Remark 5.5. The condition κ± ∈ C(Ω±)3×3 in Assumption 2.2(4) may be relaxed consid-
erably, e.g. to hold only piecewise on layers. The only point is to guarantee the isomorphism
property in Lemma 3.2 in the case d = 3. For a detailed discussion of necessary and suf-
ficient conditions for this property, we refer to [11]. Note that for measurable, bounded
and elliptic coefficients in general there are counterexamples, if non-smoothness of κ± and
non-smoothness of ∂Ω± meet, [15].

Remark 5.6. The results in Theorem 3.1 extend to perturbations of Aq by lower-order terms
like transport terms b · ∇u±, b ∈ Rd. In particular, with suitable regularity assumptions, the
coefficients c± : Ω± → R+\{0} and cΓ : Γ → R+\{0} in Subsection 5.1 can be chosen to
depend on the spatial variables.
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[34] I. J. Šnĕıberg. Spectral properties of linear operators in interpolation families of Banach

spaces. Mat. Issled., 9(2(32)):214–229, 254–255, 1974.
[35] J. Sprekels and H. Wu. A note on parabolic equation with nonlinear dynamical boundary

condition. Nonlinear Anal., 72(6):3028–3048, 2010.
[36] Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens. Thermophysical Properties

of Matter - The TPRC Data Series. Volume 1. Thermal Conductivity – Metallic Elements
and Alloys. THERMOPHYSICAL AND ELECTRONIC PROPERTIES INFORMATION
ANALYSIS CENTER, LAFAYETTE IN, 1970.

[37] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators. Johann Ambrosius
Barth, Heidelberg, 1995.

[38] J. L. Vázquez. The porous medium equation. Oxford Mathematical Monographs. The Claren-
don Press, Oxford University Press, Oxford, 2007. Mathematical theory.

Weierstrass Institute for applied analysis and stochastics, Mohrenstraße 39, 10117
Berlin, Germany

E-mail address: karoline.disser@wias-berlin.de


