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Abstract

This paper is concerned with the development and implementation of an adaptive solu-

tion algorithm for the optimal control of a time-discrete Cahn–Hilliard–Navier–Stokes sys-

tem with variable densities. The free energy density associated to the Cahn-Hilliard sys-

tem incorporates the double-obstacle potential which yields an optimal control problem for

a family of coupled systems in each time instant of a variational inequality of fourth or-

der and the Navier–Stokes equation. A dual-weighted residual approach for goal-oriented

adaptive finite elements is presented which is based on the concept of C-stationarity. The

overall error representation depends on primal residuals weighted by approximate dual

quantities and vice versa as well as various complementarity mismatch errors. Details on

the numerical realization of the adaptive concept and a report on numerical tests are given.

1 Introduction

In this paper we develop an efficient numerical solver for the optimal control of two-phase

flows which includes an intelligent mesh refinement technique. More precisely, we con-

sider a diffuse interface model of phase separation which involves a nonsmooth version

of the well-known Cahn-Hilliard (CH) system, which is due to Cahn and Hilliard’s seminal

work [14]. Phase field models are appreciated for their ability to overcome both, analyti-

cal difficulties of topological changes, such as, e.g., droplet break-ups or the coalescence

of interfaces, as well as numerical challenges in capturing the interface dynamics. In the

presence of hydrodynamic effects, the CH system has to be enhanced by an equation

which captures the behavior of the fluid. In [34], Hohenberg and Halperin introduced a ba-

sic model for immiscible, viscous two-phase flows. Their so-called ’model H’ combines the

Cahn-Hilliard system with the Navier-Stokes equation. It is, however, restricted to the case

where the two fluids possess nearly identical densities, i.e., matched densities. Recently,

Abels, Garcke and Grün [2] obtained the following diffuse interface model for two-phase

flows with non-matched densities:

∂tϕ+ v∇ϕ− div(m(ϕ)∇µ) = 0, (1.1a)

−σǫ∆ϕ+
σ

ǫ
(∂Ψ0(ϕ) − κ̃ϕ)− µ = 0, (1.1b)

∂t(ρ(ϕ)v) + div(v ⊗ ρ(ϕ)v) − div(2η(ϕ)Dsy(v)) +∇p

+div(v ⊗ J)− µ∇ϕ = 0, (1.1c)

divv = 0, (1.1d)

v|∂Ω = 0, (1.1e)

∂nϕ|∂Ω = ∂nµ|∂Ω = 0, (1.1f)

(v, ϕ)|t=0 = (va, ϕa). (1.1g)
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The system is considered in the space-time cylinder Ω × (0,∞), where ∂Ω denotes

the boundary of Ω. It is thermodynamically consistent in the sense that it allows for the

derivation of local entropy or free energy inequalities.

In the above model, v represents the velocity of the fluid and p describes the fluid

pressure. The symmetric gradient of v is defined by Dsy(v) := 1
2(∇v + ∇v⊤). The

density ρ of the mixture of the fluids depends on the order parameter ϕ, which reflects the

mass concentration of the fluid phases. More precisely,

ρ(ϕ) =
ρ1 + ρ2

2
+
ρ2 − ρ1

2
ϕ, (1.2)

whereϕ ranges in the interval [−1, 1], and 0 < ρ1 ≤ ρ2 are the given densities of the two

fluids under consideration. The relative flux J := −ρ2−ρ1
2 m(ϕ)∇µ, which corresponds

to the diffusion of the two phases, involves the gradient of the chemical potential µ. The

viscosity and mobility coefficients of the system, η and m, depend on the actual concen-

tration of the two fluids at each point in time and space. The initial states are given by va
and ϕa, and σ, ǫ, κ̃ > 0 are positive constants. Furthermore, Ψ0 represents the convex

part of the homogeneous free energy density Ψ contained in the Ginzburg-Landau energy

model which is associated with the Cahn-Hilliard part of (1.1). Usually, the homogeneous

free energy density serves the purpose of restricting the order parameter ϕ to the physi-

cally meaningful range [−1, 1] and to capture the spinodal decomposition of the phases.

For this reason, it is typically non-convex and maintains two local minima near or at −1
and 1.

Different choices have been investigated in the literature, depending on the under-

lying applications. In [42], Oono and Puri found that in the case of deep quenches of,

e.g., binary alloys, the double-obstacle potential proves to be the best choice for mod-

eling the separation process. A similar observation appears to be true in the case of

polymeric membrane formation under rapid wall hardening. The double-obstacle poten-

tial Ψ(ϕ) = I[−1,1](ϕ) −
κ̃
2ϕ

2, with I[−1,1] denoting the indicator function of the interval

[−1, 1] in R, combines the advantages of the existence of pure phases and the exclu-

siveness of the interval [−1, 1] at the cost of losing differentiability (when compared for

instance to the double-well potential). The presence of a non-smooth homogeneous free

energy density gives rise to a variational inequality in (1.1b) which complicates the analyt-

ical and numerical treatment of the overall model.

The Cahn-Hilliard-Navier-Stokes system is used to model a variety of situations. These

range from the aforementioned solidification process of liquid metal alloys, cf. [17], the

simulation of bubble dynamics, as in Taylor flows [4], or the pinch-offs of liquid-liquid jets

[37], to the formation of polymeric membranes [50] and protein crystallization, see e.g.

[38] and references within. Furthermore, the model can be easily adapted to include the

effects of surfactants such as colloid particles at fluid-fluid interfaces in gels and emulsions

used in food, pharmaceutical, cosmetic, or petroleum industries [5, 44]. In many of these

situations an optimal control context is desirable in order to influence the system in such a

way that a prescribed system behavior is guaranteed.

Therefore we investigate the optimal control of the coupled Cahn-Hilliard-Navier-Stokes

(CHNS) system. We point out that, due to the presence of the variational inequality con-

straint, the mapping between the control and the state is in general not differentiable. As

a consequence, classical constraint qualifications for optimal control problems (see, e.g.,

[51]) fail, preventing the application of the Karush-Kuhn-Tucker (KKT) theory in Banach

space for a primal-dual first-order characterization of an optimal solution. In fact, it is
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known [28, 31] that the resulting problem falls into the realm of mathematical programs

with equilibrium constraints (MPECs) in function space. A problem class, which even in

finite dimensions, is well-known for its constraint degeneracy [40, 43]. As a result, station-

arity conditions are no longer unique (in contrast to KKT conditions); compare [28, 29] in

function space and, e.g., [46] in finite dimensions. Rather they depend on the underlying

problem structure and/or on the chosen analytical approach.

Our work is based on the analytical results obtained in [27], where the problem has

been discretized in time and a Yosida regularization technique yielding a sequence of

approximating problems with a subsequent passage to the limit with the Yosida parameter

has been utilized in order to derive stationarity conditions of C-stationarity type. In this

paper, we develop and implement a solution algorithm based on the constructive nature

of the former approach which solves each approximating problem by a Newton method

applied to a suitable finite element discretization in space.

As the solution of a sequence of large-scale nonlinear optimization problems might

cause an immense numerical expense, it is desirable to reduce the computational effort

by choosing a beneficial adaptation process for the underlying space mesh. The gen-

eral idea of adaptive finite element methods is to refine the discretization locally only in

regions with large errors while keeping elements coarse wherever possible. This is espe-

cially useful in the context of variational inequalities where the analytical solution usually

has a smooth structure on large parts of the domain, whereas it is often nonsmooth only

in the small region where the active and the inactive sets meet. In the presence of an

optimal control problem this approach can be modified. In our optimal control context we

modify the method in order to guarantee an accurate evaluation of the objective func-

tional. While this method has been successfully applied in PDE constrained optimization

[8, 10, 22, 24, 25, 45, 49], to the best of our knowledge the literature concerning MPECs

is rather scarce. However, recent work on adaptivity for elliptic MPECs indicates a good

numerical behavior of these methods also for MPECs, cf. [13, 26].

Let us finally comment on further contributions to control and optimal control of Cahn–

Hilliard Navier–Stokes systems. Model predictive control concepts for variable density

Cahn–Hilliard Navier–Stokes systems are developed in [32, 33]. Optimal control of a re-

lated system is investigated in [9]. Phase field based shape and topology optimization

concepts for flows are proposed and numerically implemented in [18]. This approach is

extended to the minimization of surface functionals in [19].

The remainder of the paper is organized as follows. We start by formally introducing

the optimal control problem under consideration and some additional concepts in section

2. This is followed by an explanation of the chosen discretization in space and the involved

finite elements, respectively, in section 3. Section 4 provides a rigorous derivation of the

goal-oriented error estimator. Finally, we present numerical results along with the details

of the numerical implementation of the algorithm in section 5.

We end this introduction by defining some notation. Let Ω ⊂ R
N , N = 2, 3, be

a bounded domain with smooth boundary ∂Ω ∈ C2. The smooth boundary ensures a

higher regularity of the state in our subsequent analysis, cf. [27]. In our numerical tests,

however, we observe that the subsequently developed algorithm achieves excellent results

even for nonsmooth domains such as, e.g., the unit square.

We define the Sobolev spaces H1
0,σ(Ω;R

N ) = {f ∈ H1
0 (Ω;R

N ) : divf = 0, a.e.

on Ω} and W
k,p

(Ω) =
{

f ∈W k,p(Ω) :
∫

Ω fdx = 0
}

for k ∈ N and 1 ≤ p ≤ ∞,

where ’a.e.’ stands for ’almost everywhere’. Here, W k,p(Ω) and W k,p
0 (Ω) denote the
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usual Sobolev spaces, see [3]. For p = 2, we also write Hk(Ω) and Hk
0 (Ω), respec-

tively. By (·, ·) we denote the L2-inner product, ‖·‖ is the induced norm, and 〈·, ·〉 :=

〈·, ·〉
H

−1
,H

1 represents the duality pairing between H
1
(Ω) and H

−1
(Ω). For a Banach

space W , we denote by W ∗ its topological dual. In our notation for norms, we do not

distinguish between scalar- or vector-valued functions. The inner product of vectors is de-

noted by ’·’, the vector product is represented by ’⊗’ and the tensor product for matrices is

written as ’:’.

2 The semi-discrete CHNS-system and the optimal

control problem

In this paper, we study an optimal control problem for a semi-discrete variant of the Cahn-

Hilliard-Navier-Stokes system. Concerning the mobility and viscosity coefficients, as well

as the initial data for the velocity and the phase field parameter we invoke the following

assumption.

Assumption 2.1. 1 The coefficient functions in (1.1a), (1.1c) satisfy m, η ∈ C2(R)
and their derivatives up to second order are bounded, i.e. there exist constants 0 <
b1 ≤ b2 such that for every x ∈ R, it holds that b1 ≤ min{m(x), η(x)} and

max{m(x), η(x), |m′(x)|, |η′(x)|, |m′′(x)|, |η′′(x)|} ≤ b2.

2 The initial state satisfies (va, ϕa) ∈ H2
0,σ(Ω;R

N )×
(

H
2
(Ω) ∩K

)

where

K :=
{

v ∈ H
1
(Ω) : ψ1 ≤ v ≤ ψ2 a.e. in Ω

}

, ϕa :=
1

|Ω|

∫

Ω
ϕadx,

with −1− ϕa =: ψ1 < 0 < ψ2 := 1− ϕa.

3 The density ρ depends on the order parameter ϕ via

ρ(ϕ) = max

{

ρ1 + ρ2
2

+
ρ2 − ρ1

2
(ϕ+ ϕa), 0

}

≥ 0.

In the subsequent definition, τ > 0 denotes the constant time step-size and M ∈ N

the total number of equidistantly spaced time instances in the semi-discrete setting. For

the sake of a simple notation, we further set σ := 1
ǫ and κ := κ̃

ǫ2 . Since the first equation

of the Cahn-Hilliard system (1.1a) guarantees that the mean value of the order parameter

remains constant, we consider a shifted Cahn-Hilliard-Navier-Stokes system where the

mean value is set to zero. For each time step i = 0, ..,M − 2 we consider an arbitrary

control ui ∈ U in a Banach space U which acts on the right-hand side of the Navier-

Stokes equation via a bounded linear operator B : U → L2(Ω;RN ). Note that U can

be chosen as L2(Ω;RN ) andB as the identity operator. In our numerical tests, however,

we choose a finite dimensional control, since the number of control parameters is usually

limited in praxis, see Section 6.

Defintion 2.2 (Semi-discrete CHNS-system). Let Ψ0 : H
1
(Ω) → R be the convex part

of the double-obstacle potential with subdifferential ∂Ψ0, i.e. the indicator function of K.

Fixing (ϕ−1, v0) = (ϕa, va) we say that a triple

(ϕ, µ, v) = ((ϕi)M−1
i=0 , (µi)M−1

i=0 , (vi)M−1
i=1 )
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in H
1
(Ω)M × H

1
(Ω)M × H1

0,σ(Ω;R
N )M−1 solves the semi-discrete CHNS system

with respect to a given control u ∈ UM−1, i.e. (ϕ, µ, v) ∈ SΨ(u), if there exists ai+1 ∈

∂Ψ0(ϕ
i+1) such that for all φ ∈ H

1
(Ω) and ψ ∈ H1

0,σ(Ω;R
N ) it holds that

〈

ϕi+1 − ϕi

τ
, φ

〉

+
〈

vi+1∇ϕi, φ
〉

+
〈

m(ϕi)∇µi+1,∇φ
〉

= 0, (2.1)

〈

∇ϕi+1,∇φ
〉

+
〈

ai+1, φ
〉

−
〈

µi+1, φ
〉

−
〈

κϕi, φ
〉

= 0, (2.2)
〈

ρ(ϕi)vi+1 − ρ(ϕi+1)vi

τ
, ψ

〉

H−1,H1
0

−
〈

vi+1 ⊗ ρ(ϕi+1)vi,∇ψ
〉

H−1,H1
0

+

〈

vi+1 ⊗
ρ2 − ρ1

2
m(ϕi+1)∇µi,∇ψ

〉

H−1,H1
0

+ (2η(ϕi)Dsy(v
i+1),Dsy(ψ))

−
〈

µi+1∇ϕi, ψ
〉

H−1,H1
0

=
〈

Bui+1, ψ
〉

H−1,H1
0

. (2.3)

The first two equations are supposed to hold for every 0 ≤ i + 1 ≤ M − 1 and the last

equation holds for every 1 ≤ i+ 1 ≤M − 1.

Remark 2.3. For a more detailed explanation of the above assumptions, we refer to [27],

where the problem was originally formulated.

Introducing a Fréchet differentiable objective function J : X → R with

X := H
1
(Ω)M ×H

1
(Ω)M ×H1

0,σ(Ω;R
N )M−1 × UM−1,

the optimal control problem reads

min J(ϕ, µ, v, u) over (ϕ, µ, v, u) ∈ X

subject to (s.t.) (ϕ, µ, v) ∈ SΨ(u).
(PΨ)

Although our subsequent analysis can be applied to this general setting, for the purpose of

numerical realization we will later consider the case where J equals the following tracking-

type function

J(ϕ, µ, v, u) :=
1

2
‖ϕM − ϕd‖

2 +
ν

2
‖u‖2. (2.4)

Here, ϕd ∈ H1(Ω)M is a given desired state of the system.

In [27], it has been shown that the semi-discrete Cahn-Hilliard-Navier-Stokes system

possesses a solution (ϕ, µ, v) ∈ SΨ(u) for every Bu ∈ L2(Ω;RN )M−1. Furthermore,

it was verified that the optimal control problem (PΨ) admits a solution. It can be character-

ized by the following stationarity conditions of E -almost C-stationary type. Here, the notion

of ’E -almost’ is due to an application of Egorov’s theorem; see [28].

Defintion 2.4. A point (ϕ, µ, v, a, u, p, r, q, π, λ+ , λ−) ∈ Y with

Y :=H
1
(Ω)M ×H

1
(Ω)M ×H1

0,σ(Ω;R
N )M−1 × L

2
(Ω)M × UM−1 ×H

1
(Ω)M

×H
1
(Ω)M ×H1

0,σ(Ω;R
N )M−1 ×H

1
(Ω)M ×

(

H
1
(Ω)∗

)M
×
(

H
1
(Ω)∗

)M

is called E -almost C-stationary for (PΨ) if it satisfies the following system:
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Feasibility:

〈

ϕi+1 − ϕi

τ
, φ

〉

+
〈

vi+1∇ϕi, φ
〉

+
〈

m(ϕi)∇µi+1,∇φ
〉

= 0, (2.5)

〈

∇ϕi+1,∇φ
〉

+
〈

ai+1, φ
〉

−
〈

µi+1, φ
〉

−
〈

κϕi, φ
〉

= 0, (2.6)
〈

ρ(ϕi)vi+1 − ρ(ϕi+1)vi

τ
, ψ

〉

H−1,H1
0

−
〈

vi+1 ⊗ ρ(ϕi+1)vi,∇ψ
〉

H−1,H1
0

+

〈

vi+1 ⊗
ρ2 − ρ1

2
m(ϕi+1)∇µi,∇ψ

〉

H−1,H1
0

+ (2η(ϕi)Dsy(v
i+1),Dsy(ψ))

−
〈

µi+1∇ϕi, ψ
〉

H−1,H1
0

=
〈

Bui+1, ψ
〉

H−1,H1
0

, (2.7)

ψ1 ≤ ϕi+1 ≤ ψ2 a.e. on Ω, (2.8)

(ai+1)+ := max(ai+1, 0) ≥ 0, (ai+1)− := max(−ai+1, 0) ≥ 0 a.e. on Ω, (2.9)
〈

(ai+1)+, ϕi+1 − ψ2

〉

= 0,
〈

(ai+1)−, ϕi+1 − ψ1

〉

= 0. (2.10)

Adjoint system:

−
1

τ
(pi+1 − pi) +m′(ϕi)∇µi+1 · ∇pi+1 − div(pi+1vi+1)−∆ri

+ λi+1 − κri+2 −
1

τ
ρ(ϕi)

′
vi+1 · (qi+2 − qi+1)

− (ρ(ϕi)
′
vi+1 −

ρ2 − ρ1
2

m′(ϕi)∇µi+1)(Dqi+2)⊤vi+2

+ 2η(ϕi)
′
Dsy(v

i+1) : Dqi+1 + div(µi+1qi+1) =
∂J

∂ϕi
(z),

(2.11)

− ri − div(m(ϕi+1)∇pi)− div(
ρ2 − ρ1

2
m(ϕi+1)(Dqi+1)⊤vi+1)

− qi · ∇ϕi+1 =
∂J

∂µi
(z),

(2.12)

−
1

τ
ρ(ϕi+1)(qi+1 − qi)− ρ(ϕi+1)(Dqi+1)⊤vi+1

− (Dqi)(ρ(ϕi−2)vi+1 −
ρ2 − ρ1

2
m(ϕi−2)∇µi+1)

− div(2η(ϕi+1)Dsy(q
i)) + pi∇ϕi+1 =

∂J

∂vi
(z),

(2.13)

B⋆qi+1 =
∂J

∂ui
(z),

(2.14)

ri = πi. (2.15)

Complementarity conditions:

〈

(λi)+, ϕi − ψ2

〉

= 0,
〈

(λi)−, ϕi − ψ1

〉

= 0, (2.16)
〈

ai, πi
〉

= 0. (2.17)
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Moreover, for every c > 0 there exist a measurable subset M i
c of M i := {x ∈ Ω :

ψ1 < ϕi(x) < ψ2} with |M i \M i
c| < c and

〈λi, v〉 = 0 ∀v ∈ H
1
(Ω), v|Ω\M i

c
= 0.

Remark 2.5. Note that for the previous definition (λi)+ and (λi)− have to be defined

slightly differently than in [27]. More precisely, we define (λi)+ ∈ H
1
(Ω)∗ as the weak

limit of
(

Ψ0(m)
′′
)+

(ϕi+1
(m))

∗ri(m) in H
1
(Ω)∗ and (λi)− ∈ H

1
(Ω)∗ as the weak limit of

(

Ψ0(m)
′′
)−

(ϕi+1
(m))

∗ri(m) in H
1
(Ω)∗.

Here, for a function f we define (f)+ and (f)− as follows

(f)+(x) :=

{

0 if x ≤ 0
f(x) if x > 0

, (f)−(x) :=

{

f(x) if x < 0
0 if x ≥ 0

.

By this definition it holds that λi = (λi)+ + (λi)−. Furthermore, we introduced the

artificial variable π which allows us to fix a quantity in the complementarity mismatch in

our subsequent error analysis, cf. Lemma 4.3 and Theorem 4.4.

3 Discretization of the problem

In order to treat the problem (PΨ) numerically, an additional discretization step is nec-

essary. Here we follow the so called first optimize, then discretize approach in that we

provide a discretization of the optimality conditions (2.5)–(2.17). For this let (T i)M−1
i=0 =

(
⋃nt

k=1 T
i
k)

M−1
i=0 denote a sequence of regular triangulations of Ω, cf. [12, Def. 4.4.13],

such that T i = Ω, for i = 0, . . . ,M −1, and such that the L2-projection is stable inH1,

cf. [11]. On T i we consider finite dimensional finite element subspaces

V i
1 : = {v ∈ C(T i) | v|T i

k

∈ P 1(T i
k), k = 1, . . . , nt}

= span{φi1, . . . , φ
i
N i

1

} ⊂ H1(Ω),

V i
2 : = {v ∈ C(T i)N | v|∂Ω = 0, v|T i

k

∈ P 2(T i
k)

N , k = 1, . . . , nt}

= span{ψi
1, . . . , ψ

i
N i

1

} ⊂ H1
0 (Ω)

N .

We denote the fully discrete counterpart to a solution (ϕi, µi, vi) ∈ H1(Ω)×H1(Ω)×
H1

0 (Ω,R
N ) of (2.1)–(2.3) by (ϕi

h, µ
i
h, v

i
h) ∈ V

i
1×V

i
1×V

i
2 . We note that we do not incor-

porate the solenoidality condition on the velocity into the discrete ansatz space, but intro-

duce an additional pressure variable ξih ∈ V i
1 and an adjoint pressure variable χi

h ∈ V i
1 .

For such a setting, the pair (V i
2 , V

i
1 ) is LBB-stable and thus admissible for this numerical

realization of (2.3), cf., e.g., [21, 48].

The discrete variant of (2.1)–(2.3) we define as follows:

For i = 0, . . . ,M − 1 find, (ϕi+1
h , µi+1

h , ai+1
h , vi+1

h , ξi+1
h ) ∈ (V i+1

1 × V i+1
1 ×

7



V i+1
1 × V i+1

2 × V i+1
1 ) such that

〈

ϕi+1
h −Πi+1ϕi

h

τ
, φ

〉

+
〈

vi+1
h ∇ϕi

h, φ
〉

+
〈

m(ϕi
h)∇µ

i+1
h ,∇φ

〉

= 0 ∀φ ∈ V i+1
1 ,

(3.1)
〈

∇ϕi+1
h ,∇φ

〉

+
(

ai+1
h , φ

)

−
〈

µi+1
h , φ

〉

−
〈

κΠi+1ϕi
h, φ
〉

= 0 ∀φ ∈ V i+1
1 ,

(3.2)

1

τ

〈

ρ(ϕi
h)v

i+1
h − ρ(ϕi−1

h )vih, ψ
〉

−
〈

(tih∇)ψ, vi+1
h

〉

+
〈

2η(ϕi
h)Dsy(v

i+1
h ),Dsy(ψ)

〉

−
〈

µi+1
h ∇ϕi

h, ψ
〉

H−1,H1
0

−
〈

divψ, ξih
〉

= (Bui+1, ψ) ∀ψ ∈ V i+1
2 , (3.3)

− (divvi+1
h , φ) = 0, (3.4)

with tih := ρ(ϕi−1
h )vih − ρ2−ρ1

2 m(ϕi−1
h )∇µih, together with the complementarity condi-

tions for the Cahn–Hilliard problem:

ψ1 ≤ ϕi+1
h ≤ ψ2 a.e. on Ω, (3.5)

(ai+1
h )+ := max(ai+1

h , 0) ≥ 0, (ai+1
h )− := max(−ai+1

h , 0) ≥ 0, (3.6)

((ai+1
h )+, ϕi+1

h − ψ2) = 0, ((ai+1
h )−, ϕi+1

h − ψ1) = 0. (3.7)

Here and in the following Πi+1 : L2(Ω) → V i+1
1 denotes the orthogonal L2 projec-

tion which is required for stability reasons, compare [20, 27].

Further, max(ai+1
h , 0) and max(−ai+1

h , 0) are understood pointwise in the nodes of

T i+1, and z = (ϕ, µ, v, u).
The fully discrete counterpart to (2.5)–(2.17) is then defined as follows.

Defintion 3.1. Let ϕ−1
h = ΠH1(ϕa), v

0
h = ΠL(va) be given, where ΠH1 denotes the

H1 projection onto T 0, while ΠL denotes the Leray projection ([15]) onto T 0 .

We say that

(ϕi
h, µ

i
h) ∈ (V i

1 )
M−1
i=0 × (V i

1 )
M−1
i=0 , (vih, ξ

i
h) ∈ (V i

2 )
M−1
i=1 × (V i

1 )
M−1
i=1 ,

(aih) ∈
(

V i
1

)M−1

i=0
, (ui) ∈ (U i)M−1

i=1 ,

(pih, r
i
h) ∈ (V i

1 )
M−1
i=0 × (V i

1 )
M−1
i=0 , (qih, χ

i
h) ∈ (V i

2 )
M−1
i=1 × (V i

1 )
M−1
i=1 ,

(πih, λ
i
h) ∈ (V i

1 )
M−1
i=0 ×

(

V i
1

)M−1

i=0

is discrete C-stationary for (PΨ), if it satisfies (3.1)-(3.7) together with the following equa-

tions:
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Adjoint system:

−
1

τ
(
〈

(pi+1
h ,Πi+1φ

〉

−
〈

pih, φ
〉

) + (m′(ϕi
h)∇µ

i+1
h · ∇pi+1

h , φ) (3.8)

+
〈

pi+1
h vi+1

h ,∇φ
〉

+
〈

∇rih,∇φ
〉

+ (λi−1
h , φ)−

〈

κri+1
h ,Πi+1φ

〉

(3.9)

−

〈

1

τ
ρ′(ϕi

h)v
i+1
h (qi+2

h − qi+1
h ), φ

〉

(3.10)

−

〈(

ρ(ϕi
h)

′vi+1
h −

ρ2 − ρ1
2

m′(ϕi
h)∇µ

i+1
h

)

(Dqi+2
h )⊤vi+2

h , φ

〉

(3.11)

+
〈

2η(ϕi
h)

′Dsy(v
i+1
h ) : Dqi+1

h , φ
〉

−
〈

µi+1
h qi+1

h ,∇φ
〉

=

〈

∂J

∂ϕi
h

(z), φ

〉

(3.12)

−
〈

rih, φ
〉

+
〈

m(ϕi−1
h )∇pih,∇φ

〉

(3.13)

+

〈

ρ2 − ρ1
2

m(ϕi−1
h )(Dqi+1

h )⊤vi+1
h ,∇φ

〉

− (qih∇ϕ
i−1
h , φ) =

〈

δJ

δµih
(z), φ

〉

(3.14)

−
1

τ

〈

ρ(ϕi−1
h )(qi+1

h − qih), ψ
〉

−
〈

ρ(ϕi−1
h )(Dqi+1

h )⊤vi+1
h , ψ

〉

(3.15)

−

〈

(Dqih)(ρ(ϕ
i−2
h )vi−1

h −
ρ2 − ρ1

2
m(ϕi−2

h )∇µi−1
h ), ψ

〉

(3.16)

+
〈

2η(ϕi−1
h )Dsy(q

i
h),∇ψ

〉

+
〈

pih∇ϕ
i−1
h , ψ

〉

−
〈

χi
h, div ψ

〉

=

〈

∂J

∂vih
(z), ψ

〉

(3.17)

−
〈

div qih, ψ
〉

= 0, (3.18)

〈

B⋆qi−1
h , ũ

〉

U⋆,U
=

〈

∂J

∂ui
(z), ũ

〉

,

(3.19)

rih = πih. (3.20)

Complementarity conditions:

((λih)
+, ϕi

h − ψ2) = 0, ((λih)
−, ϕi

h − ψ1) = 0, (3.21)

(aih, π
i
h) = 0, (3.22)

We note that the prolongation operator Πi+1 is applied to the test function in the adjoint

equation.

We further define (λih)
+ and (λih)

− as in Remark 2.5 and nodewise in the nodes xj
of T i as

(λih)
+(xj) :=

{

λih if ϕi
h(xj) > 0,

0 else,
(λih)

−(xj) :=

{

λih if ϕi
h(xj) < 0,

0 else.

Remark 3.2. We point out that ’E -almost’ C-stationarity is an infinite dimensional concept

which corresponds to the notion of C-stationarity in finite dimensions.
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4 Goal-oriented error estimator

This section is devoted to the derivation of an error estimator which is used to design

an appropriate refinement technique for the space mesh. The derivation is based on the

dual-weighted residual method which was already successfully transferred to the optimal

control of an elliptic variational inequality in [26]. For this purpose, we start by defining the

MPCC-Lagrangian of (PΨ) as follows:

Defintion 4.1. The MPCC-Lagrangian L : Y → R corresponding to (PΨ) is given by

L(ϕ, µ, v, a, u, p, r, q, π, λ+ , λ−) := J(ϕ, µ, v, u)

+
M−2
∑

i=−1

[〈

ϕi+1 − ϕi

τ
, pi+1

〉

+
〈

vi+1∇ϕi, pi+1
〉

+
〈

m(ϕi)∇µi+1,∇pi+1
〉

]

+

M−2
∑

i=−1

[〈

−∆ϕi+1, ri+1
〉

+
〈

ai+1, ri+1
〉

−
〈

µi+1, ri+1
〉

−
〈

κϕi, ri+1
〉]

+

M−2
∑

i=0

[〈

ρ(ϕi)vi+1 − ρ(ϕi+1)vi

τ
, qi+1

〉

−
〈

vi+1 ⊗ ρ(ϕi+1)vi,∇qi+1
〉

H−1,H1
0

+

〈

vi+1 ⊗
ρ2 − ρ1

2
m(ϕi+1)∇µi,∇qi+1

〉

H−1,H1
0

−
〈

µi+1∇ϕi, qi+1
〉

H−1,H1
0

+(2η(ϕi)Dsy(v
i+1),Dsy(q

i+1))−
〈

Bui+1, qi+1
〉

H−1,H1
0

]

−

M−1
∑

i=0

〈

ai, πi
〉

−

M−1
∑

i=0

〈

(λi)+, ϕi − ψ2

〉

−

M−1
∑

i=0

〈

(λi)−, ϕi − ψ1

〉

.

For the sake of readability, we collect the primal variables in y := (ϕ, µ, a, v) which de-

scribes the state of the optimal control problem and the adjoint variables in Φ := (p, r, q).
Furthermore, we define

Yh := (V M
1 )3 × VM−1

2 × UM−1 × (VM
1 )2 × VM−1

2 × (VM
1 )3. (4.1)

Clearly, the MPCC-Lagrangian possesses the following saddle point property.

Remark 4.2. If (y, u) is an E -almost C-stationary point of (PΨ) with corresponding ad-

joints (Φ, π, λ+, λ−) then

L(y, u,Φ, π, λ+, λ−) = J(ϕ, µ, v, u). (4.2)

For an arbitrarily fixed triple (π, λ+, λ−) the MPCC-Lagrangian L( · , π, λ+, λ−) is

infinitely Gâteaux differentiable with respect to (y, u,Φ) and the corresponding second

derivative is constant. This property gives rise to the subsequent lemma.

Lemma 4.3. Let (yh, uh,Φh, πh, λ
+
h , λ

−
h ) ∈ Yh satisfy the discretized stationarity sys-

tem derived in the previous section. Then for every point (y, u,Φ) it holds that

J(ϕh, µh, vh, uh) =L(y, u,Φ, πh, λ
+
h , λ

−
h )

+
1

2
∇xL(y, u,Φ, πh, λ

+
h , λ

−
h )((yh, uh,Φh)− (y, u,Φ))

+
1

2
∇xL(yh, uh,Φh, πh, λ

+
h , λ

−
h )((yh, uh,Φh)− (y, u,Φ)).

(4.3)
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Proof. Since (yh, uh,Φh, πh, λ
+
h , λ

−
h ) is a discrete E -almost C-stationary point, in par-

ticular due to equation (3.1)-(3.3), (3.18),(3.21) and (3.22), it holds that

J(ϕh, µh, vh, uh) = L(yh, uh,Φh, πh, λ
+
h , λ

−
h ). (4.4)

Here, we additionally employed the fact that Πi+1 is the orthogonal projection onto V i+1
1 ,

i.e.,
〈

Πi+1ϕi
h, p

i+1
h

〉

=
〈

ϕi
h, p

i+1
h

〉

for all ϕi
h ∈ L2(Ω) and pi+1

h ∈ V i+1
1 . Let X be a

Banach space and f : X → R be a twice Gâteaux differentiable function with constant

second derivative. Applying Taylor’s expansion at x ∈ X , then for an arbitrary z ∈ X we

derive f(z) = f(x) + ∇f(x)(z − x) + 1
2∇

2f(x)(z − x)2. Furthermore, the Taylor

expansion of ∇f at x yields ∇f(z) = ∇f(x) +∇2f(x)(z − x).
In summary, it holds that

f(z) = f(x) +∇f(x)(z − x) +
1

2
(∇f(z)−∇f(x))(z − x)

= f(x) +
1

2
∇f(x)(z − x) +

1

2
∇f(z)(z − x).

Applying the last equation toL( · , πh, λ
+
h , λ

−
h )with x := (y, u,Φ) and z := (yh, uh,Φh)

proves the assertion.

Using the previous lemma we present a first characterization of the difference of the

objective values at stationary points of the semi-discrete and the fully discretized prob-

lem. Subsequently, the index δ denotes the difference of the discrete and the continuous

variables, e.g. (yδ, uδ ,Φδ) := (yh, uh,Φh)− (y, u,Φ).

Theorem 4.4. Let (yh, uh,Φh, πh, λ
+
h , λ

−
h ) be given as in Lemma 4.3 and

(y, u,Φ, π, λ+, λ−) be a stationary point of the optimal control problem (PΨ). Then

J(ϕh, µh, vh, uh)− J(ϕ, µ, v, u) =
1

2

(

M−1
∑

i=0

〈

aih, π
i
〉

−

M−1
∑

i=0

〈

ai, πih
〉

)

+
1

2

(

M−1
∑

i=0

〈

(λi)+, ϕi
h − ψ2

〉

−
M−1
∑

i=0

〈

(λih)
+, ϕi − ψ2

〉

)

+
1

2

(

M−1
∑

i=0

〈

(λi)−, ϕi
h − ψ1

〉

−

M−1
∑

i=0

〈

(λih)
−, ϕi − ψ1

〉

)

+
1

2
∇xL(yh, uh,Φh, πh, λ

+
h , λ

−
h )((yh, uh,Φh)− (y, u,Φ)) (4.5)

holds.

Proof. Since (y, u,Φ) is a stationary point, the gradient of the MPCC-Lagrangian with

respect to a direction (yδ, uδ,Φδ) reduces to

∇xL[y, u,Φ, πh, λ
+
h , λ

−
h ](yδ, uδ,Φδ)

=
M−2
∑

i=−1

〈

ai+1
δ , ri+1

〉

−
M−2
∑

i=−1

〈

(λi+1)+ + (λi+1)−, ϕi+1
δ

〉

−

(

M−1
∑

i=0

〈

aiδ, π
i
h

〉

+

M−1
∑

i=0

〈

(λih)
+, ϕi

δ

〉

+

M−1
∑

i=0

〈

(λih)
−, ϕi

δ

〉

)

=

M−1
∑

i=0

〈

aiδ, π
i − πih

〉

+

M−1
∑

i=0

〈

(λi)+ − (λih)
+, ϕi

δ

〉

+

M−1
∑

i=0

〈

(λi)− − (λih)
−, ϕi

δ

〉

.
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On the other hand, the feasibility of (y, u) implies that

L(y, u,Φ, πh, λ
+
h , λ

−
h ) =J(ϕ, µ, v, u) −

M−1
∑

i=0

〈

ai, πih
〉

−
M−1
∑

i=0

〈

(λih)
+, ϕi − ψ2

〉

−
M−1
∑

i=0

〈

(λih)
−, ϕi − ψ1

〉

.

Inserting these equations into (4.3) leads to

J(ϕh, µh, vh, uh) =J(ϕ, µ, v, u) −

M−1
∑

i=0

〈

ai, πih
〉

−

M−1
∑

i=0

〈

(λih)
+, ϕi − ψ2

〉

−
M−1
∑

i=0

〈

(λih)
−, ϕi − ψ1

〉

+
1

2

M−1
∑

i=0

〈

aih − ai, πi − πih
〉

+
1

2

M−1
∑

i=0

〈

(λi)+ − (λih)
+, ϕi

h − ϕi
〉

+
1

2

M−1
∑

i=0

〈

(λi)− − (λih)
−, ϕi

h − ϕi
〉

+
1

2
∇xL(yh, uh,Φh, πh, λ

+
h , λ

−
h )((yh, uh,Φh)− (y, u,Φ)).

An appropriate rearrangement of the terms involving the complementarity conditions (2.16)

and (2.17) yields the assertion.

Remark 4.5. Note that, since (yh, uh,Φh, πh, λ
+
h , λ

−
h ) satisfies the discrete station-

arity system and taking into account the orthogonality of the projection Πi+1, the di-

rection (yh, uh,Φh) − (y, u,Φ) in the last term of (4.5) can be replaced by any dif-

ference (yα, uα,Φα) − (y, u,Φ) involving arbitrary discrete variables (yα, uα,Φα) ∈
V2
1 × V2 × V1 × V2 × V2

1 × V2.

The last term on the right-hand side of equation (4.5) assembles the weighted dual and

primal residuals, whereas the other terms display the mismatch in the complementarity

between the discretized solution and the original one. For each time step i ∈ {0, ..,M −
1}, the mismatch is represented by the following four parts

ηCM1,i :=
1

2

〈

aih, π
i − πih

〉

, ηCM2,i :=
1

2

〈

(λih), ϕ
i − ϕi

h

〉

,

ηCM3,i :=
1

2

〈

ai, πih − πi
〉

, ηCM4,i :=
1

2

〈

(λi)+, ϕi
h − ψ2

〉

+
〈

(λi)−, ϕi
h − ψ1

〉

.

Note that ηCM3,i can be alternatively defined by

ηCM3,i =
〈

ai, πih − πi
〉

=
〈

∆ϕi + µi + κϕi+1, πih − πi
〉

≈
〈

∆ϕi
h + µih + κϕi−1

h , πih − πi
〉

.

Next, we characterize the so-called dual-weighted primal residual ηCHNS,i := ηCH1,i +
ηCH2,i + ηNS,i by defining each of the three parts coming from the respective primal
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equations (for i = −1, ..,M − 2)

ηCH1,i+1 :=

〈

ϕi+1
h − ϕi

h

τ
, pi+1

δ

〉

+
〈

vi+1
h ∇ϕi

h, p
i+1
δ

〉

+
〈

m(ϕi
h)∇µ

i+1
h ,∇pi+1

δ

〉

,

ηCH2,i+1 :=
〈

−∆ϕi+1
h , ri+1

δ

〉

+
〈

ai+1
h , ri+1

δ

〉

−
〈

µi+1
h , ri+1

δ

〉

−
〈

κϕi
h, r

i+1
δ

〉

,

ηNS,i+1 :=

〈

ρ(ϕi
h)v

i+1
h − ρ(ϕi−1

h )vih
τ

, qi+1
δ

〉

H−1,H1
0

−
〈

vi+1
h ⊗ ρ(ϕi−1

h )vih,∇q
i+1
δ

〉

H−1,H1
0

−

〈

vi+1
h ⊗

ρ2 − ρ1
2

m(ϕi−1
h )∇µih,∇q

i+1
δ

〉

H−1,H1
0

+ (2η(ϕi
h)Dsy(v

i+1
h ),Dsy(q

i+1
δ ))

−
〈

µi+1
h ∇ϕi

h, q
i+1
δ

〉

H−1,H1
0

−
〈

Bui+1
h , qi+1

δ

〉

H−1,H1
0

.

Since the Navier-Stokes equation is only defined for i ∈ {1, ..,M − 1} based on the

chosen discretization, we set ηNS,0 := 0 for the sake of a brief notation.

In order to analyse the primal-weighted dual residual, we point out that the discrete

stationary point satisfies
〈

∂J

∂ui
(ϕh, µh, vh, uh)−B⋆qih, u

i
δ

〉

= 0. (4.6)

Due to our specific choice of J in (2.4), the partial derivatives are given by

∂J

∂ϕi
(ϕh, µh, vh, uh) = ϕi

h − ϕi
d,

∂J

∂µi
(ϕh, µh, vh, uh) = 0,

∂J

∂vi
(ϕh, µh, vh, uh) = 0.

Incorporating the previous considerations, we define the primal-weighted dual residual in

three parts for i ∈ {0, ..,M − 1} (with ηADv,0 := 0) by

ηADϕ,i :=

[

ϕi
h − ϕi

d −
1

τ
(pi+1

h − pih) +m′(ϕi
h)∇µ

i+1
h · ∇pi+1

h − div(pi+1
h vi+1

h )

−∆rih + λih − κri+1
h −

1

τ
ρ′(ϕi

h)v
i+1
h · (qi+2

h − qi+1
h )

− (ρ′(ϕi
h)v

i+1
h −

ρ2 − ρ1
2

m′(ϕi
h)∇µ

i+1
h )(Dqi+2

h )⊤vi+2
h

+ 2η′(ϕi
h)Dsy(v

i+1
h ) : Dqi+1

h + div(µi+1
h qi+1

h )

]

(ϕi
δ),

ηADµ,i :=

[

− rih − div(m(ϕi−1
h )∇pih)− div(

ρ2 − ρ1
2

m(ϕi−1
h )(Dqi+1

h )⊤vi+1
h )

− qih · ∇ϕ
i−1
h

]

(µiδ),

ηADv,i :=

[

−
1

τ
ρ(ϕi−1

h )(qi+1
h − qih)− ρ(ϕi−1

h )(Dqi+1
h )⊤vi+1

h

− (Dqih)(ρ(ϕ
i−2
h )vi−1

h −
ρ2 − ρ1

2
m(ϕi−2

h )∇µi−1
h )

− div(2η(ϕi−1
h )Dsy(q

i
h)) + pih∇ϕ

i−1
h

]

(viδ).
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By these definitions and Theorem 4.4, the discretization error with respect to the objective

function is then given by

J(ϕh, µh, vh, uh)−J(ϕ, µ, v, u)

=
M−1
∑

i=0

(ηCM1,i + ηCM2,i + ηCM3,i + ηCM4,i + ηCH1,i

+ ηCH2,i + ηNS,i + ηADϕ,i + ηADµ,i + ηADv,i).

(4.7)

We point out that the integral structure of these error terms allows a patchwise evaluation

on the underlying mesh.

Apart from the weights ϕi
δ , µiδ and viδ and piδ, qiδ , riδ , respectively, the primal-dual-

weighted error estimators only contain discrete quantities. In order to obtain a fully a-

posteriori error estimator the weights are approximated involving a local higher-order ap-

proximation based on the respective discrete variables.

5 The numerical realization

Next we describe how we employ the error representation (4.7) in order to find numerical

approximations to solutions of the optimal control problem (PΨ). Our overall algorithm is

based on solving an approximation of equations (3.1)–(3.22) for a given mesh sequence

(T 1, . . . ,T M ), and then utilizing (4.7) to generate new grids that are better suited for

representing the continuous optimal solution. The implementation is done in C++ using

the finite element toolbox FEniCS [39] together with the PETSc linear algebra backend

[7] and the linear solver MUMPS [6]. For the adaptation of the spatial meshes the toolbox

ALBERTA [47] is used. Finite dimensional approximations of the minimization problem

(PΨ) are solved by the steepest descent method from the GNU scientific library [1].

The relaxed equations

We introduce a smooth approximation of Ψ0(ϕ) using Moreau–Yosida relaxation, similar

to [23], by

Ψs
0(ϕ) :=

s

3

(

|max(0, ϕ − 1)|3 + |min(0, ϕ + 1)|3
)

, (5.1)

where s ≫ 0 is a relaxation parameter. We point out that it is possible to use a Moreau-

Yosida regularization combined with a semi-smooth Newton method here instead, as, e.g.,

in [28]. However, since we observe no singularities in our numerical tests and achieve a

good approximation of feasibility already for moderate relaxation parameters, we choose

the above approach for the ease if implementation.
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Using Ψs
0 we introduce the relaxed state equations (5.2)–(5.5)

〈

ϕi+1
h −Πi+1ϕi

h

τ
, φ

〉

+
〈

vi+1
h ∇ϕi

h, φ
〉

+
〈

m(ϕi
h)∇µ

i+1
h ,∇φ

〉

= 0, ∀φ ∈ V i+1
1 ,

(5.2)
〈

∇ϕi+1
h ,∇φ

〉

+ ((Ψs
0)

′(ϕi+1
h ), φ)h −

〈

κΠi+1ϕi
h, φ
〉

−
〈

µi+1
h , φ

〉

= 0, ∀φ ∈ V i+1
1 ,
(5.3)

1

τ

〈

ρ(ϕi
h)v

i+1
h − ρ(ϕi−1

h )vih, ψ
〉

−
〈

(tih∇)ψ, vi+1
h

〉

+
〈

2η(ϕi
h)Dsy(v

i+1
h ),Dsy(ψ)

〉

−
〈

µi+1
h ∇ϕi

h, ψ
〉

H−1,H1
0

−
〈

divψ, ξih
〉

= (Bui+1, ψ) ∀ψ ∈ V i+1
2 , (5.4)

− (divvi+1
h , φ) = 0 ∀φ ∈ V i+1

1 , (5.5)

and the corresponding relaxed optimization problem (P s
h ).

minJ(ϕi
h, µ

i
h, v

i
h, u

i
h) over (ϕi

h, µ
i
h, v

i
h, u

i
h) ∈ (VM

1 )2 × V M−1
2 × UM−1

s.t. (5.2) − (5.5).
(P s

h )

Here, by (·, ·)h we denote the lumped inner product

(f, g)h :=

∫

Ω
Ii(fg) dx,

where Ii denotes the Lagrangian interpolation on V i
1 .

Remark 5.1. The existence of feasible points for (P s
h ) and their boundedness with respect

to u can be proven, e.g., by transferring the existence proof of Theorem 3.8 in [27] to the

discretized problem. Since the equations (5.2)–(5.5) admit a unique solution for every con-

trol u, we can introduce the reduced functional Ĵ(uih) := J(ϕi
h(u

i
h), µ

i
h(u

i
h), v

i
h(u

i
h), u

i
h)

and derive the existence of solutions and first order optimality conditions by standard argu-

ments such as, e.g., in [51]. Consequently, we can apply a gradient descent method with

respect to Ĵ in order so solve problem (P s
h ) numerically.

Defintion 5.2. Let ϕ−1
h = P (ϕa), v

0
h = L(va) be given, where P denotes the H1

projection onto T 0, while L denotes the Leray projection ([15]) onto T 0 .

We say that

(ϕi
h, µ

i
h) ∈ (V i

1 )
M−1
i=0 × (V i

1 )
M−1
i=0 , (vih, ξ

i
h) ∈ (V i

2 )
M−1
i=1 × (V i

1 )
M−1
i=1 ,

(ui) ∈ (U i)M−1
i=1 ,

(pih, r
i
h) ∈ (V i

1 )
M−1
i=0 × (V i

1 )
M−1
i=0 , (qih, χ

i
h) ∈ (V i

2 )
M−1
i=1 × (V i

1 )
M−1
i=1 ,
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is a stationary point for (P s
h ), if it satisfies (5.2)-(5.5) together with the following equations:

−
1

τ
(
〈

(pi+1
h ,Πi+1φ

〉

−
〈

pih, φ
〉

) + (m′(ϕi
h)∇µ

i+1
h · ∇pi+1

h , φ) +
〈

pi+1
h vi+1

h ,∇φ
〉

+((Ψs
0)

′′(ϕi
h)r

i
h, φ)h −

〈

κri+1
h ,Πi+1φ

〉

−

〈

1

τ
ρ′(ϕi

h)v
i+1
h (qi+2

h − qi+1
h ), φ

〉

+
〈

∇rih,∇φ
〉

−

〈(

ρ(ϕi
h)

′vi+1
h −

ρ2 − ρ1
2

m′(ϕi
h)∇µ

i+1
h

)

(Dqi+2
h )⊤vi+2

h , φ

〉

+
〈

2η(ϕi
h)

′Dsy(v
i+1
h ) : Dqi+1

h , φ
〉

−
〈

µi+1
h qi+1

h ,∇φ
〉

=

〈

∂J

∂ϕi
h

(z), φ

〉

−
〈

rih, φ
〉

+
〈

m(ϕi−1
h )∇pih,∇φ

〉

+

〈

ρ2 − ρ1
2

m(ϕi−1
h )(Dqi+1

h )⊤vi+1
h ,∇φ

〉

− (qih∇ϕ
i−1
h , φ) =

〈

δJ

δµih
(z), φ

〉

−
1

τ

〈

ρ(ϕi−1
h )(qi+1

h − qih), ψ
〉

−
〈

ρ(ϕi−1
h )(Dqi+1

h )⊤vi+1
h , ψ

〉

−

〈

(Dqih)(ρ(ϕ
i−2
h )vi−1

h −
ρ2 − ρ1

2
m(ϕi−2

h )∇µi−1
h ), ψ

〉

+
〈

2η(ϕi−1
h )Dsy(q

i
h),∇ψ

〉

+
〈

pih∇ϕ
i−1
h , ψ

〉

−
〈

χi
h, div ψ

〉

=

〈

∂J

∂vih
(z), ψ

〉

−
〈

div qih, ψ
〉

= 0,

〈

B⋆qi−1
h , ũ

〉

U⋆,U
=

〈

∂J

∂ui
(z), ũ

〉

,

Comparing the optimality system for (PΨ) and (P s
h ) and taking into account the con-

vergence results from [27] it is reasonable to use the approximation (3.1)–(3.22)

(aih, φ) ≈ ((Ψs
0(ϕ

i
h))

′, φ)h,

(λih, φ) ≈ ((Ψs
0(ϕ

i
h))

′′rih, φ)h,

also compare Remark 2.5.

Moreover by using s sufficiently large in (5.1) we guarantee, that the complementarity

conditions (3.5)–(3.7) and (3.21)–(3.22) are sufficiently well fulfilled, when using these ap-

proximations for a and λ. For this we use the subsequent updating rule for the parameter

s. In fact, in our numerical tests we observe that the complementarity conditions (3.21) and

(3.22) are better fulfilled than (3.7) to at least 3 orders of magnitude. For this reason we

base our update procedure in the following on (3.7) only, and next derive an estimate for

the dependence of (3.7) with respect to s.

Exploiting the structure of Ψs
0 we observe

|(((Ψs
0(ϕ

i
h))

′,ϕ± 1)|

≤ ‖(Ψs
0(ϕ

i
h))

′‖L1(Ω)‖max(0, ϕ− 1) + min(0, ϕ + 1)‖L∞(Ω),

where we note, that in fact ϕ ∈ L∞(Ω) by elliptic regularity theory and Sobolev embed-

dings. Using Φ ≡ ±1 in (5.3) we further observe that there exists C > 0 independent of

s such that

‖(Ψs
0(ϕ

i
h))

′‖L1(Ω) ≤ C,
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and from [30, 36] we obtain

‖max(0, ϕ − 1) + min(0, ϕ + 1)‖L∞(Ω) ≤ Cs−1/2

for this specific choice of Ψs
0. Together it holds

|(((Ψs
0(ϕ

i
h))

′, ϕ± 1)| ≤ Cs−1/2 (5.6)

Let θ denote the maximum complementarity mismatch for (3.7) over all time instances. We

find a new value snew by estimating the unknown constant in (5.6) as C = θs1/2, and,

given a tolerance tolc, we set snew :=
(

C
0.9tolc

)2
, where the factor 0.9 is a guard to really

get below the desired tolerance.

The local error indicator

Using these definitions we can evaluate the error indicators η⋆, as described in Section 4.

For this it is important that the complementarity conditions (3.5)– (3.7) and (3.21)–(3.22)

are sufficiently well approximated. We split the individual indicators canonically using the

underlying meshes, e.g.

ηCM1,i =
∑

T∈T i

ηTCM1,i =
∑

T∈T i

(ãi+1
h , πi − πih)|T

and we define for each cell an indicator ηiT as

ηiT =|ηTCM1,i|+ |ηTCM2,i|+ |ηTCM3,i|+ |ηTCM4,i|

+ |ηTCH1,i|+ |ηTCH2,i|+ |ηTNS,i|

+ |ηTADϕ,i|+ |ηTADµ,i|+ |ηTADv,i|.

(5.7)

Note that the individual indicators might be negative, while we require a positive measure

for the error, and thus sum up the absolute values of the individual terms.

We further set

(−∆ϕi+1
h , riδ) :=

∑

T∈T i+1

[

(−∆ϕi+1
h , riδ)|T +

∑

E⊂T

1

2

([

∇ϕi+1
h

]

E
, riδ
)

|E

]

,

compare, e.g., [26]. For an edge E contained in T the term [f ]E denotes the jump of

f across the edge E. More precisely, for a pair of cells T+, T− with T+ ∩ T− = E
we define the jump as [f(xE)]E :=

(

limx→xE,x∈T+ f(x)− limx→xE,x∈T− f(x)
)

·
νT+,E , where νT+,E is the unit normal on E pointing into T+. Note that the definition of

[f ]E is independent of the permutation of T+ and T−.

The approximation of the continuous solution

Let us next discuss the approximation of the continuous solution (y, u, ϕ, µ, a, λ) using a

higher-order finite element approximation of the discrete solution (yh, uh, ϕh, µh, ah, λh).
For linear functions (i.e. ϕ, µ, p, r), we can use the procedure as described, e.g., in

[26]. For a triangle T we use the nodes of the surrounding three triangles to define six

points, with corresponding values of the finite element function under investigation. Then
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we evaluate the unique quadratic polynomial that interpolates these six points, and use

its restriction to T as quadratic finite element approximation to the continuous solution.

If T lies on the boundary of Ω there are less than three surrounding triangles. Here we

create virtual triangles by extending T as a parallelogram outside Ω, and we also extend

the piecewise linear finite element function linearly on this virtual triangle to obtain again

six points for the interpolation.

For quadratic finite elements we proceed analogously and evaluate a fourth-order poly-

nomial on the given patch of cells, while for boundary cells we extend the given quadratic

function as quadratic polynomial outside Ω.

For the multipliers ai and λi we first calculate the representation ãih and λ̃ih in V i
1 and

then use the extrapolation for linear elements as proposed above.

In any case we note that the resulting higher-order approximation is a trianglewise

polynomial that is discontinuous across edges.

The final algorithm

Before stating the overall algorithm let us make the following simplification. Given ϕ−1

and v0 on a sufficiently well resolved grid, we solve (3.1)–(3.2) to obtain ϕ0
h and µ0h on

the same grid and treat these functions as given data. Thus throughout the optimization

process, the state that we optimize contains only the time instances t1, . . . , tM .

Including the Moreau–Yosida relaxation we use the following Algorithm 1.

Algorithm 1.

Data: Initial data: ϕ−1, ϕ0, v0, Nmax

1 repeat

2 for l = 1, . . . do

3 solve (P s
h ) using steepest descent method;

4 if complementarity conditions (3.7), (3.21), (3.22) are satisfied up to a tolerance tolc
then

5 break;

6 else

7 increase Moreau–Yosida parameter using (5.6);

8 end

9 end

10 calculate the error indicators and find the set Mr of cells to refine and the set Mc of cells

to coarsen;

11 Adapt (T i)Mi=1 using Mr and Mc;

12 until
∑M

i=1 |T
i| < Nmax;

Let us explain the steps of Algorithm 1 in detail.The outer loop describes the refinement

of the grids (T i)Mi=1 using (4.7). When the for-loop breaks, then we have found an approx-

imate optimal control on the current sequence of grids that solves the system (3.1)–(3.22)

sufficiently well, as it is required for our error indicators to be valid. Then, in line 10 we

evaluate the error indicators ηiT for all grids T i and for all cells T and choose Mr as the
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set with smallest cardinality such that

∑

T∈Mr

ηT ≥ θr
M
∑

i=1

∑

T∈T i

ηT

with a parameter 0 < θr < 1 using a greedy marking algorithm. We mark all cells in Mr

for refinement. As in [23] we further choose θc ∈ (0, 1) and define

Mc :=







T ∈ (T i)Mi=1 | ηT ≥
θc

N

M
∑

i=1

∑

T∈T i

ηT







,

where N :=
∑M

i=1 |T
i|. Thus, we use the well-known Dörfler marking procedure [16],

where we refine a given proportion of the estimated error. We stress that we do not per-

form Dörfler marking on each time instance separately, but, as the representation (4.7)

suggests, we perform a marking over all cells in the space-time cylinder. We mark cells for

coarsening, if they contain an error that is smaller than θc times the mean error. We repeat

this outer adaptation unless a given total amount of cells Nmax is reached, summed over

all cells, see line 12. We point out that we have to use a locally refined initial grid in order

to get a meaningful initial resolution of the interface. This prevents us from using a very

coarse grid initially. As a consequence, we also need to introduce a coarsening strategy.

The inner loop, i.e. lines 2–9, solves (P s
h ) using the steepest descent method from the

GNU scientific library [1]. Thereafter we check whether the complementarity conditions are

sufficiently well approximated by the current Moreau–Yosida relaxed system. For this we

evaluate the terms (3.7), (3.21), (3.22) for all time instances. If the absolute value of all

these terms is smaller then a given tolerance tolc, we accept the solution and proceed

with the adaptation step. If any of these terms has an absolute value larger than tolc we

increase the Moreau–Yosida parameter and solve the optimality problem again.

6 Numerical example: Splitting a bubble under grav-

ity

Now we study a numerical example.Our aim is to prevent a bubble from rising and split it

into two bubbles that are deformed to rounded squares.

The parameters of the fluid are ρ1 = 1000, ρ2 = 100, η1 = 10, η2 = 1, g ≡
(0,−0.981)⊤ , and σ = 24.5 · 2

π , where 24.5 is the physical surface tension and 2
π is a

required scaling when using a phase field approximation with double-obstacle free energy

density. These parameters arise from a benchmark for rising bubble dynamics in [35]. We

further set ǫ = 0.02 and m(ϕ) = ǫ/500.

The initial phase field is given by a circle, located at o = (0.5, 0.5)⊤ with radius

r = 0.2329,

ϕ0(x) = −1 ·

{

sin((‖x− o‖ − r)/ǫ) if |‖x− o‖ − r|/ǫ ≤ π/2,

sign(‖x− o‖ − r) else.
(6.1)

For the desired phase field we define

ϕd[Z, r](x) =

{

sin((‖((x − Z)‖6 − r)/ǫ) if |‖(x− Z)‖ − r|/ǫ ≤ π/2,

sign(‖(x− Z)‖6 − r) else,
(6.2)
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Figure 1: The initial shape ϕ0, the desired shape ϕd together with the zero level line of the

phase field at final time if no control is applied, the ansatz for the control, |
∑16

i=1 f
i| together

with the zero level line of ϕd (left to right).

which describes a square with smooth corners aroundZ with radius r and we useϕd(x) :=
ϕd[(0.25, 0.50)

⊤ , 0.15](x) ·ϕd[(0.75, 0.5)
⊤ , 0.15](x). The radius ofϕ0 is chosen such

that
∫

Ω ϕd dx =
∫

Ω ϕ0 dx since we have to respect mass conservation. We depict ϕ0

and ϕd in Figure 1. Note that using the phase field approach we are not able to approach

sharp corners and thus define ϕd with smooth corners.

To define Bu with the control operator B : U → L2(Ω,RN ) we introduce the vector

field

(f [o, ξ, c](x))i =

{

cos
(

(π/2)‖ξ−1(x− o)‖
)2

if c ≡ i and ‖ξ−1(x− o)‖ ≤ 1,

0 else.

This describes an approximation to the Gaussian with local support. The center is given by

o and the diagonal matrix ξ describes the width of the Gaussian in coordinate directions.

We identify a scalar value for ξ with ξI , where I denotes the identity matrix. The parameter

c is the number of the component in which the vector field f is not zero.

We use 2×4 Ansatz functions for the control at the corners of each square. Thus we

use the following 16 Ansatz functions f [mij
l , ξ, c] with mij

k = (0.5 + (−1)k0.25 +
(−1)i0.13, 0.5 + (−1)j0.13)⊤ with 1 ≤ k, i, j ≤ 2, ξ = 0.1, c ∈ {0, 1}. Thus,

U = R
16 and Bu :=

∑1
c=0

∑2
i,j,k=0 uijkcf [m

ij
k , ξ, c]. In Figure 1 we show plots of

ϕ0,ϕd, and Bu together with the phase field at final time if no control is applied.

The optimization horizon is T = 1.0 and we use τ = 0.00125 and we set α =
1e− 11. For Algorithm 1 we further set tolc = 1e − 3, Nmax = 8e6, which means 1e4
cells per time instance, and for the marking procedure we use θr = 0.7 and θc = 0.01.

On a single (time) sequence of grids we stop the optimization procedure as soon as

‖∇J(u)‖U ≤ 2e− 7 + 0.1‖∇J(u0)‖U (6.3)

holds, where u0 denotes the initial control for the optimization procedure on the current

sequence of meshes. The stopping criteria is motivated by the fact that we observe in our

numerical tests that the optimal control of the previous adaptation step already constitutes

a good guess for the optimal control on the refined mesh. Algorithm 1 is initialized with

zero control, while subsequent optimization steps, i.e. line 3, are initialized with the control

from the previous optimization run.

The optimal solution

In Figure 2 we depict the temporal evolution of the phase field ϕ⋆ corresponding to the

optimal control u⋆, while in Figure 3 we depict the strength of the control over the time
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Figure 2: The evolution of the phase field ϕ with respect to the optimal control u for few Ansatz

functions, t = 0.00, 0.25, 0.50, 0.75, 1.00 (left to right). For t = 1.00 we show ϕ in gray and

in black the zero level line of the desired shape ϕd.

0 0.2 0.4 0.6 0.8 1
0

2

4

·104

time

control amplitude, |u|

Figure 3: The amplitude of the control over time, |u(t)|. We observe that the control amplitude

is increasing over time until t = 0.7 and thereafter is reduced again with a second maximum

directly before a final strong reduction of the control at the final time.

horizon, i.e. |u⋆(t)|. To obtain this optimal control we solve the optimization problem (P s
h )

10 times, i.e. line 3 of Algorithm 1 is executed 10 times. After the first two solves the

Moreau–Yosida parameter was increased, i.e. line 7 in Algorithm 1 is executed, and af-

ter the next 8 solves the algorithm proceeded with evaluating the indicator (4.7) and the

proposed Dörfler marking procedure, i.e. line 10 of Algorithm 1 was executed.

The number of cells

In Figure 4 (left) we present the evolution of the total number of cells over the adaptation

steps. The right picture presents the distribution of the cells for the final sequence of grids.

Here we show the number of cells of T i for every time instance of the time horizon I .

We observe that the number of cells increases as the “length” of the interface increases

with time as the rising bubble is split up. We also observe that the cells are mainly refined

inside and at the border of the diffuse interface |ϕ| < 1. Such a behavior is expected,

as the phase field ϕd has a longer diffuse interface than ϕ0. In this sense we discover

a behavior that is similar to residual based error estimation, see e.g. [23, 20]. Since our

dual weighted residual error estimator also contains terms from the Navier–Stokes and

the adjoint equation, we further obtain refinement inside of the bulk domain if required. In

Figure 5 we depict the subdomain Ωu = (0, 1) × (0.5, 1.0) ⊂ Ω at t = 0.7. On the left

we show |v| in grayscale together with the isolines ϕ ≡ ±1 in black. On the right we show

the corresponding mesh and note that the mesh is symmetric w.r.t. the central line.
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Adaptation step number

Total number of cells

0 0.2 0.4 0.6 0.8 1
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·104
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Figure 4: The evolution of the total number of cells, i.e.
∑M

i=1NC(T i), where NC(T i) de-

notes the number of cells of the triangulation T i over the adaptation steps (left). We note that

we can not start with an arbitrarily coarse mesh, as the interface as least has to be resolved

roughly at the initialization of the optimization procedure. On the right we depict the distribution

of the number of cells over the time horizon. We observe that the mesh is refined most close to

the final time instance, where our optimization aim is located.

.

Figure 5: The subdomain (0.0, 1.0) × (0.25, 0.85) ⊂ Ω at t = 0.7. On the left we show

|v| in grayscale together with the isolines ϕ ≡ ±1. On the right we show the corresponding

triangulation. Note that the problem is symmetric w.r.t. x ≡ 0.5. We observe, that the mesh

is refined inside the diffuse interface as expected, but also is refined in the regions with large

velocity.
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Figure 6: The evolution of the error estimator ηtot over the adaptation steps (left), the distribution

of the estimated error over the time horizon (right)

Figure 7: The distribution ηMT at the time instance tM for the optimal control u⋆. Black indicates

large errors.

The error indicator

Let us next comment on the evolution of the error estimator η. In addition to (5.7), we

introduce the notation ηi :=
∑

T∈T i ηiT for the total estimated error at time instance i and

ηtot :=
∑M

i=1 η
i for the total estimated error of a solution to the optimization problem.

In Figure 6 we depict the evolution of ηtot over the adaptation steps, i.e. for the optimal

solution on the kth sequence of grids we show the estimator for the overall error on the

left. We further show the distribution of ηMT at the time instance tM for the optimal solution

u⋆ on the right. One observes a significant decay of the estimated error throughout the

adaptation steps. Further, the largest error appears at later times of the simulation horizon.

Especially the large error at final time can be explained by the term ‖ϕM − ϕd‖ arising

from the optimization aim, but we in general observe that larger time instances have a

higher impact on the overall estimated error. Finally, in Figure 7, we depict the distribution

of ηMT for the optimal control. We observe that large errors mainly appear at the transition

from diffuse interface to bulk, i.e. where |ϕ| ≈ 1 holds. The large error component in the

middle of the domain appears as an artefact of splitting the bubble into the two squares.

For a comparison of the error decay on a homogeneously refined grid and an adaptively

refined grid, where residual based estimation is used for the pure phase field equation, we

refer to [23].

The Moreau–Yosida relaxation

Finally we comment on the update procedure for the Moreau–Yosida parameter. In Figure

8 we show the evolution of the maximum complementarity mismatch over the optimization

steps. Each column of the plot contains the maximum mismatch of the five complemen-
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Figure 8: The maximum complementarity mismatch for each optimization run. Here chp denotes

maxi=1,...,M maxT∈T i((ai)+, ϕi
h − 1)T , chm denotes maxi=1,...,M maxT∈T i((ai)−, ϕi

h +
1)T , adp denotes maxi=1,...,M maxT∈T i((λi)+, ϕi

h − 1)T , adm denotes

maxi=1,...,M maxT∈T i((λi)−, ϕi
h + 1)T , and api denotes maxi=1,...,M maxT∈T i(ai, πi)T .

We observe that after only one optimization with subsequent increment of the Moreau–Yosida

parameter s we reach the desired tolerance tolc = 1e− 3 indicated by the dashed line.

tarity relations (2.8)–(2.10), (2.16), and (2.17), where the maximum is taken over all time

instances and all cells. The dashed line indicates the desired maximum mismatch tolc,
and we observe that already with the third value, i.e. after increasing s twice, the desired

bound is reached. The corresponding values of s are s = 8e6 as initial value, s = 3e14
and finally s = 6e14 for subsequent steps. Thus, we observe that the results are insen-

sitive w.r.t. s, as the parameter is not longer updated with decreasing h. For a rigorous

analysis of the error introduced by using the Moreau–Yosida approximation in the case of

control of the obstacle-problem we refer to [41]. We note that using a small initial value for

s also results in well conditioned linear systems in Newton’s method.
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