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Abstract

The present work deals with the derivation of corrector estimates for the two-scale
homogenization of a thermo-diffusion model with weak thermal coupling posed
in a heterogeneous medium endowed with periodically arranged high-contrast mi-
crostructures. The terminology “weak thermal coupling” refers here to the variable
scaling in terms of the small homogenization parameter € of the heat conduction-
diffusion interaction terms, while the “high-contrast” is thought particularly in
terms of the heat conduction properties of the composite material. As main target,
we justify the first-order terms of the multiscale asymptotic expansions in the pres-
ence of coupled fluxes, induced by the joint contribution of Sorret and Dufour-like
effects. The contrasting heat conduction combined with cross coupling lead to the
main mathematical difficulty in the system. Our approach relies on the method
of periodic unfolding combined with e-independent estimates for the thermal and
concentration fields and for their coupled fluxes.

1 Introduction

This paper deals with the justification of the two-scale asymptotic expansions method
applied to a thermo-diffusion problem arising in the context of transport of densities of hot
colloids in media made of periodically-distributed microstructures. Following [KKAM14],
we study a system of two coupled semi-linear parabolic equations, where the diffusivity
for the concentration u. is of order O(1) and for the temperature 6. it is of order O(e?).
Here € > 0 denotes the characteristic length scale of the underlying microstructure. We
rigorously justify the expansions u.(z) ~ u(x) + eU(x,z/¢) and 0.(z) ~ O(x,x/c) and
prove an estimate of the type

| 7z e —ul|o 0102 (0xv2)) + || (V) = (Vu+VyU) 120,702 (0xv2))
+ || 72 0. =8|~ 012 (0x vy + | Te(eV0:) =V, O 120, m12(0¢v,)) < VEC, (1.1)

where 2 C R? denotes the macroscopic domain and Y, C [0, 1) is the perforated reference
cell. Estimate (1.1) basically gives a quantitative indication of the speed of the (two-scale)
convergence between the unknowns of our problem and their limits, which is detailed in
the forthcoming sections. This work follows up previous successful attempts of deriving
quantitative corrector estimates using periodic unfolding; see e.g. [Gri04, Gri05, OnV07,
FMP12, Reilb, Reil6]. The unfolding technique allows for homogenization results under
minimal regularity assumptions on the data and on the choice of allowed microstructures.
The novelty we bring in here is the combination of three aspects: (i) the asymptotic
procedure refers to a suitably perforated domain, (ii) presence of a cross coupling in
gradient terms, and (iii) lack of compactness for #.. Our working techniques combines
e-independent a priori estimates for the solutions and periodic unfolding-based estimates
such as the periodicity defect in [Gri04] and the folding mismatch in [Reil6]. Estimate
(1.1) improves existing convergence rates for semi-linear parabolic equations with possibly
non-linear boundary conditions in [FMP12] or small diffusivity in [Reil5] from /4 to £1/2.
This improvement is obtained by studying all equations in the two-scale space €2 x Y, and
by suitably rearranging and controlling occurring error terms AZ .

It is worth noting that the availability of corrector estimates for the thermo-diffusion
system allows in principle the construction of rigorously convergent multiscale numerical



methods (for instance based on MSFEM like in [LLL14]) to capture thermo-diffusion
effects in porous media. Interestingly, for the thermo-diffusion system posed in perforated
domains such convergent multiscale numerical methods are yet unavailable.

The paper is structured as follows: In Section 2, we introduce the thermo-diffusion
model and prove existence as well as a priori estimates for the solutions of the microscopic
problem respective the two-scale limit problem. The periodic unfolding method and
auxiliary corrector estimates are presented in Section 3.1 and 3.2, respectively. Finally,
the corrector estimates in (1.1) are proved in Section 3.3. We conclude our paper with a
discussion in Section 4.

2 A thermo-diffusion model

2.1 Model equations. Notation and assumptions

We investigate a system of reaction-diffusion equations which includes mollified cross-
diffusion terms and different diffusion length scales. The cross-diffusion terms are moti-
vated by the incorporation of Soret and Dufour effects as outlined in [KAM14]. For more
information on phenomenological descriptions of thermo-diffusion, we refer the reader to
[deM84]. The concentrations of the transported species through the perforated domain €.
are denoted by wu., while 6. is the temperature. The overall interplay between transport
and reaction is modeled here by the following system of partial differential equations:

. = div(d.Vu.) + 7e°Vu, - V20, + R(u.) in Q.

0. = div(e2k.V0.) + pe’Vo. - Vou, in Q. (2.1)
supplemented with the Neumann boundary conditions
—d-Vue.-v = e(aus +bv.) on IT;
—e?k VO, v = eg0. on 07 (2.9)
—d.Vu,-v =0 on 00 \0T: '
—25.VO0.-v = 0 on 00 \0T:
and the initial conditions
u(0,7) = ul(x) and 0.(0,z) =60°(x),r € Q.. (2.3)

First of all, it is important to note that the e-scaling for some of the terms in the system
is variable with a, 8 > 0. We refer to the suitably scaled heat conduction-diffusion
interaction terms e*Vu, - V0, and €°Vu, - V%0, as “weak thermal couplings”, while the
“high-contrast” is thought here particularly in terms of the heat conduction properties of
the composite material that can be seen in €2£.V#6,. In this context, v denotes the normal
outer unit vector of €).. The matrix d. is the diffusivity associated to the concentration
of the (diffusive) species u., k. is the heat conductivity, while 7. := 7¢® and p. := ue”
are the Soret and Dufour coefficients. Note that d., k., 7, and p are either positive
definite matrices, or they are positive real numbers. Furthermore, the reaction term R(-)
models the Smoluchovski interaction production. In the original model from [KAM14], the
function v, is an additional unknown modeling the mass of deposited species on the pore
surface T'., and it is shown to possess the regularity v. € H'(0, T; L2(T.))NL>®((0,T) x T.).
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Figure 1: Example of microstructures: (i) isolated inclusion; (ii) pipe structure; (iii) holes
touching the boundary are not admissible.

Here we assume v, as given data. We point out that the linear boundary terms are relevant
for the regularity of solutions, but that they are not required to prove the convergence
rate of order of /¢ in (1.1).

To deal with perforated domains we employ the method of periodic unfolding as pre-
sented in [CDZ06]. Let Y = [0,1)? denote the standard unit-cell. We fix here and for all
the following assumptions on the domain and the microstructure.

Assumptions 2.1. OQur geometry is designed as follows:
(i) The domain §) = H?Zl [0,1;) is a d-polytope with length l; > 0 for all 1 <i < d.
(ii) The reference hole T C Y is an open Lipschitz domain and the perforated cell
Y, = Y\T satisfies Y, # (0. Moreover Y, is a connected Lipschitz domain and
AY, N IY is identical on all faces of Y .

The set of all nodal points is given via N, := {¢ € Z¢| (£ +Y) C Q}. With this we
define the pore part 7. and the perforated domain (2., which is connected, via

T.:= |Je(€+T) and Q=[] e(¢+Y0), (2.4)

£€N€ fENE

where A° denotes the interior of the set A. Both sets are open and form together the
original domain Q = T. U .. The assumptions on the domain guarantee the exis-
tence of suitable extensions from 2. to € (cf. Theorem A.2). Also traces exist and are
well-defined on the boundaries 02, and 07. With this, perforated domains with iso-
lated holes as well as the prominent “pipe-model” for porous media are included in our
considerations, see Figure 2.1. The boundary of the perforated domain €. is given by
00 = (0QUOT,)\ (02N IT;). Indeed, intersected pore structures at the boundary
I N AT, # () as in Figure 2.1(ii) are not excluded.

Remark 2.2. In the following we denote by € a sequence (,)nen of numbers satisfying
e, 1 € N. This implies that all microscopic cells (£ +Y,), for & € Z2, are contained in Q.
and no intersected cells occur at the boundary OS).

This assumption (tremendously) simplifies the presentation in this paper, however,
we believe that the same results can be obtained for Lipschitz domains Q by considering a
bigger d-polytope 2. with 2. € Q.. Then, all relevant coefficients, functions, and solutions
are suitably extended from ). to Q..



Assumptions 2.3. We impose the following restrictions on the data:
(i) The diffusion matrices d. and k. are given via

de(z) :=D(2) and rk(z):=K(%),

)

where D, K € L=(Y,; R are symmetric and uniformly elliptic, i.e.

sym

EIC(elip > 07 v(f?@/) € Rd X Y:k . C(elip‘fy2 S D(y)f ’5 S Cil ’5‘2

elip

(i) The constants T, u,a,b, g are non-negative.
(11i) The reaction term R : R — R is globally Lipschitz continuous, i.e.

AL >0,Vs,s0 € R: |R(s1)—R(s2)| < L|s1—sa].

Moreover, it is R(s) =0 for all s < 0.
(iv) The sink/source term v. is given via v.(t,x) := V(t,z,x/e) for any data V €
C([0, T, (WH=(; L(0T))).

Here we denote with a - b the scalar product of vectors in R? and set
LE(Q2) :=={p e L™(Q) | ¢ > 0 a.e. in Q}.

For technical reasons, we introduce the mollified gradient V° which is given as follows:
for 6 > 0, we introduce the mollifier

_ [ Cexp(1/(|z* =6%) if |z| <4,
Js(x) = { 0 if |z > 6,

where the constant C' > 0 is selected such that f]Rd Jsdr = 1. Using Js we define for
u € LY(R?) the mollified gradient

Vou :=v[ / Js(x—=&)u(§) dg|,
B(z,9)

where B(z,d) denotes the ball centered at x € R? with radius §. According to [Eva98,
Sec. C.4] there holds V°u € C*(Q2) and

305 > O,Vu c LQ(Q) : ||V6U/||LOO(Q) S 05||u||L2(Q). (25)

We assume throughout this text that ¢ and 0 are chosen such that § > 2ediam(Y’) holds.
This assumption arises in Lemma 3.2.

2.2 Existence of solutions and a prior: estimates

Now, let us consider the case a=f=1. This subsection and the next one are devoted the
existence of weak solutions to our target problem.

Theorem 2.4. Let the Assumptions 2.1 and 2.3 hold and let the initial condition (u?,6°)
satisfy
3C0, My >0 [[udllm ) + 1021120 + €l VERll2) < Co,
0 <ul(x),0%(x) < My for a.e. x € Q..



Then there ezists for every € > 0 a unique solution (u.,0.) of (2.1)~(2.3) with
ue, 0. € H'(0,T; L*(Q.)) N L0, T; H'(Q.)) NLE((0,T) x ).

Moreover the solution is non-negative, i.e. 0 < u., 0. < M almost everywhere in [0, T] xS,
and uniformly bounded

e[ 0,702 0.)) + [[ Ve 0,12 (00)) (2.6)
+||65||H1(0,T;L2(QE)) + 6”VQEHL‘X’(O,T;L?(QE)) <C,

where the constants M,C' > 0 are independent of ¢.

Proof. The existence of solutions, non-negativity, and uniform boundedness follow from
the Lemmata 3.2 —3.6 and Theorem 3.8 in [KAM14] by replacing k. and 7. with &%k,
and e7, respectively. Note that the proof can be generalized from diffusion coefficients
d., k. € R to symmetric matrices as in Assumption 2.3(i). In equation (35) respective
(57) in [KAM14] it holds for A € L>®(; R¥?) and u € H(Q):

sym

4 AVu-Vudx:/Avu-Vudx+/AVu-Vudm A::AT2/AV-Vudm. (2.7)
dt Jq Q Q Q

This argumentation also requires linear boundary terms. Otherwise one has to argue as in
[Tem88, Thm. 3.2] or [MRT14, Prop. 1] and differentiate the whole equation with respect
to time and then use a second Gronwall argument. ]

Remark 2.5. Since our solutions are uniformly bounded in L>((0,T) x §2.), we may
consider reaction terms with arbitrary growth as in [KAM14]. Also note that estimate
(2.6) remains valid for all o, 3 > 1 and = 0.

2.3 The two-scale limit system

For the parameters a=f=1, we obtain in the limit ¢ — 0 the following two-scale system

i = div(degVu) + R(u) + 2 (au + byg)  in

P v ! (2.8
0 = div,(KV,0)+ uV,0 - Vu in Q xY,
supplemented with the boundary conditions
—degVu - v =0 on 0f)
—KV,0-vy, = ¢gO onQxoT (2.9)
© is periodic on 2 x Y
and the initial conditions
u(0,2) = u’(z) and ©O(0,,y) = 0%x,y). (2.10)

Here v and vy, denote the normal outer unit vector of €2 and Y, respectively. To capture

the oscillations in the limit we define the space of Y-periodic functions H}.(Y) € H]..(Y)
via

HL,(Y,) = {® € H\(Y.) | @], = @lr_,}, (2.11)

per



where I'; and I'_; are opposite faces of the unit cube Y with 9Y = U?:l (I uT_;). With
this the effective coefficients are given via the standard unit-cell problem

VEERY: dgf &= min / D[V, ®+¢] - [V, P+¢€] dy. (2.12)
(PGH%)cr(Y*) Y*
Note that the integral is taken over fy* and not the average fy*. In full, formula (2.12)

reads 1/|Y| [, with [Y| = 1 here. For the boundary data v., we obtain in the limit ¢ — 0
the usual average

V(t,z) € [0,T] x Q: vt x) —]éTV(t,x,y) dy. (2.13)

Finally, we state the existence and uniqueness of solutions for the limit system.

Theorem 2.6. Let the Assumptions 2.1 and 2.3 hold and let the initial value (u°, ©°)
satisfy u® € HY(Q)NLP(Q) and ©° € L*(Q; H . (Ya)) NLX(Q X Y,). There exists a unique
solution (u, ©) of (2.8)—(2.10) with

u € HY(0, T;12(9)) N L=(0, T; HY(Q)) N LE((0, T) x ),
© € HY(0, T; HY(Q; LA(Y,))) N (0, T: HY(Q; HL(V2))) N L2((0,T) x Q x V).

per

(2.14)

Proof. The existence and boundedness of unique solutions (u,©) follows by Galerkin
approximation as in [MuN10]. In particular, the higher z-regularity of © follows by
[MuN10, Thm. 5]. O

Remark 2.7. By slightly modifying the proof of [MuN10, Thm. 4] after equations (40)-
(42), the assumptions on the initial values can be relaxed from v° € H*(Q) and ©° €
L2 HZ,.(Y2)) tou® € HY(Q) and ©° € L*(Q; HL(Y2)). To prove the L>(0, T')-estimates
for the gradients and the L2(0,T)-estimates for the time derivative we can argue as in
[KAM14] by exploiting the symmetry of deg and K as in (2.7) as well as the fact that the

boundary terms are linear.

3 Corrector Estimates

3.1 Periodic unfolding and folding of two-scale functions

The usual two-scale decomposition is given via the mappings [-] : R? — Z? and {-} :
R? — Y. For z € R?, [z] denotes the component-wise application of the standard Gauss
bracket and {z} := x — [2] is the remainder. With this, the periodic unfolding operator
7. : 1P(Q.) — LP(Q x Y,), for 1 <p < o0, is defined by ([CDZ06, Def. 2.3])

(Tu)(z,y) == u (<[2] +ey) (3.1)

Note that we do not need to extend u by 0 outside (). since there occur no intersected
cells at the boundary 0, cf. also Remark 2.2. We have indeed ([Z] 4 y) € €2 for all
(x,y) € Q2 x Y, such that 7; is well-defined in (3.1). In the same manner we define the
boundary unfolding operator TP : LP(OT.) — LP(Q2 x OT) by ([CDZ06, Def. 5.1])

(T u)(z.y) = u (<[2] + ). (3:2)



Following [CDZ06, MiT07] we define the folding (averaging) operator F. : L*(Q x Y,) —
L%(Q.) via

(F.U) () ;:][ U(2{2}) dz | . (3.3)

e([Z]+Y+) Qe

where f, udz = [A|™! [, udz denotes the usual average and u|q, is the restriction of u to
Q..

To derive quantitative estimates for the differences u.—u and 6.—©, we need to test
the weak formulation of the original system with H!(€.)-functions which are one-scale
pendants of the limiting solution (u, ©). There are two options to naively fold a two-scale
function U(x,y), namely

u.(r) =U(z,2)|o. and ul(z)= (F.U)(x).

However u. is only well-defined in H'((,), if at least x + U(x,y) belongs to C1(2), and
our limit (u, ©) (respective the corrector U for Vu) does not satisfy strong differentiability
in general. The second option u? is neither a suitable test function, since it is not H(Q.)-
regular. To overcome this regularity issue, we define the gradient folding operator following
[MiT07, Han11, MRT14, Reil6]| and adapt its definition to perforated domains.

The gradient folding operator G. : L*(Q; H}.(Y2)) — H'(Q) is defined as follows: for
every U € L*(Q; H},.(Y2)), the function G. U := @, is given in H'(€).) as the solution of
the elliptic problem

/ (. — F.U) p + (eVi. — F.(V,U)) -eVodr =0 for all p € H' (). (3.4)
Qe

Note that . is uniquely determined by the Lax-Milgram Lemma implying the well-
definedness of G.. For simplicity, we define for ¢ € H'(2) the norm

lelle == ez +ellVollz,y  with || 22 ol vy = @]l (3.5)

where the second identity follows from Lemma A.1. Both folding operators, F. and G.,
are linear and bounded operators satisfying

| Fe Ullizgany < IUllzxy,y  and || Ge Ulle < 2||Ul[L2@m ),
where the first estimate is due to Jensen’s inequality, while the second one is due to
Holder’s inequality.
3.2 Auxiliary corrector estimates

We are now collecting several results which are essential ingredients in the proof of our
error estimates (1.1). Note that u € H'(2) also belongs to the space H'(£2.) since Q. C
and we can apply the unfolding operator via Z:u := 7:(x.u), where x. denotes the
characteristic function of the set {2.. For the sake of brevity x. is omitted in the following.

Lemma 3.1. For all U € H'(; L*(Y,)) and u € HY(Q) we have
| 7: Fo U=Ullizaxy.) < €Uz and || To u—ullr2oxy,) < €l|ullur o),

respectively, where C' > 0 only depends on the domains 2 and Y.

7



Proof. The proof for the first estimate is based on the application of the Poincaré—
Wirtinger inequality on each cell (€ + Yi), see [Reil6, Lem. 3.1] or [Reilb, Lem. 2.3.4]
with ¢ = 0. The second estimate follows from the first one with

| 7z u—ul|2(oxv.) < || Ze Feu—ull2iaxy,) + || Fe u—ullur o),
cf. also [Gri04, Eq. (3.4)]. Note that F. u is indeed well-defined for one-scale functions. [

To control the mollified gradient we prove:

Lemma 3.2. For § > 2ediam(Y) and all u € L*(Q) and (z,y) € Q x Y, we have
IT.(Vu) = VP (2,9) < VECsllullo. (3.6)
where Cs > 0 depends on the mollifier Js and Y.

Proof. According to [Evad8, Thm. 6] we obtain for every (z,y) € Q x Y,
Tl = |2 ( [ v -oueic)| )
B(x,
— [ Vel - Qu
B(e[Z}e00)
For § > 2ediam(Y’), we define the following d-dimensional annulus
B := B(x, d+ediam(Y))\B(z, 0 —ediam(Y"))

of thickness e2diam(Y") and with volume |Bgz| < eConst(d, Y). We arrive at

‘Z(V‘Su) — V5u| (x,y)

VJs(e|E]|4+ey — E)u(€) dE — Vs(z — &u(é) d
/B o)y VL~ O e /B L, Ve = Eu(e) dg

<

VJs(x — §u(§) d£’ <V Islle2Bam 1ulli2Bag) < VEC|Ts]|cm @ayl|ull 20,

Bais
which proves the assertion. O

Having defined two folding operators, F. being dual to 7; and G, assuring H!-regularity,
we call their difference folding mismatch and control it as follows.

Theorem 3.3 (Folding mismatch). For C' > 0 only depending on Q2 and Y, it holds
1G-U — F. U2 + 1V G U = Fo(VyU)| |20y < €C|U |l @imr (vay)- (3.7)

Proof. The proof is based on [Reil6, Sec. 3.2] and adapted to perforated domains in
Appendix B. O

Since unfolded Sobolev functions 7; v € L*(Q; H'(Y.)) 2 L*(Q; H].(Ys)) are in general

per

not Y-periodic, we need to control the so-called periodicity defect, cf. [Gri04, Gri05]. In
the case of slow diffusion it reads:



Theorem 3.4 (Periodicity defect I). For every ¢ € H'(S.), there exists a Y -periodic
function ®. € 12(Q; H!_(Y.)) such that

per

1Pl vtz < Cllelle  and || T ¢ — @cllmvamo)) < VECllol,
where the constant C' > 0 only depends in the domains 2 and Y.

Proof. The proof relies on [Gri05, Thm. 2.2] which we can apply after suitably extending
¢ from the perforated domain ). to the whole domain Q. Let ¢ € H*(2) denote the
extension of ¢ as in Theorem A.2. According to [Gri05, Thm.2.2], there exists a two-
scale function ®, € L2(Q; H.(Y)) satisfying

1P | vz < Cll@llea and || 726 @ — Bullw v ) < VEC|@leqs
where  [|wl|e,q = [[w][r2@) + €l Vw2,

with C' > 0 only depending on Q, Y, and 7.¢ : L*(Q) — L3(Q x Y) defined on the
whole unit-cell as in (3.1), cf. also [Gri04, Gri05]. Note that it holds 7: ¢ = (7.€ 3)|axy.
Recalling the definition of H!  (Y;) in (2.11) with ¥, C Y, we define ®. € L2(; H!  (Y}))

per per

via &, 1= (/138|Q><y*, which gives
1Dl (varzy < 1Pellmeriz@y, |1 7o — Pellmpnm@yy < 1 7e¢ 6 — Ocllm (v )

and the proof is finished. O

For the case of classical diffusion, we consider ¢ € H'(Q) instead of H'(£2.). This is
related to the fact that, in the limit system, the u-equation is given in the macroscopic
domain €2, whereas the ©-equation as posed in the two-scale space {2 x Y,, and hence, it
cannot be reduced to 2 only.

Theorem 3.5 (Periodicity defect II). For every ¢ € H'(Q), there exists a Y -periodic
function ®. € L*(Q; H. _(Y.)) such that

per

19l (v < Cllelln  and  ||[Vo+V,@. — (Vo) |2y m ) < VEC|@llu @),
where the constant C' > 0 only depends in the domains ) and Y.

Proof. For ¢ € H!(Q) the desired estimates hold with ®. € L2(Q;H!_(Y)) according

per
to [Gri05, Thm. 2.3]. Choosing ®. = ®.|oxy, as in the proof of Theorem 3.4 yields the
assertion. N

3.3 Main Theorem and its proof

Having collected all preliminaries, we can now state and prove the corrector estimates for
our thermo-diffusion model.

Theorem 3.6. Let (u.,0.) and (u,®) denote the unique solution of (P.) and (Py), re-
spectively, according to Theorem 2.4 and Theorem 2.6. If the initial values satisfy

300 >0: H ’Z;ug—uoHLz(QXy*) + H 7}08—@0||L2(9Xy*) § \/EOO, (38)



then we have

| 72 e —ul|roo 0702 (0xv2)) + || (V)= (Vu+VyU) 1207502 (0xv2))
+ | 72 0. —O||L= (0. 11.2(0xv2)) + | Te(eVO:) =V, O |12 0,112 (0% v, )) < VeC, (3.9)

where the constant C' > 0 depends on the given data and the norms in (2.6) and (2.14).

Proof. Note that the domain € is convex, bounded, and has a Lipschitz boundary. Since
@ and vy belong to the space L2((0,T) x ), we can apply [Gri85, Thm. 3.2.1.3] and obtain
that the limit u(¢,-) belongs to the better space H%().

If not stated otherwise, the following notion of weak formulation is to be understood
pointwise in [0, 7).
Part A: Slow diffusion. Note that for u. € H'(2.) and v € H(Q) the following two
norms are equivalent up to an error of order O(¢), i.e.

172 ety — llue—ullzgan| < Cllullo). (3.10)

which is due to || Z: u—ul|i2xv.) < €C||ullm () by Lemma 3.1.
Step 1: Reformulation of 0.-equation. The weak formulation of the f.-equation reads

. dz = / —k.eV0, - eV + peVo, - Vouh do + / gl do (3.11)
Q. . P

Te

for all admissible test functions ¢ € H'(Q.). Applying the periodic unfolding operators
7. and 7, with 7_ k. = K, and exploiting their properties in Lemma A.1 and 3.2 gives

| ThTudrdy= [ -KVT0)-9T0) 4 aV(T6) (V) Tida
QXY OxYy
+/ gTP 0. T+ dxdo(y). (3.12)
QxoT

We choose 9 := 0.—G. O in (3.12), which is by construction of the gradient folding
operator G. an admissible test function in H*(€2.) so that

7; 95 7;(98_ g& @) dz dy
OxYs
= / _Kvy(lfe 06) ’ Vy[z(ea_ g6 @)] + :U’vy(lfa ‘98) ) ,Ta(v(sus) 7;(96_ gs @) dz dy
QxYiy
+/ gTP 0. T(0.— G. ©)dx do(y). (3.13)
QxoT
Adding £0 respective £V, © gives
7. 0-(T. 0.—©) dz dy
QxYs

B / —Kvy(’]; 93) ) Vy(,]; 96_@) + va(lzg 95) ) 7;<v6u6)(7; 95—@) dz dy
QXY

+/ 9T 0(T>0.—0)drdo(y) + Ay, (3.14)
QxoT

10



where the folding mismatch A?gld reads
M= [ {TAT6.6-0)-KV,(T.0.)-7,(0-T.0.6)
QxYy
+ 1Vy(Z-0.) - T.(V'u.)(0-T. 6. @)} dz dy

+/ 9T 0.(0—T" G. ©) d do(y). (3.15)
QxoT
To treat the boundary term, we exploit the continuous embedding L?(Q2; H!(Y,)) C L(Q x
oT), i.e.

EICemb > O,V\If € LZ(Q; H1<Y:k)) : H\IJHLQ(QXBT) S CembH\IJHLQ(Q;Hl(Y*))- (316)

Using the V°-estimates in (2.5) as well as the boundedness of the solution (u.,0.) in (2.6),
in particular, the improved time-regularity ||0-|/r2(0r)x0.) < 00 and || 72 0. || 2uui(v,)) =
[0-[|= by (3.5), gives

T
/ AL df < O T G. -6 2 01y xcms (v
0

Inserting 4+ F. © respective = F.(V,0), applying the triangle inequality, and using the
norm preservation of 7. gives
|72 G- ©-0|L2mv.)) < |G O F. O|lr2q.) + [[EV(G: ©)— Fo(VyO)||L2 (0.
+ || 1. F. 9—@||L2(QXY*) + || 1. fg(Vy@)—VyGHLQ(QXy*)..

Using the higher z-regularity © € L2(0,T; H'(Q; H._(Y.))), applying Proposition 3.3 for

per
the folding mismatch, and Lemma 3.1 for the unfolding error gives

T
| 18t < 06, (3.17)
0
Step 3: Reformulation of ©-equation. The weak formulation of the ©-equation reads
OFdzdy = / ~KV,0 -V, ¥ + uV,0 - Vul dz dy + / gOV dx do(y)
QxYiy QxYiy QxoT

(3.18)
for all admissible test functions ¥ € L2(Q; H!_(Y.)). We choose ¥, according to Propo-

per
sition 3.4 such that we can control the periodicity defect of 7; 1 for arbitrary functions

Y € HY(Q.), namely

/ @’Z;@Z;dxdy:/ ~KV,0 -V, T.¢ + uV,0 - VouT. ¢ do dy
QXY QxYi

+ / g@’];bwdxda(y)—i—ASer, (3.19)
QxoT

)

per

where the periodicity defect A°  is given via

B 1= /Q Y, @(7;: v=".) = KV,0 -V, (- T.¢) + uV,0 - Vd“(\ys_ 7. ) dz dy

+/ gO(V.— T ) dx do(y). (3.20)
QxoT
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Applying Hélder’s inequality and the embedding (3.16) yield

er emb L2(Y,;HY(Q L2(Y,;HY(Q)) T K] V4 © - U L2 (Y HL())
|Afer] < (14 Cem) {11 SINACT + 1 V,© - Vou

+9[l©]

hp

L2(8T;H1(Q))}H 1. 7»b—\I’||H1(Y*;H1(Q)*)'
According to the higher z-regularity of © in (2.14) it is V,0 - Vou € L*(Y,; H'(Q)) with

Vou € WH(Q) such that we can apply Theorem 3.4 and obtain
/ |Aper| dt < Ol e =Ve [ (ramr @) < O(Ve)ll T L2,y < m1 (v2)) - (3.21)

Choosing 9 := 0.— G. © in (3.19) yields

@ﬂ(&s—gs@)dxdy:/ {-KV,0 -V, T.(0.— G. ©)
QXY QXY

+uV,0 - VuT(0.— G.0)} dz dy
+/ 9O TP(0.— G. ©) du do(y) + AL, (3.22)
QxoT

Adding £0, and respectively £V, 0, as in Step 1 gives

/ @(7;95—@)dxdy=/ ~KV,0 -V, (7. 0.—0) + uV,0 - V°u(T. §.—0) dx dy
QXY

QXY

+ / g@<7::b (95_@) dx dO’( ) + Aper fold» (323>
QxoT
where the folding mismatch A, is determined by

AR = /Q y 0(7.G.6-0) —KV,0 - V,(0— 7. G. 0) + uV,0 - V°u(0— 7. G. ©) dz dy
+/ g0(0—-T"G.0)drdo(y). (3.24)
QxoT

The estimation of A, follows along the lines of A%, in Step 1 using the boundedness
of the limit (u,©), in particular, the boundedness of [|0;0||r2(0,r)xaxy,). Finally, we
insert the test function ¢ := 6.— G, © into the ASH estimate in (3.22) and apply Young’s
inequality with n; > 0

T
/0 | AL+ 1AL+ [ARa| dt < eChy 4+ mll T2 0:=O |32 (0.1) xumrt (12 (3.25)

per

Step 4: Derivatwn of Gronwall-type estimates. Subtracting equation (3.23) from
(3.14) and using 3 dtH\I/HL2 xvy) = Jaxv. YW dz dy gives

3t 700l = [ {-KIV,(T.0.-0)]- [V,(T.0.-0)
QXY
uVy (T 6.) - T.(Vou.) = V,© - VOu)(Z. 6.—6) } dz dy
s [ G766 dedaty
Qx0T
+ A — A

per,fold*

(3.26)
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We continue by estimating each term on the right-hand side in (3.27) separately. Exploit-
ing the interpolation inequality (cf. e.g. [LiMT72])

C > 0,V € L*(Q; HY(Y,)) - ”\IIH%P(QXGT) < Cingl[ V|| L2(2xv2)

VL2 vy
and then Young’s inequality with 7, > 0 lead to
172 0.~ F2(xor) < Crall 72 =Bl 20y.) + 702l Z2 0:=O 2001 (v - (3.27)

Reformulating the p-term gives

| HVAT0) TV )~ V,0 - V(T 0.-0) de dy
QxYi
— [ VT 0 [TV - (T 0~ ) de dy (3.28)
QOxYs
+/ 1V, (T2 0.—0) - Vou(7. .—0) dz dy. (3.29)
QXY

Using in (3.29) that [|[VullL=@xy.) = |[VoullL=@) < Csllullrz) is bounded as well as
Holder’s and Young’s inequality with n3 > 0 gives

[ T 06) VT -0 dr dy\
QxYi

< nCsllull2) || Vy (22 0:=0O) ||L2@@xv) || 72 - =02 (xv2)
< Ol T2 0O\ (sevay + 13l Vi (T2 0:—O)[E2 010y (3.30)

In a similar manner we obtain for (3.28) by adding & F.(V°u) and using estimate (3.6)

| i 0) (V) -Vl (T 0-0) o dy]

QXY

< MHVy(?; 95>HL2(Q><Y*)H %(Vaue)—véuﬂLw(an) ,Tees_@”L?(QxY*)

< Ol T2 0~ Ol {1 (Vo) = T (Vo) vy + | To(Vou)= Vo0l aevsy }
< Cs|| T2 0.—O|lr2xv.) { Jue—ulli20.) + Vellulliz@ }

< C{IIT: 0= Ol nrsy + Ite—ulliz,) + ellulifagay |- (3.31)

Overall we can estimate equation (3.26) with the uniform ellipticity of K and (3.27)—(3.31)
such that

1d
S 117 66_6”32((“)@) < (m + 2 + 13— Caip) | Vy (7 08_@)||i2(QXY*)

2 dt
+ C {11 T 0.~ aqanrs) + Iue—ullEage }
1Al + A8 + 1A% + ellulEz )

Choosing 1; = Ceyp/6, integrating over [0,¢] with 0 < ¢t < T, as well as recalling (3.10)
and (3.25) yields

172 0=(8) = O (B I2(@xv2) + Cetin | Vi (T2 0 =O) [T2((0.1yxxv2)

< C{I1 T 0.~ oyxavnrey + | T te—ulzomanre)
+ || 7. 02—@0||L2(Q><y*) + O(E) (332)
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Part B: Classical diffusion. We point out that the higher regularity of the limit
u € H*(Q) implies the higher z-regularity of the corrector U € H'(Q; H],(Y)) which is
the unique minimizer of the unit-cell problem (2.12) with £ = Vu(z).

Step 1: Reformulation of u.-equation. The weak formulation of the wu.-equation is

given via
/ tu.pdr = / —d.Vu. -V + eV, - V0.0 + R(u.)pdz + / e(aue + bv.)pdo
€ € oT:

for all test functions ¢ € H'(€2.). First of all note that the cross-diffusion term

Cross

Ale :—/ erVu, - V20.pdx

€

is of order O(e) thanks to Holder’s inequality and the boundedness in (2.6) and (2.5)
|Adioss| < e7Csl[Vue [0 10:l 2o |l 00 - (3.33)

Cross

Applying the unfolding operators 7. and 7, in particular, rewriting 7. d. = D and
(TP v.)(z,y) = V(e([x/e]+y), y), and using the properties in Lemma A.1 gives

T . T pdudy = / DTV Te(V) + R(Tous) To pdady

QXY QXY

+ / (a ’];b Uz + bV) Tgb pdrdo(y) + A app? (3.34)
QxaT ’
wherein we replaced the boudnary term 7* v, with V and created the approximation error
Ay = / b (TP v.—V) T pdzdo(y).
QxoT

Using that |z—e([z/e]+y)| < ediam(Y") holds for all (z,y) € Q x T, we obtain the point-

wise estimate (7" v.)(z, y)—V(z,y)| < eC||V, V|| (o) thanks to the Lipschitz continuity

of z +— V(z,y). Together with embedding (3.16) we obtain for the approximation error
s

app

< eC|| T: ollL2 @ (va))- (3.35)
We choose the test function ¢ = u. — (u|g.+£G. U) € H(Q.) in (3.34) such that

QEi%(7;u5—%O(LEdy

QXY

= [ DE(VW)ITTu)~(Vu+ GU) + BT 0 (T we—u) o dy
QXY
+ / (CL ,];b Ue + bV) (7?3 UE—U) dz dO'(y) + A’lctlrsoss,app,fold? (336)
QxoT
where we added +u and £[Vu+V, U], and created the folding mismatch

M= [ A{IR(Tu) - Tl Tu+T.6.0)
QXY
—D7.(Vu.)[Vut+V,U — T.(V(u+e G. U)) } dz dy

—i—/ (aTPu. +bV) (u—Tou+¢e7.G-U)dzdo(y). (3.37)
QxoT
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Exploiting the higher regularity u € H?(Q) we obtain with Lemma 3.1 and Theorem 3.3

| Zc u—ul|2@axy.) + | Ze(Vu) = V(|2 oxy,) < eCllullmq),
| Z:[eV (G- U)] =V, U||120xv,) < €C|U |lurimr (v.y)-

The boundary term in (3.37) is controlled via

| Z: u—u||2(oxor) < Cembl| Ze u—ul|r2(m (v,))
1/2
= Gt (1T =iy + e T Brrsy) < Cllulhney, (338)

while noting that Vyu = 0. With this, €|| 7 G. Ul|r2(u1(v.)) < €2||U |2 v,y by (3.5),
Holder’s inequality, and the boundedness of u. in (2.6), we obtain

T
/ AL | dt < O(e). (3.39)
0
Step 2: Reformulation of u-equation. The weak formulation reads
/ wpdr = / —degVu - Vo + R(u)p + %(au + bug)p dx
Q Q
for all ¢ € H'(Q) which is equivalent to
/ wpdrdy = / —D[Vu+V,U] - [Vo+V, @] + R(u)p dz dy
QXY QXY
+ / (au + bV)p dx do(y)
QxoT

for all test functions ¢ and ® € L2(Q;H!_(Y,)). We choose ®. € L2(Q;H!_(Y,)) such

per per

that we can control the periodicity defect of 7 ¢ as in Theorem 3.5

/ wT. pdrdy = / —D[Vu+V, U] - T.(Vy) + R(u) 7: ¢ dx dy

QXY QXY
+ / (au+bY) I pdz do(y) + Al (3.40)
QxoT
The periodicity defect is given via
M= [ IR = il(p= T p)-DITur VU] (V4,0 — T(Vip) dody
XY«

+ /Q GG T2 ¢) dz do(y) (3.41)

and it is controlled by applying Lemma 3.1, Theorem 3.5 with D[Vu+V, U] € H'(Q; L(Y.)),
arguing as in (3.38) for the boundary term, and using the boundedness of u in (2.14) via

A% | < VEC| @l ). (3.42)

per

Now, we choose ¢ = Ui, — (u+£G. U), where ® denotes the extension from H'(€2.) to
H'(Q2) according to Theorem A.2. Note that the test function belongs to the space H'(Q)
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which differs from Step 1 wherein it belonged to H'(€.). Indeed it holds 7 u. = 7 u.
almost everywhere in € x Y,. Inserting ¢ into (3.40) and rearranging gives
/ W7 ue—u) dedy = / {-D[Vu+V,U] - [T:(Vu.) — (Vu+V,U)]
QxYs QxYs
+ R(u)(T: ue—u) } dz dy
+ / (au + bV)(TP u.—u) dz do(y) + A o (3.43)
QxoT

and another folding mismatch

Al = / [[R(u) — i) (u-Tou+2G. U)
QXY
~D[Vu+V,U] - [Vu+V,U — T.(Vu+eV G. U)] } dz dy
+/ (au +bV)(u—T.u+eG.U)dzrdo(y). (3.44)
QxorT
The folding mismatch A{,; has the same form as Afq, in (3.37) when replacing u with

7. u..

Finally, we control the norm

||90||%Il(ﬂ) = || Zc ue — T-(ute Ge U)Hi?(QxY*) + | Z:(Vue) — T.(Vu+eV G, U)Hi%szxy*)
< TEU&_U“?}(QXY*) + | Z:(Vue) — (vu+VyU)||iQ(Q><Y*) +0(&?)

by using once more Lemma 3.1 and Theorem 3.3. Applying Young’s inequality with
m > 0in (3.42) yields

‘Aper} <eCy +m <|| e Ue— UHL2 @xv) T | Zo(Vue) — (Vu+va)||i2(Q><Y*)) . (3.45)

Step 3: Deriwation of Gronwall-type estimates. Subtracting equation (3.43) from
(3.36) yields

3l Tl = [ {-DIT(Vu) = (Vb0 - (V) - (Va4 ,0)
+ [R(Toue) — R))(T: ue—u) } derdy

b u
+ / CL| 7; ug—u|2 dzx dO'( ) + Across ,app,fold Aper,fold'
QxoT
Using the uniform ellipticity of D, the Lipschitz continuity of R, and the estimations of

the periodicity defect in (3.45) gives

1d

B) dt” T u-— UHL? (QxY%) < —Caip|| Zo(Vue) - (vu+va)||iQ(Q><Y*) + L| Zue_UHi?(QxY*)

+ (lCembH 7:3 uE_uHiQ (H(Yx)) + |Agrgoss,app,fold| + ‘Azjld| + 50771
i (1T ve=ulBeguersy + | T(Tue) = (VutV,0) o))
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Choosing 71 = Cep/2 and integrating over (0,¢) with 0 <t < T we get
17 we () —u()|F20vsy + Cetipll Te(Vie) = (VutVyU)l[Eao.x0xv2)

< 40 { I Tove=ulagoeery + 11 T 0= a0y cersy |
| T gy, + O) (3.46)

Final step. We add (3.32) and (3.46) and finally obtain

| 72 ue (t) —u(t) P20y, + 11 2 0-(0) —O (D) 1E2 v
+ Celip {H Z(vus)_(vu—i_VyU)H%Q((O,T)XQXY*) + H Z(Eves)_vy@H%?((O,T)XQXY*)}

<C {H Zug—uniz((()j)xﬂxn) + || 72 95_@||32((0,T)><Q><Y*)} +O()
+ || ZUS_U’O“%Q(QXY*) + || ZQS_GOH%P(QX)/*).

The application of Gronwall’s Lemma and the convergence of the initial values in (3.8)
complete the proof of (3.9). O

4 Discussion

Our corrector estimates generalize the qualitative homogenization result obtained in
[KAM14] in two ways: on the one hand we prove quantitative estimates. On the other
hand, we consider slow thermal diffusion as well as different scalings ¢* and % of the
cross-diffusion terms. Under slightly more general assumptions on the data with respect
to the x-dependence, our estimates imply in particular the rigorous but qualitative ho-
mogenization limit for this system.

What is the limit for arbitrary «,3 > 07 For all @ > 1 the limiting u-equation
remains as it is and the cross-diffusion 7e*Vu, - V6. disappears in the limit ¢ — 0. For
a = 0 we have a priori that . — fy* © dy weakly in L*(2) and we expect the additional
term 7Vu - V°f, ©dy in the limit. The choice a € (0,1) is not meaningful, since the
cross-diffusion term is unbounded with ~ e*.

For 3 > 1 the cross-diffusion term eV, - V2u. vanishes in the limiting ©-equation
and for § < 1 it diverges with e”~*(|eV6,||12(q,). Indeed only the choice 3 = 1 is mean-
ingful, since it corresponds to the scaling of £2k.

Possible generalizations concerning the data. Our analysis allows for not-exactly
periodic coefficients such as d.(z) := D(z,z/e) with D € WH(Q; L>°(Y,)) as in [Reil6].
The coefficients 7. and pu. as well as the reaction term R. may also be not-exactly pe-
riodic in the same manner. Moreover all coefficients may additionally depend Lipschitz
continuously on time.

The sink/source term v, may be less regular by choosing v.(t, x) := [F. V(¢,-,-)](z) to
capture possible spatial discontinuities in V € C([0, T]; H'(Q2; L*(9T))).

On the boundary 0T, we may consider globally Lipschitz continuous reaction terms
g : R — R. In this case, the boundary term in (3.26) is controlled by L|| 7.° HE_GHiQ(QxaT)’
where L > 0 denotes the global Lipschitz constant. Non-linear boundary terms may
require better initial values to derive the L2-regularity of the time derivatives as in
[FMP12, Reil5], however the error estimates hold as they are.
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On the choice of the initial values. For given «° € H'(2) N LY () the obvious
choice is u? = u’|q. such that the assumption || 7; ul—u’||r2@xy,) < VeCo is satisfied.
Perturbations of the form u? = u’+eV (x, z/e), which preserve non-negativity, are possible
as well.

In the case of slow diffusion such a direct choice is not possible mainly because 6°
and ©° live in spaces of dimension d and 2d, respectively. Let ©° € H'(Q; H}..(Y)) N
ch(Q X Y.) be given. One possible choice is 02 = G. 0" however we are not able to
prove 62 € L°(€2.) in this case, since LY (€.) is not a Hilbert space. Hence, we assume

strong differentiability, such as ©° € CH(Q;H!_(Y.)) or ©° € HY(Q;C!_(Y.)), so that

per per

00 = ©°(z,/e) is well-defined in H*(Q.) N LY ().

A Properties of periodic unfolding

We recall elementary properties for the periodic unfolding operator 7. and the boundary
unfolding operator 7> as well as extensions operators.

Lemma A.1. Let 1 <p,q < oo with 1/p+1/q < 1.
1. The operators T. and T are linear and bounded.
2. The product rule

T(w) = (Lu)(Tv) and TP(uv) = (T"w)(TPv) (A1)

holds for all w € LP(S2.), v € LY(Q) and u € LP(0T;), v € LI(9T.), respectively.
3. The norms are preserved via

| T2 ulluroxys) = lullieny  and || T2 ulluroxor) = Vel|ullieor) (A.2)

for all uw € LP(§2.) and u € LP(0T%), respectively.
4. One has the integration formulas

/udx— T.udxdy and 6/ udo(z) = T udrdo(y) (A.3)
c QxYs oT: QxoT

for all uw € LY(Q.) and u € LY(OT.), r pectwely
If u e HY(Q.), then it is Tou € L2(; HY(Y.)) with T.(eVu) = V, (T u).
6. For all u € LP(Q).) it holds T.[R(u)] = R(7T:u) where R : R — R is an arbitrary

function.

S

Proof. Assertions 1.-5. follow from [CDZ06, Prop. 2.5 & 5.2] and 6. from [7; R(u)|(z,y) =
Rlu(e[z/e]+ey)] = [T(T-uw)](x,y) for all (z,y) € Q x Y.. O

Theorem A.2 ([H6B14)). Under the Assumptions 2.1 on the domain there ezists a family
of linear operators L. : H(Q.) — HY(Q) such that for every u € H' () it holds

(Lou)lo. =u  and || Leulluro) < Cllullaqy

where C' > 0 only depends on the domains Q, Y, and T.
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B Proof of the folding mismatch

The proof of Proposition 3.3 for the folding mismatch follows [Reil5, Reil6] and is adapted
to perforated domains. We define the scale-splitting operator Q. by Q;-Lagrangrian in-
terpolants, as customary in finite element methods (FEM), following [CDZ06, Sec. 3]. By
the Sobolev extension theorem, there exists for every w € H'(Q2) and U € H'(Q; H; . (Y5))

a function @ € HY(R?) and U € HY(R% HL_(Y,)), respectively, such that it holds

per
W]y < Cllwllm@ and Ul @am,, vy < CllUm@m,, ),

where C' > 0 only depends on the domain 2. Then Q. : H(R?) — W1°°(Q,) is given via:
e For every node €&, € €Z? we define

Qo)) = ) d
e(&rt+Ys)
(Note that this definition is slightly different than in [CDZ06]. Therein the average
is taken over balls B. centered at &, and not touching the pores 7.. The present
definition has the advantage that the equality (F.w)(e&) = (Q. w)(e&x) holds for
all nodes.)

e We define Q. w on the whole R by interpolating the nodal values (Q. w)(g&;,) with
Q;-Lagrangian interpolants yielding polynomials of degree d, for more details see
[CDGO8, Def. 4.1] or [Reil5, Def. 2.3.6].

e On (), we set Q. w = (Q." w)|q..

For given two-scale functions U(x,y) = w(z)z(y) of product form, we can now con-
struct approximating sequences in H'(€2.) via u.(z) = (Q. w)(z)z(z/e) and require only
the minimal regularity w € H'(Q) and z € H}.(Y,). According to [CDZ06, Prop. 3.1] the
macroscopic interpolants satisfy

| Qe w10y < Cllwl|m (o), (B.1)

where C' > 0 only depends on 2 and Y,. Furthermore, we can control the difference
between F. and Q. by:

Lemma B.1. For w € H'(Q) and z € L*(Y,) it holds
[(Few — Qew)z(:) 2. < eCllwllmollzllizon), (B.2)
where C' > 0 only depends on 2 and Y.
Proof. The proof follows along the lines of [Reil5, Lem. 2.3.7] by replacing Y with Y,. O
Having collected all necessary ingredients, we can now handle the folding mismatch.

Proof of Theorem 3.3. The proof follows along the lines of [Reil6, Thm. 3.4] by re-
placing Y with Y.. In a first step estimate (3.7) is derived for U(z,y) = w(x)z(y) us-
ing the “folded function” J.(x) = (Q. w)(z)z(x/e) and the estimates (B.1)-(B.2). In a
second step this result is generalized to arbitrary two-scale functions U(x,y) by exploit-
ing the tensor product structure of the space H'(Q;H!_(V,)) and expressing U(z,y) =

per
Soo2 ui(x)®;(y) in terms of an orthonormal basis {®;}2, C H! (Vi) with w;(z) =

per

fy* Ulz,y)®:(y) dy. []
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