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ABSTRACT. We consider a single-cell network of random transmitters and fixed relays in a bounded domain of
Euclidean space. The transmitters arrive over time and select one relay according to a spatially inhomogeneous
preference kernel. Once a transmitter is connected to a relay, the connection remains and the relay is occupied.
If an occupied relay is selected by another transmitters with later arrival time, this transmitter becomes frustrated.
We derive a large deviation principle for the space-time evolution of frustrated transmitters in the high-density
regime.

1. INTRODUCTION AND MAIN RESULTS

We consider a single-cell communication network of random transmitters and fixed relays. Every transmitter
tries to send data to a central entity via one relay according to a spatially dependent preference function. Each
relay can only serve one transmitter and the transmitters are competing for this shared capacity. In particular,
a group of transmitters might not be successful in finding relays to release their data to and therefore become
frustrated. We will assume that the start of the data transmission is time dependent so that the set of frustrated
transmitters gradually increases over time. We present a large deviation principle (LDP) for the measure-valued
process of frustrated transmitters when their number increases.

The motivation for this work is to derive the LDP for a capacity-constrained network embedded in the Euclidean
space. So far in the literature, there have been two separate approaches. On the one hand, considerable work
has been done to understand the large deviation behavior of sophisticated capacity-constrained networks in a
mean-field setting, see for example [9, 8]. On the other hand, driven by recent developments in wireless net-
works, from an engineering perspective, there has been a surge in research activities to develop a fundamental
understanding of spatial effects in models that are based on stochastic geometry [1, 14]. In the present paper,
we analyze a simple model of a spatial relay network which is to be seen as a first step into the realm of
space-time LDPs for capacity-constrained networks.

More specifically, consider fixed relays at locations Y λ = (yj)1≤j≤nλ in a compact window W ⊂ Rd with
boundaries of vanishing Lebesgue measure. We investigate the high-intensity regime and thus assume that the
empirical distribution

lλ = λ−1
∑
yj∈Y λ

δyj

converges weakly, as λ ↑ ∞, to some probability measure µR on W . Further there will be transmitters dis-
tributed according to a Poisson point process Xλ in W . Its intensity measure is of the form λµs

T with λ > 0
and µs

T a finite measure on W which is absolutely continuous w.r.t. the Lebesgue measure. Initially, all relays
are idle and the transmitters do not send data. For each transmitter Xi there is a randomly distributed time
Ti ∈ [0, tf ] and in (Ti, tf ] there will be constant data transmission. The times Ti are assumed to be iid with
distribution µt

T which is absolutely continuous w.r.t. the Lebesgue measure on [0, tf ].

The transmitters are assumed to have basic knowledge about the transmission quality to each of the relays.
More precisely, each transmitter Xi uses this information to assign a spatial preference κ(Xi, yj) ∈ [0, 1] for
the connection fromXi to yj . At time Ti the userXi tries to send its data to a relay yj chosen according to the
preference kernel

κ(yj |Xi) =
κ(Xi, yj)∑

yk∈Y κ(Xi, yk)
, (1)

so that the selection probability is proportional to the spatial preference function κ. In our model, data transmis-
sion fails if the chosen relay is already occupied by some other transmitter that has established a connection
earlier in time.

Since every transmitter Xi keeps the connection until time tf , the time-dependent status of its target relay
Y (i)(t) ∈ {0, 1} is a step function, starting in 0 as being idle and jumping to 1 at the time where it becomes
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busy. In particular Γλ = {Γλt }0≤t≤tf with

Γλt =
1
λ

∑
Xi∈X

1{Xi(t) = 1}δXi (2)

denotes the normalized, time-dependent random measure of frustrated transmitters. Here Xi is the (time in-
variant) position of a relay, but Xi(t) represents the time-dependent status of frustration of the transmitter Xi.
More precisely, Xi(t) equals 0 for t < Ti and jumps to 1 at t = Ti if the chosen relay is already occupied, i.e.
Y (i)(t−) = 1. Figure 1 provides a snapshot of the relay network after a finite time.

FIGURE 1. Collection of transmitters (green and red) communicating with one central entity
(black) via one relay (blue) each. Red transmitters are frustrated due to low capacity at the
associated relay. Green transmitters are satisfied as they successfully send data to a relay.

From the perspective of the network operator, it is critical to understand the time- and space-dependent pro-
cess of frustrated transmitters in large networks. Once this understanding is achieved, it is possible to answer
questions like:

What is the overall proportion of transmitters which are frustrated at a given point in time? Are most of the
frustrated transmitters located in a specific area?

Our main result provides a probabilistic description of the process of frustrated transmitters in an asymptotic
regime where the number of devices tends to infinity. In particular, we perform a large deviation analysis for the
empirical measure of frustrated transmitters Γλ, where rates of convergence for unlikely events are derived.

1.1. Large deviations without preference. Note that Γλ allows us to keep track of transmitter locations but
not on the chosen connections to specific relays. In particular, for general preference kernels, Γλ is not Mar-
kovian since the required spatial information of occupied relays for a new transmitter request at time t cannot
be extracted from Γλt−. However, for κ ≡ 1, the Markovianity of Γλ can be preserved since transmitters have
no spatial preference in their choice of relays. Therefore, we establish the case κ ≡ 1 first and use it as a basis
for the general case.

For this, we first note that the process of frustrated transmitters Γλ can be recovered from the process of
satisfied transmitters Bλ = {Bλ

t }0≤t≤tf . This process is easier to describe as it coincides with the number
of busy relays. More precisely, when at time t = Ti a transmitter request from Xi arrives, the chosen relay is
already busy with probability given by the total proportion of idle relays and the transmitter becomes frustrated.
In this case,Bλ stays constant at t. Otherwise, if the chosen relay is idle, the relay becomes busy andBλ grows
by λ−1δXi at t. As the number of satisfied transmitters equals the number of busy relays, this has probability
1−Bλ

t−(W )/rλ where rλ = |Y λ|/λ. Note that this random choice of relays can be encoded by assigning a
uniform random variable Ui ∈ [0, 1] to transmitter Xi. If Ui ∈ [Bλ

t−(W )/rλ, 1] then Xi connects to an idle
relay. The encoding of the spatial relay configuration into a [0, 1]-valued threshold is illustrated in Figure 2.
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FIGURE 2. A transmitter (black) chooses a relay at random (left), where the relay can either
be already busy (red) or idle (green). Without spatial preferences the relay information can be
reduced to a single threshold in [0, 1] (right).

More precisely, the evolution of the process of satisfied transmitters Bλ is given as the solution of the time
integral equation

Bt(dx) =
∫ t

0

∫ 1

Bs−(W )/rλ

Lλ(ds, du,dx) =
∫ t

0
Lλ(ds, [Bs−(W )/rλ, 1], dx), (3)

where
Lλ = λ−1

∑
Xi∈Xλ

δ(Ti,Ui,Xi)

is the empirical measure of transmitters. In particular, the Poisson point process Xλ of transmitters carries
marks for data request time and choice variable. Its intensity measure λµT in V = [0, tf ] × [0, 1] ×W is
given by

µT = µt
T ⊗ U ⊗ µs

T

and U is the uniform distribution on [0, 1].

In words, equation (3) describes the evolution of the empirical measure of satisfied transmitters. This measure
gains mass λ−1 at position x if there is an additional transmitter request from position x at time t and this
transmitter picks a relay that is idle at time t−. From Bλ the random measure of frustrated transmitters can be
recovered via

Γλt (dx) = Lλ([0, t], [0, 1],dx)−Bλ
t (dx).

Note that, as the number of devices tends to infinity, in the limit, the point masses associated to individual
devices disappear and the picture becomes continuous. Thus, we need to introduce processes of frustrated
transmitters for absolutely continuous measures. More precisely, let ν be a finite measure in M = M(V )
where ν(dt,du,dx) has the interpretation of the intensity of transmitters at dx with data-entry time dt and
choice variable du. Then, for general measures and normalized number of relays r, equation (3) has the form

βt(dx) =
∫ t

0

∫ 1

βs−(W )/r
ν(ds, du,dx) =

∫ t

0
ν(ds, [βs−(W )/r, 1], dx). (4)

For illustration purposes let us present two examples here.

1 For the empirical measure ν = Lλ of the Poisson point processes Xλ and r = rλ, the unique solution
β for (4) is given by Bλ.

2 For the a priori measure µT as a driver and normalized relay number r = 1, the unique solution of (5) is
given by βµs

T where

βt = µs
T(W )−1(1− e−µs

T(W )µt
T([0,t])).
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Note that, instead of (4) with r = 1, it suffices to consider the scalar equation

βt =
∫ t

0
ν(ds, [βs−, 1],W ). (5)

Using Schauder’s fixed point theorem and monotonicity, we will show in Subsection 2.2 that existence and
uniqueness of solutions of (5) for absolutely continuous measures can be established. With the steps we have
just described we arrive at a solution which we will denote β(ν). Moreover, in the absolutely-continuous case,
the solution will be continuous and increasing in time.

From the solution β(ν) one can compute the normalized process of frustrated transmitters γ(ν) via the formula

γt(ν)(dx) = ν([0, t], [0, 1],dx)− βt(ν)(dx). (6)

In the following theorem we show the LDP for Γλ in the setting where κ ≡ 1. Recall the definition of the relative
entropy

h(ν|µ) =
∫

log
dν
dµ

dν − ν(V ) + µ(V )

if ν � µ with h(ν|µ) =∞ otherwise. We consider Γλ as a measure-valued process and work in the Skorohod
space. That is, we consider

D = {f ∈M(W )[0,tf ] : f is càdlàg w.r.t. the weak topology onM(W )}

equipped with the Skorohod topology, for details see for example [7].

Theorem 1.1. The family of measure-valued processes Γλ satisfies the LDP in D with good rate function given
by I(γ) = infν∈M: γ(ν)=γ h(ν|µT).

Note that a scalar variant of Theorem 1.1 appears in [2, Theorem 2.7] when transmitters are interpreted as
bins and relays as balls. This provides an application of this classical model from random discrete structures
to communication networks. However, the results in [2] cannot be used to prove Theorem 1.1, since the balls
arrive at deterministic times, whereas in our setting also the arrival times of the transmitters are random and
not necessarily homogeneous.

Moreover, in the scalar setting, it is possible to explicitly perform the minimization only over the choice compo-
nent. Then, the rate function of Theorem 1.1 can be expressed as

I(γ) = inf
β

∫ tf

0

[
h(β̇t|1− βt) + h(γ̇t|βt)

]
dt.

Here, we assumed µt
T(dt) = 1[0,tf ](t)dt for simplicity and the infimum is taken over increasing and abso-

lutely continuous paths. This form of the rate function coincides with the one derived in [15] in the setting of
chemical-reaction networks. The interpretation of our communication-network evolution is then that the species
of frustrated and satisfied transmitters are generated at rates βt respectively 1−βt. Theorem 1.1 is not covered
by the standard results in [11,15], since in our setting, these rates are not bounded away from zero.

In the literature attempts have been made to relax the assumption of strictly positive rates [16]. However, our
model is also not covered by the results in [16], as the crucial interior cone property is violated: Once all relays
are occupied it is not possible to move back to a state where satisfied users are generated at positive rate.

Finally, it is difficult to extend the interpretation of our network as a chemical reaction if we take spatial reso-
lution into account. Then, the space of species would become uncountable since spatial locations have to be
tracked. This is another reason for our decision to rely on marked Poisson point processes and measure-valued
differential equations in Theorem 1.1.

Let us also point out that, instead of the Skorohod topology, other topologies for process LDPs have been
considered in the setting of chemical-reaction networks. As will be apparent from the proof, Theorem 1.1 can
be extended, for example, to the bounded-variation topology as considered for example in [12].
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1.2. Large deviations with preference. In this section, we deal with spatial preferences of transmitters. As
a consequence, the probability to send to a certain location depends on the spatial location of transmitters
and relays and not just on the number of relays in the entire domain. In particular, the encoding into a single
[0, 1]-valued threshold falls short of capturing the information required for describing the evolution of frustrated
transmitters. However, for a sufficiently smooth preference kernel, for a given transmitter, the relay choice is
approximately uniform in a neighborhood around any given relay location. Therefore, as an approximation we
partition W into a finite number of patches. Then to each of these patches we associate a separate [0, 1]-
valued threshold describing the approximate proportion of busy relays in that patch. This encoding is illustrated
in Figure 3.

FIGURE 3. A transmitter (black) chooses a relay location at a coarse scale according to a spa-
tial preference function (left). At a fine scale the configuration of busy relays can be encoded
in a [0, 1]-valued threshold as in the setting of flat preference kernels (right).

Here, we assume µR to be absolutely continuous w.r.t. the Lebesgue measure. The spatial preference function
may be discontinuous and non-positive, but for sufficiently high densities from any transmitter location it should
be possible to connect to some relay location. More precisely, we assume that κ is jointly continuous µs

T⊗µR-
almost everywhere and for all x ∈ W there exists y ∈ W such that κ(x, y) > 0, y ∈ supp(µR) and (x, y)
is a continuity point of κ. Recall that a transmitter at location x ∈ W chooses a relay at location dy with
probability

κlλ(dy|x) =
κ(x, y)∫

κ(x, z)lλ(dz)
lλ(dy) (7)

where, by our assumption, for sufficiently large λ the denominator is bounded away from 0 uniformly in x.

Next we consider the interplay between the spatial location of the relays and how the spatial preferences of the
transmitters evolve in time. Note that the process of transmitter requests to a relay at location dy is a Poisson
point process Zλ on V ′ = V ×W with intensity measure

µ(lλ)(dt,du,dx,dy) = κlλ(dy|x)µT(dt,du,dx).

As in Theorem 1.1 the LDP will be obtained by making use of the observation that the measure of frustrated
transmitters Γλ can be interpreted as a functional of the empirical measure Lλ ∈ M′ =M(V ′) associated
to Zλ. In particular, in the large deviations it is possible for the process to distort the new a priori measure
µ(µR) into an absolutely-continuous transmitter-request distribution n. More precisely, we generalize (5) into
the measure-valued time integral equation

bt(dx, dy) =
∫ t

0

∫ 1

dbs−(W,·)
dνR

(y)
n(ds, du,dx, dy) =

∫ t

0
n(ds, [dbs−(W,·)

dνR
(y), 1],dx,dy) (8)

where we allow the relay measure νR also to be general in order to cover both, empirical measures as well as
absolutely-continuous measures. For example,
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1 if the driving measure is given by (Lλ, lλ), then (8) has a unique solution b(dx,dy) and, for κ ≡ 1,
Bλ(dx) = b(dx,W ) in distribution.

2 if n = µ(µR), then a solution is given by

bt(dx,dy) = (1− e−µt
T([0,t])

R
κ(y|z)µs

T(dz))
κ(y|x)µs

T(dx)∫
κ(y|z)µs

T(dz)
µR(dy).

Note that, for general driving measures (n, νR), existence of solutions for equation (8) is unclear. However,
existence of solutions can be established if we assume n to be of the form

n(dt,du,dx, dy) = ny(dt,du,dx)νR(dy)

where (ny)y∈W is a transition kernel W → M such that every ny(dt,du,dx) is absolutely continuous
w.r.t. µT. Indeed, then a solution of (8) is given by

b(dx,dy) = β(ny)(dx)νR(dy) (9)

and will be denoted by b(n, νR).

If b(n, νR) is well-defined, we can compute the process of frustrated transmitters γ(n, νR) via the formula

γt(n, νR)(dx) = n([0, t], [0, 1],dx,W )− bt(n, νR)(dx,W )

and in particular Γλ = γ(Lλ, lλ) equals (2) in distribution. Now, we present the main result of this paper.

Theorem 1.2. The family of measure-valued processes Γλ satisfies the LDP in D with good rate function given
by I(γ) = infn∈M′: γ(n,µR)=γ h(n|µ(µR)).

Note that at first sight, Γλ is an object that requires knowledge on how many transmitters choose a relay and
not just the number of transmitters in a given area that choose relays in another given area. Therefore, it may
come as a surprise that we can state Theorem 1.2 as a measure-valued LDP and not as a LDP on the level
of spatial configurations. To reconcile Theorem 1.2 with the reader’s intuition, we note that after approximation
by flat preference functions, we deal with an independent collection of processes of the type considered in
Theorem 1.1. This allows us to aggregate the information about an entire local configuration of occupied relays
into a single number.

The rest of the manuscript is organized as follows. Sections 2 and 4 provide high-level overviews for the proofs
of Theorems 1.1 and 1.2, respectively. Detailed proofs for all supporting results can be found in Sections 3
and 5.

2. PROOF OF THEOREM 1.1

The idea for the proof of Theorem 1.1 is to use a Sanov-type result for the transmitter distribution ν and apply
the contraction principle for solutions of the associated differential equation (5). Then main ingredient in this
approach is then the continuity of solutions at user distributions with finite entropy. The theory of ODE provides
us with conditions under which continuity of solutions w.r.t. parameters can be inferred. Unfortunately, these
results mostly work under Lipschitz assumptions which are stronger than the finite entropy bounds provided
in our setting. However, we construct a two-step Picard approximation that is tailor-made to provide the right
balance between two opposing constraints: It is simple enough to be continuous with respect to the driving
measure and at the same sufficiently close to the true solution to satisfy uniform approximation properties. This
allows us to employ the LDP tool of exponential approximations [5, Definition 4.2.14] to complete the proof of
Theorem 1.1.

2.1. Markovian structure of Γλ. In this subsection we show that the solutions to equation (3), modeled using
the random variable Uj , is equal in distribution to the process of frustrated users as defined in (2). To make this
precise, let Γ̃λ denote the unique solution of (3) for the initial condition Γ̃λ0 = 0.

Proposition 2.1. The processes Γλ and Γ̃λ have the same distribution.
6



Proof. Let us fix a realization of Nλ = |Xλ| many transmitter locations (xi)1≤i≤Nλ together with their data

transmission times (ti)1≤i≤Nλ . After that, the measure-valued process Γλ = (Γλ(xi))1≤i≤Nλ is discrete-
time and vector-valued. Note that, this process only depends on the random selection of a relay for each
transmitter which is done with probability 1/|Y λ|. For the process Γ̃λ the randomness comes from the uniform
distribution of selection variables U = (Ui)1≤i≤Nλ .

For simplicity we assume the data transmission times to be ordered, then both Γλ = {Γλti} and Γ̃λ = {Γ̃λti}
are time-discrete Markov chains the finite state space {0, λ−1}Nλ

. Moreover, at a given time ti both, Γλ and
Γ̃λ can only change in coordinate xi. For the transition probability of Γλ we note that if at time ti−, k relays are
busy, then at time ti, xi becomes frustrated with probability k/|Y λ|. Accordingly, with probability 1 − k/|Y λ|
at time ti, xi becomes satisfied and the process stays unchanged. As for Γ̃λ if at time ti−, k relays are busy,
then xi becomes frustrated if Ui ∈ [0, k/|Y λ|]. Hence the transition probabilities coincide. �

2.2. Existence and uniqueness of solutions. For absolutely continuous measures Mac = {ν ∈ M :
ν � µT} the existence of solutions to (5) is non-trivial and will be dealt with in this section. More precisely,
let L = {f ∈ [0, 1][0,tf ] : f increasing and f(0) = 0}, then for ν ∈ Mac we define the integral operator
Tν : L → L where

Tν : β 7→
( ∫ t

0
ν(ds, [βs, 1],W )

)
t∈[0,tf ]

. (10)

As will be shown below, Tν is continuous so that existence of solutions can be established via the Schauder-
Tychonoff fixed point theorem. The uniqueness is a consequence of a monotonicity property of Tν .

Proposition 2.2. For all ν ∈Mac, there exists exactly one β ∈ L such that Tν(β) = β.

Note that for the driving measure ν = Lλ, existence and uniqueness of solutions for (5) is trivial. In both cases,
where ν = Lλ or ν ∈ Mac, using (4), we obtain a measure-valued solution which we denote β(ν). This
solution is a step-function with step-height λ−1 if ν = Lλ and continuous if ν ∈Mac.

2.3. Approximation scheme for the solution. In this subsection, we consider time-discretized two-step Pi-
card approximations which will turn out to be convergent in the supremum norm. Additionally, the resulting
trajectories exhibit good continuity properties w.r.t. driving measures. Let us start by providing precise defini-
tions of the approximations.

Let δ > 0, ν ∈ M and consider the discretization of [0, tf ] into tf/δ disjoint segments of length δ, where
we assume tf/δ to be an integer. To define the approximation, we proceed recursively and start by putting
βδ0(ν)(dx) = 0. Once βδ(n−1)δ(ν)(dx) is available, we define the locally constant function

β↑,δt (ν) = βδ(n−1)δ(ν)(W ) + ν
(
((n− 1)δ, nδ]× [0, 1]×W

)
for t ∈ ((n− 1)δ, nδ]. Then, for t ∈ ((n− 1)δ, nδ] we put

βδt (ν)(dx) = βδ(n−1)δ(ν)(dx) + ν
(
((n− 1)δ, t], [β↑,δnδ (ν), 1], dx

)
.

We can think of β↑,δ(ν) as a one-step Picard iteration of the zero function. Similarly, βδ(ν) corresponds to the
two-step Picard iteration. The approximating process of frustrated transmitters is now defined as

γδt (ν)(dx) = ν([0, t], [0, 1],dx)− βδt (ν)(dx).

Next we show that γδ(ν) approximates γ(ν) sufficiently well to transfer the LDP from γδ(ν) to γ(ν). More
precisely, we want to apply the exponential approximation technique [6, Theorem 1.13] and therefore have to
show three conditions. First, we show an exponential approximation property on the Banach space of trajec-
tories of finite signed measures equipped with the supremum norm ‖ · ‖ where the supremum is taken over
all times and measurable sets. The statement of this auxiliary result makes use of the empirical measures Lλ
introduced below (3).

Proposition 2.3. γδ(Lλ) is an ‖ · ‖-exponentially good approximation of γ(Lλ).
7



Second, we show the uniform approximation property on measures with bounded entropy.

Proposition 2.4. For all α ≥ 0, lim supδ↓0 supν:h(ν|µT)≤α ‖γδ(ν)− γ(ν)‖ = 0.

Third, we show continuity of the approximation w.r.t. the driving measure in the τ -topology, i.e., the topology
generated by evaluations on bounded measurable functions.

Proposition 2.5. Let t ∈ [0, tf ], δ > 0 and A ⊂ W measurable, then at any ν ∈ Mac, the evaluations
M→ [0,∞) given by ν 7→ γδt (ν)(A) are continuous w.r.t. the τ -topology.

In particular, the Propositions 2.4 and 2.5 imply that for all α > 0, on ν : h(ν|µT) ≤ α, the map ν 7→ γ(ν)
is continuous in the τ -topology.

Feeding the exponential approximation machinery with the Sanov-type LDP, we obtain the following multivariate
LDP.

Proposition 2.6. Let 0 ≤ t1 ≤ · · · ≤ tk ≤ tf , then the family of random measures {Γλti(dx)}i satisfies the
LDP in the τ -topology with good rate function I((γti)i) = infν∈M: (γti (ν))i=(γti )i

h(ν|µT).

2.4. Topological lifting and proof of Theorem 1.1. In this section we first arrive at the continuous-path LDP
using the Dawson-Gärtner theorem [5, Theorem 4.6.1]. We work in the product topology inM(W )[0,tf ], i.e.,
the coarsest topology such that the evaluations γ 7→ γt are continuous in the τ -topology. The topological lifting
is then done using exponential tightness.

Proposition 2.7. The family of measure-valued processes Γλ satisfies the LDP in the product topology. The
good rate function is given by I(γ) = infν∈M: γ(ν)=γ h(ν|µT).

Proof of Theorem 1.1. First note that Proposition 2.7, by contraction, implies the same LDP where the τ -
topology is replaced by the weak topology. Then, we may apply [5, Corollary 4.2.6] to reduce the proof of Theo-
rem 1.1 to the exponential tightness of Γλ in the Skorohod topology. For this we use a criterion from [7, Theorem
4.1] and verify its conditions:

1 Γλt is exponentially tight inM(W ) for all t ∈ [0, tf ] and
2 lim supδ↓0 lim supλ↑∞ λ−1 log P(w′δ(Γ

λ) > ε) = −∞.

Here the modulus of continuity w′ is defined as

w′δ(Γ
λ) = inf

0=t0<···<tk=tf :min1≤i≤k |ti−1−ti|>δ
max
1≤i≤k

sup
s,t∈[ti−1,ti)

dw(Γλs ,Γ
λ
t )

and with F ε denoting the ε-halo of a closed set F ⊂W ,

dw(ν, ν ′) = inf{ε > 0 : ν(F ) ≤ ν ′(F ε) + ε and ν ′(F ) ≤ ν(F ε) + ε for all closed F ⊂W}
is the Prokhorov metric onM(W ) which makes (M(W ), dw) a Polish space, see [4, Proposition A2.5.III.].

As for (1) note thatKα = {ν ∈M(W ) : ν(W ) ≤ α} is compact in the weak topology for any α > 0. Using
the Poisson concentration inequality [3, Chapter 2.2],

P(Γλt ∈ Kc
α) = P(Γλt (W ) > α) ≤ P(Lλ(V ) > α) = P(|Xλ| > αλ) ≤ exp(−λh(α|µT(V )),

where h(x|y) = x log(x/y)− x+ y. This shows the exponential tightness at every t.

For the exponential bound on the modulus of continuity (2) first note that dw(Γλs ,Γ
λ
t ) ≤ sup1≤i≤tf/δ Lλ([(i−

1)δ, iδ]× [0, 1]×W ) = ρ. Indeed, for all closed F ⊂W and iδ ≤ s ≤ t ≤ (i+ 1)δ, it suffices to show that

Γλt (F ) ≤ Γλs (F ρ) + ρ (11)

since the other inequality Γλs (F ) ≤ Γλt (F ρ) + ρ is trivially satisfied for all ρ > 0. We can rewrite (11)
equivalently as,

Lλ([s, t]× [0, 1]× F ) ≤ [Bλ
t (F )−Bλ

s (F )] + [Lλ([0, s]× [0, 1]× F ρ \ F )−Bλ
s (F ρ \ F )] + ρ

8



where the first two summands on the r.h.s. are nonnegative. By our definition of ρ, we arrive at the desired
bound. Consequently, using the Poisson concentration inequality again,

lim sup
λ↑∞

λ−1 log P(w′δ(Γ
λ) > ε) ≤ lim sup

λ↑∞
λ−1 log P( sup

1≤i≤tf/δ
Lλ([(i− 1)δ, iδ]× [0, 1]×W ) > ε)

≤ lim sup
λ↑∞

λ−1 log
∑

1≤i≤tf/δ

P(Lλ([(i− 1)δ, iδ]× [0, 1]×W ) > ε)

≤ max
1≤i≤tf/δ

−h(ε|µs
T(W )µt

T([(i− 1)δ, iδ]))

= −h(ε|µs
T(W ) max

1≤i≤tf/δ
µt

T([(i− 1)δ, iδ])).

Since µt
T is assumed to be absolutely-continuous w.r.t. the Lebesgue measure, this tends to minus infinity as δ

tends to zero, as required. �

3. PROOFS OF SUPPORTING RESULTS FOR THEOREM 1.1

In this section, we provide proofs for the Propositions 2.1-2.7. To ease notation we will write in the following
∆δ(i) = ((i− 1)δ, iδ]. Let us start by stating three results that we will use multiple times in the sequel.

Lemma 3.1. Let B(W ) = {A ⊂W : ABorel measurable} then the following holds.

1 Let ν ∈Mac, then
lim
ε↓0

sup
A⊂B(W ):µT(A)<ε

ν(A) = 0.

2 Let α > 0, then
lim
ε↓0

sup
A⊂B(W ):µT(A)<ε
ν∈M:h(ν|µT)<α

ν(A) = 0.

3 Let δ > 0 then, for a random variable N ελ which is Poisson distributed with parameter ελ

lim
ε↓0

lim sup
λ↑∞

λ−1 log P(N ελ > λδ) = −∞.

Proof. Part 1 rephrases the definition of absolute continuity. Part 2 can be shown using Jensen’s inequality.
Part 3 is a consequence of the Poisson concentration inequality [3, Chapter 2.2]. �

3.1. Existence and uniqueness of solutions. Let us start by asserting continuity of the integral operator.

Lemma 3.2. Let ν ∈Mac, then the map Tν : L → L is continuous in the product topology.

Proof. We need to show that the map β 7→ Tν(β)t is continuous for every t ∈ [0, tf ]. Observe that for any
β′ ∈ L and δ > 0,

|Tν(β′)t − Tν(β)t| ≤
tf/δ∑
i=1

ν
(
∆δ(i)× [β

′

(i−1)δ ∧ β(i−1)δ, β
′
iδ ∨ βiδ]×W

)
.

Further note that for µT replacing ν on the r.h.s., we can further bound from above by

µs
T(W ) sup

1≤i≤n
µt

T(∆δ(i))
n∑
i=1

(β
′
iδ ∨ βiδ − β

′

(i−1)δ ∧ β(i−1)δ) (12)

and
tf/δ∑
i=1

(β
′
iδ ∨ βiδ − β

′

(i−1)δ ∧ β(i−1)δ) ≤ 1 + 2
tf/δ∑
i=1

|β′iδ − βiδ|.

Now, using Lemma 3.1 part 1, since µt
T is absolutely continuous w.r.t. the Lebesgue measure on [0, tf ], for

any ε > 0, there exists δ′ > 0 such that for all δ′ > δ > 0, sup1≤i≤tf/δ µ
t
T(∆δ(i)) < ε. Secondly, for

any such δ, by product-convergence, there exists a neighborhood of β such that if β′ is in that neighborhood,
9



∑tf/δ
i=1 |β

′
iδ − βiδ| ≤ 1/2. In particular, (12) is bounded from above by 2εµs

T(W ) and can be made arbitrarily
small. Since ν � µT by assumption, using again Lemma 3.1 part 1, this transfers to ν and the proof is
finished. �

Using the above continuity, now existence and uniqueness follow from the Schauder-Tychonoff fixed-point the-
orem and monotonicity.

Proof of Proposition 2.2. Let us start by showing existence. Note that the Schauder-Tychonoff fixed-point theo-
rem, see [10, Theorem II.7.1.10], implies existence if Tν : L → L is continuous and L is a compact, convex
subset of a locally convex linear topological space. For this first note that R[0,tf ] equipped with the product
topology is a locally convex topological vector space. Further, note that L is closed inside the compact subset
[0, 1][0,tf ] and thereby compact. Since a convex combination of increasing functions is also increasing, L is
also convex. By Lemma 3.2, the mapping β 7→ Tν(β) is continuous, which implies existence.

As for the uniqueness, we proceed by contradiction, assuming that there exist two solutions β, β′ ∈ L of (5)
and a point in time t1 ∈ [0, tf ] satisfying βt1 > β′t1 . Then, we let t0 ∈ [0, t1) denote the last point before t1,
where βt0 = β′t0 . In particular,

βt1 = βt0 +
∫

(t0,t1]
ν(ds, [βs, 1]) ≤ β′t0 +

∫
(t0,t1]

ν(ds, [β′s, 1]) = β′t1 ,

which gives the desired contradiction. �

3.2. Exponential approximation property of the approximation scheme. Let us first derive some results
on dominance and closeness of the approximating trajectories w.r.t. the original process. We write ∆ for the
symmetric difference between sets.

Lemma 3.3. Let δ > 0 and ν ∈Mac or ν = Lλ. Then, βδ(ν)(W ) ≤ β(ν)(W ).

Proof. We will abbreviate β(ν)(W ) = β(ν) and analogously for βδ . It suffices to show that βδt (ν) ≤ βt(ν)
holds for all t ∈ ∆δ(k) and k ∈ {0, . . . , tf/δ}. We proceed by induction over k, the case k = 0 being trivial.
Suppose that βδkδ(ν) ≤ βkδ(ν). In order to derive a contradiction, we assume that βt(ν) < βδt (ν) for some
t ∈ ∆δ(k + 1).

If ν ∈ Mac, there exists a largest time t1 ∈ [kδ, t) such that βt1(ν) = βδt1(ν). In particular, for every
s ∈ (t1, t)

β↑,δs (ν) ≥ βδs(ν) ≥ βs(ν)

and as required

βδt (ν) = βδt1(ν) +
∫

(t1,t]
ν(ds, [β↑,δs (ν), 1],W ) ≤ βt1 +

∫
(t1,t]

ν(ds, [βs(ν), 1],W ) = βt(ν).

If ν = Lλ, there exists a largest time t1 ∈ [kδ, t) such that βδt1(ν) = βt1(ν) and βδt2(ν) > βt2(ν), where t2
is the next transmission time after t1 in Lλ. In particular,

βδt2(ν) = βδt1(ν) + ν({t2}, [β↑,δt2 (ν), 1],W ) ≤ βt1 + ν({t2}, [βt2(ν), 1],W ) ≤ βt2(ν),

as required. �

The next lemma asserts an approximation property for scalar trajectories, uniform in time.

Lemma 3.4. Assume ν ∈Mac or ν = Lλ, then, for all δ > 0,

‖βδ(ν)(W )− β(ν)(W )‖ ≤ 2 sup
1≤i≤tf/δ

ν(∆δ(i)× [0, 1]×W ).
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Proof. Again, we abbreviate β(ν)(W ) = β(ν) and analogously for βδ . Let ε = sup1≤i≤tf/δ ν(∆δ(i) ×
[0, 1]×W ), then by Lemma 3.3 it suffices to show that

βt(ν) ≤ βδt (ν) + 2ε

holds for all t ∈ [0, tf ]. As before, we proceed by induction on the interval ∆δ(k) containing t. If βδ(k−1)δ(ν) +
ε ≥ β(k−1)δ(ν), then

βt(ν) ≤ β(k−1)δ(ν) + ν(((k − 1)δ, t]× [0, 1]×W ) ≤ (βδ(k−1)δ(ν) + ε) + ε ≤ βδt (ν) + 2ε.

Otherwise, if βδ(k−1)δ(ν) + ε ≤ β(k−1)δ(ν), then

β↑,δkδ (ν) = βδ(k−1)δ(ν) + ν(∆δ(k)× [0, 1]×W ) ≤ β(k−1)δ(ν).

Hence,

βt(ν) = β(k−1)δ(ν) +
∫ t

(k−1)δ
ν(ds, [βs−(ν), 1],W )

≤ β(k−1)δ(ν) + ν(((k − 1)δ, t]× [β↑,δkδ (ν), 1],W ) = β(k−1)δ(ν) + βδt (ν)− βδ(k−1)δ(ν),

so that the assertion follows from the induction hypothesis. �

We denote in the sequel Iδt (ν) = [βt(ν)(W )∧β↑,δt (ν), βt(ν)(W )∨β↑,δt (ν)] and note the following approx-
imation property for measure-valued trajectories, uniform in time and over measurable sets. For ν ∈ Mac or
ν = Lλ and for all δ > 0,

‖βδ(ν)− β(ν)‖ ≤
∫ t

0
ν(ds, [βs−(ν), 1]∆[β↑,δs−(ν), 1],W ) ≤

∫ tf

0
ν(dt, Iδt−(ν),W ). (13)

The following result show that in the setting of empirical measures, the inequality (13) gives rise to a strong
probabilistic bound on the ‖ · ‖-distance.

Lemma 3.5. Let ε > 0 be arbitrary. Then, the random variable
∫ tf
0 Xλ(dt, [Bλ

t−(W )− ε,Bλ
t−(W ) + ε],W )

is stochastically dominated by a Poisson random variable with parameter 2εµs
T(W ).

Proof. The proof is based on the previsiblity of the time integral. More precisely, let ρ ≥ 0 and recall that
conditioned on |Xλ| = n the marks (Ui)1≤i≤n are iid. Ordering Xλ by the time-index yields

P
(∫ tf

0
Xλ(dt, [Bλ

t−(W )− ε,Bλ
t−(W ) + ε],W ) > ρ

∣∣|Xλ| = n
)

= E
[
P(1{|Btn−1(W )− Un| ≤ ε}+

n−1∑
i=1

1{|Bti−1(W )− Ui| ≤ ε} > ρ
∣∣∣(Xλ

i )1≤i≤n−1

)∣∣∣|Xλ| = n
]

≤ P
(

1[0,2ε](Un) +
n−1∑
i=1

1{|Bti−1(W )− Ui| ≤ ε} > ρ
∣∣∣|Xλ| = n

)
≤ P

( n∑
i=1

1[0,2ε](Ui) > ρ
∣∣∣|Xλ| = n

)
.

In particular,

P
(∫ tf

0
Xλ(dt, [Bλ

t−(W )− ε,Bλ
t−(W ) + ε],W ) > ρ

)
≤ P

( |Xλ|∑
i=1

1[0,2ε](Ui) > ρ
)

and by independent thinning,
∑|Xλ|

i=1 1[0,2ε](Ui) is a Poisson random variable with the desired parameter. �
11



Note that, by the definition of γ and γδ , we have

γδ(ν)− γ(ν) = βδ(ν)− β(ν).

Therefore in the proofs of Proposition 2.3, 2.4 and 2.5, γ and γδ can be replaced by β and βδ .

Proof of Proposition 2.3. Let ε > 0 be arbitrary. By the definition of exponential good approximations [6, Defi-
nition 1.2], we need to check that

lim sup
δ↓0

lim sup
λ↑0

λ−1 log P(‖Bλ − βδ(Lλ)‖ > ε) = −∞.

Using the bound (13), we have for all ε′ > 0 the uniform estimate

P(‖Bλ − βδ(Lλ)‖ > ε) ≤ P
(∫ tf

0
Lλ(dt, Iδt−(Lλ),W ) > ε

)
≤ P

(∫ tf

0
Lλ(dt, [Bλ

t−(W )− ε′, Bλ
t−(W ) + ε′],W ) > ε

)
+ P( sup

t∈[0,tf ]
|Iδt (Lλ)| > ε′).

(14)

For the first summand on the r.h.s. of (14) we can use Lemmas 3.5 and 3.1 part 3. For the second summand
on the r.h.s. of (14), note that

P( sup
t∈[0,tf ]

|Iδt (Lλ)| > ε′) ≤ P(‖βδ(Lλ)(W )− β↑,δ(Lλ)‖ > ε′/2) + P(‖Bλ(W )− βδ(Lλ)(W )‖ > ε′/2).

By definition, respectively by Lemma 3.4, we have

P(‖βδ(Lλ)(W )− β↑,δ(Lλ)‖ > ε′/2) ≤ P( sup
1≤i≤tf/δ

Lλ(∆δ(i)× [0, 1]×W ) > ε′/2)

P(‖Bλ(W )− βδ(Lλ)(W )‖ > ε′/2) ≤ P( sup
1≤i≤tf/δ

Lλ(∆δ(i)× [0, 1]×W ) > ε′/4).

Using again Lemma 3.1 part 3, the proof is finished. �

Proof of Proposition 2.4. By the bound (13) we have the estimate

‖β(ν)− βδ(ν)‖ ≤
∫ tf

0
ν(dt, Iδt (ν),W ).

Moreover, by Lemma 3.4 and the definition of β↑,δ ,

sup
t∈[0,tf ]

|Iδt (ν)| ≤ 2 sup
1≤i≤tf/δ

ν(∆δ(i)× [0, 1]×W ).

It follows by Lemma 3.1 parts 1 and 2 that

lim sup
δ↓0

sup
t∈[0,tf ]

ν:h(ν|µT)≤α

|Iδt (ν)| = 0.

Consequently, for all ε > 0 and sufficiently small δ > 0,

lim sup
δ↓0

sup
ν:h(ν|µT)≤α

∫ tf

0
ν(dt, Iδt (ν),W )

≤ lim sup
ε↓0

sup
ν:h(ν|µT)≤α

∫ tf

0
ν(dt, [βt(ν)(W )− ε, βt(ν)(W ) + ε],W ).

Another application of Lemma 3.1 parts 1 and 2 gives the result. �

Proof of Proposition 2.5. Assume ν ′ ∈ M, ν ∈ Mac and consider |βδt (ν ′)(A) − βδt (ν)(A)| for some t ∈
[0, tf ] and measurable A ⊂W . Then for n ∈ {1, . . . , tf/δ} such that t ∈ ∆δ(n) we have the upper bound

|βδt (ν ′)(A)− βδt (ν)(A)| ≤ |βδ(n−1)δ(ν
′)(A)− βδ(n−1)δ(ν)(A)|

+ |ν ′(((n− 1)δ, t]× [β↑,δnδ (ν ′), 1]×A)− ν(((n− 1)δ, t]× [β↑,δnδ (ν), 1]×A)|.
12



Using the estimate

|βδiδ(ν ′)(A)− βδiδ(ν)(A)| ≤ |βδ(i−1)δ(ν
′)(A)− βδ(i−1)δ(ν)(A)|

+ |ν ′(∆δ(i)× [β↑,δiδ (ν ′), 1]×A)− ν(∆δ(i)× [β↑,δiδ (ν), 1]×A)|,

we can further bound |βδ(n−1)δ(ν
′)(A)− βδ(n−1)δ(ν)(A)| from above by

tf/δ∑
i=1

|ν ′(∆δ(i)× [β↑,δiδ (ν ′), 1]×A)− ν(∆δ(i)× [β↑,δiδ (ν), 1]×A)|.

We will suppress the spatial component A in our notation for the rest of the proof. Since the sum is finite, it
suffices to consider any 1 ≤ i ≤ tf/δ and note that the case where ((i− 1)δ, iδ] is replaced by ((n− 1)δ, t]
works equivalently. We can further estimate,

|ν ′(∆δ(i)× [β↑,δiδ (ν ′), 1])− ν(∆δ(i)× [β↑,δiδ (ν), 1])|

≤ ν ′(∆δ(i)× [β↑,δiδ (ν ′), 1]∆[β↑,δiδ (ν), 1]) + |(ν ′ − ν)(∆δ(i)× [β↑,δiδ (ν), 1])|.

Now, for ν ′ sufficiently close to ν in the τ -topology, the second summand can be made arbitrarily small. Let
ε > 0, then it suffices to show that for all ν ′ in a neighborhood of ν we have

ν ′(∆δ(i)× [β↑,δiδ (ν ′), 1]∆[β↑,δiδ (ν), 1]) < ε.

For this, note that for all ε′, there exists a neighborhood of ν such that for all ν ′ in that neighborhood

|β↑,δiδ (ν ′)− β↑,δiδ (ν)| ≤
tf/δ∑
j=1

|(ν ′ − ν)(∆δ(j)× [0, 1])| < ε′.

For such ν ′, we thus have

ν ′(∆δ(i)× [β↑,δiδ (ν ′), 1]∆[β↑,δiδ (ν), 1]) ≤ ν ′(∆δ(i)× [β↑,δiδ (ν)− ε′, β↑,δiδ (ν) + ε′]). (15)

Applying the definition of τ -convergence for the third time, for ν ′ sufficiently close to ν, the r.h.s. of (15) is close
to

ν(∆δ(i)× [β↑,δiδ (ν)− ε′, β↑,δiδ (ν) + ε′])

up to an arbitrarily small error. Finally, applying Lemma 3.1 part 1, the proof is finished. �

3.3. Sanov’s theorem and proof of Proposition 2.6. For a sequence of iid random variables, Sanov’s theo-
rem in the τ -topology is one of the cornerstones of large deviations theory. Clearly, this result should remain
valid when passing from the iid to the Poisson setting. However, as it is not easy to find a reference, we provide
a detailed proof along the Gärtner-Ellis type argumentation presented in [5, Section 6.2]. In our presentation,
we focus on the steps where there is a substantial difference between the Poisson and the iid case. For the
convenience of the reader, we adapt the notation from [5, Section 6.2] where possible.

Proposition 3.6. The random measures Lλ satisfy the LDP in the τ -topology with good rate function given by

I(ν) = h(ν|µT).

Moreover, the levelsets of I are sequentially compact in the τ -topology.

Proof. The empirical measure Lλ can be considered as a random variable in the space X = B(V )′, the
algebraic dual of the space of all bounded linear functions on V . We consider X as a vector space endowed
with the topology generated by the evaluations ν 7→ ν(ϕ), ϕ ∈ B(V ). With this topology, the topological dual
X ∗ of X is isomorphic to B(V ). Since the Laplace functional of a Poisson point process is known in closed
form, the limiting logarithmic moment generating function of Lλ can be computed explicitly and is given by

Λ(ϕ) =
∫

[exp(ϕ(v))− 1]µT(dv), ϕ ∈ B(V ).

13



Since for every ϕ1, . . . , ϕn ∈ B(V ) the function (t1, . . . , tn) 7→ Λ(
∑

i tiϕi) is everywhere differentiable, [5,
Corollary 4.6.11] implies that Lλ satisfies the LDP with good rate function given by the Legendre dual Λ∗ of Λ.

It remains to show that Λ∗ = h(·|µT). By duality theory [5, Lemmas 4.5.8 and 6.2.16], it suffices to show that

Λ(ϕ) = sup
ν∈X
{ν(ϕ)− h(ν|µT)}. (16)

In order to show that Λ(ϕ) ≤ supν∈X {ν(ϕ) − h(ν|µT)} let νϕ be the measure with density eϕ w.r.t. µT.
Then, a quick computation shows that Λ(ϕ) = νϕ(ϕ) − h(νϕ|µT). Conversely, the r.h.s. of (16) is equal
to supν∈X ∗{Λ(ϕ) − h(ν|νϕ)} and the non-negativity of the entropy concludes the identification. Sequential
compactness of h(·|µT) follows from [5, Lemma 6.2.16]. �

Recall that Γλ is constructed from the solution of (4) with r = rλ. We will sometimes make this dependence
explicit by writing

γ(Lλ, rλ) = Γλ.

The results collected so far would allow us to derive the LDP similar to the one in Proposition 2.6 where Γλ is
replaced by γ(Lλ, 1). In order to conclude we thus need a final result on the asymptotic contribution of rλ. Let
us start with the following dominance result, where we write

Bλ,r(dx) = Lλ([0, t], [0, 1],dx)− γ(Lλ, r)(dx).

Lemma 3.7. If s ≤ r, then

s
r (Bλ,r(W )− λ−1) ≤ Bλ,s(W ) ≤ Bλ,r(W ).

Proof. We prove both claims by induction on the arrival time. Hence, we assume that the desired inequalities
are valid up to time ti−1. Now, suppose that at time ti we had

Bλ,s
ti

(W ) > Bλ,r
ti

(W ).

This is only possible if Bλ,s
ti−1

(W ) = Bλ,r
ti−1

(W ) and for the i’th choice variable Ui, drawn at time ti, we have

Ui ∈ [s−1Bλ,s
ti−1

(W ), r−1Bλ,r
ti−1

(W )]. But since r ≤ s, this is impossible.

Similarly, assume that at time ti we had

s
r (Bλ,r

ti
(W )− λ−1) > Bλ,s

ti
(W ).

This is only possible if for the i’th choice variableUi ∈ [r−1Bλ,r
ti−1

(W ), s−1Bλ,s
ti−1

(W )], so that srB
λ,r
ti−1

(W ) ≤
Bλ,s
ti−1

(W ). But this implies that

s
r (Bλ,r

ti
(W )− λ−1) = s

rB
λ,r
ti−1

(W ) ≤ Bλ,s
ti−1

(W ) = Bλ,s
ti

(W ),

yielding the desired contradiction. �

Proposition 3.8. The families of measure-valued processes Γλ and γ(Lλ, 1) are ‖·‖-exponentially equivalent.

Proof. Let ε > 0 be arbitrary. By the definition of exponential equivalence [5, Definition 4.2.14] and the identity
‖γ(Lλ, rλ)− γ(Lλ, 1)‖ = ‖Bλ,rλ −Bλ,1‖, we need to check that

lim sup
λ↑∞

λ−1 log P(‖Bλ,rλ −Bλ,1‖ > ε) = −∞.

Arguing similarly as in the proof of Proposition 2.3, for any ρ > 0, the following estimate holds,

P(‖Bλ,rλ −Bλ,1‖ > ε) ≤ P
(∫ tf

0
Lλ(dt, [

B
λ,rλ
t− (W )

rλ
, 1]∆[Bλ,1

t− (W ), 1],W ) > ε
)

≤ P
(∫ tf

0
Lλ(dt, [Bλ,1

t− (W )− ρ,Bλ,1
t− (W ) + ρ],W ) > ε

)
+ P(‖Bλ,1(W )− Bλ,rλ (W )

rλ
‖ > ρ).

(17)
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For the first summand on the r.h.s. of (17) we can use Lemmas 3.5 and 3.1 part 3. For the second summand
on the r.h.s. of (17) we can further estimate

P(‖Bλ,1(W )− Bλ,rλ (W )
rλ

‖ > ρ) ≤ P(‖Bλ,1(W )−Bλ,rλ(W )‖ > ρ/2) + P(Bλ,rλ
tf

(W ) > ρrλ
2|1−rλ|).

As for the second summand using Lemma 3.1 part 3 we arrive at the desired limit. For the first summand,
Lemma 3.7, implies that

P(‖Bλ,rλ(W )−Bλ,1(W )‖ > ρ/2) ≤ P(Bλ,1∨rλ
tf

(W ) > ρ/2−λ−1

|1−rλ| ),

so that the desired limit follows from Lemma 3.1 part 3. �

Proof of Proposition 2.6. We first use Proposition 3.8 to remove the λ-dependence in the relays. To conclude
the proof, we then apply the τ -topology version of the exponential approximation machinery [6, Theorem 1.13].
The conditions are satisfied according to the Propositions 2.3, 2.4, 2.5 and 3.6. �

3.4. Dawson-Gärtner for the temporal component. In order to derive the LDP for the product topology in
the time dimension, we use Proposition 2.6 and apply the Dawson-Gärtner theorem [5, Theorem 4.6.1].

Proof of Proposition 2.7. Consider time-discretizations t = {(t0, . . . , tn) : 0 = t0 < t1 < · · · < tn = tf}
and the associated projections pt(γ) = (γti)ti∈t. The family of all such projections J has a partial ordering
induced by inclusion in the family of discretizations t. Using Proposition 2.6 and [5, Theorem 4.6.1], Γλ satisfies
the LDP in the product topology with good rate function given by

Ĩ(γ) = sup
t∈J

It(pt(γ)) where It((γti)ti∈t) = inf
ν∈M: (γti (ν))ti∈t=(γti )ti∈t

h(ν|µT).

The proof is finished once we show that Ĩ(γ) = I(γ) where I(γ) = infν∈M: γ(ν)=γ h(ν|µT).

We first prove I ≥ Ĩ . Let ν ′ ∈ M be such that γ(ν ′) = γ. Then, in particular γti(ν
′))ti∈t = (γti)ti∈t for

any time-discretization t and

inf
ν∈M: (γti (ν))ti∈t=(γti )ti∈t

h(ν|µT) ≤ h(ν ′|µT),

so that Ĩ ≤ I .

For the other direction, I ≤ Ĩ , first assume that γ is discontinuous in the sense that there exists a measurable
set A ⊂ W and some td ∈ [0, tf ] such that there exists a sequence tn → td with limn→∞ γtn(A) 6=
γtd(A). Then, we show that Ĩ(γ) =∞ which trivially implies the inequality. Indeed, consider the sequence of
time-partitions tn = {0 < tn < td < ttf}. Then, there exists a sequence νn ∈M such that

Ĩ(γ) ≥ lim sup
n↑∞

inf
ν∈M: (γti (ν))ti∈tn=(γti )ti∈tn

h(ν|µT)

≥ lim sup
n↑∞

inf
ν∈M: (γti (ν)(A))ti∈tn=(γti (A))ti∈tn

h(ν|µT) ≥ lim sup
n↑∞

h(νn|µT)− ε

and γt(νn)(A) = γt(A) for all t ∈ tn. Moreover, settingAn = (tn, td]× [0, 1]×A then limn↑∞ µT(An) =
0 since µt

T is absolutely-continuous w.r.t. the Lebesgue measure. On the other hand, by assumption, there
exists an ε > 0 such that

ε < |γtn(A)− γtd(A)| = |γtn(νn)(A)− γtd(νn)(A)|

for sufficiently large n. Hence νn(An) > ε/2, so that Lemma 3.1 part 2 yields Ĩ(γ) =∞.

It remains to consider the setting, where γ is continuous and Ĩ(γ) < ∞. Let tδ denote a finite partition of
[0, tf ] with mesh size smaller than δ > 0. Then again, there exists a sequence νδ ∈M such that

Ĩ(γ) ≥ lim sup
δ↓0

inf
ν∈M: (γti (ν))ti∈tδ=(γti )ti∈tδ

h(ν|µT) ≥ lim sup
δ↓0

h(νδ|µT)− ε

and γt(νδ) = γt for all t ∈ tδ . Since the levelsets of h(·|µT) are sequentially compact in the τ -topology, there
exists a τ -accumulation point ν∗ for (νδ)δ and by the time-continuity of γ and the continuity of ν 7→ γ(ν) along
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sequences of measures with uniformly bounded entropy, we have γt(ν∗) = γt for all t ∈ [0, tf ]. Moreover,
by the lower semicontinuity of h(·|µT) we have lim supδ↓0 h(νδ|µT) ≥ h(ν∗|µT) ≥ I(γ). This finishes the
proof. �

4. PROOF OF THEOREM 1.2

For the proof of Theorem 1.2 we construct spatially approximating processes by replacing κ with a carefully
chosen step function. As for the time approximation considered in the proof of Theorem 1.1, the strongly reg-
ularizing property of the differential equation allows us to verify that again the approximation is uniformly close
and exponentially approximates the original process. This reveals a striking methodological similarity between
the space approximations appearing in the proof of Theorem 1.2 and the time approximations considered in
Section 2. To implement this program, we first need to overcome the technical obstacle that the step functions
still depend on the empirical relay process. In particular, Theorem 1.1 cannot yet be applied. A preliminary step
is therefore to replace the relay process by its limiting measure and show that the error made is exponentially
small.

4.1. Exponential equivalence w.r.t. the relay process. Let W δ = {W1, . . . ,Wk} be a partition of W into
cubes of side length δ. IfW is not a cube itself, then theWi are defined as the intersection of the smaller cubes
with W . The idea is to partition the transmitter process into independent processes, each process confined to
choose relays in a given spatial discretization. More precisely, recalling (7), let Zλ,i(νR) denote the Poisson
point process with intensity measure

µi(νR)(ds, du,dx) = κνR
(Wi|x)µT(ds, du,dx)

and let Liλ(νR) be the associated empirical measure. In other words, Zλ,i(νR) is the Poisson point process of
transmitters choosing a relay in Wi. Now, consider an associated augmented empirical measure given by

Lδλ(νR) =
k∑
i=1

Liλ(νR)

where

Liλ(νR) = Liλ(νR)⊗ 1Wi

νR

νR(Wi)
.

Note that Lδλ(νR)(dt,du,dx,Wi) = Liλ(νR)(dt,du,dx), so that the total mass of transmitters pointing
into Wi is preserved. However, within Wi this mass is now distributed according to νR conditioned on Wi. In
particular, the kernel y 7→ Lδλ(νR)y appearing in (9) is constant onWi, where it is given by νR(Wi)−1Liλ(νR).
Thus, ∫

Wi

γ(Lδλ(νR)y)νR(dy) =
∫
Wi

γ(νR(Wi)−1Liλ(νR))νR(dy) = γ(Liλ(νR), νR(Wi)), (18)

where we recall the more detailed notation γ(·, ·) from the paragraph preceding Lemma 3.7. In the proof of
Theorem 1.2 this identification is an essential ingredient to establish a connection to the setting of Theorem 1.1.

As a first step, we show that it is possible to switch between νR = lλ and νR = µR without changing substan-
tially the approximating process of frustrated transmitters.

Proposition 4.1. The family of measure-valued processes γ(Lδλ(lλ), lλ) is ‖ · ‖-exponentially equivalent to
γ(Lδλ(µR), µR).

Next we show that γ(Lδλ(lλ), lλ) is an exponentially good approximation to Γλ.

Proposition 4.2. The family of measure-valued processes γ(Lδλ(lλ), lλ) is an ‖ · ‖-exponentially good ap-
proximations of Γλ.

Combining this with a uniform bound on the spatial discretization, we arrive at the following multivariate LDP.
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Proposition 4.3. Let 0 ≤ t1 ≤ · · · ≤ tk ≤ tf , then the family of random measures {Γλti(dx)}i satisfies the
LDP in the τ -topology with good rate function

I((γti)i) = inf
n∈M′: (γti (n,µR))i=(γti )i

h(n|µ(µR)).

Proof of Theorem 1.2. Using a slight modification of the proof of Proposition 2.7, Proposition 4.2 can be lifted
to the same LDP w.r.t. continuous times in the product topology. In order to finally establish the LDP in the
Skorohod topology, the exponential tightness arguments presented in the proof of Theorem 1.1 should be
applied verbatim. �

5. PROOF OF SUPPORTING RESULTS FOR THEOREM 1.2

In the previous section, we announced our plan to prove Theorem 1.2 using exponential approximation tech-
niques. This technique requires us to couple the original process and the approximations in a way such that the
probability of a non-negligible deviation decays at super-exponential speed. In the present section, we provide
details on the coupling construction and show how it can be used to derive Propositions 4.1, 4.2 and 4.3.

5.1. Total variation bounds for frustrated users. Since the technique of exponential approximation hinges
upon total-variation bounds, it is essential to understand the regularity properties of frustrated users as a func-
tion of the input process. The following result shows that the self-regulating property of the defining ODE gives
rise to excellent continuity properties of the solutions.

We observe that the construction of the process Γλ from the Poisson point process Zλ does not make use
of the choice components associated with the Poisson points. Indeed, given the knowledge about the precise
locations of the chosen relays, there is no longer any uncertainty on the evolution of frustrated transmitters.
Hence, more generally, to any finite counting measure ν on [0, tf ]×W × Y λ we can associate a process of
frustrated users γ(ν).

For instance, let Zλ,δ(νR) denote the Poisson point process [0, tf ]×W ×Y λ with intensity measure λµδ(νR)
whose density w.r.t. µt

T ⊗ µs
T ⊗ lλ is given by

κδνR
(y|x) =

k∑
i=1

1{y ∈Wi}
κνR

(Wi|x)
lλ(Wi)

.

Then, γ(λ−1Zλ,δ(νR)) coincides in distribution with γ(Lδλ(νR), lλ). Indeed, having the identity (18) at our
disposal, we can decompose into the spatial subdomains Wi and then apply Proposition 2.1 in each of these
domains separately.

In the following result, we show that γ is 2-Lipschitz on counting measures.

Lemma 5.1. Let ν, ν ′ be finite simple counting measures on [0, tf ]×W × Y λ. Then,

‖γ(ν)− γ(ν ′)‖ ≤ 2‖ν − ν ′‖.

Proof. In the proof, we identify ν and ν ′ with their support and write ν∪ and ν∩ for their union and intersection,
respectively. Then, by monotonicity,

γ(ν∩) ≤ min{γ(ν), γ(ν ′)} ≤ max{γ(ν), γ(ν ′)} ≤ γ(ν∪).

Hence, it suffices to show ‖γ(ν∪) − γ(ν∩)‖ ≤ ‖ν∪ − ν∩‖. We show this if ν∪ \ ν∩ consists of a singleton
z0 = {(t0, x0, y0)}. The general statement is obtained via induction. In fact, we can describe precisely how
the space-time counting measures γ(ν∪) and γ(ν∩) differ from each other. If y0 has already been occupied
at time t0, then γ(ν∪) and γ(ν∩) agree apart from an additional atom at z0. On the other hand, if y0 has not
already been occupied at time t0, then let z1 = (t1, x1, y1) denote the first particle after time t0 that points to
y0. If such a particle does not exist, we leave z1 undefined. Again, γ(ν∪) and γ(ν∩) agree apart from at most
one atom, namely z1 if defined. �
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5.2. Mixed exponential equivalence. Next, we consider intermediate approximations which partially replace
the limiting relay measure by the empirical measure. For this, we introduce the mixed augmented empirical
measures

Lδλ(µR, lλ) =
k∑
i=1

Liλ(µR)⊗ 1Wi

lλ
lλ(Wi)

.

Proposition 5.2. The families of measure-valued processes γ(Lδλ(µR, lλ), lλ) and γ(Lδλ(µR), µR) are ‖ · ‖-
exponentially equivalent.

Proof. We use the identification (18) to decompose γ(Lδλ(µR, lλ), lλ) and γ(Lδλ(µR), µR) as

k∑
i=1

γ
(
Lδλ(µR, lλ)(dt,du,dx,Wi), lλ(Wi)

)
and

k∑
i=1

γ
(
Lδλ(µR)(dt,du,dx,Wi), µR(Wi)

)
,

respectively. Thus, it suffices to show the exponential equivalence for fixed i. By definition,
Lδλ(µR, lλ)(dt,du,dx,Wi) and Lδλ(µR)(dt,du,dx,Wi) are both empirical measures associated with a
Poisson point processes with intensity measure λκµR

(Wi|x)µT(ds, du,dx), so that an application of Lemma 3.8
concludes the proof. �

5.3. Coupling construction. The coupling construction announced in the beginning of this section is based
on an expansion of the state space [0, tf ] × W × Y λ to V ∗,λ = [0, tf ] × W × Y λ × R≥0. This allows
Poisson point processes of various inhomogeneous intensities to be coupled by considering points whose last
coordinate lies below a threshold function. More precisely, let Zλ,∗ denote a Poisson point process on

V ∗,λ = [0, tf ]×W × Y λ × R≥0.

with intensity measure λµt
T ⊗ µλ ⊗ | · |, where | · | is the Lebesgue measure and

µλ = µs
T ⊗ lλ.

For any family of measurable functions fλ : W × Y λ → [0,∞) let

M(f) = {(x, y, v) : v ≤ f(x, y)}

denote the sub-level set of f . Then, projecting the intersection of Zλ,∗ withM(f) onto [0, tf ]×W ×Y λ yields

a Poisson point process Zλ(f) on [0, tf ]×W × Y λ whose intensity measure λµfλ is characterized by

dµfλ
d(µt

T ⊗ µλ)
= f.

For instance, the processes Zλ and Zλ,δ(νR) can be recovered by choosing the threshold function to be
κlλ(y|x) and κδνR

(y|x), respectively.

For bounded measurable f, g : W×Y λ → [0,∞) we note that the signed counting measureZλ(f)−Zλ(g)
can be decomposed as Zλ,+(f, g)− Zλ,−(f, g), where

Zλ,+(f, g) = {(Ti, Xi, Yi, Vi) ∈ Zλ,∗ : g(Xi, Yi) ≤ Vi ≤ f(Xi, Yi)}

and

Zλ,−(f, g) = {(Ti, Xi, Yi, Vi) ∈ Zλ,∗ : f(Xi, Yi) ≤ Vi ≤ g(Xi, Yi)}.
In particular, the ‖ · ‖ distance between Zλ(f) and Zλ(g) can be represented as

‖Zλ(f)− Zλ(g)‖ = max{Zλ,+(f, g)(V ∗,λ), Zλ,−(f, g)(V ∗,λ)}. (19)

Thus, for arbitrary fλ, gλ : W × Y λ → [0,∞) the distance ‖Zλ(f)− Zλ(g)‖ is stochastically bounded by
a Poisson random variable with intensity

λ|fλ − gλ|µλ = λ

∫
|fλ(x, y)− gλ(x, y)|µλ(dx,dy).
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5.4. Proof of Propositions 4.1 and 4.2. We note that Lemma 5.1 and identity (19) allow us to reduce the
proof of Propositions 4.1 and 4.2 to an intensity bound.

Corollary 5.3. Let {fλ}λ>0 and {f δλ}δ,λ>0 denote families of non-negative L1(µλ) functions satisfying

lim sup
δ↓0

lim sup
λ↑∞

|fλ − f δλ|µλ = 0.

Then γ(Zλ(f δλ)) are ‖ · ‖-exponentially good approximations of γ(Zλ(fλ)).

Proof. Let ε > 0 be arbitrary. First, by Lemma 5.1, it suffices to provide suitable bounds on P(‖Zλ(fλ) −
Zλ(f δλ)‖ > ε). Now, the identification (19) transforms the distance between Zλ(fλ) and Zλ(f δλ) into the
mass of the coupling Poisson process in domains of vanishing µλ-measure. Hence, an application of part 3 of
Lemma 3.1 concludes the proof. �

Next, we provide an example of an intensity bound that will also be relevant for the identification of the rate
function in the following section. For this purpose, we introduce the mixed preference functions

κδνR,ν
′
R
(y|x) =

k∑
i=1

1{y ∈Wi}
κνR

(Wi|x)
ν ′R(Wi)

and the associated intensity measure µδ(νR, ν
′
R) determined by

dµδ(νR, ν
′
R)

d(µt
T ⊗ µs

T ⊗ ν ′R)
(t, x, y) = κδνR,ν

′
R
(y|x).

Lemma 5.4. It holds that limδ↓0 |κµR
− κδµR,µR

|µs
T⊗µR

= 0.

Proof. Expanding the definitions, we see that the claim is equivalent to proving that

lim
δ↓0

∫
W 2

k∑
i=1

1{y ∈Wi}
∣∣∣κµR

(y|x)−
∫
Wi
κµR

(y′|x)µR(dy′)

µR(Wi)

∣∣∣(µs
T ⊗ µR)(dx,dy) = 0.

By dominated convergence it suffices to show that the integrand tends to zero for µs
T⊗µR-almost every (x, y).

But this is a consequence of the Lebesgue density theorem [13]. �

Now, we can prove Propositions 4.1 and 4.2.

Proof of Propositions 4.1 and 4.2. By Proposition 5.2, Corollary 5.3 and Lemma 5.4 it suffices to show that

lim
λ↑∞
|κδµR,lλ

− κδlλ,lλ |µλ = 0 (20)

for every δ > 0, and

lim
λ↑∞
|κlλ − κ

δ
lλ,lλ
|µλ = |κµR

− κδµR,µR
|µs

T⊗µR
. (21)

We begin by considering (20). First, |κδµR,lλ
− κδlλ,lλ |µλ is given by

k∑
i=1

∫
W
|κµR

(Wi|x)− κlλ(Wi|x)|µs
T(dx).

In particular, by dominated convergence, it suffices to show that the integrand converges to zero for µt
T-almost

every x ∈W . Hence, let 1 ≤ i ≤ k and x ∈W be arbitrary. Then, κµR
(Wi|x)− κlλ(Wi|x) is given by∫

Wi
κ(x, y)µR(dy)∫

W κ(x, y)µR(dy)
−
∫
Wi
κ(x, y)lλ(dy)∫

W κ(x, y)lλ(dy)
.

Disregarding a µt
T-nullset, we may assume that κ(x, ·) is µR-almost everywhere continuous, so that the weak

convergence lλ → µR implies (20).
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For the proof of (21) note that, by dominated convergence, it suffices to show that for µs
T-almost every x,

lim
λ↑∞
|κlλ(·|x)− κδlλ,lλ(·|x)|lλ = |κµR

(·|x)− κδµR,µR
(·|x)|µR

.

First, as µR is the weak limit of lλ, both |κlλ(·|x)−κµR
(·|x)|lλ and |κδlλ,lλ(·|x)−κδµR,µR

(·|x)|lλ tend to zero
as λ tends to infinity. Therefore, it remains to show that

lim
λ↑∞
|κµR

(·|x)− κδµR,µR
(·|x)|lλ = |κµR

(·|x)− κδµR
(·|x)|µR

,

which again is a consequence of the weak convergence of the relay measure. �

5.5. Coupling construction for absolutely continuous measures. It should not come as a surprise that
similar to what we have seen in the empirical setting in Section 5.3, couplings play a vital rôle in the identification
of the rate function. The procedure in the absolutely continuous setting is very similar, but some care has to be
taken since the empirical measures lλ need to be replaced by the limiting measure µR and the unit interval is
added to the state space. More precisely, we consider measures on the space

V ∗ = [0, tf ]× [0, 1]×W 2 × [0, κ∞],

where κ∞ = supx,y∈W κµR
(y|x). To simplify notation, we write κ and γ(·) instead of the more verbose

κµR
and γ(·, µR). If f : W 2 → [0, κ∞] is a measurable function and n∗ ∈ M∗ = M(V ∗), then we let

n∗(f) denote the measure on V ∗ that is defined by restriction to the sublevel set M(f) and forgetting the last
coordinate. For instance, we can recover previously introduced intensity measures as

µ(µR) = µ∗(κ) and µδ(µR, µR) = µ∗(κδ),

where
µ∗ = µt

T ⊗ U ⊗ µs
T ⊗ µR ⊗ | · |.

The decisive advantage offered by the couplings is that they allow for an elegant way of expressing total-
variation distances. More precisely, for bounded measurable f, g : W 2 → [0, κ∞] we note that the signed
measure n∗(f)− n∗(g) can be decomposed as n∗,+(f, g)− n∗,−(f, g), where

dn∗,+(f, g)
dn∗

(t, u, x, y, v) = 1{g(x, y) ≤ v ≤ f(x, y)}

and
dn∗,−(f, g)

dn∗
(t, u, x, y, v) = 1{f(x, y) ≤ v ≤ g(x, y)}.

In particular,

‖n∗(f)− n∗(g)‖ = max{n∗,+(f, g)(V ∗), n∗,−(f, g)(V ∗)}. (22)

5.6. Uniform spatial approximation property. The coupling introduced in the previous section brings us
into the setting of [5, Theorem 4.2.23] where both the desired rate functions and the rate functions of the
approximations are of contraction type. For the rate-function approximation to be useful in the exponential-
approximation argument, we need to verify that the approximations are uniform on measures with bounded
entropy, i.e., on

Iα = {n∗ ∈M∗ : h(n∗|µ∗) ≤ α}.

Lemma 5.5. Let α > 0 be arbitrary. Then, limδ↓0 supn∗∈Iα ‖γ(n∗(κ))− γ(n∗(κδ))‖ = 0.

Before we prove Lemma 5.5, we explain how it can be used to derive Proposition 4.3.

Proof of Proposition 4.3. Although Lemma 5.5 is the main ingredient for the exponential approximation [5, The-
orem 4.2.23], there are still two further steps that remain to be verified. First, we need to check that the
contraction-type rate functions

inf
n∗∈M∗: (γti (n∗(κ)))i=(γti )i

h(n∗|µ∗) and inf
n∈M′: (γti (n))i=(γti )i

h(n|µ(µR))
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are identical. Second, the continuity of the map Iα →M(W )[0,tf ], n∗ 7→ γ(n∗(κδ)) needs to be justified. In
order to verify the identity of the rate functions, we prove that

inf
n∗∈M∗: n∗(κ)=n

h(n∗|µ∗) = h(n|µ(µR)). (23)

Showing that the l.h.s. is at most as large as the r.h.s. is achieved by setting

n∗0(dt,du,dx,dy,dv) = κ(y|x)−1
1{M(κ)}n(dt,du,dx,dy)dv + 1{M(κ)c}µ∗(dt,du,dx,dy,dv).

For the reverse inequality it can be checked by direct computation that

h(n∗|µ∗) = h(n∗|n∗0) + h(n|µ(µR)),

so that the non-negativity gives (23).

Second, we show that for fixed δ > 0 the map n∗ 7→ γ(n∗(κδ)) is continuous. For this note that γ(n∗(κδ))
decomposes as

γ(n∗(κδ)) =
k∑
i=1

γ(n∗i (κ
δ)),

where

n∗i (κ
δ)(dt,du,dx) = n∗(κδ)(dt,du,dx,Wi)

is the restriction of n∗(κδ) to the points whose y-coordinate is in Wi. Similarly, put

µi(µR)(dt,du,dx) = µδ(µR, µR)(dt,du,dx,Wi).

Since h(n∗i (κ
δ)|µi(µR)) ≤ α, we deduce from Proposition 2.4 that γ is continuous at n∗i (κ

δ). Combining this
observation with the continuity of the partial evaluation maps n∗ 7→ n∗i (κ

δ) concludes the proof. �

Hence, it remains to prove Lemma 5.5. We recall from equation (9) that the process β(n) is obtained as a spatial
mixture of the corresponding localized processes β(ny) at receiver locations y ∈W . Therefore, understanding
how sensitive the localized processes are w.r.t. their input measures lays the groundwork for the global setting.

Lemma 5.6. Let ν, ν ′ ∈Mac, then ‖β(ν)(W )− β(ν ′)(W )‖ ≤ ‖ν − ν ′‖.

Proof. Let t ∈ [0, tf ] be arbitrary. By symmetry, it suffices to derive an upper bound for βt(ν)− βt(ν ′), where
for ease of notation we omit the evaluation on W . Now, let t0 ∈ [0, tf ] be the last point before t such that

βt0(ν) ≤ βt0(ν ′),

then,

βt(ν)− βt(ν ′) =
∫ t

t0

ν(ds, [βs(ν), 1],W )−
∫ t

t0

ν ′(ds, [βs(ν ′), 1],W ).

This difference can be split up into∫ t

t0

ν(ds, [βs(ν), 1],W )−
∫ t

t0

ν(ds, [βs(ν ′), 1],W )

and ∫ t

t0

ν(ds, [βs(ν ′), 1],W )−
∫ t

t0

ν ′(ds, [βs(ν ′), 1],W ),

where we know that the first expression is negative and therefore can be omitted. It remains to study the last
expression, which is at most ‖ν − ν ′‖, as required. �

Now we use Lemma 5.6 to complete the derivation of Lemma 5.5.
21



Proof of Lemma 5.5. First,

‖n∗(κ)([0, t], [0, 1],dx)− n∗(κδ)([0, t], [0, 1],dx)‖ ≤ ‖n∗(κ)− n∗(κδ)‖

so that by Lemma 3.1 part 2, Lemma 5.4 and identity (22) it remains to prove the statement with γ replaced by
β. By absolute continuity, we can perform disintegration of the measures n∗(κ) and n∗(κδ) with respect to the
relay coordinate. That is,

n∗(κ)(dt,du,dx, dy) = n∗y(κ)(dt,du,dx)µR(dy)

and

n∗(κδ)(dt,du,dx,dy) = n∗y(κ
δ)(dt,du,dx)µR(dy).

Let t ∈ [0, tf ] and A ⊂W measurable. Then, inserting the definition of β we see that we need to compare∫
[0,t]×W

n∗y(κ)(ds, [βs(n∗y(κ))(W ), 1]×A)µR(dy)

with ∫
[0,t]×W

n∗y(κ
δ)(ds, [βs(n∗y(κ

δ))(W ), 1]×A)µR(dy).

We decompose this task into providing bounds separately for∣∣∣ ∫
[0,t]×W

(n∗y(κ)− n∗y(κ
δ))(ds, [βs(n∗y(κ

δ))(W ), 1]×A)µR(dy)
∣∣∣

and ∫
[0,tf ]×W

n∗y(κ)(ds, I(βs(n∗y(κ))(W ), βs(n∗y(κ
δ))(W ))×W )µR(dy),

where I(a, b) = [a ∧ b, a ∨ b]. The first expression is at most ‖n∗(κ) − n∗(κδ)‖, so that again Lemma 3.1
part 2, Lemma 5.4 and identity (22) yield that

lim
δ↓0

sup
n∗∈Iα

‖n∗(κ)− n∗(κδ)‖ = 0.

By Lemma 5.6, the second expression is bounded above by n∗(κ)(Cn∗,δ) where

Cn∗,δ = {(t, u, x, y) : |u− βt(n∗y(κ))(W )| ≤ ‖n∗y(κ)− n∗y(κ
δ)‖}.

In particular, by Lemma 3.1 part 2 it remains to show that limδ↓0 supn∗∈Iα µ(µR)(Cn∗,δ) = 0. For this, we
note that reversing the disintegration of the relay measure gives that

µ(µR)(Cn∗,δ) ≤ 2
∫
W 2

‖n∗y(κ)− n∗y(κ
δ)‖κ(y|x)(µs

T ⊗ µR)(dx, dy)

≤ 2µs
T(W )κ∞

∫
W

max{n∗,+y (κ, κδ), n∗,−y (κ, κδ)}µR(dy)

≤ 2µs
T(W )κ∞(n∗,+(κ, κδ) + n∗,−(κ, κδ)),

so that another invocation of Lemma 3.1 part 2 and Lemma 5.4 concludes the proof. �
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