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Abstract

We show that any function can be locally approximated by solutions of prescribed linear equations of nonlocal
type. In particular, we show that every function is locally s-caloric, up to a small error. The case of non-elliptic
and non-parabolic operators is taken into account as well.

1 Introduction

In this paper, we will show that an arbitrary function can be locally approximated, in the smooth sense, by s-caloric
functions, i.e. by solutions of the fractional heat equation in which the diffusion is due to the s-power of the Laplacian,
with s ∈ (0, 1).

The precise result obtained is the following:

Theorem 1. Let B1 ⊂ Rn be the unit ball, s ∈ (0, 1), k ∈ N and f : B1 × (−1, 1) → R, with f ∈
Ck(B1 × [−1, 1]).

Fix ε > 0. Then there exists uε = u ∈ C∞(B1 × (−1, 1)) ∩ C(Rn+1) which is compactly supported in Rn+1

and such that the following properties hold true:

∂tu+ (−∆)su = 0 in B1 × (−1, 1) (1)

and ‖u− f‖Ck(B1×(−1,1)) 6 ε. (2)

We remark that the approximation result in Theorem 1 reflects a purely nonlocal phenomenon, since in the local
case the solutions of the classical heat equation are particularly “rigid”. For example, solutions of the classical
heat equation (i.e. solutions of equation (1) when s = 1) satisfy a local Harnack inequality which prevents arbitrary
oscillations (in particular, these solutions cannot approximate a given function which does not satisfy these oscillation
constraints).

On the contrary, in the nonlocal setting, solutions of linear equations are flexible enough to approximate any given
function, and this approximation results hold true in a very general context. As a matter of fact, in our setting,
Theorem 1 is just a particular case of a much more general result that we provide in the forthcoming Theorem 2.

To state this general theorem, we introduce now some specific notation. We will often use small fonts to denote
“local variables”, capital fonts to denote “nonlocal variables”, and Greek fonts to denote the set of local and nonlocal
variables altogether, namely1 given d ∈ N, with d > 0, andN ∈ N, withN > 1, we consider x := (x1, . . . , xd) ∈
Rd and X := (X1, . . . , XN ) ∈ Rn1 × · · · × RnN and we let (x,X) ∈ Rν , with ν := d + n1 + · · · + nN . To
avoid confusions, when necessary, the k-dimensional unit ball will be denoted by Bk

1 (of course, when no confusion
is possible, we will adopt the usual notation B1).

Given m = (m1, . . . ,md) ∈ Nd and (a1, . . . , ad) ∈ Rd \ {0}, we consider the local operator

` :=
d∑
j=1

aj∂
mj
xj .

1If d = 0, simply there are no “local variables” (x1, . . . , xd) to take into account and ν = n1 + · · ·+ nN .
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Also, given s = (s1, . . . , sN ) ∈ (0, 1)N andA = (A1, . . . , AN ) ∈ RN \ {0}, we consider the nonlocal operator

L :=
N∑
j=1

Aj (−∆Xj )
sj ,

where we denoted by (−∆Xj )
sj the fractional Laplacian of order sj ∈ (0, 1) in the set of variables Xj ∈ Rnj ,

namely

(−∆Xj )
sju(x,X1, . . . , Xj , . . . , XN )

:= C(nj , sj) lim
%↘0

∫
Y ∈Rnj \B

nj
%

u(x,X1, . . . , Xj , . . . , XN )− u(x,X1, . . . , Xj + Y, . . . ,XN )
|Y |nj+2sj

dY,

where we used the normalized constant

C(nj , sj) :=
4sj sj Γ

(nj
2 + sj

)
π
nj
2 Γ (1− sj)

,

being Γ the Euler’s Γ-function.

Then, we deal with the superposition2 of the local and the nonlocal operators, given by

Λ := `+ L (3)

and we establish that all functions are locally Λ-harmonic up to a small error, i.e. the functions in the kernel of the
operator Λ are locally dense in Ck. The precise result goes as follows:

Theorem 2. Let k ∈ N and f : Rν → R, with f ∈ Ck(Bν
1 ). Fix ε > 0. Then there exist u ∈ C∞(Bν

1 )∩C(Rν)
and R > 1 such that the following properties hold true:

Λu = 0 in Bν
1 , (4)

‖u− f‖Ck(Bν1 ) 6 ε (5)

and u = 0 in Rν \Bν
R. (6)

It is interesting to remark that not only Theorem 2 immediately implies Theorem 1 as a particular case, but also that
Theorem 2 does not require any ellipticity or parabolicity on the operator, which is perhaps a rather surprising fact.
Indeed, we stress that Theorem 2 is valid also for operators with hyperbolic structures, and comprises the cases
when

Λ =
d∑
j=1

∂2
xj + (−∆X1)s1

and when
Λ = (−∆X1)s1 − (−∆X2)s2

with s1, s2 ∈ (0, 1). In this sense, the nonlocal features of the fractional Laplacian in some variables dominate the
possible elliptic/parabolic/hyperbolic structure of the operator.

The first result in the direction of Theorem 2 has been recently obtained in [4], where Theorem 2 was proved in
the special case in which d = 0 and N = 1 (that is, when there are no “local variables” and only one “nonlocal
variable”). Results related to that in [4] have been obtained in [2] for other types of nonlocal operators, such as the
ones driven by the Caputo derivative.

We also observe that these “abstract” approximation results have also “concrete” applications, for instance in math-
ematical biology: for example, they show that biological species with nonlocal strategies can better plan their distri-
bution in order to exhaust a given resource in a strategic region, thus avoiding any unnecessary waste of resource,
see e.g. [3,5].

In this sense, we mention the following application of Theorem 1:

2Of course, if d = 0, i.e. if there are no “local variables”, the operator Λ in (3) coincides with the purely nonlocal operator L.
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Theorem 3. Let s ∈ (0, 1) and k ∈ N. Fix ε > 0. Let σ ∈ Ck
(
B1 × [−1, 1], (0,+∞)

)
. Then, there exists

uε ∈ C∞
(
B1 × (−1, 1), (0,+∞)

)
∩ C(Rn+1) which is compactly supported and such that

∂tuε + (−∆)suε = (σε − uε)uε in B1 × (−1, 1), (7)

uε = σε in B1 × (−1, 1) (8)

and ‖σ − σε‖Ck
(
B1×(−1,1)

) 6 ε. (9)

The biological interpretation of Theorem 3 is that uε represents the distribution of a population, which satisfies
a logistic equation as in (7). The function σ can be thought as a resource (which in turn produces a birth rate
proportional to it). The meaning of Theorem 3 is that, possibly replacing the original resource with a slightly different
one (as prescribed quantitatively by (9)), the population can consume all the resource (as given by (8)).

Notice that, in our setting, Theorem 3 is a simple consequence of Theorem 1 (by taking there f := σ). More general
interactions can also be considered, see e.g. Theorem 1.8 in [3].

The rest of the paper is organized as follows. In Section 2 we give a precise boundary behavior of solutions of
nonlocal equations (these estimates depend in turn on some technical boundary asymptotics of the Green function
of the fractional Laplacian, whose proof is deferred to the end of the paper, in Section 7).

Section 3 contains the main argument towards the proof of Theorem 2, that is that solutions of nonlocal equations
can span the largest possible space with their derivatives (we remark that this is a purely nonlocal argument, since,
for instance, harmonic functions obviously cannot span strictly positive second derivatives). The argument to prove
this fact is based on a “separation of variables” method. Namely, we will look for solutions of nonlocal equations in
the form of products of functions depending on “local” and “nonlocal variables”. The nonlocal part of the function is
built by the eigenfunctions of the nonlocal operators (whose boundary behavior is somehow singular and can be
quantified by the estimates of the previous sections), while the local part of the function is constructed by an ordinary
differential equation which is designed to compensate all the coefficients of the operator in the appropriate way.

The proof of Theorem 2 is then discussed step by step, first in Section 4, where f is supposed to be a monomial,
then in Section 5, where f is supposed to be a polynomial, and finally completed in the general case in Section 6.

2 Boundary behavior of solutions of fractional Laplace equations

In this section, we detect the exact boundary behavior of solutions of fractional Laplace equations in a ball with
Dirichlet data. For estimates in general domains, see e.g. [6] and the references therein. Let us remark that, in our
context, we do not only obtain bounds from above and below, but also a precise asymptotics in the limits which
approach the boundary.

In order to obtain our bounds, we make use of the fractional Green function, whose setting goes as follows. Given
s ∈ (0, 1) and x, z ∈ B1, we consider the function

G(x, z) := |z − x|2s−n
∫ r0(x,z)

0

ts−1 dt

(t+ 1)
n
2

, (10)

with3

r0(x, z) :=
(1− |x|2) (1− |z|2)

|z − x|2
. (11)

3Though we will not use this, it is interesting to point out that when n = 2s, i.e. when n = 1 and s = 1
2

, the function G can be written
explicitly, up to constants, as

G(x, z) = log
1− xz +

p
(1− |x|2) (1− |z|2)

|z − x| .

This follows by computing the integral Z
dtp

t (t+ 1)
= 2 log(

√
t+
√
t+ 1) + const .
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Up to normalization factors, the function G plays the role of a Green function in the fractional setting, as discussed
for instance in [1] and in the references therein.

If x lies in an ε-neighborhood of ∂B1, then G is of order εs, as stated precisely in the next result:

Lemma 4. Let e ∈ ∂B1, εo > 0 and ω ∈ ∂B1. Assume that e + εω ∈ B1 for all ε ∈ (0, εo]. Let f ∈ Cα(Rd)
for some α ∈ (0, 1), with f = 0 outside B1.

Then

lim
ε↘0

ε−s
∫
B1

f(z)G(e+ εω, z) dz =
∫
B1

f(z)
(−2 e · ω)s (1− |z|2)s

s |z − e|n
dz. (12)

The rather technical proof of Lemma 4 is postponed to Section 7, for the facility of the reader. Here, we deduce from
Lemma 4 the boundary estimates needed to the proof of our main result:

Proposition 5. Let e ∈ ∂B1, εo > 0 and ω ∈ ∂B1. Assume that e+εω ∈ B1 for all ε ∈ (0, εo]. Let f ∈ Cα(Rn)
for some α ∈ (0, 1), with f = 0 outside B1.

Let u be a weak solution of {
(−∆)su = f in B1,

u = 0 in Rn \B1.

Then

lim
ε↘0

ε−s u(e+ εω) = κ(n, s) (−2 e · ω)s
∫
B1

f(z)
(1− |z|2)s

s |z − e|n
dz,

where

κ(n, s) :=
Γ
(
n
2

)
4s π

n
2 Γ2(s)

,

being Γ the Euler’s Γ-function.

Proof. We know from Theorems 1 and 2 in [8] that u is actually continuous in Rn and it is a viscosity solution of
the equation. Also, by the fractional Green Representation Theorem (see e.g. Theorem 3.2 in [1] and the references
therein), we have that

u(e+ εω) = κ(n, s)
∫
B1

f(z)G(e+ εω, z) dz,

with G as in (10). Hence, the desired result follows from (12).

As a simple consequence, we can characterize the boundary behavior of the first eigenfunction for the fractional
Laplacian with Dirichlet data (see e.g. Appendix A in [7] for a discussion on fractional eigenvalues).

Corollary 6. Let e ∈ ∂B1. Let φ? be the first eigenfunction for (−∆)s, normalized to be positive and such that
‖φ?‖L2(B1) = 1, and let λ? > 0 be the corresponding eigenvalue. Then,

‖φ?‖Cs(Rn) 6 C, (13)

for some C > 0 depending only on n and s, and

lim
ε↘0

ε−s φ?(e+ εω) = κ? λ? (− e · ω)s+. (14)

where

κ? := 2s κ(n, s)
∫
B1

φ?(z)
(1− |z|2)s

s |z − e|n
dz ∈ (0,+∞). (15)
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Proof. The idea is that, since (−∆)sφ? = λ? φ?, we can use Proposition 5 and get the desired result. More
precisely, we have that φ? isCs(B1) (see the proof of Corollary 8 in [8] to obtain the continuity and then Proposition
1.1 in [6] to get the Hölder estimate in (13)).

Notice that, by (13), we have that the quantity κ? defined in (15) is finite, while the positivity of φ? implies that
κ? > 0.

Also, the Hölder estimate in (13) allows to use Proposition 5 with f := λ? φ?. Accordingly, for any ω ∈ ∂B1 for
which there exists εo > 0 such that e+ εω ∈ B1 for all ε ∈ (0, εo], we have that

lim
ε↘0

ε−s φ?(e+ εω) = κ? λ? (− e · ω)s. (16)

Now, we distinguish two cases: if e · ω < 0, then

|e+ εω|2 = 1 + 2εe · ω + ε2 < 1

for small ε, and so e+ εω ∈ B1 for small ε, hence (14) follows from (16).

If instead e · ω > 0, then e+ εω ∈ Rn \B1, thus φ?(e+ εω) = 0, which obviously implies (14) in this case.

For our purposes, it is useful to deduce the following integral estimate from Corollary 6:

Corollary 7. Let e ∈ ∂B1. Let φ? be the first eigenfunction for (−∆)s, normalized to be positive and such that
‖φ?‖L2(B1) = 1, and let λ? > 0 be the corresponding eigenvalue.

Let κ? be as in (15). Then

lim
ε↘0

ε|α|−s∂αφ?(e+ εX) = (−1)|α| κ? λ? s (s− 1) . . . (s− |α|+ 1) eα1
1 . . . eαnn (−e ·X)s−|α|+

in the sense of distribution, for any α ∈ Nn.

Proof. Let ψ ∈ C∞0 (Rn). We writeX = ρω, with ρ > 0 and ω ∈ Sn−1. Notice that (ερ)−s |φ?(e+ ερω)| 6 C ,
thanks to (13).

So, we use (16) and the Dominated Convergence Theorem to see that

lim
ε↘0

ε|α|−s
∫

Rn
∂αφ?(e+ εX)ψ(X) dX = lim

ε↘0

∫
Rn
∂αX
(
ε−sφ?(e+ εX)

)
ψ(X) dX

= (−1)|α| lim
ε↘0

∫
Rn
ε−sφ?(e+ εX) ∂αψ(X) dX

= (−1)|α| lim
ε↘0

∫ +∞

0
dρ

∫
Sn−1

dω ρn−1ρs (ερ)−sφ?(e+ ερω) ∂αψ(ρω)

= (−1)|α| κ? λ?
∫ +∞

0
dρ

∫
Sn−1

dω ρn−1ρs (−e · ω)s+ ∂
αψ(ρω)

= (−1)|α| κ? λ?
∫ +∞

0
dρ

∫
Sn−1

dω ρn−1(−e · ρω)s+ ∂
αψ(ρω)

= (−1)|α| κ? λ?
∫

Rn
(−e ·X)s+ ∂

αψ(X) dX

= κ? λ?

∫
Rn
∂αX(−e ·X)s+ ψ(X) dX

= (−1)|α| κ? λ? s (s− 1) . . . (s− |α|+ 1) eα1
1 . . . eαnn

∫
Rn

(−e ·X)s−|α|+ ψ(X) dX,

and this gives the desired result, since ψ is an arbitrary test function.
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3 Spanning the whole of the Euclidean space with Λ-harmonic functions

Here we show that Λ-harmonic functions span the whole of the Euclidean space (this is a purely nonlocal phe-
nomenon, since, for instance, the second derivatives of harmonic functions have to satisfy a linear equation, and
therefore are forced to lie in a proper subspace).

To this goal, we consider here multi-indices i = (i1, . . . , id) ∈ Nd and I = (I1, . . . , IN ) ∈ Nn1 × · · · × NnN .
We will use the notation

ι := (i, I) = (i1, . . . , id, I1, . . . , IN ) ∈ Nν . (17)

As usual, we set |ι| := i1 + · · ·+ id + |I1|+ . . . |IN |, where |I1| := I1,1 + · · ·+ I1,n1 , and so on. We also write

∂ιw := ∂i1x1
. . . ∂idxd∂

I1
X1
. . . ∂INXNw.

We consider the span of the derivatives of Λ-harmonic functions, with derivatives up to orderK . For this, we denote
by ∂Kw the vector field collecting in its entry all the derivatives of the form ∂ιw with |ι| 6 K (in some prescribed
order). Notice that ∂Kw is a vector field on the Euclidean space RK′ for some K ′ ∈ N (of course, K ′ depends
on K).

Then we denote by H the family of all functions w ∈ C(Rν) that are compactly supported in Rν and for which
there exists a neighborhoodN of the origin in Rν such that w ∈ C∞(N ) and Λw = 0 inN .

Finally, we define the set
VK :=

{
∂Kw(0) for all w ∈ H

}
. (18)

By construction VK ⊆ RK′ , and we have:

Lemma 8. It holds that VK = RK′ .

Proof. First, we consider the case in which d 6= 0 (hence, we are taking into account the case in which the ambient
space possesses both “local” and “nonlocal variables”; the case d = 0 will be then discussed at the end of the
proof).

Since Λ is a linear operator, we have that VK is a vector space, hence a linear subspace of RK′ . So, we argue by
contradiction: if VK does not exhaust the whole of RK′ , then it must lie in a proper subspace. Accordingly, there
exists

ϑ ∈ ∂BK′
1 (19)

such that
VK ⊆

{
ζ ∈ RK′ s.t. ϑ · ζ = 0

}
. (20)

Now, for any j ∈ {1, . . . , N} we denote by φ̃?,j ∈ C(Rnj ) the first eigenfunction of (−∆)sj in B
nj
1 with Dirichlet

datum outside B
nj
1 (and normalized to have unit norm in L2(Rnj )). The corresponding eigenvalue will be denoted

by λ?,j > 0.

We also fix a set of free parameters t1, . . . , td ∈ R. Up to reordering the variables and possibly taking the operators
to the other side of the equation, we suppose thatAN > 0 and we set λj := λ?,j for any j ∈ {1, . . . , N −1} and

λN :=
1
AN

 d∑
j=1

|aj |t
mj
j −

N−1∑
j=1

Ajλj

 .

We also consider the set

P :=

t = (t1, . . . , td) ∈ Rd s.t.
d∑
j=1

|aj |t
mj
j −

N−1∑
j=1

Ajλj > 0

 .
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Notice that P is open and non-void (since it contains any point t with large coordinates t1, . . . , td). We also remark
that for any t ∈ P we have λN > 0.

Moreover, by construction
d∑
j=1

|aj |t
mj
j −

N∑
j=1

Ajλj = 0. (21)

We also set

rj :=
λ

1/2sj
?,j

λ
1/2sj
j

and we see that, for any j ∈ {1, . . . , N}, the function

φj(Xj) := φ̃?,j

(
Xj

rj

)
= φ̃?,j

λ1/2sj
j Xj

λ
1/2sj
?,j

 (22)

is an eigenfunction of (−∆)sj in B
nj
rj , with Dirichlet datum outside B

nj
rj and eigenfunction equal to λj , that is

(−∆)sjφj = λjφj in B
nj
rj . (23)

Now, we define, for any j ∈ {1, . . . , d},

āj :=
{
aj/|aj | if aj 6= 0,

1 if aj = 0.

We stress that
āj 6= 0. (24)

Now we consider, for any j ∈ {1, . . . , d}, the solution of the Cauchy problem{
∂
mj
xj v̄j = −āj v̄j ,

∂ixj v̄j(0) = 1 for every i ∈ {0, . . . ,mj − 1}. (25)

Notice that the solution v̄j is well defined at least in an interval of the form [−ρj , ρj ] for a suitable ρj > 0, and we
define

ρ := min
j∈{1,...,d}

ρj .

We take τ̄ ∈ C∞0 (Bd
ρ), with τ̄ = 1 in Bd

ρ/2, and we set τ(x) = τ(x1, . . . , xd) := τ̄(t1x1, . . . , tdxd). Moreover,
we introduce the function

vj(xj) := v̄j(tjxj).

Notice that
aj∂

mj
xj vj = −|aj |t

mj
j vj . (26)

Now, we take e1, . . . , eN , with
ej ∈ ∂B

nj
rj = ∂B

nj

λ
1/2sj
?,j /λ

1/2sj
j

. (27)

We introduce an additional set of free parameters Y1, . . . , YN , with Yj ∈ Rnj and ej ·Yj < 0. We also take ε > 0
(to be taken as small as we wish in the sequel, possibly in dependence of e1, . . . , eN and Y1, . . . , YN ), and we
define

w(x,X) := τ(x) v1(x1) . . . vd(xd)φ1(X1 + e1 + εY1) . . . φN (XN + eN + εYN )
= τ(x) v(x)φ(X),

where v(x) := v1(x1) . . . vd(xd)
and φ(X) := φ1(X1 + e1 + εY1) . . . φN (XN + eN + εYN ).
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Notice that w is compactly supported in Rν . Moreover, in light of (23) and (26), if (x,X) is sufficiently close to the
origin, we have that

`w(x,X) =
d∑
j=1

aj∂
mj
xj

(
τ(x) v(x)φ(X)

)
= −

d∑
j=1

|aj |t
mj
j τ(x) v(x)φ(X)

and Lw(x,X) =
N∑
j=1

Aj(−∆)sjXj

(
τ(x) v(x)φ(X)

)
=

N∑
j=1

Ajλj τ(x) v(x)φ(X).

Hence, by (21),
Λw(x,X) = `w(x,X) + Lw(x,X) = 0

if (x,X) is sufficiently close to the origin. Consequently, w ∈ H. Thus, in view of (18) and (20), we have that

0 = ϑ · ∂Kw(0) =
∑
|ι|6K

ϑι∂
ιw(0)

=
∑

|i1|+···+|id|+|I1|+···+|IN |6K

ϑi1,...,id,I1,...,IN∂
i1
x1
. . . ∂idxd∂

I1
X1
. . . ∂INXNw(0).

(28)

We claim that, for any i ∈ N,
$ij := ∂ixj v̄j(0) 6= 0. (29)

The proof of this can be done by induction. Indeed, if i ∈ {0, . . . ,mj − 1}, then (29) is true, thanks to the initial
condition in (25). Suppose now that

the claim in (29) holds true for all i ∈ {0, . . . , io}, for some io > mj − 1. (30)

Then, using the equation in (25) we have that

∂io+1
xj v̄j = ∂

io+1−mj
xj ∂

mj
xj v̄j = −āj∂

io+1−mj
xj v̄j . (31)

By (30), we know that ∂
io+1−mj
xj v̄j(0) 6= 0. This, (24) and (31) imply that ∂io+1

xj v̄j(0) 6= 0. This proves (29).

Now, from (29) we have that
∂
ij
xjv(0) = t

ij
j $ij j 6= 0.

Hence, we write (28) as

0 =
∑

|i1|+···+|id|+|I1|+···+|IN |6K

ϑi1,...,id,I1,...,IN $i1 1 . . . $id d t
i1
1 . . . t

id
d ∂

I1
X1
. . . ∂INXNφ(0)

=
∑

|i|+|I|6K

ϑi,I $it
i∂IXφ(0),

(32)

where a multi-index notation has been adopted, and if i = (i1, . . . , id), $i := $i1 1 . . . $id d. We stress that

$i 6= 0, (33)

thanks to (29).

Recalling (22), we write (32) as

0 =
∑

|i|+|I|6K

ϑi,I $i t
i
N∏
j=1

(
λj
λ?,j

) |Ij |
2sj

∂
Ij
Xj
φ̃?,j

λ1/2sj
j

λ
1/2sj
?,j

(ej + εYj)

 .
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Hence, by Corollary 7, applied to e :=
λ
1/2sj
j

λ
1/2sj
?,j

ej and X :=
λ
1/2sj
j

λ
1/2sj
?,j

Yj , after multiplying by a power of ε and sending

ε↘ 0, we obtain

0 =
∑

|i|+|I|6K

ϑi,I $i t
i

·
N∏
j=1

( λj
λ?,j

) |Ij |
sj

(−1)|Ij | κ? λ? s (s− 1) . . . (s− |Ij |+ 1) eIjj

−λ
1

2sj

j ej

λ
1

2sj

?,j

·
λ

1
2sj

j Yj

λ
1

2sj

?,j


sj−|Ij |

+


=

∑
|i|+|I|6K

ϑi,I $i t
i
N∏
j=1

[(
λj
λ?,j

)
(−1)|Ij | κ? λ? s (s− 1) . . . (s− |Ij |+ 1) eIjj (−ej · Yj)

sj−|Ij |
+

]
.

That is, collecting and simplifying some terms, we find that

0 =
∑

|i|+|I|6K

ϑ̃i,I $i t
i eI

N∏
j=1

(−ej · Yj)
−|Ij |
+ , (34)

with

ϑ̃i,I := ϑi,I

N∏
j=1

(
s (s− 1) . . . (s− |Ij |+ 1)

)
.

We remark that, in light of (19),
ϑ̃i,I are not all equal to zero. (35)

Notice that formula (34) is true for any (t1, . . . , td) ∈ P , any e1, . . . , eN satisfying (27), and any Y1, . . . , YN ,
with Yj ∈ Rnj and ej · Yj < 0.

For this, we take new free parameters T1, . . . , TN with Tj ∈ Rnj and we choose

ej :=
λ

1/2sj
?,j

λ
1/2sj
j

· Tj
|Tj |

and Yj := − Tj
|Tj |2

.

Then, formula (34) becomes ∑
|i|+|I|6K

ϑ̃i,I $i t
i T I = 0.

By the Identity Principle of Polynomials, this gives that each ϑ̃i,I$i is equal to zero. Hence, by (33), each ϑ̃i,I is
equal to zero. This is in contradiction with (35) and so the desired result is established (when d 6= 0).

Now we consider the case in which d = 0, i.e. when only “nonlocal variables” are present. For this, we argue
recursively on N (i.e. on the number of the “nonlocal variables”). When N = 1, that is when there is only one set of
“nonlocal variables”, the result is true, thanks to Theorem 3.1 in [4].

Now we suppose that the result is true for N − 1 and we prove it for N . We set

L′ :=
N−1∑
j=1

Aj (−∆Xj )
sj and LN := AN (−∆XN )sN .

We denote by H′ the family of all functions w′ ∈ C(Rn1+···+nN−1) that are compactly supported and for which
there exists a neighborhood of the origin on which w′ is smooth and L′w′ = 0.

Similarly, we call HN the family of all functions wN ∈ C(RnN ) that are compactly supported and for which there
exists a neighborhood of the origin on which wN is smooth and LNwN = 0.
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We also use the notation X = (X ′, XN ) ∈ Rn1+···+nN−1 × RnN to distinguish the last set of variables. Given
any w′ ∈ H′ and any wN ∈ HN , we set

Ww′,wN (X) = Ww′,wN (X ′, XN ) := w′(X ′)wN (XN ).

Notice that
LWw′,wN (X) =

(
L′w′(X ′)

)
wN (XN ) + w′(X ′)

(
LNwN (XN )

)
.

Thus,
if w′ ∈ H′ and wN ∈ HN , then Ww′,wN ∈ H. (36)

Again, we argue by contradiction and we suppose that the claim in Lemma 8 is not true, hence there exists a unit
vector ϑ such that

VK lies in the orthogonal space of ϑ. (37)

Notice that each component of ϑ can be written as ϑI , with I = (I1, . . . , IN ) and |I| 6 K . To distinguish the last
component we write I ′ := (I1, . . . , IN−1) and so ϑI = ϑ(I′,IN ) with |I ′|+ |IN | 6 K .

In particular, by (36) and (37), for any w′ ∈ H′ and any wN ∈ HN we have that

0 =
∑
|I|6K

ϑI∂
I
XWw′,wN (0) =

∑
|I′|+|IN |6K

ϑ(I′,IN )∂
I′
X′w

′(0)∂INXNwN (0)

=
∑
|IN |6K

 ∑
|I′|6K−|IN |

ϑ(I′,IN )∂
I′
X′w

′(0)

 ∂INXNwN (0) =
∑
|IN |6K

ϑ̂IN ,w′ ∂
IN
XN

wN (0),

where
ϑ̂IN ,w′ :=

∑
|I′|6K−|IN |

ϑ(I′,IN )∂
I′
X′w

′(0).

That is, all functions in HN lie in the orthogonal of the vector with entries ϑ̂IN ,w′ . From Theorem 3.1 in [4] this

implies that each ϑ̂IN ,w′ must vanish, that is∑
|I′|6K−|IN |

ϑ(I′,IN )∂
I′
X′w

′(0) = 0

for any multi-index IN with |IN | 6 K and any w′ ∈ H′. Since H′ contains N − 1 “nonlocal variables”, we can
now use the inductive hypothesis and conclude that each ϑ(I′,IN ) must vanish. This is a contradiction with the fact
that ϑ was supposed to be of unit length and so the proof of Lemma 8 is complete.

4 Proof of Theorem 2 when f is a monomial

Now we prove Theorem 2 under the additional assumption that f is of monomial type, namely that

f(x,X) =
xi11 . . . x

id
d X

I1
1 . . . XIN

N

ι!
=
xiXI

ι!
, (38)

for some (i1, . . . , id) ∈ Nd and (I1, . . . , IN ) ∈ Nn1 × NnN . Of course, we used here the standard notation
for powers of multi-indices: namely if X1 := (X1,1, . . . , X1,n1) ∈ Rn1 and I1 := (I1,1, . . . , I1,n1) ∈ Nn1 , the

notation XI1
1 is short for X

I1,1
1,1 . . . X

I1,n1
1,n1

. Also, ι is as in (17) and, as customary, we used the multi-index factorial

ι! := i1! . . . id! I1! . . . IN !,

where, once again I1! := I1,1! . . . I1,n1 ! and so on.
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Then, to prove Theorem 2 in this case, we argue as follows. We define

γ :=
d∑
j=1

ij
mj

+
N∑
j=1

|Ij |
2sj

(39)

and µ := min
{

1
m1

, . . . ,
1
md

,
1

2s1
, . . . ,

1
2sN

}
. (40)

We also take Ko ∈ N with

Ko >
γ + 1
µ

(41)

and we let
K := Ko + |i|+ |I|+ k, (42)

where k is the fixed integer given by the statement of Theorem 2. By Lemma 8, there exist a neighborhoodN of the
origin in Rν and a function w ∈ C(Rν), compactly supported in Rν , such that w ∈ C∞(N ), Λw = 0 inN , and
such that all the derivatives of w in 0 of order up to K vanish, with the exception of ∂ιw(0), which is equal to 1. In
this way, setting

g := w − f, (43)

we have that
∂αg(0) = 0 for any α ∈ Nν with |α| 6 K.

Accordingly, inN we can write
g(x,X) =

∑
|τ |>K+1

xtXT hτ (x,X), (44)

for functions hτ that are smooth inN , where the multi-index notation τ = (t, T ) has been used.

Now, we fix η ∈ (0, 1) (to be taken suitably small with respect to the fixed ε > 0 given by the statement of Theorem
2). We define

u(x,X) :=
1
ηγ
w
(
η

1
m1 x1, . . . , η

1
md xd, η

1
2s1X1, . . . , η

1
2sN XN

)
.

Notice that u is compactly supported in Rν and smooth in a neighborhood of the origin (which is large for η small,
hence we may suppose that it includes B1), and in this neighborhood we have

ηγ Λu(x,X) = η

 d∑
j=1

aj∂
mj
xj w

(
η

1
m1 x1, . . . , η

1
md xd, η

1
2s1X1, . . . , η

1
2sN XN

)

+
N∑
j=1

Aj (−∆Xj )
sjw
(
η

1
m1 x1, . . . , η

1
md xd, η

1
2s1X1, . . . , η

1
2sN XN

) = 0.

These observations establish (4) and (6). Now we prove (5). To this aim, we observe that the monomial structure
of f in (38) and the definition of γ in (39) imply that

1
ηγ
f
(
η

1
m1 x1, . . . , η

1
md xd, η

1
2s1X1, . . . , η

1
2sN XN

)
= f(x,X).

Consequently, by (43) and (44),

u(x,X)− f(x,X) =
1
ηγ
g
(
η

1
m1 x1, . . . , η

1
md xd, η

1
2s1X1, . . . , η

1
2sN XN

)
=

∑
|τ |>K+1

η|
t
m |+| T2s |−γ xtXT hτ

(
η

1
mx, η

1
2sX

)
where the multi-index notation has been used.
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Therefore, for any multi-index β = (b, B) with |β| 6 k,

∂β (u(x,X)− f(x,X)) = ∂bx ∂
B
X (u(x,X)− f(x,X))

=
∑

|b′|+|b′′|=|b|
|B′|+|B′′|=|B|
|τ |>K+1

cτ,β η
| tm |+| T2s |−γ+

˛̨̨
b′′
m

˛̨̨
+

˛̨̨
B′′
2s

˛̨̨
xt−b

′
XT−B′ ∂b

′′
x ∂B

′′
X hτ

(
η

1
mx, η

1
2sX

)
, (45)

for suitable coefficients cτ,β . Thus, to prove (5), we need to show that this quantity is small if so is η. To this aim, we
use (40), (41) and (42) to see that∣∣∣∣ tm

∣∣∣∣+
∣∣∣∣ T2s
∣∣∣∣− γ +

∣∣∣∣b′′m
∣∣∣∣+
∣∣∣∣B′′2s

∣∣∣∣ > ∣∣∣∣ tm
∣∣∣∣+
∣∣∣∣ T2s
∣∣∣∣− γ

> µ
(
|t|+ |T |

)
− γ > Kµ− γ > Koµ− γ > 1.

Consequently, we deduce from (45) that ‖u− f‖Ck(Bν1 ) 6 Cη, for some C > 0. By choosing η sufficiently small
with respect to ε, this implies (5). The proof of Theorem 2 when f is a monomial is thus complete.

5 Proof of Theorem 2 when f is a polynomial

If f is a polynomial, we can write f as a finite sum of monomials, say

f(x,X) =
J∑
j=1

cjfj(x,X),

where each fj is a monomial as in (38), cj ∈ R and J ∈ N. Let c := maxj∈J |cj |. Then, we know that Theorem
2 holds for each fj , in view of the proof given in Section 4, and so we find uj ∈ C∞(Bν

1 ) ∩ C(Rν) and Rj > 1
such that Λuj = 0 in Bν

1 , ‖uj − fj‖Ck(Bν1 ) 6 ε and u = 0 in Rν \Bν
Rj

. Hence, we set

u(x,X) =
J∑
j=1

cjuj(x,X),

and we see that

‖u− f‖Ck(Bν1 ) 6
J∑
j=1

|cj | ‖uj − fj‖Ck(Bν1 ) 6 cJ ε.

Also, since Λ is linear, we have that Λu = 0 in Bν
1 . Finally, u is supported in Bν

R, being R := maxj∈J Rj . This
establishes Theorem 2 for polynomials (up to replacing ε with cJ ε).

6 Completion of the proof of Theorem 2

Let f be as in the statement of Theorem 2. By a version of the Stone-Weierstraß Theorem (see e.g. Lemma 2.1
in [4]), we know that there exists a polynomial f̃ such that ‖f − f̃‖Ck(Bν1 ) 6 ε. Then, we know that Theorem

2 holds for f̃ , in view of the proof given in Section 5, and so we find u ∈ C∞(Bν
1 ) ∩ C(Rν) and R > 1 such

that Λu = 0 in Bν
1 , ‖u − f̃‖Ck(Bν1 ) 6 ε and u = 0 in Rν \ Bν

R. Then, we see that ‖u − f‖Ck(Bν1 ) 6

‖u− f̃‖Ck(Bν1 ) + ‖f − f̃‖Ck(Bν1 ) 6 2ε, hence Theorem 2 is proved (up to replacing ε with 2ε).
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7 Green function computations

In this section, we present the proof of Lemma 4. We recall that such result gives some precise asymptotics on the
boundary behavior of the Green function of the fractional Laplacian, which in turn have been exploited in Section 2
to obtain precise boundary information on the solutions of fractional Laplace equations.

Not to interrupt the main arguments of the proofs, we stated Lemma 4 in Section 2 without a proof, and this section
is thus devoted to complete this point.

Proof of Lemma 4. We remark that the condition e+ εω ∈ B1 for all ε ∈ (0, εo] says that

1 > |e+ εω|2 = 1 + ε2 + 2εe · ω

and so in particular

−e · ω > ε

2
> 0. (46)

From (11), we have that

r0(e+ εω, z) =
ε (−ε− 2 e · ω) (1− |z|2)

|z − e− εω|2
. (47)

In particular,

r0(e+ εω, z) 6
3ε

|z − e+ εω|2
. (48)

Moreover, using a Taylor binomial series,

(t+ 1)−
n
2 =

+∞∑
k=0

(
−n/2
k

)
tk

and therefore
ts−1

(t+ 1)
n
2

=
+∞∑
k=0

(
−n/2
k

)
tk+s−1. (49)

Since, by the bounds on the binomial coefficients, we have that∣∣∣∣(−n/2k

)∣∣∣∣ 6 C k
n
2 , (50)

it follows from the root test that the series in (49) is uniformly convergent for any t in a compact subset of (−1, 1).
In particular, if we set

r1(x, z) := min
{
r0(x, z),

1
2

}
, (51)

we can exchange the integration and summation signs and find that∫ r1(x,z)

0

ts−1 dt

(t+ 1)
n
2

=
+∞∑
k=0

ck
(
r1(x, z)

)k+s
,

with

ck :=
1

k + s

(
−n/2
k

)
.

Therefore, we have
G(x, z) = G(x, z) + g(x, z), (52)
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with

G(x, z) := |z − x|2s−n
+∞∑
k=0

ck
(
r1(x, z)

)k+s
and g(x, z) := |z − x|2s−n

∫ r0(x,z)

r1(x,z)

ts−1 dt

(t+ 1)
n
2

.

Notice that g(x, z) = 0 if r0(x, z) 6 1/2. Also, if r0(x, z) > 1/2,

0 6 g(x, z) 6 |z − x|2s−n
∫ r0(x,z)

1/2

ts−1 dt

t
n
2

6


C |z − x|2s−n if n > 2s,
C log r0(x, z) if n = 2s,

C |z − x|2s−n
(
r0(x, z)

)s−n
2 if n < 2s,

for some C > 0. Now we compute this expression in x := e + εω. Notice that the condition r0(e + εω, z) =
r0(x, z) > 1/2, combined with (48), says that

|z − e− εω|2 6 9ε. (53)

As a consequence∣∣∣∣∫
B1

f(z) g(e+ εω, z) dz
∣∣∣∣ 6 ∫

B3
√
ε(e+εω)

|f(z)| |g(e+ εω, z)| dz

6


C
∫
B3
√
ε(e+εω) |f(z)| |z − e+ εω|2s−n dz if n > 2s,

C
∫
B3
√
ε(e+εω) |f(z)| log r0(e+ εω, z) dz if n = 2s,

C
∫
B3
√
ε(e+εω) |f(z)| |z − e+ εω|2s−n

(
r0(e+ εω, z)

)s−n
2 dz if n < 2s.

(54)

Now, if z ∈ B3
√
ε(e+ εω), then |z − e| 6 4

√
ε and so

|f(z)| 6 Cε
α
2 , (55)

with C > 0 depending on f . Hence recalling (48), after renaming C > 0, we deduce from (54) that

∣∣∣∣∫
B1

f(z) g(e+ εω, z) dz
∣∣∣∣ 6


Cε

α
2

∫
B3
√
ε(e+εω) |z − e+ εω|2s−n dz if n > 2s,

Cε
α
2

∫
B3
√
ε(e+εω) log 3ε

|z−e+εω|2 dz if n = 2s,

Cε
α
2
+s−n

2

∫
B3
√
ε(e+εω) 1 dz if n < 2s,

6 Cε
α
2
+s.

This and (52) give that ∫
B1

f(z)G(e+ εω, z) dz =
∫
B1

f(z)G(e+ εω, z) dz + o(εs). (56)

Now we consider the series defining G and we split the contribution coming from the index k = 0 from the ones
coming from the indices k > 1, namely we write

G(x, z) = G0(x, z) + G1(x, z)

with G0(x, z) :=
|z − x|2s−n

s

(
r1(x, z)

)s
and G1(x, z) := |z − x|2s−n

+∞∑
k=1

ck
(
r1(x, z)

)k+s
.

(57)
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So, we use (51) and (55) and obtain that∣∣∣∣∣
∫
B1∩B3

√
ε(e+εω)

f(z)G1(e+ εω, z) dz

∣∣∣∣∣ 6
∫
B3
√
ε(e+εω)

|f(z)| G1(e+ εω, z) dz

6 Cε
α
2

∫
B3
√
ε(e+εω)

|z − e− εω|2s−n
+∞∑
k=1

|ck|
(
r1(e+ εω, z)

)k+s
dz

6 Cε
α
2

∫
B3
√
ε(e+εω)

|z − e− εω|2s−n
+∞∑
k=1

|ck|
(
1/2
)k+s

dz

6 Cε
α
2

∫
B3
√
ε(e+εω)

|z − e− εω|2s−n dz

6 Cε
α
2
+s,

(58)

up to renaming C > 0. On the other hand,

|z| = |e+ εω + z − e− εω| > |e+ εω| − |z − e− εω| > 1− ε− |z − e− εω|

and therefore
|f(z)| 6 C

(
1− |z|

)α
6 C

(
ε+ |z − e− εω|

)α
.

In particular, if |z − e− εω| > 3
√
ε, then

|f(z)| 6 C |z − e− εω|α. (59)

Also, using (48) and (51), for any k > 1(
r1(e+ εω, z)

)k+s =
(
r1(e+ εω, z)

)s+α
4
(
r1(e+ εω, z)

)k−α
4

6
(
r0(e+ εω, z)

)s+α
4

(
1
2

)k−α
4

6
C εs+

α
4

2k |z − e− εω|2s+
α
2

.

This and (59) give that, if z ∈ B1 \B3
√
ε(e+ εω), then

|f(z)G1(e+ εω, z)|

6 C |z − e− εω|α+2s−n
+∞∑
k=1

|ck|
(
r1(e+ εω, z)

)k+s
6 Cεs+

α
4 |z − e− εω|

α
2
−n

+∞∑
k=1

|ck|
2k

,

and the latter series is convergent, thanks to (50). This implies that∣∣∣∣∣
∫
B1\B3

√
ε(e+εω)

f(z)G1(e+ εω, z) dz

∣∣∣∣∣ 6 Cεs+
α
4

∫
B1\B3

√
ε(e+εω)

|z − e− εω|
α
2
−n dz

6 Cεs+
α
4

∫
B1

|z − e− εω|
α
2
−n dz 6 Cεs+

α
4 .

By this and (58), we conclude that ∫
B1

f(z)G1(e+ εω, z) dz = o(εs).

Hence, we insert this information into (56) and, recalling (57), we obtain∫
B1

f(z)G(e+ εω, z) dz =
∫
B1

f(z)G0(e+ εω, z) dz + o(εs). (60)
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Now we define

D1 := {z ∈ B1 s.t. r0(e+ εω, z) > 1/2}
and D2 := {z ∈ B1 s.t. r0(e+ εω, z) 6 1/2}.

If z ∈ D1, then (53) holds true, and so we can use (55), to find that∣∣f(z)G0(e+ εω, z)
∣∣ 6 Cε

α
2 |z − e+ εω|2s−n.

Consequently, recalling (53),∣∣∣∣∫
D1

f(z)G0(e+ εω, z) dz
∣∣∣∣ 6 Cε

α
2

∫
B3
√
ε(e+εω)

|z − e+ εω|2s−n dz = Cε
α
2
+s,

up to renaming C > 0 once again. In this way, formula (60) reduces to∫
B1

f(z)G(e+ εω, z) dz =
∫
D2

f(z)G0(e+ εω, z) dz + o(εs). (61)

Now, by (51) and (47), if z ∈ D2,

G0(e+ εω, z) =
|z − e− εω|2s−n

s

(
r0(e+ εω, z)

)s =
εs (−ε− 2 e · ω)s (1− |z|2)s

s |z − e− εω|n
.

Hence, (61) gives that

lim
ε↘0

ε−s
∫
B1

f(z)G(e+ εω, z) dz

= lim
ε↘0

∫
{2ε (−ε−2 e·ω) (1−|z|2)6|z−e−εω|2}

f(z)
(−ε− 2 e · ω)s (1− |z|2)s

s |z − e− εω|n
dz.

(62)

Now, we show the following uniform integrability condition: we set

Fε(z) :=


f(z)

(−ε− 2 e · ω)s (1− |z|2)s

s |z − e− εω|n
if 2ε (−ε− 2 e · ω) (1− |z|2) 6 |z − e− εω|2,

0 otherwise,

and we prove that for any η > 0 there exists δ > 0 (depending on η, e and ω, but independent of ε) such that, for
any E ⊂ Rd with |E| 6 δ, we have ∫

B1∩E

∣∣Fε(z)∣∣ dz 6 η. (63)

To this aim, we take E as above and
ρ := c? ε,

with c? ∈
(
0, 1

10

)
to be conveniently chosen in the sequel (also in dependence of ω and e), and we set E1 :=

E ∩Bρ(e+ εω), E2 := E \ E1.

We claim that
E1 is empty. (64)

For this, we argue by contradiction: if there existed z ∈ E1, then

ε (− e · ω) (1− |z|2) 6 2ε (−ε− 2 e · ω) (1− |z|2) 6 |z − e− εω|2 6 ρ2,

if ε is small enough in dependence of the fixed e and ω (recall (46)), and thus

1− |z|2 6
Cρ2

ε
, (65)
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with C > 0 also depending on e and ω. On the other hand, we have that E1 ⊆ Bρ(e+ εω), therefore

|z| 6 |e+ εω|+ |z − e− εω| 6
√

1 + ε2 + 2εe · ω + ρ 6 1− −εe · ω
10

+ Cε2 + ρ,

and so
|z|2 6 1− εe · ω

5
+ Cε2 + ρ2.

This is a contradiction with (65) if c? is appropriately small and so (64) is proved.

So, from now on, c? is fixed suitably small. We observe that if z ∈ E2 then

|z − e− εω| > ρ = c?ε,

and consequently ∫
B1∩E2

∣∣Fε(z)∣∣ dz 6
∫

B1∩E
{|z−e−εω|>c?ε}

C (1− |z|)s+α

|z − e− εω|n
dz. (66)

Now, we distinguish two cases, either δ 6 ε2n or δ > ε2n. If δ 6 ε2n, we use (66) to get that∫
B1∩E2

∣∣Fε(z)∣∣ dz 6
∫

B1∩E
{|z−e−εω|>c?ε}

C

εn
dz 6

Cδ

εn
6 C

√
δ. (67)

If instead
δ > ε2n, (68)

we observe that
|z − e− εω| > 1− |z| − ε

and so we deduce from (66) that∫
B1∩E2

∣∣Fε(z)∣∣ dz 6
∫

B1∩E
{|z−e−εω|>c?ε}

C (|z − e− εω|+ ε)s+α

|z − e− εω|n
dz

6 C

∫
B1∩E

{|z−e−εω|>c?ε}

|z − e− εω|s+α

|z − e− εω|n
dz + C

∫
B1∩E

{|z−e−εω|>c?ε}

εs+α

|z − e− εω|n
dz

=: I1 + I2.

(69)

To estimate I1, we split into

I1,1 := C

∫
B1∩E

{c?ε6|z−e−εω|6δ1/2n}

|z − e− εω|s+α−n dz

and I1,2 := C

∫
B1∩E

{|z−e−εω|>δ1/2n}

|z − e− εω|s+α−n dz.

Using polar coordinates, we find that

I1,1 6 C

∫ δ1/2n

c?ε
tn−1 ts+α−n dt 6 C

[(
δ

1
2n

)s+α
− (c?ε)

s+α

]
6 C δ

s+α
2n . (70)

In addition,

I1,2 6 C

∫
B1∩E

{|z−e−εω|>δ1/2n}

|z − e− εω|s−n dz 6 C

∫
E
δ
s−n
2n dz 6 Cδ1+ s−n

2n = Cδ
s+n
2n .

This and (70) say that

I1 6 C δ
s+α
2n + Cδ

s+n
2n . (71)
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Moreover,

I2 6 Cεs+α
∫ 2

c?ε

tn−1

tN
dt 6 Cεs+α | log ε| 6 Cεs 6 Cδ

s
2n ,

thanks to (68). Hence, using this and (71), and recalling (69), we obtain that∫
B1∩E2

∣∣Fε(z)∣∣ dz 6 I1 + I2 6 C δ
s+α
2n + Cδ

s+n
2n + Cδ

s
2n .

We now combining this estimate, which is coming from the case in (68), with (67), which was coming from the
complementary case, and we see that, in any case,∫

B1∩E2

∣∣Fε(z)∣∣ dz 6 C δκ,

for some κ > 0. From this and (64), we obtain that∫
B1∩E

∣∣Fε(z)∣∣ dz 6 C δκ,

Then, choosing δ suitably small with respect to η, we establish (63), as desired.

Notice also that Fε converges pointwise to f(z) (−2 e·ω)s (1−|z|2)s

s |z−e|n . Hence, using (62), (63) and the Vitali Conver-
gence Theorem, we conclude that

lim
ε↘0

ε−s
∫
B1

f(z)G(e+ εω, z) dz = lim
ε↘0

∫
B1

Fε(z) dz

=
∫
B1

f(z)
(−2 e · ω)s (1− |z|2)s

s |z − e|n
dz,

which establishes (12).
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