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Abstract

In this paper, we present a result of implicit function theorem type, which was designed for applications

to singularly perturbed problems. This result is based on fixed point iterations for contractive mappings,

in particular, no monotonicity or sign preservation properties are needed. Then we apply our abstract

result to time-periodic boundary layer solutions (which are allowed to be non-monotone with respect to

the space variable) in semilinear parabolic problems with two independent singular perturbation parame-

ters. We prove existence and local uniqueness of those solutions, and estimate their distance to certain

approximate solutions.

1 Introduction

Upper and lower solution techniques and corresponding monotone iterations are classical methods to prove

existence of time-periodic solutions to nonlinear parabolic boundary value problems (see, e.g. [2, 11, 12,

20, 22]). In the context of singularly perturbed problems, this approach has allowed to obtain existence and

asymptotic expansions of solutions with monotonous boundary [16] and interior [1, 4, 5, 8, 17] layers. However,

it turned out to be unsuitable for solutions with more complicated boundary layer structure or interior spikes.

In this paper, we present an alternative approach to singularly perturbed periodic-parabolic boundary value

problems which is based on fixed point iterations for contractive mappings, i.e. which is an approach of implicit

function theorem type. We apply this approach to time-periodic boundary layer solutions (which are allowed to

be non-monotone with respect to the space variable) in problems with two independent singular perturbation

parameters. More precisely, we consider semilinear parabolic PDEs of the type

µ∂tu(t, x) = ν2∂2
xu(t, x) + f(t, x, u(t, x), µ, ν), (t, x) ∈ R × (0, 1) (1.1)

with homogeneous Dirichlet boundary conditions

u(t, 0) = u(t, 1) = 0, t ∈ R (1.2)

and periodicity condition in time

u(t + 1, x) = u(t, x), (t, x) ∈ R × [0, 1]. (1.3)

Here µ, ν > 0 are two independent small singular perturbation parameters. The right-hand side f : R ×
[0, 1] × R × [0, 1]2 → R is supposed to be C3-smooth and 1-periodic with respect to its first argument, i.e.

with respect to the time variable t. Moreover, we assume that there exists a continuous 1-periodic function

u0 : R × [0, 1] → R such that

f(t, x, u0(t, x), 0, 0) = 0, ∂uf(t, x, u0(t, x), 0, 0) < 0, (t, x) ∈ R × [0, 1]. (1.4)
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Our goal is to describe existence, local uniqueness and asymptotic behavior for µ, ν → 0 of families

(parametrized by µ and ν) ûµ,ν of boundary layer solutions to (1.1)–(1.3), i.e. such that

lim
(µ,ν)→(0,0)

ûµ,ν(t, x) = u0(t, x) for all (t, x) ∈ R × (0, 1). (1.5)

Such solutions turn out to exist under the following natural assumption: There exist smooth maps v0, w0 :
R × [0,∞) → R such that

∂2
yv

0(t, y) + f(t, 0, u0(t, 0) + v0(t, y), 0, 0) = 0, (t, y) ∈ R × (0,∞),

v0(t, 0) + u0(t, 0) = v0(t,∞) = 0, t ∈ R,

v0(t + 1, y) = v0(t, y), (t, y) ∈ R × [0,∞)











(1.6)

and
∂2

yw
0(t, y) + f(t, 1, u0(t, 1) + w0(t, y), 0, 0) = 0, (t, y) ∈ R × (0,∞),

w0(t, 0) + u0(t, 1) = w0(t,∞) = 0, t ∈ R,

w0(t + 1, y) = w0(t, y), (t, y) ∈ R × [0,∞).











(1.7)

Moreover, we suppose

∂yv
0(t, 0) 6= 0 and ∂yw

0(t, 0) 6= 0 for all t ∈ R. (1.8)

The functions v0 and w0 will be used to describe the asymptotics of the boundary layers in the vicinity of points

x = 0 and x = 1, respectively. For fixed time variable t such layers can be monotone or non-monotone

functions of the space variable. However, due to condition (1.8), the (non-)monotonicity with respect to the

space variable of each layer remains unchanged for varying t.

Roughly speaking, we are going to prove that for small µ and ν there exists exactly one solution u to (1.1)–

(1.3) which is close to the approximate solution

uν(t, x) := u0(t, x) + v0
(

t,
x

ν

)

+ w0

(

t,
1 − x

ν

)

. (1.9)

The closeness will be measured with respect to the norms

‖u‖µ,ν :=

(
∫ 1

0

∫ 1

0

(

µ2∂tu
2 + ν4∂2

xu
2 + ν2∂xu

2 + u2
) dt

µ

dx

ν

)1/2

(1.10)

and

‖u‖∞ := sup{|u(t, x)| : t, x ∈ [0, 1]}. (1.11)

Remark that for all µ, ν ∈ (0, 1] and all C2-functions u : [0, 1]2 → R, which satisfy the homogeneous

Dirichlet boundary conditions (1.2), it holds (cf. (3.4))

‖u‖∞ ≤
√

2‖u‖µ,ν. (1.12)

The following theorem is our main result:
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Theorem 1.1 Suppose (1.4) and (1.6)–(1.8). Then the following is true:

(i) There exist ε > 0 and c > 0 such that for all µ, ν ∈ (0, ε) there exists a solution u = ûµ,ν to (1.1)–(1.3)

with

‖ûµ,ν − uν‖∞ ≤ c(µ + ν). (1.13)

(ii) There exists δ > 0 such that for all µ, ν ∈ (0, ε) the following is true: If u is a solution to (1.1)–(1.3) with

‖u − ûµ,ν‖µ,ν ≤ δ, then u = ûµ,ν .

Remark 1.2 It is an open problem if the uniqueness assertion (ii) of Theorem 1.1 can be improved to the

assertion that there are no solutions u 6= ûµ,ν to (1.1)–(1.3) with ‖u − ûµ,ν‖∞ ≤ δ, or that there are no

solutions u 6= ûµ,ν to (1.1)–(1.3) with ‖u − uν‖µ,ν ≤ δ, or, even more, that there are no solutions u 6= ûµ,ν

to (1.1)–(1.3) with ‖u − uν‖∞ ≤ δ.

Remark 1.3 Let us denote

κ0 := min
t∈R

√

|∂uf(t, 0, u0(t, 0), 0, 0)| and κ1 := min
t∈R

√

|∂uf(t, 1, u0(t, 1), 0, 0)|.

Then, assumptions (1.4), (1.6)–(1.8) and smoothness of f imply (see [6, Theorems 4.1 and 4.3]) that there

exist a0, a1 > 0 such that

|v0(t, y)|+ |∂yv
0(t, y)| ≤ a0e

−κ0y for all (t, y) ∈ R × [0,∞),

|w0(t, y)| + |∂yw
0(t, y)| ≤ a1e

−κ1y for all (t, y) ∈ R × [0,∞).
(1.14)

In particular, the claim (1.5) follows from (1.9), (1.13) and (1.14).

Remark 1.4 Suppose u0(t, 0) < 0 for all t ∈ R. Then assumption (1.6) is satisfied if for any fixed t the

following is true: The conservative system

v′′(y) + f(t, 0, u0(t, 0) + v(y), 0, 0) = 0 (1.15)

has a homoclinic solution v∗ : R → R with v∗(±∞) = 0 such that there exists y0 with v∗(y0) > −u0(t, 0).

Indeed, without loss of generality we can assume v′
∗(0) = 0. Then there exist y1 < 0 < y2 such that

v∗(y1) = v∗(y2) = −u0(t, 0), v′
∗(y1) > 0 and v′

∗(y2) < 0, see Fig. 1. Hence, the functions v0(t, y) :=
v∗(y + yj), j = 1, 2 satisfy (1.6).

The choice with j = 1 leads to a non-monotone function v0(t, ·) and, hence, to a non-monotone boundary

layer at x = 0 of the solution ûµ,ν , produced by Theorem 1.1 (cf. (1.9)). The choice with j = 2 leads to a

monotone boundary layer.

Similarly one can formulate sufficient conditions for (1.7).

Remark 1.5 If both boundary layers in the approximate solution (1.9) are monotone, then it turns out that

Theorem 1.1 can be proved using upper and lower solutions techniques. However, this is not true anymore, if

at least one of the boundary layers v0 or w0 is non-monotone.
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0

v

v′

-u0(t,0)

(v*(y1),v*(y1))′

(v*(y2),v*(y2))′

Figure 1: Homoclinic solution v∗ to equation (1.15).

The main tool of the proof of Theorem 1.1 is Theorem 2.1 below. Theorem 2.1 is a result of implicit func-

tion theorem type, and it was designed for getting existence and local uniqueness of solutions with contrast

structures (internal or boundary layers, spikes etc.) to singularly pertubed ODEs and PDEs (cf. [18, 19, 21],

see also [23] for a similar approach). In order to prove Theorem 1.1 we will apply Theorem 2.1 to five prob-

lems, namely to the main problem (1.1)–(1.3) as well as to the four auxiliary problems (4.36), (4.41), (4.48)

and (4.50).

Our paper is organized as follows: In Section 2 we introduce a general abstract setting for singularly perturbed

problems and prove an abstract implicit function theorem. In Section 3 we apply this theorem to obtain our

main asymptotic result, i.e. Theorem 1.1. Technical results concerned with the construction of an improved

approximate solution to problem (1.1)–(1.3) and coercivity estimates for some auxiliary elliptic and parabolic

boundary value problems are collected in Sections 4 and 5, respectively.

2 An Implicit Function Theorem for Singularly Perturbed Problems

Let Λ be a set, E be a subset of a normed vector space such that zero belongs to the closure of E, U and V
be Banach spaces with norms ‖ · ‖U and ‖ · ‖V , respectively, and let U0 be a closed subspace of U . Further,

for ε ∈ E let be given maps

Fε : Λ × U → V and u0
ε : Λ → U.

The goal of this section is to state conditions such that for all ε ∈ E with ε ≈ 0 and for all λ ∈ Λ there exists

exactly one solution u ∈ U0 with

u ≈ u0
ε(λ) (2.1)

to the equation

Fε(λ, u) = 0, u ∈ U0. (2.2)

We are going to state a result of implicit function theorem type, therefore we suppose that for all ε ∈ E and

all λ ∈ Λ it holds

Fε(λ, ·) ∈ C1(U ; V ), (2.3)

and

∂uFε(λ, u0
ε(λ)) is Fredholm of index zero from U0 into V . (2.4)
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In most of our applications it holds ‖u0
ε(λ)‖U → ∞ for ε → 0, and the solutions u ∈ U0 to (2.2), which we

will determine, will not be close to u0
ε(λ) in the sense of the norm ‖ · ‖U . Hence, the closeness (2.1) must be

measured by another norm in U , which is weaker than ‖ · ‖U , in general.

Thus, we assume that there is given another norm ‖ · ‖∞ on U . We use the notation ‖ · ‖∞ because in most

of the applications the elements of U are functions defined on a domain, and ‖ · ‖∞ is the corresponding

L∞-norm. Remark that in most of the applications U is not complete with respect to ‖ · ‖∞. We assume that

there exists a > 0 such that for all ε ∈ E and λ ∈ Λ we have

‖u0
ε(λ)‖∞ ≤ a. (2.5)

Theorem 2.1 Suppose (2.3)–(2.5). Further, suppose that for all ε ∈ E and λ ∈ Λ there are given norms ‖·‖ε

in U0 and | · |ε in V , which are equivalent to ‖ · ‖U and ‖ · ‖V , respectively, such that the following is true:

There exist b > 0 and c > 0 such that for all ε ∈ E and λ ∈ Λ we have

‖u‖∞ ≤ b‖u‖ε for all u ∈ U0, (2.6)

‖u‖ε ≤ c|∂uFε(λ, u0
ε(λ))u|ε for all u ∈ U0, (2.7)

and that for all r > 0 there exists cr > 0 such that for all ε ∈ E and λ ∈ Λ we have

|(∂uFε(λ, u1) − ∂uFε(λ, u2)) u|ε ≤ cr‖u1 − u2‖∞‖u‖ε

for all u, u1, u2 ∈ U with ‖u1‖∞, ‖u2‖∞ ≤ r.
(2.8)

Finally, suppose that for all ε ∈ E there are given maps u1
ε : Λ → U0 such that

‖u0
ε(λ) − u1

ε(λ)‖∞ + |Fε(λ, u1
ε(λ))|ε → 0 for ε → 0 uniformly with respect to λ ∈ Λ. (2.9)

Then the following is true:

(i) There exists ε0 > 0 such that for all ε ∈ E with ‖ε‖ < ε0 and for all λ ∈ Λ there exists a solution

u = ûε(λ) to (2.2) with

‖ûε(λ) − u1
ε(λ)‖ε ≤ 4c|Fε(λ, u1

ε(λ))|ε
and, hence, with

‖ûε(λ) − u0
ε(λ)‖∞ ≤ ‖u0

ε(λ) − u1
ε(λ)‖∞ + 4bc|Fε(λ, u1

ε(λ))|ε. (2.10)

(ii) There exists δ > 0 such that for all ε ∈ E with ‖ε‖ < ε0 and for all λ ∈ Λ there does not exist a solution

u 6= ûε(λ) to (2.2) with ‖u − u1
ε(λ)‖ε ≤ δ.

Remark 2.2 There are two main differences of Theorem 2.1 to the classical implicit function theorem:

First, the approximate solution u0
ε(λ) is not defined for ε = 0, in general (like (1.9) does not make sense for

ν = 0). Hence, there does not exist a solution to (2.2) with ε = 0 (if equation (2.2) with ε = 0 is defined at

all), and one cannot start the iteration procedure for solving (2.2) with ε 6= 0 in a solution to (2.2) with ε = 0,

in general.

And second, in (2.2) there appear two parameters ε and λ of quite different nature. The parameter ε is a

singular perturbation parameter, and λ is a regular perturbation parameter.
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In (1.1)–(1.3) the role of the singular perturbation parameter ε is played by the pair (µ, ν), and there is

no regular perturbation parameter λ. In (4.36) the singular perturbation parameter is ν, and t is a regular

perturbation parameter. In (4.41) the singular perturbation parameter is µ, and x is a regular perturbation

parameter. And finally, in (4.48) and (4.50) the singular perturbation parameter is µ again, and there is no

regular perturbation parameter.

Remark 2.3 For many singularly perturbed boundary value problems approximate solutions u0
ε with certain

contrast structures and with property (2.5) can be constructed in an ad hoc manner. In those situations Theo-

rem 2.1 provides existence and local uniqueness of exact solutions ûε close (in the sense of the corresponding

L∞-norm ‖ · ‖∞) to u0
ε and the estimate (2.10) if the following algorithm can be realized:

First, find Banach spaces U , U0 and V such that the boundary value problem has an abstract formulation of

the type (2.2) with the properties (2.3) and (2.4). Then, find a norm ‖ · ‖ε in U which is strong enough such

that (2.6) is true. Then, find a norm | · |ε in V which is strong enough such that (2.7) is true, but which is, at

the same time, weak enough such that (2.8) is true. And finally, find improved approximate solutions u1
ε such

that (2.9) is true. The better the choice of u1
ε, the better the a priori estimate (2.10).

Remark 2.4 In many applications the improved approximate solutions u1
ε are known only implicitely. Therefore

often the local uniqueness assertion (ii) of Theorem 2.1 is formulated in a slightly weaker form which does

not rely on u1
ε: There are no solutions u 6= ûε(λ) to (2.2) with ‖u − ûε(λ)‖ε ≤ δ. But it turns out that the

local uniqueness assertion (ii) of Theorem 2.1 cannot be improved to the assertion that there are no solutions

u 6= ûε(λ) to (2.2) with ‖u− u0
ε(λ)‖ε ≤ δ or, even more, that there are no solutions u 6= ûε(λ) to (2.2) with

‖u − u0
ε(λ)‖∞ ≤ δ.

Proof of Theorem 2.1: Let us denote by U0
ε and Vε the spaces U0 and V equipped with the norms ‖ · ‖ε

and | · |ε, respectively. By assumption the spaces U0 and V are complete with respect to the norms ‖ · ‖U

and ‖ · ‖V , respectively. Moreover, the norms ‖ · ‖ε and ‖ · ‖U in U0 are equivalent, as well as the norms | · |ε
and ‖ · ‖V in V are equivalent. Hence, the spaces U0

ε and Vε are complete also.

For linear bounded operators A : U0
ε → Vε and B : Vε → U0

ε we denote, as usual, by

‖A‖ := sup
‖u‖ε=1

|Au|ε and ‖B‖ := sup
|v|ε=1

‖Bv‖ε

their operator norms.

Because of assumptions (2.4) and (2.7) the (restriction to U0 of the) operator ∂uFε(λ, u0
ε(λ)) is bijective

from U0 onto V . We denote by ∂uFε(λ, u0
ε(λ))−1 its inverse. Then (2.7) yields

‖∂uFε(λ, u0
ε(λ))−1‖ ≤ c.

Further, because of assumptions (2.5), (2.8) and (2.9) there exists ε0 > 0 such that for all ε ∈ E with

‖ε‖ < ε0 and all λ ∈ Λ it holds

‖∂uFε(λ, u0
ε(λ)) − ∂uFε(λ, u1

ε(λ))‖ ≤ cr‖u0
ε(λ) − u1

ε(λ)‖∞ ≤ 1

2c
<

1

c
≤ 1

‖∂uFε(λ, u0
ε(λ))−1‖ .
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Here r > 0 is chosen such that for all ε ∈ E we have ‖u0
ε(λ)‖∞, ‖u1

ε(λ)‖∞ ≤ r (cf. (2.5) and (2.9)). Hence,

for all ε ∈ E with ‖ε‖ < ε0 and all λ ∈ Λ the operator ∂uFε(λ, u1
ε(λ)) is bijective from U0 onto V , and for

all u ∈ U0 it holds

|∂uFε(λ, u1
ε(λ))u|ε ≥ |∂uFε(λ, u0

ε(λ))u|ε − |
(

∂uFε(λ, u1
ε(λ)) − ∂uFε(λ, u0

ε(λ))
)

u|ε ≥
1

2c
‖u‖ε.

Therefore for all ε ∈ E with ‖ε‖ < ε0 and all λ ∈ Λ we have

‖∂uFε(λ, u1
ε(λ))−1‖ ≤ 2c.

Now we are going to solve (2.2). For ε ∈ E with ‖ε‖ < ε0 and λ ∈ Λ and u ∈ U0 we have Fε(λ, u) = 0 if

and only if

Gε(λ, u) := u − ∂uFε(λ, u1
ε(λ))−1Fε(λ, u) = u. (2.11)

Moreover,

Gε(λ, u) − Gε(λ, v) =

∫ 1

0

∂uGε(λ, su + (1 − s)v)(u − v)ds =

= ∂uFε(λ, u1
ε(λ))−1

∫ 1

0

(

∂uFε(λ, u1
ε(λ)) − ∂uFε(λ, su + (1 − s)v)

)

(u − v)ds.

Hence, assumptions (2.6) and (2.8) imply that there exist ε1 ∈ (0, ε0) and δ > 0 such that for all ε ∈ E with

‖ε‖ < ε1 and for all λ ∈ Λ we have

‖Gε(λ, u) − Gε(λ, v)‖ε ≤
1

2
‖u − v‖ε for all u, v ∈ Kδ

ε (λ) :=
{

w ∈ U0 : ‖w − u1
ε(λ)‖ε ≤ δ

}

.

Using this, for all ε ∈ E with ‖ε‖ < ε1 and for all λ ∈ Λ and for all u ∈ Kδ
ε (λ) we get

‖Gε(λ, u) − u1
ε(λ)‖ε ≤ ‖Gε(λ, u) − Gε(λ, u1

ε(λ))‖ε + ‖Gε(λ, u1
ε(λ)) − u1

ε(λ)‖ε

≤ 1

2
‖u − u1

ε(λ)‖ε + 2c|Fε(λ, u1
ε(λ))|ε. (2.12)

Hence, assumption (2.9) yields that Gε(λ, ·) maps Kδ
ε (λ) into Kδ

ε (λ) for all ε ∈ E with ‖ε‖ < ε1 and all

λ ∈ Λ, if ε1 is chosen sufficiently small. Now, Banach’s fixed point theorem gives a unique in Kδ
ε (λ) solution

u = ûε(λ) to (2.11) for all ε ∈ E with ‖ε‖ < ε1 and all λ ∈ Λ. Moreover, (2.12) yields

‖ûε(λ) − u1
ε(λ)‖ε ≤

1

2
‖ûε(λ) − u1

ε(λ)‖ε + 2c|Fε(λ, u1
ε(λ))|ε,

i.e. (2.10).

Remark 2.5 The operator ∂uFε(λ, ûε(λ)) is bijective from U0 onto V if

‖∂uFε(λ, ûε(λ)) − ∂uFε(λ, u0
ε(λ))‖ <

1

c
≤ 1

‖∂uFε(λ, u0
ε(λ))−1‖L(Vε,Uε)

.
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But (2.8) and (2.10) imply that this is true for all ε ∈ E with ‖ε‖ < ε1 and for all λ ∈ Λ if ε1 is taken

sufficiently small. Hence, the classical implicit function theorem yields that the map λ 7→ ûε(λ) is C1-smooth,

if Λ is an open set in a normed vector space and if the maps Fε are C1-smooth not only with respect to u,

but with respect to the pair (λ, u). Differentiating the identity Fε(λ, ûε(λ)) = 0 with respect to λ we get

û′
ε(λ) = −∂uFε(λ, ûε(λ))−1∂λFε(λ, ûε(λ)).

Similarly, if F is C2-smooth then the map λ 7→ ûε(λ) is C2-smooth also, and

û′′
ε(λ) = −∂uFε(λ, ûε(λ))−1

(

∂2
λFε(λ, ûε(λ)) + 2∂λ∂uFε(λ, ûε(λ))û′

ε(λ)

+ ∂2
uFε(λ, ûε(λ))(û′

ε(λ), û′
ε(λ))

)

.

3 Proof of Theorem 1.1: Verification of (2.3)–(2.8)

In the rest of this paper we will prove Theorem 1.1. Hence, its assumptions (1.4) and (1.6)–(1.8) are always

supposed to be satisfied. Note that in this section and later in Propositions 4.4, 4.6 and 4.7 we will apply

Theorem 2.1 with different definitions of the set Λ, map Fε, spaces E, U , U0, V and their norms. Each time

they will be specially specified.

Let us apply Theorem 2.1 to the periodic-boundary value problem (1.1)–(1.3). For that reason we take

U := L2((0, 1); W 2,2(0, 1)) ∩ W 1,2((0, 1); L2(0, 1)),

‖u‖U :=

(
∫ 1

0

∫ 1

0

(∂tu
2 + ∂2

xu
2 + ∂xu

2 + u2)dtdx

)1/2

.











(3.1)

Here, as usual, L2((0, 1); W 2,2(0, 1)) ∩ W 1,2((0, 1); L2(0, 1)) is the space of all (equivalence classes of)

measurable functions u : [0, 1]2 → R such that u and its distributional derivatives ∂tu, ∂xu and ∂2
xu belong

to L2((0, 1)2). The remaining data for applying Theorem 2.1 to (1.1)–(1.3) are chosen as follows:

U0 := {u ∈ U : u(t, 0) = u(t, 1) = 0 for all t, and u(0, x) = u(1, x) for all x},

V := L2((0, 1)2), ‖v‖V :=

(
∫ 1

0

∫ 1

0

v2dtdx

)1/2

,

Λ := ∅, ε = (µ, ν) ∈ E := (0, 1)2, ‖(µ, ν)‖ :=
√

µ2 + ν2,

‖u‖µ,ν is defined by (1.10) and ‖u‖∞ is defined by (1.11),

|v|µ,ν :=

(∫ 1

0

∫ 1

0

v2dt

µ

dx

ν

)1/2

.























































(3.2)

Now, we rewrite problem (1.1)–(1.3) in the form

[Fµ,ν(u)](t, x) := µ∂tu(t, x) − ν2∂2
xu(t, x) − f(t, x, u(t, x), µ, ν) = 0, u ∈ U0,

and consider as an approximate solution

u0
µ,ν := uν ,

8



where uν is defined in (1.9).

It is well-known that U is continuously embedded into C([0, 1]2) (cf. [3, Theorem 10.4] or [9, §18.1.3]).

Therefore for the C2-smooth function f we easily verify assumption (2.3) and obtain

[∂uFµ,ν(u)v](t, x) = µ∂tv(t, x) − ν2∂2
xv(t, x) − ∂uf(t, x, u(t, x), µ, ν)v(t, x).

Moreover, we have

[(∂uFµ,ν(u1) − ∂uFµ,ν(u2))u](t, x) = (∂uf(t, x, u2(t, x), µ, ν) − ∂uf(t, x, u1(t, x), µ, ν))u(t, x).

Hence, assumption (2.8) is also fulfilled. Assumption (2.4) is fulfilled because of [15, §4]. Assumption (2.5) is

fulfilled because the functions u0, v0 and w0 are bounded (cf. (1.4), (1.6) and (1.7)).

The following lemma shows that assumption (2.6) is also fulfilled:

Lemma 3.1 (i) Let be given S, Y ≥ 1 and a C2-function v : [0, S] × [0, Y ] → R such that v(s, 0) =
v(s, Y ) = 0 for all s ∈ [0, S]. Then for all s ∈ [0, S] and y ∈ [0, Y ] it holds

|v(s, y)|2 ≤ 2

∫ Y

0

∫ S

0

(

∂sv
2 + ∂2

yv
2 + ∂yv

2 + v2
)

dsdy (3.3)

(ii) Let be given a C2-function u : [0, 1]2 → R such that u(t, 0) = u(t, 1) = 0 for all t ∈ [0, 1]. Then for all

µ, ν ∈ (0, 1] and t, x ∈ [0, 1] it holds

|u(t, x)|2 ≤ 2

∫ 1

0

∫ 1

0

(

µ2∂tu
2 + ν4∂2

xu
2 + ν2∂xu

2 + u2
) dt

µ

dx

ν
. (3.4)

Proof (i) Let s ∈ (0, S] and y ∈ [0, Y ] be fixed. Because of v(s, 0) = 0 it holds

v(s, y)2 =

∫ y

0

(

d

dz
v(s, z)2

)

dz = 2

∫ y

0

∂yv(s, z)v(s, z)dz

≤
∫ Y

0

(

∂yv(s, z)2 + v(s, z)2
)

dz. (3.5)

Further, for any t ∈ [0, S] we have

∫ Y

0

(

v(s, z)2 − v(t, z)2
)

dz =

∫ s

t

(

d

dr

∫ Y

0

v(r, z)2dz

)

dr

= 2

∫ s

t

∫ Y

0

∂sv(r, z)v(r, z)dzdr ≤
∫ S

0

∫ Y

0

(

∂sv(r, z)2 + v(r, z)2
)

dzdr.

Dividing this by S and integration with respect to t from zero to S we get

∫ Y

0

v(s, z)2dz ≤
∫ S

0

∫ Y

0

(

∂sv(r, z)2 +

(

1 +
1

S

)

v(r, z)2

)

dzdr. (3.6)

9



Similarly,

∫ Y

0

(

∂yv(s, z)2 − ∂yv(t, z)2
)

dz =

∫ s

t

(

d

dr

∫ Y

0

∂yv(r, z)2dz

)

dr

= 2

∫ s

t

∫ Y

0

∂s∂yv(r, z)∂yv(r, z)dzdr = −2

∫ s

t

∫ Y

0

∂sv(r, z)∂2
yv(r, z)dzdr

≤
∫ S

0

∫ Y

0

(

∂sv(r, z)2 + ∂2
yv(r, z)2

)

dzdr

and, hence,

∫ Y

0

∂yv(s, z)2dz ≤
∫ S

0

∫ Y

0

(

∂sv(r, z)2 + ∂2
yv(r, z)2 +

1

S
∂yv(r, z)2

)

dzdr. (3.7)

Inserting (3.6) and (3.7) into (3.5) we get

v(s, y)2 ≤
∫ S

0

∫ Y

0

(

2∂sv(r, z)2 + ∂2
yv(r, z)2 +

1

S
∂yv(r, z)2 +

(

1 +
1

S

)

v(r, z)2

)

dzdr.

Because of S ≥ 1 this yields (3.3).

(ii) We get (3.4) by using (3.3) for the function v(s, y) := u(µs, νy).

Assumption (2.7) of Theorem 2.1 in the setting (3.1), (3.2) is satisfied because of Lemma 5.3 and of the

density in U0 of the set of all u ∈ C2([0, 1]2) with u(t, 0) = u(t, 1) = 0 and u(0, x) = u(1, x) for all

t, x ∈ [0, 1].

For proving Theorem 1.1 it remains to verify assumption (2.9) of Theorem 2.1 in the setting (3.1), (3.2). For

sufficiently small µ and ν we have to determine functions u1
µ,ν ∈ U0 such that

‖u1
µ,ν − uν‖∞ ≤ const (µ + ν) (3.8)

and

∫ 1

0

∫ 1

0

(

µ∂tu
1
µ,ν(t, x) − ν2∂2

xu
1
µ,ν(t, x) − f(t, x, u1

µ,ν(t, x), µ, ν)
)2 dt

µ

dx

ν
≤ const (µ + ν)2. (3.9)

This will be done in the next section.

4 Construction of the improved approximate solution u1
µ,ν

Following the boundary function method [24] one can construct an approximate solutions Sµ,ν to the singularly

perturbed problem (1.1)–(1.3) relying on the decomposition

Sµ,ν(t, x) = Uµ,ν(t, x) + Vµ,ν

(

t,
x

ν

)

+ Wµ,ν

(

t,
1 − x

ν

)

, (4.1)

10



where Uµ,ν : R × [0, 1] → R is a function, which approximately satisfies the differential equation (1.1), but

not the boundary conditions (1.2), whereas Vµ,ν ,Wµ,ν : R × [0,∞) → R are two functions describing the

boundary layers at x = 0 and x = 1, respectively.

The following Lemma shows how to estimate the discrepancy of Sµ,ν as an approximate solution to (1.1)–

(1.3) by the discrepancies of Uµ,ν , Vµ,ν and Wµ,ν as approximate solutions of “their” PDEs and boundary

conditions:

Proposition 4.1 Suppose that for µ, ν ∈ (0, 1] are given functions

Uµ,ν ,Ru
µ,ν : R × [0, 1] → R, Vµ,ν ,Wµ,ν ,Rv

µ,ν ,Rw
µ,ν : R × [0,∞) → R and Dv

µ,ν ,Dw
µ,ν : R → R

such that

µ∂tUµ,ν(t, x) − ν2∂2
xUµ,ν(t, x) = f(t, x,Uµ,ν(t, x), µ, ν) + Ru

µ,ν(t, x), (4.2)

µ∂tVµ,ν(t, y) − ∂2
yVµ,ν(t, y) = f (t, νy,Uµ,ν(t, νy) + Vµ,ν(t, y), µ, ν)

−f(t, νy,Uµ,ν(t, νy), µ, ν) + Rv
µ,ν(t, y), (4.3)

µ∂tWµ,ν(t, y) − ∂2
yWµ,ν(t, y) = f (t, 1 − νy,Uµ,ν(t, 1 − νy) + Wµ,ν(t, y), µ, ν)

−f(t, 1 − νy,Uµ,ν(t, 1 − νy), µ, ν) + Rw
µ,ν(t, y), (4.4)

Vµ,ν(t, 0) + Uµ,ν(t, 0) = Dv
µ,ν(t), (4.5)

Wµ,ν(t, 0) + Uµ,ν(t, 1) = Dw
µ,ν(t). (4.6)

Further, suppose that there exists κ > 0 such that

|Vµ,ν(t, y)| + |Wµ,ν(t, y)| = O(e−κy) for y → ∞. (4.7)

Then, function Sµ,ν defined in (4.1) satisfies

µ∂tSµ,ν(t, x) − ν2∂2
xSµ,ν(t, x) − f(t, x,Sµ,ν(t, x), µ, ν)

= Ru
µ,ν(t, x) + Rv

µ,ν

(

t,
x

ν

)

+ Rw
µ,ν

(

t,
1 − x

ν

)

+ O(e−κ/ν) for ν → 0, (4.8)

|Sµ,ν(t, 0) −Dv
µ,ν(t)| + |Sµ,ν(t, 1) −Dw

µ,ν(t)| = O(e−κ/ν) for ν → 0. (4.9)

Remark 4.2 The asymptotic estimates O (e−κy) and O
(

e−κ/ν
)

in (4.7), (4.8) and (4.9) are valid uniformly

with respect to all other appearing parameters (i.e. uniformly with respect to t ∈ R and µ, ν ∈ (0, 1] in (4.7),

uniformly with respect to t ∈ R, x ∈ [0, 1] and µ ∈ (0, 1] in (4.8) and uniformly with respect to t ∈ R

and µ ∈ (0, 1] in (4.9)). Similar convention concerning the meaning of symbol O(·), by default, will be

assumed everywhere below.
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Proof of Proposition 4.1: After the inserting y = x/ν and y = (1− x)/ν into the equations (4.3) and (4.4),

respectively, we sum up equations (4.2)–(4.4). Moreover, we estimate as follows:

∣

∣

∣

∣

f(t, x,Sµ,ν(t, x), µ, ν) − f
(

t, x,Uµ,ν(t, x) + Vµ,ν

(

t,
x

ν

)

, µ, ν
)

−f

(

t, x,Uµ,ν(t, x) + Wµ,ν

(

t,
1 − x

ν

)

, µ, ν

)

+ f(t, x,Uµ,ν(t, x), µ, ν)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

0

∫ 1

0

∂2
uf

(

t, x,Uµ,ν(t, x) + sVµ,ν

(

t,
x

ν

)

+ rWµ,ν

(

t,
1 − x

ν

)

, µ, ν

)

ds dr

×Vµ,ν

(

t,
x

ν

)

Wµ,ν

(

t,
1 − x

ν

)∣

∣

∣

∣

≤ const

∣

∣

∣

∣

Vµ,ν

(

t,
x

ν

)

Wµ,ν

(

t,
1 − x

ν

)∣

∣

∣

∣

= O
(

e−κ/ν
)

for ν → 0.

Using (4.7) we obtain (4.8). Similarly one proves the asymptotic estimate (4.9).

The standard algorithm of the boundary function method suggests to use the ansatz

Uµ,ν(t, x) = u0(t, x) + µu10(t, x) + νu01(t, x), (4.10)

Vµ,ν(t, y) = v0(t, y) + µv10(t, y) + νv01(t, y), (4.11)

Wµ,ν(t, y) = w0(t, y) + µw10(t, y) + νw01(t, y), (4.12)

and boundary conditions of the form

Vµ,ν(t, 0) + Uµ,ν(t, 0) = Vµ,ν(t,∞) = 0, (4.13)

Wµ,ν(t, 0) + Uµ,ν(t, 1) = Wµ,ν(t,∞) = 0. (4.14)

More precisely, we insert (4.10)–(4.12) into equations (4.2)–(4.4) with Ru
µ,ν = Rv

µ,ν = Rw
µ,ν = 0 and into

the boundary conditions (4.5) and (4.6) with Dv
µ,ν = Dw

µ,ν = 0, and perform the Taylor expansion with

respect to small parameters µ and ν. Then, collecting separately all the terms proportional to 1, µ and ν (and

neglecting all higher order terms with respect to µ and ν) we obtain equations, which have to determine all

the components in formulas (4.10)–(4.12). For example, equation (4.2) yields

0 = f(t, x, u0(t, x), 0, 0), (4.15)

∂tu
0(t, x) = ∂uf(t, x, u0(t, x), 0, 0)u10(t, x) + ∂µf(t, x, u0(t, x), 0, 0), (4.16)

0 = ∂uf(t, x, u0(t, x), 0, 0)u01(t, x) + ∂νf(t, x, u0(t, x), 0, 0). (4.17)

Remark that equation (4.15) coincides with the definition of u0 in (1.4), therefore because of the second part

of assumption (1.4) we can uniquely solve the linear algebraic equations (4.16) and (4.17), and obtain explicit

expressions for the functions u10 and u01.

In a similar way, from equations (4.3) and (4.4) with Rv
µ,ν = Rw

µ,ν = 0 we obtain equations determining

functions v0, v10, v01, w0, w10 and w01. In contrast to (4.15)–(4.17), these equations are differential rather

than algebraic, therefore we equip them with boundary conditions following from the Taylor expansion of
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formulas (4.13) and (4.14). For the leading order terms v0 and w0 this procedure yields boundary value

problems (1.6) and (1.7). For the next terms v10, v01, w10 and w01 we obtain linear boundary value problems

of the form

∂tv
0 = ∂2

yv
10 + ∂uf(t, 0, u0(t, 0) + v0(t, y), 0, 0)v10

+ (∂uf(t, 0, u0(t, 0) + v0(t, y), 0, 0)− ∂uf(t, 0, u0(t, 0), 0, 0))u10(t, 0)

+ (∂µf(t, 0, u0(t, 0) + v0(t, y), 0, 0)− ∂µf(t, 0, u0(t, 0), 0, 0)) , y ∈ (0,∞),

v10(t, 0) + u10(t, 0) = v10(t,∞) = 0,























(4.18)

0 = ∂2
yv

01 + ∂uf(t, 0, u0(t, 0) + v0(t, y), 0, 0)v01

+ (∂uf(t, 0, u0(t, 0) + v0(t, y), 0, 0)− ∂uf(t, 0, u0(t, 0), 0, 0))u01(t, 0)

+ (∂uf(t, 0, u0(t, 0) + v0(t, y), 0, 0)− ∂uf(t, 0, u0(t, 0), 0, 0))∂xu
0(t, 0)y

+ (∂xf(t, 0, u0(t, 0) + v0(t, y), 0, 0)− ∂xf(t, 0, u0(t, 0), 0, 0)) y

+ (∂νf(t, 0, u0(t, 0) + v0(t, y), 0, 0)− ∂νf(t, 0, u0(t, 0), 0, 0)) , y ∈ (0,∞),

v01(t, 0) + u01(t, 0) = v01(t,∞) = 0,















































(4.19)

∂tw
0 = ∂2

yw
10 + ∂uf(t, 1, u0(t, 1) + w0(t, y), 0, 0)w10

+ (∂uf(t, 1, u0(t, 1) + w0(t, y), 0, 0)− ∂uf(t, 1, u0(t, 1), 0, 0))u10(t, 1)

+ (∂µf(t, 1, u0(t, 1) + w0(t, y), 0, 0)− ∂µf(t, 1, u0(t, 1), 0, 0)) , y ∈ (0,∞),

w10(t, 0) + u10(t, 1) = w10(t,∞) = 0,























(4.20)

0 = ∂2
yw

01 + ∂uf(t, 1, u0(t, 1) + w0(t, y), 0, 0)w01

+ (∂uf(t, 1, u0(t, 1) + w0(t, y), 0, 0)− ∂uf(t, 1, u0(t, 1), 0, 0))u01(t, 1)

− (∂uf(t, 1, u0(t, 1) + w0(t, y), 0, 0)− ∂uf(t, 1, u0(t, 1), 0, 0))∂xu
0(t, 1)y

− (∂xf(t, 1, u0(t, 1) + w0(t, y), 0, 0)− ∂xf(t, 1, u0(t, 1), 0, 0)) y

+ (∂νf(t, 1, u0(t, 1) + w0(t, y), 0, 0)− ∂νf(t, 1, u0(t, 1), 0, 0)) , y ∈ (0,∞),

w01(t, 0) + u01(t, 1) = w01(t,∞) = 0,















































(4.21)

where t ∈ R appears as a parameter. Note that because of (1.6) and (1.7) the derivatives ∂tv
0 and ∂tw

0

appearing in (4.18) and (4.20) are determined as solutions of the linear problems

∂2
yv(t, y) + ∂uf(t, 0, u0(t, 0) + v0(t, y), 0, 0)v(t, y) + ∂tf(t, 0, u0(t, 0) + v0(t, y), 0, 0)

+ ∂uf(t, 0, u0(t, 0) + v0(t, y), 0, 0)∂tu
0(t, 0) = 0, y ∈ (0,∞),

v(t, 0) + ∂tu
0(t, 0) = v(t,∞) = 0,











(4.22)

and

∂2
yw(t, y) + ∂uf(t, 1, u0(t, 1) + w0(t, y), 0, 0)w(t, y) + ∂tf(t, 1, u0(t, 1) + w0(t, y), 0, 0)

+ ∂uf(t, 1, u0(t, 1) + w0(t, y), 0, 0)∂tu
0(t, 1) = 0, y ∈ (0,∞),

w(t, 0) + ∂tu
0(t, 1) = w(t,∞) = 0,











(4.23)

respectively.
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Proposition 4.3 Suppose (1.4) and (1.6)–(1.8). Then the problems (4.18)–(4.23) have unique solutions v10,

v01, w10, w01, v = ∂tv
0 and w = ∂tw

0. Moreover, for every κ ∈ (0, min(κ0, κ1)) we have

∣

∣v10(t, y)
∣

∣+
∣

∣v01(t, y)
∣

∣+
∣

∣w10(t, y)
∣

∣+
∣

∣w01(t, y)
∣

∣+
∣

∣∂tv
0(t, y)

∣

∣+
∣

∣∂tw
0(t, y)

∣

∣

+
∣

∣∂tv
10(t, y)

∣

∣+
∣

∣∂tv
01(t, y)

∣

∣+
∣

∣∂tw
10(t, y)

∣

∣+
∣

∣∂tw
01(t, y)

∣

∣ = O(e−κy) for y → ∞.

Proof: The differential equations of problems (4.18)–(4.23) can be rewritten as ODE systems of the form

d

dy
z(y) = At(y)z(y) + bt(y), y ≥ 0. (4.24)

In what follows we will consider (4.22) only, the systems (4.18)–(4.21) and (4.23) can be handled analogously.

For (4.22) we have (4.24) with

z(y) =

(

v(y)

v′(y)

)

, At(y) =

(

0 1

∂uf(t, 0, u0(t, 0) + v0(t, y), 0, 0) 0

)

, bt(y) =

(

0

q(t, y)

)

,

where

q(t, y) = ∂tf(t, 0, u0(t, 0) + v0(t, y), 0, 0) + ∂uf(t, 0, u0(t, 0) + v0(t, y), 0, 0)∂tu
0(t, 0). (4.25)

Assumption (1.4) and Remark 1.3 imply that the limiting matrix At(∞) has two real eigenvalues

±
√

|∂uf(t, 0, u0(t, 0), 0, 0)|,

therefore the homogeneous equation (4.24) (i.e. bt = 0) has an exponential dichotomy on the half-line y ≥ 0
(see [7, Ch. 6, Prop. 1]). This means that there exists a rank-1 projection operator P : R

2 → R
2, and for any

κ ∈ (0, κ0) there exists a constant C > 0 such that the fundamental matrix Φ(y) of system (4.24) satisfies

∥

∥Φ(y1)PΦ−1(y2)
∥

∥ ≤ Ce−κ(y1−y2) for 0 ≤ y2 ≤ y1, (4.26)

∥

∥Φ(y1)(I − P )Φ−1(y2)
∥

∥ ≤ Ce−κ(y2−y1) for 0 ≤ y1 ≤ y2. (4.27)

For any solution to (4.24) with a bounded continuous vector-function bt there exists c ∈ R such that

z(y) = c

(

∂yv
0(t, y)

∂2
yv

0(t, y)

)

+

y
∫

0

Φ(y)PΦ−1(ξ)bt(ξ)dξ −
∞
∫

y

Φ(y)(I − P )Φ−1(ξ)bt(ξ)dξ. (4.28)

Moreover, if for a certain κ ∈ (0, κ0) we have ‖bt(y)‖ = O(e−κy) for y → ∞, then any bounded solution

z to (4.24) satisfies ‖z(y)‖ = O(e−κy) for y → ∞. Because of (1.4), (4.25) and of Remark 1.3, for every

κ ∈ (0, κ0) it holds

‖bt(y)‖ = O(e−κy) for y → ∞. (4.29)

Therefore solutions to these problems must be of the form (4.28). Then, assumption (1.8) and the Dirichlet

boundary condition at y = 0 permit us to determine the constant c in (4.28) uniquely. On the other hand,

using inequalities (4.26), (4.27), (4.29) and formula (4.28) we obtain the estimates for ∂tv
0.
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Let Sµ,ν be the function given by formulas (4.1) and (4.10)–(4.12), where u10, u01, v10, v01, w10 and w01

are solutions of the above formulated problems, then the boundary layer functions Vµ,ν , Wµ,ν satisfy the

exponential estimates (4.7) and

∥

∥µ∂tSµ,ν − ν2∂2
xSµ,ν − f(t, x, Sµ,ν(t, x), µ, ν)

∥

∥

∞
= O

(

(µ + ν)2
)

for µ, ν → 0, (4.30)

‖Sµ,ν − uν‖∞ = O(µ + ν) for µ, ν → 0.

Hence, the function Sµ,ν seems to be a good candiadate for the improved approximate solution u1
µ,ν , in

particular it satisfies (3.8). But, unfortunately, it does not belong to the subspace U0 (because it does not

satisfy the homogeneous Dirichlet boundary conditions exactly, but only up to an exponentially small error)

and it does not satisfy (3.9), in general. Indeed, if we insert Sµ,ν instead of u1
µ,ν into formula (3.9), then

estimate (4.30) yields

∥

∥µ∂tSµ,ν − ν2∂2
xSµ,ν − f(t, x, Sµ,ν(t, x), µ, ν)

∥

∥

2

µ,ν
= O

(

(µ + ν)4

µν

)

for µ, ν → 0.

The ratio (µ+ν)4/(µν) obviously tends to zero for µ = ν → 0, but for µ and ν tending to zero independently,

it stays unbounded, therefore we cannot guarantee the smallness of the right-hand side in formula (3.9).

Because of this reason we need to adopt a different strategy. We consider two cases µ ≤ ν and µ ≥ ν
separately. Accordingly, we construct two improved approximate solutions Aµ,ν(x, t) and Bµ,ν(x, t), which

satisfy

∥

∥µ∂tAµ,ν − ν2∂2
xAµ,ν − f(t, x,Aµ,ν(t, x), µ, ν)

∥

∥

∞
= O(µ2) for µ ≤ ν → 0, (4.31)

∥

∥µ∂tBµ,ν − ν2∂2
xBµ,ν − f(t, x,Bµ,ν(t, x), µ, ν)

∥

∥

∞
= O(ν2) for ν ≤ µ → 0, (4.32)

and

‖Aµ,ν − uν‖∞ + ‖Bµ,ν − uν‖∞ = O(µ + ν) for µ, ν → 0. (4.33)

For µ ≤ ν, we apply Theorem 2.1 with u1
µ,ν = Aµ,ν . Then, (4.31) yields

‖Fµ,ν(Aµ,ν)‖µ,ν = O(
√

µ3/ν) = O(µ). (4.34)

i.e. (3.9).

In the second case ν ≤ µ, we apply Theorem 2.1 with u1
µ,ν = Bµ,ν . Then, (4.32) yields

‖Fµ,ν(Bµ,ν)‖µ,ν = O(
√

ν3/µ) = O(ν),

i.e. (3.9), again. Moreover, (4.33) implies (3.8) in both cases µ ≤ ν and ν ≤ µ.

4.1 Case µ ≤ ν

We use the following ansatz

Aµ,ν(t, x) := A0
ν(t, x) + µA1

ν(t, x), (4.35)
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where A0
ν and A1

ν are solutions to the elliptic BVPs

0 = ν2∂2
xu + f(t, x, u(t, x), 0, ν), (t, x) ∈ R × (0, 1),

u(t, 0) = u(t, 1) = 0, t ∈ R,

}

(4.36)

and

∂tA0
ν = ν2∂2

xu + ∂uf(t, x,A0
ν, 0, ν)u + ∂µf(t, x,A0

ν, 0, ν), (t, x) ∈ R × (0, 1),

u(t, 0) = u(t, 1) = 0, t ∈ R,

}

(4.37)

respectively.

Proposition 4.4 There exist ν0 > 0 and c > 0 such that for all ν ∈ (0, ν0) and all t ∈ [0, 1] boundary value

problems (4.36) and (4.37) have solutions A0
ν and A1

ν , respectively, which satisfy

∣

∣A0
ν(t, x) − uν(t, x)

∣

∣ ≤ cν for all (t, x) ∈ [0, 1]2, (4.38)

∣

∣∂tA0
ν(t, x)

∣

∣ +
∣

∣A1
ν(t, x)

∣

∣+
∣

∣∂tA1
ν(t, x)

∣

∣ ≤ c for all (t, x) ∈ [0, 1]2. (4.39)

Proof: We apply Theorem 2.1 to the boundary value problem (4.36). For that reason we take

U := C2([0, 1]), ‖u‖U := ‖u′′‖∞ + ‖u′‖∞ + ‖u‖∞, ‖u‖∞ := max{|u(x)| : x ∈ [0, 1]},
U0 := {u ∈ U : u(0) = u(1) = 0},
V := C([0, 1]), ‖v‖V := ‖v‖∞,

λ = t ∈ Λ := [0, 1], ε = ν ∈ E := (0, 1),

‖u‖ν := ν2‖u′′‖∞ + ν‖u′‖∞ + ‖u‖∞,

|v|ν := ‖v‖∞.

Then, problem (4.36) is equivalent to the equation

[Fν(t, u)](x) := ν2∂2
xu(x) + f(t, x, u(x), 0, ν) = 0, u ∈ U0.

Because the function f is supposed to be C2-smooth, we have that Fν is C2-smooth and

[∂uFν(t, u)v] (x) = ν2∂2
xv(x) + ∂uf(t, x, u(x), 0, ν)v(x),

and

[(∂uFν(t, u1) − ∂uFν(t, u2)) u] (x) = (∂uf(t, x, u1(x), 0, ν) − ∂uf(t, x, u2(x), 0, ν)) u(x),

therefore we easily verify that the conditions (2.3) and (2.8) in Theorem 2.1 are fulfilled. Moreover, condi-

tion (2.6) is fulfilled because ‖u‖∞ ≤ ‖u‖ν for all u ∈ U0.

Let us take

u0
ν(t) := uν(t, ·),
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where uν(t, x) is defined in (1.9), then condition (2.5) is also fulfilled. The Fredholmness condition (2.4) and

the coercivity estimate (2.7) follow from [13, § 4.4] and Lemma 5.4, respectively. However, because of the

discrepancy in boundary conditions we have u0
ν /∈ U0, therefore we take

u1
ν(t)(x) := u0

ν(t)(x) − u0
ν(t)(0) −

(

u0
ν(t)(1) − u0

ν(t)(0)
)

x.

Now, Remark 1.3 and (4.30) imply

‖u0
ν(t) − u1

ν(t)‖∞ = O
(

e−1/ν
)

and
∣

∣Fν(t, u
1
ν(t))

∣

∣

ν
= O(ν).

Hence, Theorem 2.1 yields the existence of the solution A0
ν to problem (4.36) and estimate (2.10) yields

formula (4.38). On the other hand, the smoothness of f and Remark 2.5 imply

∥

∥∂tA0
ν

∥

∥

∞
+
∥

∥∂2
t A0

ν

∥

∥

∞
≤ const.

Another corollary of Theorem 2.1 is that for sufficiently small ν, the operator ∂uFν(t,A0
ν) is bijective from U0

onto V . Therefore linear boundary value problem (4.37) has a unique solutionA1
ν , which because of Lemma 5.4

and the smoothness of f satisfies estimates (4.39).

Remark 4.5 Let us insert constructed function Aµ,ν into equation (1.1). Then, performing the Taylor expan-

sion with respect to the small parameter µ and taking into account (4.38) and (4.39) we easily obtain (4.31).

On the other hand, from formulas (4.35), (4.38) and (4.39) we also obtain

‖Aµ,ν − uν‖∞ = O(µ + ν).

4.2 Case µ ≥ ν

In this case, we construct an approximate solution of the form

Bµ,ν(t, x) := U0
µ(t, x) + V0

µ

(

t,
x

ν

)

+ W0
µ

(

t,
1 − x

ν

)

+ ν

(

U1
µ(t, x) + V1

µ

(

t,
x

ν

)

+ W1
µ

(

t,
1 − x

ν

))

. (4.40)

We use formal decomposition of the original problem (1.1)–(1.3) into equations (4.2)–(4.14) and then perform

the Taylor expansion of these equations with respect to the smallest parameter ν only. Thus we obtain two

periodic BVPs

µ∂tu = f(t, x, u(t, x), µ, 0), (t, x) ∈ R × (0, 1),

u(t + 1, x) = u(t, x), (t, x) ∈ R × (0, 1),

}

(4.41)

and

µ∂tu = ∂uf(t, x,U0
µ(t, x), µ, 0)u + ∂νf(t, x,U0

µ(t, x), µ, 0), (t, x) ∈ R × (0, 1),

u(t + 1, x) = u(t, x), (t, x) ∈ R × (0, 1),

}

(4.42)

which serve to determine the terms U0
µ and U1

µ, respectively.
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Proposition 4.6 There exists µ0 > 0 and c > 0 such that for all µ ∈ (0, µ0) and all x ∈ [0, 1] periodic

boundary value problems (4.41) and (4.42) have solutions U0
µ and U1

µ , respectively, which satisfy

∣

∣U0
µ(t, x) − u0(t, x) − µu10(t, x)

∣

∣ ≤ cµ2
for all (t, x) ∈ [0, 1]2, (4.43)

∣

∣U1
µ(t, x) − u01(t, x)

∣

∣ ≤ cµ for all (t, x) ∈ [0, 1]2, (4.44)

∣

∣∂2
xU0

µ(t, x)
∣

∣ +
∣

∣∂2
xU1

µ(t, x)
∣

∣ ≤ c for all (t, x) ∈ [0, 1]2. (4.45)

Proof: We apply Theorem 2.1 to the boundary value problem (4.41). For that reason we take

U := C1([0, 1]), ‖u‖U := ‖u′‖∞ + ‖u‖∞, where ‖u‖∞ := max{|u(t)| : t ∈ [0, 1]},
U0 := {u ∈ U : u(0) = u(1), u′(0) = u′(1)},
V := {v ∈ C([0, 1]) : v(0) = v(1)}, ‖v‖V := ‖v‖∞,

λ = x ∈ Λ := [0, 1], ε = µ ∈ E := (0, 1),

‖u‖µ := µ‖u′‖∞ + ‖u‖∞,

|v|µ := ‖v‖∞.

Now, problem (4.41) is equivalent to the equation

[Fµ(x, u)](t) := µ∂tu(t) − f(t, x, u(t), µ, 0) = 0, u ∈ U0. (4.46)

The C2-smoothness of function f implies that the derivative

[∂uFµ(x, u)v](t) := µ∂tv(t) − ∂uf(t, x, u(t), µ, 0)v(t)

exists for all u ∈ U (cf. (2.3)) and satisfies condition (2.8). Obviously, condition (2.6) is also fulfilled.

Let us take

u0
µ(x) = u1

µ(x) := u0(·, x) + µu10(·, x),

where u0(t, x) and u10(t, x) are defined in (1.4) and (4.16), respectively. According to Lemma 5.6, for suf-

ficiently small µ the linear operator ∂uFµ(x, u0
µ(x)) is bijective from U0 onto V , hence condition (2.4) is

fulfilled. Moreover, inequality (5.32) implies condition (2.7).

Inserting u0
µ(x) into equation (4.46) and performing the Taylor expansion with respect to µ, because of (1.4)

and (4.16), we obtain
∣

∣Fµ(x, u0
µ(x))

∣

∣

µ
= O(µ2).

Hence, Theorem 2.1 yields the estimate (4.43).

In contrast to (4.41), problem (4.42) is linear. Using substitution u(t, x) = u01(t, x) + ũ(t, x) we rewrite it in

the form
µ∂tũ = ∂uf(t, x,U0

µ(t, x), µ, 0)ũ + ru
µ(t, x), (t, x) ∈ R × (0, 1),

ũ(t + 1, x) = ũ(t, x), (t, x) ∈ R × (0, 1),

}

(4.47)
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where ru
µ = O(µ) because of (4.17) and (4.43). Now, Lemma 5.6 guarantees that problem (4.47) has a

unique solution ũ and estimate (4.44) is fulfilled.

The remaining estimates (4.45) for the derivatives ∂2
xU0

µ and ∂2
xU1

µ follow from the C3-smoothness of nonlin-

earity f , Remark 2.5 and Lemma 5.6.

Functions U0
µ and U1

µ , in general, don’t satisfy boundary conditions for x = 0 and x = 1, therefore

ansatz (4.40) contains boundary layer functions V0
µ, V1

µ, W0
µ and W1

µ. Two of them V0
µ and V1

µ are deter-

mined as solutions to the problems

µ∂tv = ∂2
yv + f(t, 0,U0

µ(t, 0) + v(t, y), µ, 0)− f(t, 0,U0
µ(t, 0), µ, 0), (t, y) ∈ R × (0,∞),

v(t, 0) + U0
µ(t, 0) = v(t,∞) = 0, t ∈ R,

v(t + 1, y) = v(t, y), (t, y) ∈ R × (0,∞),











(4.48)

and

µ∂tv = ∂2
yv + ∂uf(t, 0,U0

µ(t, 0) + V0
µ(t, y), µ, 0)v

+
(

∂uf(t, 0,U0
µ(t, 0) + V0

µ(t, y), µ, 0)− ∂uf(t, 0,U0
µ(t, 0), µ, 0)

)

U1
µ(t, 0)

+
(

∂uf(t, 0,U0
µ(t, 0) + V0

µ(t, y), µ, 0)− ∂uf(t, 0,U0
µ(t, 0), µ, 0)

)

∂xU0
µ(t, 0)y

+
(

∂xf(t, 0,U0
µ(t, 0) + V0

µ(t, y), µ, 0)− ∂xf(t, 0,U0
µ(t, 0), µ, 0)

)

y

+
(

∂νf(t, 0,U0
µ(t, 0) + V0

µ(t, y), µ, 0)− ∂νf(t, 0,U0
µ(t, 0), µ, 0)

)

, (t, y) ∈ R × (0,∞),

v(t, 0) + U1
µ(t, 0) = v(t,∞) = 0, t ∈ R,

v(t + 1, y) = v(t, y), (t, y) ∈ R × (0,∞).



























































(4.49)

Similarly, for boundary layers W0
µ and W1

µ we write the problems

µ∂tw = ∂2
yw + f(t, 1,U0

µ(t, 1) + w(t, y), µ, 0)− f(t, 1,U0
µ(t, 1), µ, 0), (t, y) ∈ R × (0,∞),

w(t, 0) + U0
µ(t, 1) = w(t,∞) = 0, t ∈ R,

w(t + 1, y) = w(t, y), (t, y) ∈ R × (0,∞),











(4.50)

and

µ∂tw = ∂2
yw + ∂uf(t, 1,U0

µ(t, 1) + W0
µ(t, y), µ, 0)w

+
(

∂uf(t, 1,U0
µ(t, 1) + W0

µ(t, y), µ, 0)− ∂uf(t, 1,U0
µ(t, 1), µ, 0)

)

U1
µ(t, 1)

−
(

∂uf(t, 1,U0
µ(t, 1) + W0

µ(t, y), µ, 0)− ∂uf(t, 1,U0
µ(t, 1), µ, 0)

)

∂xU0
µ(t, 1)y

−
(

∂xf(t, 1,U0
µ(t, 1) + W0

µ(t, y), µ, 0)− ∂xf(t, 1,U0
µ(t, 1), µ, 0)

)

y

+
(

∂νf(t, 1,U0
µ(t, 1) + W0

µ(t, y), µ, 0)− ∂νf(t, 1,U0
µ(t, 1), µ, 0)

)

, (t, y) ∈ R × (0,∞),

w(t, 0) + U1
µ(t, 1) = w(t,∞) = 0, t ∈ R,

w(t + 1, y) = w(t, y), (t, y) ∈ R × (0,∞).



























































(4.51)
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Proposition 4.7 There exists µ0 > 0, c > 0 and κ > 0 such that for all µ ∈ (0, µ0) problems (4.48)–(4.51)

have solutions V0
µ, V1

µ, W0
µ and W1

µ, respectively, which satisfy

∣

∣V0
µ(t, y) − v0(t, y) − µv10(t, y)

∣

∣ ≤ µ3/2ce−κy
for all (t, y) ∈ [0, 1] × [0,∞),(4.52)

∣

∣W0
µ(t, y) − w0(t, y) − µw10(t, y)

∣

∣ ≤ µ3/2ce−κy
for all (t, y) ∈ [0, 1] × [0,∞),(4.53)

∣

∣V1
µ(t, y) − v01(t, y)

∣

∣+
∣

∣W1
µ(t, y) − w01(t, y)

∣

∣ ≤ √
µce−κy

for all (t, y) ∈ [0, 1] × [0,∞).(4.54)

Proof: We prove only the first part of the assertion concerning functions V0
µ and V1

µ. The existence and

properties of functions W0
µ and W1

µ can be obtained analogously.

We apply Theorem 2.1 to the boundary value problem (4.48). For that reason we take

U := L2 ((0, 1); W 2,2(0,∞)) ∩ W 1,2 ((0, 1); L2(0,∞)) ,

‖u‖U :=

(
∫ 1

0

dt

∫ ∞

0

(

∂tu
2 + ∂2

yu
2 + ∂yu

2 + u2
)

dy

)1/2

,

U0 := {u ∈ U : u(0, y) = u(1, y) for all y, and u(t, 0) = 0 for all t} ,

V := L2 ((0, 1) × (0,∞)) , ‖v‖V :=

(
∫ 1

0

dt

∫ ∞

0

v2dy

)1/2

,

Λ := ∅, ε = µ ∈ E := (0, 1),

‖u‖∞ := max{|u(t, y)| : (t, y) ∈ [0, 1] × [0,∞)},

‖u‖µ :=

(
∫ 1

0

dt

∫ ∞

0

(

µ2∂tu
2 + ∂2

yu
2 + ∂yu

2 + u2
)

eκy dy

µ

)1/2

,

|v|µ :=

(
∫ 1

0

dt

∫ ∞

0

v2eκy dy

µ

)1/2

.

Note, in the definition of the norms ‖ · ‖µ and | · |µ there appears a coefficient κ > 0, which will be chosen

later independently of µ in accordance with Lemma 5.5.

Given κ, let us choose some κ̂ > κ/2 and define an auxiliary function ũµ(t, y) = −U0
µ(t, 0)e−κ̂y . This

function, obviously, satisfies boundary conditions of the problem (4.48) and has finite norm ‖ũµ‖µ < ∞ for

all µ ∈ (0, 1]. Now, problem (4.48) can be rewritten as an abstract equation

[Fµ(u)](t, y) = F̃µ(ũµ(t, y) + u(t, y)), u ∈ U0,

where

[F̃µ(u)](t, y) = µ∂tu(t, y) − ∂2
yu(t, y)− f(t, 0,U0

µ(t, 0) + u(t, y), µ, 0) + f(t, 0,U0
µ(t, 0), µ, 0)

is the differential operator from (4.48).

Using classical embedding theorems for anisotropic Sobolev spaces (cf. [3, Theorem 10.4]) we obtain

U ↪→ C((0, 1) × (0,∞)), (4.55)
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therefore for a C2-smooth function f condition (2.3) is fulfilled with

[∂uFµ(u)v](t, y) := µ∂tv(t, y) − ∂2
yv(t, y)− ∂uf(t, 0,U0

µ(t, 0)(1 − e−κ̂y) + u(t, y), µ, 0)v(t, y).

Moreover, estimate (2.8) is also fulfilled, as follows from the identity

[(∂uFµ(u1) − ∂uFµ(u2)) v] (t, y) =
(

∂uf(t, 0,U0
µ(t, 0)(1 − e−κ̂y) + u2(t, y), µ, 0)

− ∂uf(t, 0,U0
µ(t, 0)(1 − e−κ̂y) + u1(t, y), µ, 0)

)

v(t, y).

However, embedding (4.55) does not yield estimate (2.6), which has to be uniform with respect to µ → 0. In

order to verify it, we show that there exists an extension operator

E : U0 → L2(R; W 2,2(R)) ∩ W 1,2(R; L2(R))

such that

‖Eu‖L2(R;W 2,2(R))∩W 1,2(R;L2(R)) ≤ const ‖u‖µ for all µ ∈ (0, 1].

Operator E can be constructed as a superposition of the following steps: (i) transform time variable t 7→ τ =
t/µ, (ii) perform odd extension in y-direction and periodic extension in τ -direction (recall that every u ∈ U0

vanishes for y = 0 and is 1-periodic in t), and finally (iii) multiply the resulting function by a τ -dependent

cut-off function, which has bounded derivative and equals to unity on the interval t ∈ [0, 1/µ]. The existence

of E and the continuous embedding L2(R; W 2,2(R))∩W 1,2(R; L2(R)) ↪→ C(R2) (see [14, Ch. 2, Sec. 2,

Theorem 6]) yield estimate (2.6).

Now, let us assume

u0
µ := v0(t, y) + µv10(t, y) + U0

µ(t, 0)e−κ̂y,

where v0 and v10 are bounded functions defined in (1.6) and (4.18), respectively. Then condition (2.5) is

obviously fulfilled. Moreover, because of our convention regarding the exponent κ in the definition of norms

‖ · ‖µ and | · |µ, Lemma 5.5 guarantees that condition (2.7) is also fulfilled.

Because of the unbounded spatial domain in problem (4.48), verification of condition (2.4) is less trivial here

than it was for problem (1.1)–(1.3) at the beginning of Section 2. We use the decomposition

[∂uFµ(u0
µ)v] = (L1 + L2)v,

where

(L1v)(t, y) = µ∂tv(t, y)− ∂2
yv(t, y) − ∂uf(t, 0,U0

µ(t, 0), µ, 0)v(t, y),

(L2v)(t, y) =
(

∂uf(t, 0,U0
µ(t, 0) + v0(t, y) + µv10(t, y), µ, 0)− ∂uf(t, 0,U0

µ(t, 0), µ, 0)
)

v(t, y).

From the condition (1.4) and estimate (4.43), it follows that for sufficiently small µ > 0 the operator L1 is

an isomorphism from L2((0, 1); W 2,2(R)) ∩ W 1,2((0, 1); L2(R)) onto L2((0, 1) × R) (see [25, Ch. 3,

Theorem 2.2.2]). Considering its restriction to the subspace of odd functions

L2((0, 1); W 2,2
odd(R)) ∩ W 1,2((0, 1); L2

odd(R)),

which is isomorphic to U0, we easily find that L1 is also an isomorphism from U0 onto V . Therefore, in order

to show that ∂uFµ(u0
µ) is Fredholm of index zero it is enough to demonstrate that L2 is a compact operator.
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The latter follows from the following two results. First, because of the exponential decay estimates for v0

and v10 (see Remark 1.3 and Proposition 4.3) we have

L2 = lim
R→∞

I[0,R]L2,

where I[0,R] is the indicator function of the interval [0, R]. Second, the Aubin-Lions lemma yields compact

embedding

L2((0, 1); W 2,2(0, R)) ∩ W 1,2((0, 1); L2(0, R)) ↪→ L2((0, 1) × (0, R))

for any fixed R > 0. Hence, we have verified (2.4).

Comparing boundary conditions of problems (1.6) and (4.18) with the estimate (4.43) we obtain

max
0≤t≤1

∣

∣u0
µ(t, 0)

∣

∣ = max
0≤t≤1

∣

∣v0
µ(t, 0) + µv10

µ (t, 0) + U0
µ(t, 0)

∣

∣ = O(µ2), (4.56)

therefore u0
µ, in general, produces a small discrepancy in the boundary conditions for y = 0. In order to

compansate this discrepancy we take

u1
µ(t, y) := u0

µ(t, y) − u0
µ(t, 0)e−κ̂y,

where κ̂ > 0 is the same constant as above. Obviously, because of (4.56) we have

∥

∥u0
µ − u1

µ

∥

∥

∞
= O(µ2).

Inserting u1
µ into Fµ(u) and using the definition of functions v0, v10 (see (1.6), (4.18)), Remark 1.3 and

Proposition 4.3 we obtain

∣

∣Fµ

(

u1
µ

)

(t, y)
∣

∣ ≤ const µ2e−κy
and

∣

∣Fµ

(

u1
µ

)∣

∣

µ
= O(µ3/2).

Therefore Theorem 2.1 delivers the existence of function V0
µ and estimate (4.52).

We end up the proof by considering the problem (4.49). We use the substitution

v(t, y) = v01(t, y) −
(

v01(t, 0) + U1
µ(t, 0)

)

e−κ̂y + v̂(t, y),

where v01 is defined in (4.19). Taking into account Proposition 4.6 and definitions of functions u0, v0, u10,

u01, v10 (see (1.4), (1.6), (4.16)–(4.18)) we transform (4.49) into an equivalent problem for v̂

µ∂tv̂ = ∂2
y v̂ + ∂uf(t, 0,U0

µ(t, 0) + V0
µ(t, y), µ, 0)v̂(t, y) + r(t, y), (t, y) ∈ R × (0,∞),

v̂(t, 0) = v̂(t,∞) = 0, t ∈ R,

v̂(t + 1, y) = v̂(t, y), (t, y) ∈ R × (0,∞),











(4.57)

where

|r(t, y)| ≤ const µe−κy/2
for y ≥ 0.

Preceding application of Theorem 2.1 implies that the linearized operator ∂uFµ(u0
µ) is bijective from U0

onto V . On the other hand, because of the estimate (4.52), for µ → 0 it is asymptotically close in the operator

norm to the differential operator from problem (4.57). Thus, we obtain

‖v̂‖µ ≤ const |r|µ = O(
√

µ),

what yields the first part of the estimate (4.54) concerning V1
µ.

22



Remark 4.8 FunctionBµ,ν determined by formula (4.40), in general, does not satisfy boundary conditions (1.2)

exactly. Therefore, in the proof of Theorem 1.1 we use its modification

Bµ,ν(t, x) 7→ Bµ,ν(t, x) − Bµ,ν(t, 0) − (Bµ,ν(t, 1) − Bµ,ν(t, 0))x.

The modified function Bµ,ν satisfies boundary conditions (1.2) automatically. Moreover, Propositions 4.1, 4.6

and 4.7 imply that asymptotic estimates (4.32) and (4.33) are also fulfilled for it.

5 Coercivity estimates

Throughout this section we suppose that u0, v0 and w0 are functions satisfying assumptions (1.4) and (1.6)–

(1.8). Below we prove a series of coercivity estimates which are used to justify the construction of the improved

approximate solutions Aµ,ν , Bµ,ν and, hence, to prove our main Theorem 1.1.

Lemma 5.1 There exist κ∗ > 0 and c > 0 such that for all κ ∈ [0, κ∗] and for all compactly supported

functions u ∈ C2([0,∞)) with u(0) = 0 and for all t ∈ [0, 1] it holds

∫ ∞

0

(

∂2
yu

2 + ∂yu
2 + u2

)

eκydy

≤ c

∫ ∞

0

(

∂2
yu + ∂uf(t, 0, u0(t, 0) + v0(t, y), 0, 0)u

)2
eκydy (5.1)

and

∫ ∞

0

(

∂2
yu

2 + ∂yu
2 + u2

)

eκydy

≤ c

∫ ∞

0

(

∂2
yu + ∂uf(t, 1, u0(t, 1) + w0(t, y), 0, 0)u

)2
eκydy. (5.2)

Proof: Let us consider the inequality (5.1) with κ = 0. In order to prove it, it is enough to demonstrate that

the linear differential operator

Mtv =
d2v

dy2 + ∂uf(t, 0, u0(t, 0) + v0(t, y), 0, 0)v

is an isomorphism from W 2,2(0,∞) ∩ W 1,2
0 (0,∞) onto L2(0,∞) for all t ∈ [0, 1]. This will imply the

existence of the inverse operators M−1
t , and hence the inequality (5.1) with κ = 0 and

c = c0 := sup
t∈[0,1]

∥

∥M−1
t

∥

∥

2
,

where the norms
∥

∥M−1
t

∥

∥ are uniformly bounded because the operators Mt depend continuously on the

parameter t.
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Our proof consists of two steps. First we show that Mt is a Fredholm operator of index zero. Then we demon-

strate that it is injective. For the first step, we rewrite Mt in the form

Mt = M0
t +

(

Mt − M0
t

)

, where M0
t :=

d2

dy2 + ∂uf(t, 0, u0(t, 0), 0, 0),

and show that M0
t is invertible and Mt − M0

t is a compact operator.

It is well-known that the differential operator M0
t with ∂uf(t, 0, u0(t, 0), 0, 0) < 0 (cf. (1.4)) is an isomorphism

from W 2,2(R) onto L2(R), see [14]. Taking into account the orthogonal decomposition into subspaces of

even and odd functions

W 2,2(R) = W 2,2
even(R) ⊕ W 2,2

odd(R), L2(R) = L2
even(R) ⊕ L2

odd(R),

we easily verify that M0
t is also an isomorphism from W 2,2

odd(R) onto L2
odd(R). On the other hand, the re-

striction of W 2,2
odd(R) to the half-line (0,∞) coincides with the Sobolev space W 2,2(0,∞) ∩ W 1,2

0 (0,∞),

whereas the restriction of L2
odd(R) to (0,∞) coincides with L2(0,∞). Therefore, due to the local character

of differential operator M0
t , it is an isomorphism from W 2,2(0,∞) ∩ W 1,2

0 (0,∞) onto L2(0,∞).

The difference Mt −M0
t is a compact multiplication operator from W 2,2(0,∞) to L2(0,∞), because of the

Kolmogorov-Riesz compactness theorem (cf. [10]) and the estimate

∂uf(t, 0, u0(t, 0) + v0(t, y), 0, 0)− ∂uf(t, 0, u0(t, 0), 0, 0) → 0 for y → ∞,

following from Remark 1.3.

We have proved that operator Mt is Fredholm of index zero. Now, let us show that it is injective. Let u be an

element of the kernel of operator Mt. The u is C2-smooth and

d2u

dy2 + ∂uf(t, 0, u0(t, 0) + v0(t, y), 0, 0)u = 0, y ∈ (0,∞),

and

u(0) = 0. (5.3)

From (4.28) it follows that u is a scalar multiple of ∂yv
0(t, ·). But ∂yv

0(t, 0) 6= 0 (cf. (1.8)), hence (5.3) implies

u = 0.

We have justified inequality (5.1) for κ = 0. Let us write it for a function u of the form u = eκy/2v where

v ∈ C2([0,∞)) has compact support and satisfies v(0) = 0, then we obtain

∫ ∞

0

(

(

∂2
yv + κ∂yv +

κ2

4
v

)2

+
(

∂yu +
κ

2
v
)2

+ v2

)

eκydy

≤ c0

∫ ∞

0

(

∂2
yv + κ∂yv +

κ2

4
v + ∂uf(t, 0, u0(t, 0) + v0(t, y), 0, 0)v

)2

eκydy. (5.4)

Using Cauchy-Schwarz and Young inequalities, it is easy to verify that there exist constants c1, c2 > 0
depending on the L∞-estimate of ∂uf(t, 0, u0(t, 0) + v0(t, y), 0, 0) only, such that for all |κ| ≤ 1 we have

(1 − c1|κ|)
∫ ∞

0

(

∂2
yv

2 + ∂yu
2 + v2

)

eκydy

≤
∫ ∞

0

(

(

∂2
yv + κ∂yv +

κ2

4
v

)2

+
(

∂yu +
κ

2
v
)2

+ v2

)

eκydy
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and

∫ ∞

0

(

∂2
yv + κ∂yv +

κ2

4
v + ∂uf(t, 0, u0(t, 0) + v0(t, y), 0, 0)v

)2

eκydy

≤
∫ ∞

0

(

∂2
yv + ∂uf(t, 0, u0(t, 0) + v0(t, y), 0, 0)v

)2
eκydy + c2|κ|

∫ ∞

0

(

∂2
yv

2 + ∂yu
2 + v2

)

eκydy.

Combining this result with formula (5.4), for sufficiently small κ we obtain inequality (5.1) where c depends

on c0, c1, c2 and κ∗.

The inequality (5.2) can be proved analogously.

Lemma 5.2 There exist ε0 > 0 and c > 0 such that for all µ, ν ∈ (0, ε0), for all u ∈ C2([0, 1]) with

u(0) = u(1) = 0 and for all t ∈ [0, 1] it holds

∫ 1

0

(

ν4u′′(x)2 + ν2u′(x)2 + u(x)2
)

dx ≤ c

∫ 1

0

(

ν2u′′(x) + ∂uf(t, x, uν(t, x), µ, ν)u(x)
)2

dx. (5.5)

Proof: Suppose the contrary. Then there exist sequences µn, νn ∈ (0, 1], tn ∈ [0, 1] and un ∈ C2([0, 1]),

n = 1, 2, . . ., with

un(0) = un(1) = 0 (5.6)

such that
∫ 1

0

(

ν4
nu

′′
n(x)2 + ν2

nu
′
n(x)2 + un(x)2

)

dx = 1 (5.7)

and

µn + νn +

∫ 1

0

(

ν2
nu

′′
n(x) + ∂uf(tn, x, uνn

(tn, x), µn, νn)un(x)
)2

dx → 0.

Without loss of generality we can assume that tn → t∗ ∈ [0, 1]. Then the smoothness of functions f and uν

implies

∫ 1

0

((

∂uf(tn, x, uνn
(tn, x), µn, νn) − ∂uf(t∗, x, uνn

(t∗, x), 0, 0)
)

un(x)
)2

dx → 0.

Hence,

νn +

∫ 1

0

(

ν2
nu′′

n(x) + ∂uf(t∗, x, uνn
(t∗, x), 0, 0)un(x)

)2
dx → 0. (5.8)

Our strategy is to show that (5.7) and (5.8) imply a contradiction. This can be done in three steps. In the first

step, we will consider two auxiliary sequences

vn(y) :=
√

νnun(νny)χ(νny)e−κy
and wn(y) :=

√
νnun(1 − νny)χ(νny)e−κy, (5.9)

where κ > 0 is a parameter to be chosen later, and χ : [0,∞) → [0,∞) is a smooth cut-off function such

that

χ(x) = 1 for 0 ≤ x ≤ 1/4, and χ(x) = 0 for x ≥ 1/2. (5.10)

25



It will be shown that for every fixed R > 0 we have

∫ R

0

vn(y)2dy +

∫ R

0

wn(y)2dy → 0. (5.11)

In the second step, we will use this limit to verify that

∫ 1

0

((

∂uf(t∗, x, u0
νn

(t∗, x), 0, 0) − ∂uf(t∗, x, u0(t∗, x), 0, 0)
)

un(x)
)2

dx → 0. (5.12)

From (5.8) and (5.12) follows

∫ 1

0

(

ν2
nu

′′
n(x) + ∂uf(t∗, x, u0(t∗, x), 0, 0)un(x)

)2
dx → 0 (5.13)

with a strictly positive coefficient at un (see (1.4)). In the third and last step, we will transform (5.13) into

∫ 1

0

(

ν4
nu

′′
n(x)2 + ν2

nu
′
n(x)2 + un(x)2

)

dx → 0. (5.14)

This will be a contradiction to the original assumption (5.7).

Step 1. From (5.7) it follows that the functions vn and wn defined by (5.9) constitute bounded sequences in

the Hilbert space W 2,2(0,∞). Hence, without loss of generality we can assume that there exist v∗, w∗ ∈
W 2,2(0,∞) such that

vn ⇀ v∗ and wn ⇀ w∗ in W 2,2(0,∞). (5.15)

Because of the compact embedding W 1,2(0, R) ↪→ L2(0, R), for proving (5.11) it remains to show that

v∗ = w∗ = 0. For the sake of brevity we will prove v∗ = 0 only. The condition w∗ = 0 can be verified

analogously.

Take a smooth compactly supported test function η : [0,∞) → R. Take R > 0 sufficiently large such that

supp η ⊆ [0, R]. Then (1.9), (1.14), (5.10), (5.8), (5.9) and (5.15) yield

0 = lim
n→∞

∫ 1

0

χ(x)ν−1/2
n e−κx/νn(ν2

nu′′
n(x) + ∂uf(t∗, x, uνn

(t∗, x), 0, 0)un(x))η

(

x

νn

)

dx

= lim
n→∞

∫ 1/4

0

ν−1/2
n e−κx/νn(ν2

nu
′′
n(x) + ∂uf(t∗, x, uνn

(t∗, x), 0, 0)un(x))η

(

x

νn

)

dx

= lim
n→∞

∫ 1/(4νn)

0

(

e−κy (vn(y)eκy)′′ + ∂uf(t∗, νny, uνn
(t∗, νny), 0, 0)vn(y)

)

η(y)dy

= lim
n→∞

∫ R

0

(

v′′
n(y) + 2κv′

n(y) + κ2vn(y) + ∂uf(t∗, νny, uνn
(t∗, νny), 0, 0)vn(y)

)

η(y)dy

= lim
n→∞

∫ R

0

(

v′′
n(y) + 2κv′

n(y) + κ2vn(y) + ∂uf(t∗, 0, u
0(t∗, 0) + v0(t∗, y), 0, 0)vn(y)

)

η(y)dy

=

∫ ∞

0

(

v′′
∗(y) + 2κv′

∗(y) + κ2v∗(y) + ∂uf(t∗, 0, u
0(t∗, 0)) + v0(t∗, y), 0, 0)v∗(y)

)

η(y)dy.
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In other words: v∗ is a weak and, hence, classical solution to the linear homogeneous ODE

v′′
∗ (y) + 2κv′

∗(y) + (∂uf(t∗, 0, u
0(t∗, 0) + v0(t∗, y), 0, 0) + κ2)v∗(y) = 0. (5.16)

Moreover, from the compact embedding W 1,2(0, 1) ↪→ C([0, 1]), (5.6), (5.9) and (5.15) we have

v∗(0) = 0. (5.17)

If κ is chosen small enough, then from (4.28) it follows that v∗ is a scalar multiple of ∂yv
0(t∗, ·). But ∂yv

0(t∗, 0) 6=
0 (cf. (1.8)), hence (5.17) implies v∗ = 0.

Step 2. Because of (1.9) and the mean value theorem we have

∣

∣∂uf(t∗, x, uνn
(t∗, x), 0, 0) − ∂uf(t∗, x, u0(t∗, x), 0, 0)

∣

∣ ≤ const

(∣

∣

∣

∣

v0

(

t∗,
x

νn

)∣

∣

∣

∣

+

∣

∣

∣

∣

w0

(

t∗,
1 − x

νn

)∣

∣

∣

∣

)

.

(5.18)

Hence, (1.14) yields

∫ 3/4

1/4

∣

∣

(

∂uf(t∗, x, uνn
(t∗, x), 0, 0) − ∂uf(t∗, x, u0(t∗, x), 0, 0)

)

un(x)
∣

∣

2
dx → 0

and

∫ 1/4

0

∣

∣

(

∂uf(t∗, x, uνn
(t∗, x), 0, 0) − ∂uf(t∗, x, u0(t∗, x), 0, 0)

)

un(x)
∣

∣

2
dx

≤ const

(

∫ 1/4

0

∣

∣

∣

∣

v0

(

t∗,
x

νn

)

un(x)

∣

∣

∣

∣

2

dx + o(1)

)

= const

(

∫ 1/(4νn)

0

∣

∣v0(t∗, y)eκyvn(y)
∣

∣

2
dy + o(1)

)

≤ const

(
∫ R

0

|vn(y)|2dy +

∫ ∞

R

∣

∣v0(t∗, y)eκy
∣

∣

2
dy + o(1)

)

, (5.19)

where R > 0 is arbitrary. Take κ sufficiently small, i.e. κ ∈ (0, κ0) (cf. (1.14)). Let γ > 0 be arbitrarily given.

Then we always can first take R sufficiently large such that

∫ ∞

R

∣

∣v0(t∗, y)eκy
∣

∣

2
dy < γ.

Then, fixing this R, we can use limit (5.11) in order to find sufficiently large n such that

∫ R

0

|vn(y)|2dy < γ.

Thus we proved that the right-hand side of (5.19) tends to zero for n → ∞. Similarly, using limit (5.11) to

control the L2-norms of functions wn on bounded intervals, we can prove that

∫ 1

3/4

∣

∣

(

∂uf(t∗, x, uνn
(t∗, x), 0, 0) − ∂uf(t∗, x, u0(t∗, x), 0, 0)

)

un(x)
∣

∣

2
dx → 0.
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Hence, the limit (5.12) holds true.

Step 3. Because of (1.4) and (5.6)–(5.8) we have
∫ 1

0

(

ν2
nu

′
n(x)2 + un(x)2

)

dx ≤ const

∫ 1

0

(

ν2
nu

′
n(x)2 − ∂uf(t∗, x, u0(t∗, x), 0, 0)un(x)2

)

dx

= const

∫ 1

0

(

−ν2
nu′′

n(x) − ∂uf(t∗, x, u0(t∗, x), 0, 0)un(x)
)

un(x)dx → 0.

Using this and (5.8) again we get

lim
n→0

∫ 1

0

ν4
nu

′′
n(x)2dx = lim

n→0

∫ 1

0

(

ν2
nu′′

n(x) + ∂uf(t∗, x, u0(t∗, x), 0, 0)un(x)
)2

dx = 0.

Thus we have a contradiction with (5.7).

Lemma 5.3 There exist ε0 > 0 and c > 0 such that for all µ, ν ∈ (0, ε0) and for all u ∈ C2(R× [0, 1]) with

u(t, 0) = u(t, 1) = 0 and u(t + 1, x) = u(t, x) for all t ∈ R and x ∈ [0, 1] it holds
∫ 1

0

∫ 1

0

(

µ2∂tu
2 + ν4∂2

xu
2 + ν2∂xu

2 + u2
)

dtdx

≤ c

∫ 1

0

∫ 1

0

(

µ∂tu − ν2∂2
xu − ∂uf(t, x, uν(t, x), µ, ν)u

)2
dtdx. (5.20)

Proof: Take u ∈ C2(R × [0, 1]) with u(t, 0) = u(t, 1) = 0 and u(t + 1, x) = u(t, x) for all t ∈ R and

x ∈ [0, 1]. Then

1
∫

0

1
∫

0

(

µ∂tu − ν2∂2
xu − ∂uf(t, x, uν(t, x), 0, 0)u

)2
dtdx

=

1
∫

0

1
∫

0

(

µ2∂tu
2 +

(

ν2∂2
xu + ∂uf(t, x, uν(t, x), 0, 0)u

)2
)

dtdx

−2

1
∫

0

1
∫

0

(

µν2∂tu ∂2
xu + µν2∂tu ∂uf(t, x, uν(t, x), 0, 0)u

)

dtdx

and
1
∫

0

1
∫

0

∂tu ∂2
xu dtdx = −

1
∫

0

1
∫

0

u ∂2
x∂tu dtdx =

1
∫

0

1
∫

0

∂xu ∂x∂tu dtdx = 0

and
∣

∣

∣

∣

∣

∣

1
∫

0

1
∫

0

∂tu ∂uf(t, x, uν(t, x), 0, 0)u dtdx

∣

∣

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

∣

∣

1
∫

0

1
∫

0

u2 d

dt
∂uf(t, x, uν(t, x), 0, 0) dtdx

∣

∣

∣

∣

∣

∣

≤ const

1
∫

0

1
∫

0

u2dtdx.
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Hence, Lemma 5.2 yields

1
∫

0

1
∫

0

(

µ∂tu − ν2∂2
xu − ∂uf(t, x, uν(t, x), 0, 0)u

)2
dtdx

≥ c1





1
∫

0

1
∫

0

(

µ2∂tu
2 + ν4∂2

xu
2 + ν2∂xu

2 + u2
)

dtdx − c2µ

1
∫

0

1
∫

0

u2dtdx





with positive constants c1 and c2 which do not depend on µ, ν and u. Taking into account that

1
∫

0

1
∫

0

(∂uf(t, x, uν(t, x), µ, ν) − ∂uf(t, x, uν(t, x), 0, 0))2 u2dtdx ≤ const (µ + ν)

1
∫

0

1
∫

0

u2dtdx,

we can choose µ and ν sufficiently small such that (5.20) holds true.

Lemma 5.4 There exist ε0 > 0 and c > 0 such that for all µ, ν ∈ (0, ε0), for all u ∈ C2([0, 1]) with

u(0) = u(1) = 0 and for all t ∈ [0, 1] it holds

ν2‖u′′‖∞ + ν‖u′‖∞ + ‖u‖∞ ≤ c max
0≤x≤1

∣

∣ν2u′′(x) + ∂uf(t, x, uν(t, x), µ, ν)u(x)
∣

∣ . (5.21)

Proof: Similar to Lemma 5.2, we use a proof by contradiction. Suppose that (5.21) is not true, then there exist

sequences µn, νn ∈ (0, 1], tn ∈ [0, 1] and un ∈ C2([0, 1]), n = 1, 2, . . ., with

un(0) = un(1) = 0 (5.22)

such that

ν2
n‖u′′

n‖∞ + νn‖u′
n‖∞ + ‖un‖∞ = 1 (5.23)

and

µn + νn + max
0≤x≤1

∣

∣ν2
nu′′

n(x) + ∂uf(tn, x, uνn
(tn, x), µn, νn)un(x)

∣

∣→ 0.

Without loss of generality we can assume that tn → t∗ ∈ [0, 1] and

νn + max
0≤x≤1

∣

∣ν2
nu′′

n(x) + ∂uf(t∗, x, uνn
(t∗, x), 0, 0)un(x)

∣

∣→ 0. (5.24)

We aim to show that (5.23) and (5.24) imply a contradiction.

Step 1. Let us consider two auxiliary sequences

ṽn(y) := un(νny)χ(νny)e−κy
and w̃n(y) := un(1 − νny)χ(νny)e−κy, (5.25)

where κ > 0 is a parameter to be chosen later, and χ is a smooth cut-off function satisfying (5.10). From (5.23)

it follows that the functions ṽn and w̃n constitute bounded sequences in the Hilbert space W 2,2(0,∞). Hence,

without loss of generality we can assume that there exist ṽ∗, w̃∗ ∈ W 2,2(0,∞) such that

ṽn ⇀ ṽ∗ and w̃n ⇀ w̃∗ in W 2,2(0,∞). (5.26)
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If we show that ṽ∗ = w̃∗ = 0, then for any fixed R > 0, because of the compact embedding W 1,2(0, R) ↪→
C([0, R]), we obtain

max
0≤y≤R

|ṽn(y)| + max
0≤y≤R

|w̃n(y)| → 0. (5.27)

For the sake of brevity we will prove ṽ∗ = 0 only. The condition w̃∗ = 0 can be verified analogously.

Take a smooth compactly supported test function η : [0,∞) → R. Take R > 0 sufficiently large such that

supp η ⊆ [0, R]. Then (1.9), (1.14), (5.10), (5.24)–(5.26) yield

0 = lim
n→∞

∫ 1

0

χ(x)ν−1
n e−κx/νn(ν2

nu′′
n(x) + ∂uf(t∗, x, uνn

(t∗, x), 0, 0)un(x))η

(

x

νn

)

dx

= lim
n→∞

∫ 1/4

0

ν−1
n e−κx/νn(ν2

nu
′′
n(x) + ∂uf(t∗, x, uνn

(t∗, x), 0, 0)un(x))η

(

x

νn

)

dx

= lim
n→∞

∫ 1/(4νn)

0

(

e−κy (ṽn(y)eκy)′′ + ∂uf(t∗, νny, uνn
(t∗, νny), 0, 0)ṽn(y)

)

η(y)dy

= lim
n→∞

∫ R

0

(

ṽ′′
n(y) + 2κṽ′

n(y) + κ2ṽn(y) + ∂uf(t∗, νny, uνn
(t∗, νny), 0, 0)ṽn(y)

)

η(y)dy

= lim
n→∞

∫ R

0

(

ṽ′′
n(y) + 2κṽ′

n(y) + κ2ṽn(y) + ∂uf(t∗, 0, u
0(t∗, 0) + v0(t∗, y), 0, 0)ṽn(y)

)

η(y)dy

=

∫ ∞

0

(

ṽ′′
∗(y) + 2κṽ′

∗(y) + κ2ṽ∗(y) + ∂uf(t∗, 0, u
0(t∗, 0)) + v0(t∗, y), 0, 0)ṽ∗(y)

)

η(y)dy.

In other words: ṽ∗ is a weak and, hence, classical solution to the linear homogeneous ODE

ṽ′′
∗ (y) + 2κṽ′

∗(y) + (∂uf(t∗, 0, u
0(t∗, 0) + v0(t∗, y), 0, 0) + κ2)ṽ∗(y) = 0.

For sufficiently small κ, the latter equation has only trivial solution satisfying boundary conditions ṽ∗(0) =
ṽ∗(∞) = 0 (see discussion of the equation (5.16) in the proof of Lemma 5.2), therefore we conclude ṽ∗ = 0.

Step 2. Next, we show that

max
0≤x≤1

∣

∣

(

∂uf(t∗, x, uνn
(t∗, x), 0, 0) − ∂uf(t∗, x, u0(t∗, x), 0, 0)

)

un(x)
∣

∣→ 0. (5.28)

From (5.25) and (5.27), for any fixed R > 0 we have

max
0≤x≤νnR

|un(x)| + max
0≤x≤νnR

|un(1 − x)| → 0,

therefore estimates (1.14) and assumption (5.23) imply

max
0≤x≤1

∣

∣

∣

∣

v0

(

t∗,
x

νn

)

un(x)

∣

∣

∣

∣

+ max
0≤x≤1

∣

∣

∣

∣

w0

(

t∗,
1 − x

νn

)

un(x)

∣

∣

∣

∣

→ 0.

Hence, because of the mean value estimate (5.18), we get (5.28).

Step 3. From (5.24) and (5.28) follows

max
0≤x≤1

∣

∣ν2
nu′′

n(x) + ∂uf(t∗, x, u0(t∗, x), 0, 0)un(x)
∣

∣→ 0.
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Therefore, because of ∂uf(t∗, x, u0(t∗, x), 0, 0) < 0 (see assumption (1.4)), the strong maximum principle

yields

‖un‖∞ → 0.

Moreover, using (5.24) we also obtain

ν2
n‖u′′

n‖∞ ≤ max
0≤x≤1

∣

∣ν2
nu

′′
n + ∂uf(t∗, x, uνn

(t∗, x), 0, 0)un(x)
∣

∣

+ max
0≤x≤1

|∂uf(t∗, x, uνn
(t∗, x), 0, 0)un(x)| → 0.

Applying interpolation inequality for C-spaces (see, for example, Lemma 6.3.1 in [14]) we also get

νn‖u′
n‖∞ → 0,

and hence the contradiction with (5.23).

Lemma 5.5 There exist κ∗ > 0, µ0 > 0 and c > 0 such that for all κ ∈ [0, κ∗], µ ∈ (0, µ0) and for all

u ∈ C2(R × [0,∞)) with u(t, 0) = 0 and u(t + 1, y) = u(t, y) for all (t, x) ∈ R × [0,∞) and such that

u(t, ·) has compact support for all t ∈ R it holds

∫ 1

0

∫ ∞

0

(

µ2∂tu
2 + ∂2

yu
2 + ∂yu

2 + u2
)

eκydtdy

≤ c

∫ 1

0

∫ ∞

0

(

µ∂tu − ∂2
yu − ∂uf(t, 0, u0(t, 0) + v0(t, y), µ, ν)u

)2
eκydtdy. (5.29)

and

∫ 1

0

∫ ∞

0

(

µ2∂tu
2 + ∂2

yu
2 + ∂yu

2 + u2
)

eκydtdy

≤ c

∫ 1

0

∫ ∞

0

(

µ∂tu − ∂2
yu − ∂uf(t, 1, u0(t, 1) + w0(t, y), µ, ν)u

)2
eκydtdy. (5.30)

Proof: We will prove inequality (5.29) only. Inequality (5.30) can be considered analogously.

Let us start with the case κ = 0. Take u ∈ C2(R × [0,∞)) with u(t, 0) = 0 and u(t + 1, y) = u(t, y) for

all t ∈ R and y ∈ [0,∞) and such that u(t, ·) has compact support for all t ∈ R. Then

∫ 1

0

∫ ∞

0

(

µ∂tu − ∂2
yu − ∂uf(t, 0, u0(t, 0) + v0(t, y), 0, 0)u

)2
dtdy

=

∫ 1

0

∫ ∞

0

(

µ2∂tu
2 +

(

∂2
yu + ∂uf(t, 0, u0(t, 0) + v0(t, y), 0, 0)u

)2
)

dtdy

−2

∫ 1

0

∫ ∞

0

(

µ∂tu ∂2
yu + µ∂tu ∂uf(t, 0, u0(t, 0) + v0(t, y), 0, 0)u

)

dtdy

and
∫ 1

0

∫ ∞

0

∂tu ∂2
yu dtdy = −

∫ 1

0

∫ ∞

0

u ∂2
y∂tu dtdy =

∫ 1

0

∫ ∞

0

∂yu ∂y∂tu dtdy = 0
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and

∣

∣

∣

∣

∫ 1

0

∫ ∞

0

∂tu ∂uf(t, 0, u0(t, 0) + v0(t, y), 0, 0)u dtdy

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

∫ 1

0

∫ ∞

0

u2 d

dt
∂uf(t, 0, u0(t, 0) + v0(t, y), 0, 0) dtdy

∣

∣

∣

∣

≤ const

∫ 1

0

∫ ∞

0

u2dtdy.

Hence, Lemma 5.1 yields

∫ 1

0

∫ ∞

0

(

µ∂tu − ∂2
yu − ∂uf(t, 0, u0(t, 0) + v0(t, y), 0, 0)u

)2
dtdy

≥ c1

(
∫ 1

0

∫ ∞

0

(

µ2∂tu
2 + ∂2

yu
2 + ∂yu

2 + u2
)

dtdy − c2µ

∫ 1

0

∫ ∞

0

u2dtdy

)

with positive constants c1 and c2 which do not depend on µ, ν and u. Taking into account that

∫ 1

0

∫ ∞

0

(

∂uf(t, 0, u0(t, 0) + v0(t, y), µ, ν)− ∂uf(t, 0, u0(t, 0) + v0(t, y), 0, 0)
)2

u2dtdy

≤ const (µ + ν)

∫ 1

0

∫ ∞

0

u2dtdy,

we can choose µ and ν sufficiently small such that (5.29) holds true.

Inequality (5.29) for non-zero but sufficiently small κ can be justified if we take u = eκ/2v and analyze the

resulting expression by analogy with the inequality (5.4) in Lemma 5.1.

Lemma 5.6 There exist µ0 > 0 and c > 0 such that for all µ ∈ (0, µ0), for all x ∈ [0, 1] and for all

h ∈ C([0, 1]) with h(0) = h(1), the linear differential equation

µu′(t) − ∂uf(t, x, u0(t, x), µ, 0)u(t) = h(t) (5.31)

has a unique 1-periodic solution u ∈ C1([0, 1]) and it holds

µ‖u′‖∞ + ‖u‖∞ ≤ c‖h‖∞. (5.32)

Proof: Assumption (1.4) implies that the Floquet exponent corresponding to (5.31)

Q =
1

µ

∫ 1

0

∂uf(t, x, u0(t, x), µ, 0)dt

is non-degenerate, at least, for sufficiently small |µ| 6= 0. Therefore, one can explicitely verify that in this case

equation (5.31) has a unique 1-periodic solution u ∈ C1([0, 1]) determined by the Green’s formula

u(t) =

∫ 1

0

G(t, s)h(s)ds
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with

G(t, s) = − 1

2µ
exp

(

1

µ

∫ t

s

∂uf(t, x, u0(ξ, x), µ, 0)dξ − Q

2
sign(t − s)

)

/ sinh(Q/2).

Function G is sign-preserving and satisfies the identity

∫ 1

0

G(t, s)∂uf(t, x, u0(s, x), µ, 0)ds = −1,

following from the fact that u(t) = −1 is a solution to equation (5.31) for h(t) = ∂uf(t, x, u0(t, x), µ, 0).

Using these properties, we obtain a pointwise estimate

|u(t)| =

∣

∣

∣

∣

∫ 1

0

G(t, s)∂uf(t, x, u0(s, x), µ, 0)
h(s)

∂uf(t, x, u0(s, x), µ, 0)
ds

∣

∣

∣

∣

≤ const‖h‖∞ for all t ∈ [0, 1],

which together with the inequality

|µu′(t)| ≤ |µu′(t) − ∂uf(t, x, u0(t, x), µ, 0)u(t)|+ |∂uf(t, x, u0(t, x), µ, 0)| |u(t)|

yields the announced coercivity estimate.
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