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DIFFUSIVE CLUSTERING IN AN INFINITE SYSTEM 

OF HIERARCHICALLY INTERACTING DIFFUSIONS 

By Klaus Fleischmann antj. Andreas Greven 

Institut filr Angewandte AnaLysis und Stochastik, Berlin 

1nstitut filr Mathematische Stochastik, Gottingen 

Abstract. We study a system of linearly interacting diffusions on the inter-

val [0,1], indexed by an infinite hierarchical group with parameter N, mode-

ling the evolution of gene frequencies accounting for migration and resamp-

ling. Fisher-Wright diffusions are the typical example for the diffusion 

term. A particular choice of the migration term guaranties that we are in the 

so-called diffusive clustering regime. The processes in the whole class con-

sidered and starting with a shift-ergodic initial law have qualitative pro-

perties just as in the Fisher-Wright case (universality). Also, the initial 

law plays here no role. Clusters of components with values either close to 0 

or close to 1 grow on various different scales (diffusive clustering). More 

precisely, at time Nt 4CXJ (spatial) cluster sizes measured in a hierarchical 

distance grow like at (i.e. consist of Nat components) where 1-aE(O,l) is the 

hitting time of the traps {0,1} for a time transformed Fisher-Wright diffu-

sion. Nevertheless, the single components osciLLate infinitely often between 

values close to 0 and close· to 1, but in such a way that they spend fraction 

one of their time together close to the boundary. Diffusive clustering pheno-

mena we believe are in fact common to many interacting systems and were first 

discussed by Cox and Griffeath (1986) for the planar simple voter model. On 

the way, we prove some scaling results on a specific coalescing random walk 

with delay on the hierarchical group. 

AMS 1980 subject classifications. Primary 60K35; secondary 60J60, 60315 

Key words and phrases. Interacting diffusions, coalescing random walk, 
hierarchical system, cluster· formation, universality 
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1. INTRODUCTION AND MAIN RESULTS 

1.a) Background and Motivation 

A common feature of several systems with infinitely many interacting 

components and one conserved quantity (like the particle density) is the fact 

that one observes two types of longterm behavior depending on the interaction 

strength. In the case of a "strong" interaction we have a one parameter set 

of nontrivial extremal equilibrium states, one for each possible value of the 

conserved quantity. Furthermore, for reasonable initial states, the system 

approaches one of these equilibria as time tends to infinity. In the case of 

a "weak" interaction the only extremal invariant distributions are the traps 

of the system. This second situation is particularly interesting if we have 

at least two such traps. Then the system will cluster, i.e. for sets of com-

ponents growing in time it will look locally like either one of the traps. 

Examples are the voter model, branching random walks, or systems of interac-

ting diffusions. As a general reference to interacting particle systems, we 

refer to Liggett (1985). 

In the case of a clustering system, one is of course interested in a mo-

re detailed description of the clustering in time as well as in space: (i) 

one would like to show that the components spend_ most of their time "close to 

the traps" but nevertheless keep oscillating infinitely often; (ii) one would 

like to know at which rate clusters grow in space as time tends to infinity. 

The latter depends on the strength of the interaction. Particularly interes-

ting phenomena are observed in the critical situation where we have a weak 

interaction but close to the case of a strong interaction. 

For example in Cox and Griffeath (1983, 1986), Bramson et al. (1986) the 

simple voter model has been studied, respectively in Cox and Griffeath (1990) 

the planar stepping stone model. (The simple voter model describes the random 

evolution of opinions, denoted by 0 or 1, of a community located on the sites 
d of "1/.. , where each individual changes its opinion at a rate proportional to 

the number of neighbors who disagree. In the stepping stone model, more gene-

ral opinions 0,1, ... ,r are allowed.) In the voter model, the complete consen-

sus {x=O or x=l} constitutes the traps. For the critical dimension d=2 it was 

found that as time t tends to infinity clusters of all ones and all zeros 
grow like ta12 where ae(0,1) is a random variable related to a time transfor-

med standard Fisher-Wright diffusion. This means that one observes clusters 

of various sizes which are as t~oo of asymptotically different orders of mag-

nitude. This is particularly interesting since it is visible already in simu-

lations of very large but finite systems; see Cox and Greven (1991a). 
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Our first motivation is now to demonstrate that this phenomenon of "dif-

fusive clustering" is not restricted to interacting systems of the type of 

the voter model but is universal, i.e. occurs in other systems of interest in 

applications, namely in a whole class of systems of interacting diffusions. 

Furthermore, this phenomenon does not depend on the initial distribution be-

ing a product measure. Even the Euclidean structure of the index set label-

ling the components is not relevant. For example, already in Dawson and Gre-

ven (1992a) such phenomenon was obtained at least in the mean field limit for 

a model of interacting diffusions on a hierarchical structure. 

In the present paper we shall study some interacting diffusions on a 

hierarchical structure (see Definition 1.6 below) without passing to the mean 

field limit. This brings us to our second set of motivations: The model is 

interesting for reasons of application and from a theoretical point of view. 

First, the particular case of interacting Fisher-Wright diffusions inde-

xed by a hierarchical structure represents an interesting model in mathemati-

cal biology if one studies gene frequencies of individuals, with evolution 

accounting for migration and resampling, in the diffusion limit. Here an hie-

rarchical notion of "neighboring" of components is more appropriate which ta-

kes into account only whether individuals belong to the same family, same 

clan, same village, same tribe etc., rather than taking into account some Eu-

clidean notion of distance. See Sawyer and Felsenstein (1983), Dawson and 

Greven (1992b) for more references. 

Secondly, in Dawson and Greven (1992a, b) it was shown in the mean field 

limit, that the growth of clusters in various scales is a phenomenon which is 

"universal" in a whole class of evolutions of the type of interacting diffu-

sions. This universality is due to a fixed point property of Fisher-Wright 

systems under a renormalization procedure adapted to the multiple time scale 

behavior of such system. To make that rigorous it was important to have a 

hierarchical interaction and .to take the mean field limit. Of course, this 

work raises the question what happens if one does not pass to the mean ·field 

limit. We will attack this problem by dealing first with interacting Fisher-

Wright diffusions, where duality relations with coalescing random walks with 

delay are available, and then we shall generalize via comparison arguments 

(for such methods see also Cox and Greven (199lb)). One would hope to even-

tually recover universality here also from a fixed point property of the Fi-

sher-Wright system, but this seems beyond the present technology. 

In this paper we focus on the regime of diffusive clustering and we do 

not touch the quite interesting phenomenon arising in the formation of clus-

ters in other regimes, i.e. fast and slow growing clusters. (For the mean 
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field limit case, see again Dawson and Greven (1992a,b).) 

Similar results can be expected for interacting diffusions indexed by 

:ld, but a more interesting direction of research would be to study different 

type models, for example, refine the known results on "random time averages" 

of spatial branching models in the critical dimension (see Cox and Griffeath 

(1985), Fleischmann and Gartner (1986) and Iscoe (1986), or to study interac-

ting Feller's branching diffusions in the critical dimension in order to find 

clusters of empty and crowded spots of different orders of magnitude. A lar-

ger sample of examples would hopefully reveal general principles ruling the 

intrinsic structure of the cluster formation in critical situations. 

1.b) The Model 

Start by introducing a countably infinite hierarchical set S which shall 

label the components of our interacting system. Namely let S denote the col-

lection of all sequences t;=U;1,E;2 , ... l with coordinates ~i in the finite set 

{O, ... ,N-1} which are different from zero only finitely often. The natural 

number N2::2 is a once and for all fixed parameter of the model. Define the 

"length" (discrete norm) of ~: 

(1.1) lli;ll := max{i;E; :;eO}, 
l 

to be read as 0 if E;=O=[O,O, ... ]. 

One should think about this according to the following interpretation 

appearing in applications to mathematical biology. If a component has the la-

bel i;=(~ ,i; , ... ) then it is the ~ -st member of a family, which is the t; -nd 
1 2 1 2 

family of a clan, which is the i; -rd clan of a village, which is the ~ -th 
3 4 

village of a county, ... , which is the t; -th member of a k-level set, k2'::1. 
k 

Hence, in the hierarchical lattice we think of components as grouped on dif -

ferent levels. 

We regard ::: as an Abelian group by defining the addition coordinate wise 

modulo N. Note that with we get a hierarchical distance: 

llt;-<::ll=k means that the components with labels t; and <:: are "relatives of de-

gree k". In other words, 11~-C:ll is the coarsest level to separate the compo-

nents with labels i; and <· 
Our system with interacting components will be constructed as random el-

~ 

ement in (C[IR ,[0,1]]).::.; i.e. with the component with label i; we shall asso-
+ 
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ciate a continuous trajectory JE; := {JE;(t);t::!:O} in C[IR+,[O,l]). Then setting 

J(t) := (JE;(t))~ES we obtain a continuous trajectory with values in the com-

pact space [0,1].:c. (which is always equipped with its product topology and 

with the Borel CJ-field). 

We start with describing the evolution of the desired stochastic process 

in an informal and heuristic fashion. The evolution of the system l':==(JE;)E;eS 

will be based on two effects: on migration and various types of resampling. 

Let §'0 denote the set of all functions q satisfying 

(1.2) q: [O,l]f--71R+ is Lipschitz continuous with q(O)=O=q(l) and q>O otherwise. 

To model the resampUng effect, we let each component J~ perform inde-

pendently a diffusion in [0,1] with diffusion coefficient qe§'0 : 

dZ(t) == vq(Z(t) )' dw(t), t>O, Z(O)e[0,1], 

where w is a one-dimensional standard Brownian motion. Note that such a dif-

fusion has the traps 0 and 1, where we have to distinguish between two cases. 

fl/Z If 0 dr rlq(r) and J~12 dr (1-r)lq.(r) are both finite then the diffusion 

will end up in finite time in {0,1}. Otherwise the paths converge as t->oo to 

the traps without ever hitting them. As a prototype for the first case we ha-

ve the Fisher-Wright diffusion: 

(1.3) q==bC where f(r):==r(l-r), Osrsl, and b>O a diffusion constant. 

An example for the second case which is interesting for applications as well 

is the Ohta-Kimura diffusion: 

(1. 4) q==bC2 with b>O; 

Ohta and Kimura (1973). 

To model the migra.tion effect, we add the following hierarchical inter-

action: The ~-th component at time t (which has state J1:;(t)) will get a drift 

defined by the deviation from the empirical means 

( 1. 5) -k Jc (t) := N Lr ";::: 1{111'.;-<Hsk} J,,..(t), ..,,k ._,E~ -., 
1'.;e3, k::!:l, t::!:O, 

of the states of all its relatives of at most degree k (block average of lev-

eL k around ~). The different block levels k will additionally be weighted by 
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the factor Cl.N-k where Cl. is a fixed positive constant. In this sense we have a 

hierarchical local interaction. This interaction forces the components to be 

in line with their neighbors. That particular choice Cl.N-k of the weights (ex-

ponential decay) ensures that we are in the critical region. This makes the 

model the analog of the planar simple voter model. (For more rapidly decrea-

sing weights one has different patterns of cluster formations resembling more 

the one-dimensional simple voter model; compare Dawson and Greven (1992a).) 

In the Fisher-Wright case, this model has for example the following in-

terpretation in mathematical biology: Jt; describes the evolution of a gene 

frequency at a colony E; in the diffusion limit of a large number of indivi-

duals per colony and slow migration rate: a new born individual has a gene 

chosen with a probability given by the empirical frequency in the previous 

generation in the colony and each individual can migrate to other colonies. 

(See Ethier and Kurtz (1986), Chapt. 10.) 

Let ~ denote the set of all probability laws on [0,11.:::.. We are ready now 

for a rigorous definition of our process. 

Definition 1.6. The system J := {J(t);t~O} := ( {JE;(t);t~O} )f;ES =: [J,IP~,µEVi 

of interacting diffusions in the interval [0,J] with diffusion coefficient 

q,eri0 (defined in (1.2)) is the unique strong solution of the following system 

of stochastic differential equations 

(1.7) dJE;(t) ::: Cl.(Lk:l N-k(JE;,k(t)-JE;(t)))dt + V<J(JE;(t))' dwt;(t) 

J f;,k ( t) . - N-k Le;: es l { 11 E;-<;: II !>k} J <:( t), E;e3, k~1. t~o. 

!e{J(O)) = µ E lj}, 

where w:={wE;(t);t~O}E;eS is a system of independent one-dimensional standard 

Brownian motions and the parameters N~2. Cl.>0, and q,e'@ 0 are fixed. I 

The solution J is a time-homogeneous strong Markov process with conti-

nuous paths. 

To apply directly known results on the existence of a unique strong so-

lution as well as for the interpretation of such system of interacting diffu-
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sions, we remark that (1.7) can alternatively be written as 

(1.8) 

where 

(1. 9) 

Hence, the diffusions of different components t; and <:: interact in a way, cor-

responding to a migration from <:: to I; at rate q1;,c:· The total migration rate 

into I; is given by 

(1.10) z 
- qt;,t; := Lc::(1't; qt;,< = o.N/(N -1), 

· c h Nk-1(N-1) l . ;- f d k 1 smce ..,, as re at1ves -,, o egree ~ . 

Note that this system of stochastic differential equations has a unique 

strong solution, due to Theorem 3.2 in Shiga and Shimizu (1980). 

As a rule, we shall study the case where the initial state .f(O) has a 

law in the set ! 8 of all shift-invariant and ergodic distributions µep with 

expectation IEµJo(O) =: e where the overall density ee(O,l) is fixed once and 

for all. In particular, µ could be the product measure with marginals eo + 
1 

- -(1-e)o0 , or even the degenerate law µ=as with constant state e: et;=e. 

l.c) Review of the Basic Ergodic Theory 

Let 

(1.11) 

0 
qe'§' ' µe!8. Then the solution to (1. 7) has the following longterm behavior: 

!Pg(.f(t)e(. l) ==* u-ela0 + ea1 µ t--)oo 

where 0 and 1 are the constant states J1;=0 and Jt;'=l ("extreme consensus") in 

[0,1]3 . (Here and in the sequel ==> denotes weak convergence of probability 

laws.) This follows from Cox and Greven (1991b), combined with the fact that 

related to a result of Sawyer and Felsenstein (1983) the continuous time ran-

dam walk in 3 with homogeneous and symmetric rates qt;,< for a jump from t; to 

(t:f;; (according to (1.9) and (1.10)) is recurrent; see Lemma 2.21 below. (By 

the way, in the transient case, instead of the "degeneration" (1.11) one has 

convergence to a non-trivial equilibrium state.) 

Even though (1.11) implies 

--7 0, t--)oo t;e3, O<e<uz, 
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note first of all that 

(l.12) IP~(Jl;(t) E (0,1)) = 1, t;e3, t>O, 

and second that (1.11) does say nothing about whether components oscillate. 

0 (To prove (l.12), just observe that, for each ae(0,1) and qe~ , a diffusion 

of the form dJt;(t) = (a-Jf;(t))dt + vq(Jf;(t))' dwt;(t) has this property.) Ne-

vertheless, for large time locally one has either a cluster of only values 

close to one or a cluster of only values close to zero. 

The main purpose of this paper is to investigate how fast clusters will 

grow during the evolution. But we shall also answer the question where finite 

collections of components spend most of their time, and how their normalized 

occupation time behaves as t"?oo, Before we will state the main results we give 

some of the history and the background of this problem. 

In Dawson and Greven (1992a) it was shown that in the mean field Limit 

N"?oo and at time scale Nt various regimes of clustering are possible: large 

clusters, diffusive clustering, and small clusters, corresponding to whether 

(for large N) cluster sizes grow, respectively, like t, like at with a random 

variable ae(0,1), or like a function f(t) which also .tends to oo as t~oo, but 

as o(tJ. Here cluster sizes are measured by the hierarchical distance. 

For analogy, as t~oo the simple voter model in dimension one has large 

clusters namely ones of 1/2 order t , in dimension two it clusters diffusive 

with diameters of order t<X12, where ae(0,1) is random, whereas small clusters 

will not occur in the simple voter model since the three dimensional case is 

already "stable"; we refer to Cox and Griffeath (1986). 

Another model exhibiting similar phenomena are Dawson-Watanabe processes 

(superprocesses) in IRd: In subcritical dimensions d one has large clusters, 

in the critical dimension the diffusive clumping picture is reflected by a 

self-similarity property and by the random time average behavior, and in su-

percritical dimensions there exist already non-trivial steady states; see 

Dawson and Fleischmann (1988) and references therein. Note also Remark 1.26 

below. 
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We shall focus here on the most interesting regime of diffusive duste-

ring, but now (as already said) for fixed parameter N. Following the scheme 

in Cox and Griffeath (1986), we shall describe the growth of clusters from 

three different points of view, each one culminating in a theorem. Here we 

stress the int~resting fact, that more or less we get the same limit expres-: 

sions as there, although at the first sight the interacting diffusion model 

here with general diffusion coefficient looks rather different than the voter 

model. A fourth theorem is then devoted to the time picture of components. 

1.d) Main Results 

Our main results will be presented in four parts: three parts describing 

various aspects of the clustering in space, and one dealing with clustering 

viewed in time. 

(i) Spatially Thinned Systems. In order to assess how far correlations bet-

ween the components reach as t-?oo, we will consider first some "thinned out 

systems". To define them, we introduce the shift operators {JI :m?:O} in 3 by 
m 

setting (JI (l.:=( ·' (ES, i?:l. 
m i m+1 

That is, JI cuts off the first m coordina-
m 

tes (levels). Conversely, for each m?:O, we will understand the "inverse ope-

rator" Jl- 1: SHB as being any fixed function such that 
m 

(For 

instance, take always 0 for the coordinates to be newly created.) For fixed 

<X, t?:O we now define a thinned out (rescaled) system by 

setting 

(1.13) where 

Note that if ~ and ~· have the distance Iii;-£;' ll=k?:O then the (,(' associated 

-1 by Jl[<Xtl have the distance II(-<:' ll=[1.XtJ+k=1.Xt+0(1) as t-700. Roughly speaking, at 

time Nt we look only on such a thinned out system in which fixed collections 

of different labels have a distance of order o:t + 0(1). It will turn out that 

in the case O<<X<l opposed to (1.11) extreme consensus {0,1} will appear (as 

t-700) only with a probability strictly betyveen 0 and 1. 

In order to give a precise description of this effect in the following 
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theorem, recall first that for µe:t9 the constant ee(0,1) is the initial den-

sity of .f, and second introduce the following objects. 

Definition 1.14. Let Y9 := {Y9 (s);0::5s::5+oo} denote the standard Fisher-Wright 

diffusion starting at e, that is the process solving 

( 1.15) dY(t) = v'Y(t)(l-Y(t))' dw(t), t=::O, Y(0)=8. 

Recall that Y9 (+oo) e {0,1}. Set Y(a) := Y8(-log(a/\1)), a:::O, and define Fe ,a 

as the law of the random variable Y(cx). Moreover, for Be[0,1} let rr9 denote 

the product measure on {0,1}3 with marginals o-e)o + eo . 
0 1 I 

Theorem 1 (spatially thinned systems). Let µel'.e and qer:J°. For each a:::G, the 

Law of the thinned out systems a.f(t) with respect to !Pq converges to a mixtu-µ 

re of product measures: 

:E(al(t)) • 
Consequently, in all rx cases, the limiting components take on only the 

values 0 or 1. In the "strongly" thinned out case rx:::l the law. F e,a of Y(a) 

degenerates to oe, hence the limiting field ax(oo), say, has independent com-

ponents, i.e. all components belong to "independent clusters". On the other 

hand, for a=O, that is -loga=+oo, the "random" density e has distribution 

80 +(1-e)o • 
1 0 

that is the product law degenerates to o0 or ol' and (1.11) is 

recovered. If O<a<l, extreme consensus {O,l} will be met with a certain pro-

bability (which decreases in a), but also one observes fluctuating compo-

nents, belonging to different clusters. Summarizing, at the exponential time 

t scale N correlations between components are build up even over distances 

[ext] for all ae(0,1), and we can control the strength of this correlation via 

the distribution F of the standard Fisher-Wright diffusion Ye taken at ti-e,a 

me -log(al\l). 

(ii) Time-dependent Block Averages. The next question is how averages over 

large blocks do behave as a function of the block size growing in time (re-

fdd call (1.5)). We denote by ~ weak convergence of all finite dimensional di-

stributions. Recall {Y(a);a:::O}, the time reversed Fisher-Wright diffusion on 
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a logarithmic scale, see Definition 1.14. 

Theorem 2 (time-dependent block averages). Let µeI.8, q,e'9'0 , and i;e:::. With res-

pect to IPq, the behavior of block averages is given by µ' 

( 1.16) 2({Ji;,[at](Nt);a~o}) :!~ ~({Y(a);a~o}). • 
This means, roughly speaking, that at time Nt (as t->oo), the block avera-

t 
ges Ji;, [atl(N ) of "superlarge" levels [at], a~l, approach the determinis-

tic value Y8 (0)=8 which is the initial density of .X; that is, empirical means 

are built over various clusters resulting into the system mean e. But at each 

level of order at, D<a<l, the block averages t 
Ji;,[at](N l (over blocks of 

N[at) components) remain random also in the limit and will fluctuate with a 

according to 
. e 

Y(a) = Y (log(l/a)). For averages over blocks of "small" level 

o(t), in the limit we see either the value 0 or 1. Note that . for fixed 

ae(0,1) and in the limit t->oo, with a certain positive probability these block 

averages will be 0 or 1 (where 0 and 1 are the traps of Y8 ), and the probabi-

lity of that extreme consensus will increase from 0 to 1 as a varies from 1 

to 0. In other words, the empirical means stabilize in distribution at sepa-

rated scales in different ways and, in particular, exhibit the diffusive clu-

stering phenomenon: clusters of values close to 0 and close to 1 grow on a 

variety of spatial scales. 

Remark 1.17. Opposed to the mean field limit case [11), but as in [8], it re-

mains an open problem whether or not convergence in path space of continuous 

functions occurs in Theorem 2 (i.e. tightness holds). o 

(iii) Cluster Sizes. In order to describe the phenomenon of diffusive cluste-

ring in another and more "geometric" way, we introduce the following nota-

tions. For t~O and O<e<uz, denote the set of all configurations 

ze[o,d~: such that the sum over all components zi; with 11i;ll!St is either smal-

ler than e or bigger than Nt -e. Roughly speaking, 2f describes the event that 
t 

the block {f;e3; lli;ll!St} around 0 of relatives of at most degree [t] is covered 

by an "e-cluster" that is, in particular, no component is more than e away 
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from 0 or 1, and even the total deviation is less than £. Define the random 

variables 

(1.18) 
e t e S := sup{a.>0; .f(N )e£ t} t ()'. and T := sup{a.>0; Y(a.)e{0,1}} 

in [O,+oo] (to read as 0 if the corresponding set is empty). S 8 describes the 
t 

normalized size of the largest block covered by an e-cluster, whereas 1-T is 

the hitting time of the traps of a time transformed standard Fisher-Wright 

diffusion (note that O<T<l a. s.). The following theorem will only be proved 

up to a statement on coalescing random walks with delay (see Hypothesis 7.2 

in Section 7), proven in the analogous case of simple coalescing random walks 

on 71.2 in Bramson et al. ( 1986). 

Theorem 3 (cluster sizes). Let µe!0 . In the Fisher-Wright case q=b&, b>O, (as 

described in (1.3)), the normalized e-cluster sizes S8 converge in law with 
t 

respect to !Pb& towards T: 
µ 

1 im 1 im .:t'.(S8 ) = .:t'.(T). e->o t->oo t • 
Loosely speaking, even in the limit as t->oo the blocks completely covered 

by an £-cluster at time Nt have a random size of order Tt, i.e. T is the ran-

dom velocity of growth for e-clump sizes. Note that the asymptotic "volume" 

of the block clusters at time Nt is given by NtT. 

(iv) Time Picture of Components. Finally we will ask how the components J~ 

behave through time. 

0 Theorem 4.a) {clumps sticking at the boundary). Consider any µe'J) and qe'fl . 

For each finite collection i; , ... ,i; e3 and 
1 m 

t-1 f~ ds l{J~ (s), ... ,J~ (s) < o or 
1 m 

(1.19) 

in !Pg-probability. Relation (1.19) is true µ 

0 < 0 < 1/2, 

Ji; (s), ... ,J~ (s) > 1-a} ~ 1 
1 m 

even IP9'-a.s. provided that the 
µ 

following additional Condition 1.20 on q or µ holds. • 
Condition 1.20. Suppose 

(1.21) liminf g.(r )/r > 0 and liminf q(r )/(1-r) > 0 r->o r->1 

(roughly speaking, q does not have a vanishing derivative at the boundary), or 
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(1.22) µ([c,1-c]~) = 1 for some 0 < 8 < 1/2 

(that is, initially all components are bounded away from 0 and 1). I 

Note that (1.21) is valid in the Fisher-Wright case (1.3) but fails to 

hold for the Ohta-Kimura diffusion (1.4). 

Remark 1.23. We have no doubts that the Condition 1.20 is only of a technical 

nature and could be dropped. However, the methods used so far in the present 

paper seem to be insufficient to get this out smoothly. o 

Theorem 4.a) says that each fixed finite collection of components sticks 

together "most of the time" close to ·a boundary point of the interval [0,1]. 

On the other hand, the components actually oscillate a.s., since a law of 

large numbers holds: 

Theorem 4.b) (law of large numbers and 

(1.24) t -l J~ ds JE(s) 

oscillations). For µE!9, q,Er!f0 , EE3, 

in rF'q,-probability, µ 

(1.25) limsup Jc(t) = 1 and liminf Jc(t) = 0, 
t~co ._, t~co ._, 

q, rF' -a.s. µ • 
Remark 1.26 .. Spatially homogeneous branching processes in the critical dimen-

sion behave similar in that "components" keep oscillating between 0 and +oo. 

But they are different in that (formally) the empty population is the single 

trap (and there is no other steady state, see Bramson et al. (1992)). Moreo-

ver, as already mentioned above, opposed to the LLN (1.24), averages remain 

random. o 

1.e) Outline 

A principal tool for the proofs of the theorems above is the fact that 

in the special case of interacting Fisher-Wright diffusions (1.3), i.~. if 

q,=bC, a dual process T/ exists (Shiga (1980)). This is a system of coalescing 

random walks with delay on the countably infinite Abelian group 3, where the 

random walk is determined by the migration term in ( 1. 7) whereas the interac-

tion (coalescence) is related to the diffusion term. The duality relation si-

mplifies even further if I(O) is distributed according to a product measure. 

We then use moment calculations, coupling and comparison arguments to deduce 

the theorems for the general case, i.e. to get universality in µ and q,. 

In Section 2 we shall start studying the asymptotics of hitting times 

for random walks on the hierarchical group. In Section 3 we proceed to sys-

tems T/ of coalescing random walks with delay and approximate them by sy_stems 
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1} without delay, i.e. by ordinary coalescing random walks. For the latter we 

prove a scaling limit proposition (as t4ro) concerning the probabilities fin-

ding exactly k particles at time Nt if we start initially with n particles, 

but which are at an hierarchical distance growing according to a linear func-

tion of t (see Proposition 3.13). The Theorems 4.a) and 4.b) will be verified 

in Section 4. The first one will then be used for the proofs of the Theorems 

1-3 in the remaining Sections 5-7, respectively. 

2. PREPARATIONS: ON RANDOM WALKS ON THE HIERARCHICAL GROUP 

This section presents systematically all the facts on random walks on 

the hierarchical group which are needed later in the proofs. We begin with 

collecting in 2.a) and b) some facts on random walks on the hierarchical 

group 3. For the Lemmas 2.2, 2.7, 2.9, and (the discrete time analog of) Lem-

ma 2.21, compare Sawyer and Felsenstein (1983). In 2.c) and e) we present the 

asymptotics for the law of the first hitting time of the "origin" 0 of 3 (see 

the Propositions 2.37 and 2.43 below). The particular random walk we are stu-

dying is an analog of the planar simple random walk in the sense that the di-

stribution of the return time to 0 has tails of order 1/logt as t 4ro. In Sub-

section 2.f) and g) we consider collision times of systems of independent 

such walks. As an application, an asymptotics of some moments of the interac-

ting diffusion system are derived in the final subsection. 

2.a) A Discrete Time Random Walk: Iterates of the Transition Kernel 

We start with some prerequisites. First we shall introduce the notion of 

a characteristic function of a law on ~ and recall its properties. The argu-

ment of such a characteristic function will run in the "dual" set '=* ·-~ -

{[y ,y ,. .. ]; y_e{0,1,. .. N-1}, i2=1} 
1 2 1 

equipped with the product topology. This 

set can be decomposed as follows: 3* = {O} v U 00 3* . 
m=l m 

Here 3* consists of 
m 

those elements y of 3* with the property that y = ... =y =0 but y :i'O. Defin-
. . 1 m-1 m 

ing the addition + again coordinate wise modulo N, this 3* is an uncountable 

Abelian group, the group of characters. 

The unif arm distribution (normed Haar measure) h on (the Borel a--field 

of) the compact space 3* can be identified via ·the following three conditions 

(to see this, note that 3* has "N times more elements" than '3* ): 
m m+l 

(i) Set h({O}) := 0 and h(::::*) .- (N-1)N-m for m2:1. 
m 
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(ii) The coordinates y , y , . . . of y are in de pendent with respect to the 
m m+l 

conditional distribution h( • 12* ), m::!l. 
m 

(iii) With respect to this conditional distribution, y m is "uniformly" dist-

ributed on the finite set {1, ... , N-1} whereas all other y , y , .. . are 
m+l m+2 

"uniform" on {0,1, ... ,N-1}. 

Now we are ready to define the characteristic function S of a probability 

law p on (the Borel O'-field of) 3. We sha.11 use the notation (i;,y) := l:,>1 i;.Y .. 
J- J J 

Set: 

Note that 

/\( ) ·- " 2rri(E,y)/N 
P Y · - L..E es PE; e ' 

/\ /\ I p(y) I ~ 1 = p(O). 

yeS*. 

In the sequel we shall need the explicit form of the Fourier transform 

of a particular distribution on 3, as well as a representation of the n-th 

convolution power of this distribution by inverse Fourier tram;forms. As an 

intermediate step we derive the inversion formula 

(2.1) _ fh(d ) /\( ) -2rri(i;,y)/N PE; - y p y e , EeS. 

The proof is by explicit calculation using the following formula. 

Lemma 2.2. For each E;eS: 

Proof. The set 3 can be represented as 3 = u 3 
k::!O k 

with 3 := {EeS; llf;ll=k}. 
k 

The case E;=O is trivial. For EeSk, k>O, we have t;i=O for all i>k, and the in-

tegral in the lemma can be written as 

= '\' >_1 (N-l)N-m fh(dy I Sm*) exp [2rri I <·< E;_y/N]. 
~ j:m-J-k J J 

Because of E ':i=O, the sum formula for a finite geometric series yields 
k 

(2.3) }N-~ exp[2rriE y IN] = (1 - exp[2rrit; l)/(1 - exp[2nif; /NJ) = 0, '-'y -0 k k k . k k . 

since Ek is in particular an integer. We get 

~{ 
0 if m<k, 

(2.4) Jh(dy IS!) exp [2rri I E y IN J -1/(N-1) if m=k, t;esk. 
. <·<k J J J!ffi-J- 1 if rn>k, 

Hence the claim follows. • 
The distributions we will be interested in have the property that p an-t; 

ly depends on II E II. More precisely, let r be any distribution on a:+ . -
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{0,1, ... }. Then define an associated probability law p on S by setting 

{2.5) E;eS, 

where 

(2.6) k-1 R := N (N-1) + o (k)/N, 
k 0 

k2:0, 

is the number of elements in the k-th level set S ={E;eS; 11i;11:;::k}. Since such p 
k 

is "uniform" on each Sk its characteristic function is relatively simple: 

Lemma 2. 7. For distributions p of the form (2.5), 

(2.8) /\ p(y):;:: r + ... +r 
0 m-1 

Proof. Write 

"( ) " r R-1 " p y = L..k2:0 k k L.E;ES 

use (2.3) and (2.6) to get 

r /(N-1) -. f for 
m m 

k 

{ ~1/(N-1) R:1 LE;eS exp[2'n:i L i;.y/N] = 
k j:m:S j:Sk J J 

if 

if 

if 

yeS*, 
m 

yeS*, m2::l, 
m 

k<m, 

k=m, ye:::*. m 
k>m, • 

Combining the inversion formula (2.1), Lemma 2.7, and (2.4) we conclude 

Lemma 2. 9. For distributions p of the form (2.5), 

Pi; = - [1 - o0(~)] N-lli;ll fllt;'ll + (N-1) ~:m>llt;'ll N-mfm, t;'eS, 

with f defined in (2.8). 
m 

Now we use such law p of the form (2.5) as step distribution for a disc-

rete time random walk on S starting in 0. Then ( n) 
the law p 0 , ( • ) of its state at 

time n2:0 has characteristic function (~)n and is again of the form (2.5). 

Thus we can apply the inversion formula in Lemma 2. 9 to obtain 

(2.10) (n) - [1-o (!!:)] N-ll~ll fn (N 1) \' N-m f 0 

Po,E; = 0 "' ll~ll + - Lm>llt;'ll m' 

2.b) Continuous Time Random Walk: Asymptotic Properties of the Transition 

Kernel 

The purpose of this subsection is first to pass to a continuous time 

random walk Z={Z(t);t2:0} in 3 with some jump rate K>O and "uniform" step pro-

babilities as given in (2.5), and second to derive in a particular case seve-

ral asymptotic results for the corresponding transition kernel as t->oo. 
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Let p(t,(,s), t>O, E.<;:es, denote the transition probabilities of this 

random walk Z, and P <;: the law on. D[IR +'3] of that process if it starts at site 

l;:E3. From 

and (2.10) we get 

(2.11) 

Hence, 

(2.12) 

p(t,0,£;) -llEll = - [1 - o0U;l] N exp[-tKU-f 11 E11 )] 

+ (N-1) Lm>llE;ll N-m exp[-tK(l-f ml], t:=::O, €;E3. 

SUPc: ~ p(t,0,E;) = p(t,0,0), 
sEC 

Recall the constant a. from (1.7). From now on we set 

(2.13) 2 2 
K := a.N /(N -1) and r 

,ffi 

Consequently, we fix our attention to a particular jump rate K and special 

level probabilities, in fact the levels are chosen according to a specific 

geometric law. Then, by (2.5r and (2.6), 

(2.14) Po = (N-1)/N, _ N-211£;11 
PE; - , (t=O. 

In other words, from now on we consider the continuous time random walk in 3 

with generator (intensity matrix) q given in (1. 9) and (1.10). By Lemma 2. 7, 

on 3*, m::::l, the characteristic function ~ of p takes· on the values 
m 

(2.15) f = 1 - N-m - N-m-l < 1. 
m 

As t 4 oo, the transition probabilities p(t, •, •) are asymptoticaUy uni-

f ormly distributed with an exponential speed in the following sense: 

Lemma 2.16. Fix <;:,<;:'ES. There are positive constants c,C such that 

(2.17) Lt;:EE I p(t,<;:,£;)-p(t,<;:' ,s) I ~ ce -ct, t::::o. 

Proof. Observe that p(t,(,s) only depends on 11<;:-Ell (for fixed t), and that 

11£;-<;:11 * UE;-<;:'11 only for finitely many £;. But for E.<;:,<;:' fixed, from (2.11) 

and (2.15) we conclude that p(t,O,E;-C.:) and p(t,0,£;-<;:') differ only by a sum 

of finitely many exponential terms of the form as written at the right hand 

side of (2.17). Thus we can find constants c,C as claimed. • 

With the jump rate K from (2.13), we set 

(2.18) a. 
N 

-k -k-1 (N-1) L N exp[-K(N+l)N ]. 
-oo<k<+OO 
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Note that this series converges. The following asymptotics of the transition 

probabilities p(t,(,0) will be useful. 

Lemma 2.19. For t>O, we consider T := T(t) E IR and <.: := ((t) E 3. Then 

NT(tJp(NT(tJ,r(t),0) . .b d d b d t 0 d .,, is oun e y Q. an converges o or o. as t4ro, epen-
N · N 

ding on whether lim(T(t) - ll((t)ll) = -ro or +ro, respectively. t4ro 

Proof. From (2.11) and (2.15), 

NT p(NT,O,() = - [1 - oo(l:)] NT-ll(ll exp[-K(N+l)NT-ll(ll-l] 

T-m T-m-1 
+ (N-1) Im>llsll N exp[-K(N+l)N ]. 

The second term at the r.h.s. can be written as 

. -k -k-1 
(N-1) ~>11(11-T N exp[-K(N+l)N ] :s Q. • 

N 

On the other hand, the first term is non-positive and converges to zero as 

IT - II C.: II I ~ ro. Then the claim follows. • 

Immediately from (2.12) and Lemma 2.19 (with <:=O and NT replaced by t) 

we obtain the following asymptotics of transition probabilities: 

Lemma 2.20. With the constant a. defined in (2.18), 
N 

sup,,. ~ p(t,(,0) = p(t,0,0) ~ o. /t 
.,,e~ N 

Consequently, J7 dt p(t,0,0) = ro, and we get 

as t4ro . 

Lemma 2.21 (recurrence}. The continuous time random waLk in 3 with generator 

q given in (l. 9) and (1.10) is recurrent. 

At this point we will add some tail probability estimates we later use: 

Lemma 2. 22. For r, t2=0: -r-1 
L~:ll~ll>r p(t,0,£;) :S tK(N+l)N . 

Proof. From (2.11) and (2.15), for f;;t:O, 

-11£;11 -1 -11£;11 -m -1 -m 
p(t,0,~) = -N exp[-tK(l+N )N ] + (N-l)Lm>llf;ll N exp[-tK(l+N )N ]. 

-11~11 -m -r Adding 0 = N - (N-1) Im>llf;ll N and setting e(r) := 1-e , r2::0, we can 

continue with 

(2.23) = N-11~11 -1 -11£;11 -m ( ( -1) -m) e(tK(l+N )N ) - (N-1) Im:m>llf;ll N e tK l+N N . 

Estimate the negative term by 0, and use e(r):sr, r2::0, to arrive at 
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(2.24) t:=:O, E;:;t:O. 

Together with (2.6) the claim follows. • 

Our random walk Z has the following property: If llZ(O)llss then llZ(Ns)ll 

is "of order" s as s-'>oo, To formulate a more precise statement, for c,t:::O in-

traduce the set 

(2.25) 3(t,c) := {<;;e3; j 11(11-[t] I s d(t)}, f.(t) := (log([t]v1))/logN. 

Lemma 2.26 (speed of spread). Given a constant c>O, there is a constant C>O 

and an s > 1 such that 
0 

P((z(Ns-Nr) ~ 3(s,2c)) s C[sr2c whenever 

-oo 
(with the convention N =0). 

ll(lls[s]+d(s), s:::s , s-2>r:::-oo 
0 

Proof. We will split the event into two parts and proceed as follows. For 

s>l, from the uniform estimate in Lemma 2.20, 

P((llZ(Ns-Nr)ll < [s]-2d(s)) 

However, #{E;; ll~llst}sN\ t:::O, 

s r -1 s canst (N -N ) #{~; 11~11 < [s]-2d(s)}. 

and, for all s sufficiently large, we can con-

tinue with -Zc s canst [s] . In the other case, 

(2.27) P((llZ(Ns-Nr)ll > [s]+2ct(;l) = Lt; l{llt;+(ll > [s]+2d(s)} p(Ns-Nr,O,~). 

But by the definition of the addition in 3 (coordinate wise modulo N) 

(2.28) 11~+(11 s 11~11 v 11(11, ~.(e3, 

and 11(11 s [s)+ct(s) by assumption. Hence, ~ in the latter range of summa-

tion has to satisfy 11~11 > [s]+2d(s). That is, (2.27) can be continued with 

s Lt; l{llt;ll > [s]+2d{s)} p(Ns-Nr,O,~) s canst [s( 2c, 

where we used Lemma 2. 22. This finishes the proof. • 

2.c) Tails of the Hitting Time Distribution 

Let T=T ( denote the first hitting time of 0 after leaving the initial 

state Z(O)=(e3. An essential tool for the study of asymptotic properties of 

its distribution will be a "last exit from 0 decomposition" which we will 

0 present in a moment. In fact, let p denote the step distribution p of (2.14) 

but conditioned to "proper" steps: 
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0 
Po:= 0, o ·- N-zllf;ll+I 

pf; .- ' 

Then set 0 
pf; pf;" That is, under P0 we assume that Z(O) is distri-

buted according to p 0 , i.e. the process "starts with an immediate jump away 

from O" (compare with Palm distributions in the theory of point processes). 

The last exit from 0 decomposition now reads as follows: 

Lemma 2.30 (last exit from 0 decomposition). For (e3, t2:0, 

-tKIN ft ( -SKIN) o P ((i:-:St) = p(t,(,0) - o0(()e + 0 ds p(s,(,0) - o0 (()e KP (i:->t-s). 

Sketch of Proof. Assume for the moment that (;t:O. Distinguish between being at 

time t in 0 or not. In the latter case, decompose the interval [O, t] by 

"equidistant points" t ,. .. 't . 
1 m 

If this decomposition is fine enough, there 

must exist neighboring points t., t. 
1 1+1 

such that Z(t )=0, Z(t );t:O, and Z 
l i+l 

does not return to 0 in the remaining time t-t . But 
i+l 

-1 
£ p(e,0,f;) ~ Kpf; 

if f;;t:Q, and at least heuristically the formula above with vanishing o0-terms 

becomes clear. If now (=O, then additionally observe that 

(2.31) P 0 (Z(r);t:Q for some r<s, and Z(s)=O) = p(s,0,0) 
-SKIN - e s>O, 

since 1-p0 = llN by (2.14). This then explains why the o0-terms are needed 

in the decomposition formula. Using methods of Chung (1967), part II, §12, 

this sketch of proof can be made rigorous. • 

For convenience, here we introduce the Laplace transforms 

(2.32) Joo -;u L(i\) := 0 dt e p(t,0,0), L0 (i\) .- f~ dt e -i\t P0 (Z(t)=O), 

and formulate the following simple lemma. 

Lemma 2.33. With the constant n defined in (2.18), 
N 

(2.34) 0 L(i\) ~ L (i\) ~ n log(llA.) as A.~o. 
N 

A.>0, 

Proof. Conditioning on the first jump time point from 0 away, as in (2.31), 

(2.35) p(t,0,0) = e -tKIN + J~ ds (rclN)e -sKIN P0 (Z(t-s)=O), 

Passing to Laplace transforms this reads as 

(2.36) L(i\.) = (i\ + KINf1 + (KIN)(i\ + KINf1 L 0(i\). 

t>O. 

By Lemma 2.20, p(t,0,0) ~ a./t, hence, J~ ds p(s,0,0) ~ a.Nlogt as t~oo, and 



DIFFUSIVE CLUSTERING 21 

a Tauberian Theorem (see e.g. Theorem 2 in Feller (1971), §13.5) yields 

L(;\) ~ o. log(l/A) 
N 

But then the claim follows from (2.36). 11 

Now we are ready to turn to 

as A->0. 

Proposition 2.37 (hitting time tails). For the hitting time -r of 0 we have 

1/Ko. logt as t->oo, 
N 

with K and o.N defined in (2.13) and (2.18), respectively. 

Proof. Fix the attention on the opposite event {-r:$t}. Randomizing the initial 

state (, from Lemma 2.30 we obtain the recursion formula 

0 0 Jt 0 0 (2.38) P (-r:$t) = P (Z(t)=O) + 0 ds P (Z(s)=O) KP (-r>t-s). 

Pass to Laplace transforms to get H(A) = A-1 - L 0 (;\) - KL0 (;\)H(A), where H(A) 

Joo -At o o 
.- 0 dt e P (-r>t), A>O, and L was defined in (2.32). Then 

H(A) = A -1(1 - AL 0 (A))/(1 + KL 0 (A)), A>O, 

and from Lemma 2.33 we conclude that -1 . H(A) ~ A /Ko. log(l/A) 
N 

as A->0. But 

P0 ('r>t) is monotone in t, and by a Tauberian Theorem (see e.g. Theorem 4 in 

Feller (1971), §13.5) the claim follows. 11 

Remark 2.39. Similarly to (2.35) and Lemma 2.33, for the distribution of the 

return time i:-0 to 0 one gets the same logarithmic tails as in the latter pro-

position. a 

2.d) A Related Renewal Equation 

In this subsection we compile some facts on a renewal equation related 

to the transition probability p( • ,0,0) we need later. Write 

g*h(t) := J~ ds g(t-s) h(s), t2::0, 

for the convolution of appropriate functions g and h. 

Lemma 2. 40. Let A2::0 be a continuous bounded function on !R and B>O a cons-+ 
tant. Then the renewal equation 

(2.41) h = A - B p( • ;0,0) * h 

has a unique bounded solution h, and this h is non-negative. If A is even a 
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positive constant, then h is monotone non-increasing, and 

Bh(t) ~ A/o. logt as t->oo 
N 

with the constant a. from (2.18). 
N 

Proof. Existence, uniqueness, non-negativit.y and hence boundedness of solu-

tions follow by standard iteration arguments. Assume now that A is a positive 

constant. By the formulas (2.11) and (2.15), 

(2.42) p(t,0,0) = (N-1) E N-m exp[-tK(N+l)N-m-1], 
m>O 

t:?:O. 

Hence, the derivative p'( •,0,0) of p( • ,0,0) is non-positive. We may differen-

tiate the renewal equation to get 

h' = - B h(t) + B J~ ds (-p')(t-s,0,0) h(s), t:?:O. 

In both terms at the r.h.s., bound h by a constant and then integrate to con-

elude that h' is bounded. Differentiate the equation (2.41) in the form 

-h(t) = -A + B J~ ds p(s,0,0) h(t-s), t:?:O, 

to obtain 
-h'(t) = Bp(t,0,0)A - B f ~ ds p(s,0,0) (-h')(t-s), t:?:O. 

Since p~O is bounded, this is a renewal equation of the same type, and we 

know already it has a unique non-negative solution. Hence, -h' is non-

negative, consequently h is non-increasing. In order to derive the asymptotic 

behavior of h we use Laplace transforms. Indeed, (2.41) yields H(;\) = 

where H and L are the Laplace transforms of h and 

p( • ,0,0), respectively. By Lemma 2.33, L(;\) ~ o.Nlog(l/i\.) as i\.->O. Thus H(i\.) 

-1 
~ Ai\ /o. Blog(J/i\.), and again by Tauber and the monotonicity of h the asymp-

N 

totics of h follows as claimed. • 

2.e) Asymptotic Probabilities of Hitting Times for Escaping Points 

The purpose of this subsection is to show that starting at a distance 

[<Xt] from 0 the probability to hit 0 first after time /3t N ' /3><X, converges 

to cx/(3 (compare with a result of Erdos and Taylor (1960) concerning the disc-

2 rete time simple random walk on ?!.. ). In fact, this convergence takes place 

with some uniformities (recall that T is the hitting time of 0 after· leaving 

the initial state): 
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Proposition 2.43 {limiting hitting probabilities). Fix constants 0<(3 ~/3 <+oo. - + 

For t>O let be given cx:=cx(t)<::O, (3:=(3(t)e[(3 ,/3 ], p:=p(t)e[-oo,cx(t)] 
- + 

<;;:=<;;(t)e2. Assume that ll((t)ll = a.(t)t + o(t) as t->co. Then 

(2.44) Ip . ( > N(3(t)t - Np'(t)t) - a.'(t)/(3(t)) I ~ 0 ((t) T t->oo 

where a.':=cx/\[3 and p':=p/\[3. 

and 

Proof. Roughly speaking, the main contribution to the probability of the 

event in (2.44) will come from last exit from 0 times included in the time 

. t 1 [Na.'(t)t N(3(t)t] in erva , . We shall show piece by piece that all other cases 

are negligible. 

However, first we treat the simple and degenerate case where 

N(3(t)t_Np'(t)t is bounded from above along some subsequence t'->oo. Then 

p'(t')~f3(t') as t'->oo since (3_>0, and the second term in (2.44) tends to 1 as 

t'->oo, because p~cx holds. Also, here we conclude that ll((t') 11--700 which imp-t' ->oo 

lies that the probability term in (2.44) itself converges to 1 along t'->oo, 

too. Hence (2.44) is true along such subsequence t'->oo. 

From now on we may assume that ~ +oo, t->oo in particular, 

(3>p'=p. From the last exit from 0 decomposition formula in Lemma 2.30, 

(2.45) p <(T ~ N/3t _Npt) = p(N(3t _Npt,<;;,O) - oo(() exp[-(N(3t-Npt)1</N] 

JN(3t - Npt ( ) (3 + 0 ds p(s,<;;,O) - o0(() exp(-sK/N) KPO(T>N t_Npt_s). 

First recall that by (2.31) 

0 ~ o0 (<;;)exp[-sK/N) ~ p(s,<;;,O), <;;e2, s>O. 

Hence in error estimates later on we can always neglect the o-terms in the 

formula (2.45). Because of the rough bound iri Lemma 2.20, the first term on 

the r.h.s. of (2.45) will disappear as t->oo. It remains to deal with the inte-

gral term. We will split the integral and proceed in two steps. Fix a cons-

tant -ae(0,1). Of course, we may restrict the following considerations to· tho-

se t satisfying '!J(N(3t -Npt) > 1. First of all, by Lemma 2. 20 we conclude that 

JN(3t -Npt o /3t -1 _ Bt pt -1 JN(3t _Npt o 
{3t t ds p(s,(,O)KP (T>N -s) ~ const -a (N' -N ) ds P (T>s). 

'!J(N -Np ) o . 
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Since N{3(t)t Np(t)t - ~co t->co by assumption, and because the first hitting time 

T of 0 is finite a. s. (by the recurrence of the random walk according to Lem-

ma 2.21), we know that the Cesaro limit of P0 (i:->s) as s->co equals zero. Conse-

quently, this part of the integral results in a negligible term. 

In the second step we treat the remaining integral part from (2.45). 

Substituting s=:N°t, that expression can be rewritten as 

(2.46) (tlogN) f d;r l{N°t :S r>(N/3t_Npt)} 

N°t(p(N°\<:,0) - o0 U;) exp[-N°tKINJ) KP0 (i:->N/3t_Npt_N°t). 

Since 
N(3t -Npt -Nat ?:: (1-r> )(N(3t -Npt) ~ +co 

t->co 
in that domain of integration, by the hitting time tails Proposition 2.37 we 

get 
KP0 (i:->N(3t_Npt_N°t) ~ 1/u log(N(3t_Npt_N°t) ~ 1/o. log(N/3t_Npt) 

N N 

as t->oo, uniformly for those 0 appearing in (2.46). Thus, instead of (2.46) we 

may investigate 

(2.47) (tlogN) (log(N/3t_Npt))-l f do l{N°t :S r>(N/3t_Npt)} 

o.~1 N°t (p(N°\<:,0) - o0(() exp[-N°tKINJ) 

as t->co. Take e>O. Split the domain of integration into {a :S a(t)-e} and 

{a(t)-e < 0 }. In the first case we apply the boundedness property formulated 

in Lemma 2.19 (with rt instead of T(t)) and use additionally 1-e -a:Sa to get 

:s (Iog(N/3t_Nptlf1 J~:e d0 (tlogN)K(N+l)N°t-ll<:ll. 

But 0 t-ll<:(t)ll :s -et + o(t) which is negative for all t sufficiently large. 

Hence, there we can integrate to obtain: 

~ 0. t->co 

To deal with the second case {o:(t)-e < ;r}, suppose first that the upper 

integration bound (tlogNf1 log(r>(J3t-Npt)) =: h(r>,t) =: h(r>) converges to 0 

along some subsequence t'->co. Then {3(t')~p(t') as t'->co since /3_>0, and cx(t') 

will be bounded away from 0 as t'->oo. Hence o:(t' )-e will be positive and boun-

ded away from a as t'->co, too, provided that e>O is chosen sufficiently small. 

Hence, the domain of integration {o:(t')-e < 0 :s h(r>,t')} will be empty for 

all t' sufficiently large. Consequently, along such subsequence t' ->co th~ ex-
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pression in (2.47) restricted to {a(t)-e < r} will disappear. 

It remains to deal with the case where h(t'J, t)>O is bounded away from 0 

as t~oo, and to study 

(2.48) (h('l'flf1 J~~!) do o.~1 N°t (p(N°\i;;,O) - o0 (i;;l exp[-Nr\/N]). 

If we restrict here the domain of integration further to {o :s a(t)+e} then by 

using the boundedness property formulated in Lemma (2.19) we get the estimate 

:s canst £. Letting e~o, this leads to a negligible term. Finally, for 0 in 

(a+e,h('l'f)] the integrand in (2.48) converges uniformly to 1 as t~oo, namely by 

Lemma 2.19 since 0 (t)t - lll;;(t)ll 2: et + o(t) --7 +oo, and because 0 is boun-
t~oo 

ded away from 0. Hence it remains to prove that 

proaches 1 - a'(t)/(3(t). In fact, it suffices to study 

(2.49) -1 + (h('l'f)) (h('l'f) - a) = 1 - lJ\(a/h('l'f)) 

+ - a - e) ap-

since the difference of both expressions is bounded in absolute value by 

:s canst e. The proof will be finished if we show that 

(2.50) lA(a(t)/h(-&,t)) - 1A(a(t)/{3(t)) --7 0. 
t~oo 

But h('l'f) ~ h(l) = (3 + (tlogNf1 log[1 - N-((3t-pt)] as t~oo. The latter term 

has its value in the interval [-(3 _,0), and we may assume that it converges 

along t'~oo. If its limit is 0, we are done. Otherwise, p(t')~(3(t') as t'~oo 

follows, which implies that a(t')A{3(t') ~ [3(t'), and both terms in (2.50) 

will converge to 1 as t' ~oo. s 

2.f) Probability Estimates for Locations at "Collision" Times 

From now on, denote by zU;) = {Z(l;,t);t2:0} our continuous time random 

walk starting in l;e2. In this subsection we provide some estimates on the re-

lative positions for a collection of four independent walks (Z(C:il) nee-
l:Si:S4 

ded in the next subsection to estimate collision probabilities. The basic 

probability space on which alL our random objects are defined will be denoted 

by [Q,~,'.P]. 

We will consider the case where the initial particles with positions 

1 4 C: , ... ,<,: may move with some restrictions. We will require that the walks 
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NT(t) 
considered will have a collision after a "large" time and will estimate 

the probability that at such time Ns where two walks have the same position, 

the remaining walk particles will have a distance "different of order" s (re-

call (2.25)). 

Lemma 2.51. Fix c?::l. For t>O, let 1 1 4 4 ( :=( (t), ... ,( :=( (t) E ~ with 

~ [T(t)] + d(T(t)), i=l,2, where T(t)>O. Then the integrals 

(2.52) JT7t) ds NS T ( ZU;;3 ,N8 )-Z((\N8 ) = 0, Z((4,N8 )-Z((1,N8 ) ~ 3(s,2c)) 

i=l,2, converge to 0 as t~oo, provided that T(t) --7 oo. 
t~oo 

Proof. Fix zu;;1,Ns) for the moment. Then, by independence, from the probabi-

3 s I 1 s lity expression in (2.52) we can split up T(Z(( ,N )-~=O Z(( ,N )=~). and by 

Lemma 2.20 estimate this term to 

can be estimated from above by 

-s 
~ const N . Thus, the integrand in (2.52) 

4s is -4is 
~ const T(Z(( ,N )-Z(( ,N ) ~ 2(s,2c)) = canst T(Z(( -( ,N ) ~ 2(s,2c)) 

where Z is distributed as Z except replacing the jump rate K by 2K. In fact, 

by the spatial homogeneity and symmetry of the generator q, the difference of 

two independent random walks each with generator q is a random walk with ge-

nerator 2q, i.e. it differs from the original walk only in the jump rate K. 

By Lemma 2. 26 with r=-oo, for all s sufficiently large, we may continue with 

-2c 
~ canst [s] . This yields the claim since c:?.1 by assumption. • 

2.g) Probability of Non-collision for Finite Systems of Independent Walks 

The purpose of this subsection is to calculate the limiting probability 

of non-collision for a finite system of independent walks whose initial 

points spread out in space with time. First we introduce the following ob-

jects and notation. 

I i Let Z :=(ZU;; )). 1 be a finite system of independent walks (with genera-
LE 

tor q) on the basic probability space [Q,~,T], with (deterministic) starting 

I .- {{i,j}; i,jEI, i;;ej}. For {i,j}EI let <J' e(O,+oo] de-
i,j 

note the first coHision time of the walks Z((;;1) and Z((j) after (!) at least 

one of them had left its initial state. Put <J'I := min{<J'. _;{i,j}eI} for the 
l,J 
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first coLLision time of the whole system. 

Obviously, the following decomposition formula holds: For O::::s::::t, {i,j}eI, 

(2.53) t 'P(<J' . . ::::N ) 
l,J 

t t s 
= T(<J'I=<J' . . ::::N ) + T(<J'I<<J' . . ::::N , <J'1::::N ) 

l,J l,J 

+ L{i',j'}El l{{i',J'}:;t:{i,J}} f: P(<J'1=<J'i',j'edNr; 
t -

<J' . . ::::N ). 
1,J 

Write I: =0, ... , n}, where n?:1 is fixed. Fix also constants c?:l, 

0<[3 :S/3 <+oo, - + and, for the moment, t>O. Consider a: =a( t)?:O, [3: =/3( t)E[/3 ,/3 J, - + 

p:=p(t)e[-oo,a(t}], 

(2.54) 

and t-dependent starting points 

{i,j}eI. 

Assume 

The next lemma states that on certain scales all {nz) pairs {i,j}eI behave 

asym ptoticaL Ly independent. 

Proposition 2.55 (limiting collision probability). Under above conditions, 

(2.56) 1."<"" r > N~(t)t _Np' (t)t.) - ( a'(tJ/mtJ)M I ~ a 

where again a':=a/\[3 and p':=p/\[3. 

Proof. 1°. First we want to show that we may restrict ourselves to the case 

a(t)::::a for some + 

sufficiently large. 

bound a+. In fact, if a(t)--700 then a' (t)=[3(t) for all t t->oo 

On the other hand, from (2.54) we get ne-(jll=~. _(t)t 
1,j 

with ~ (t)-700 as t->oo, for each {i,j}EI. But i,j 
[3t 't :S L A <JJ(<J' • • :S N -Np ) ~ 0 {i,j}EJ l. ,J t ->oo 

by Proposition 2.43. Indeed, the first collision time <J' . of the walks Z(e) 
l,J 

and Z((j) coincides in distribution with the hitting time TE; of 0 of a single 

random walk with generator 2q starting in i;:=e-c;:j, and ~'. .(t)=f3(t) for t 
l,J 

sufficiently large. 

2°. To show that it suffices to consider the case p:;-oo look at: 

<JJ(<J'I > N/3t_Np't) - <JJ(<J'I > N/3t) = <JJ(<J'I E (Nf3t_Np't,N/3t]) 

:S L A T(<J' . • E (N/3t_Np't,N/3tl). 
{i,j}EJ L,J 

Because of a(t)::::a , from (2.54) we conclude 11e-c;:J11 a(t)t + o(t) as t->oo, 
+ 

A 

{i,j}EI. Applying twice Proposition 2.43 we recognize that each of those fi-

nitely many summands tends to 0 as t->o:>. Similarly, without loss of generality 

we may assume that there is a constant a >0 such that a(t)?:a , t>O, since the 
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event ()I>Nf3t implies the existence of a pair { i,J'}eI such that (). .>N(3t and 
L,J , 

a(t)---70 leads to a vanishing limiting probability. t->oo 

0 (3(t)t 3 . Fix the attention on the opposite event {O" I:SN }. Assume for the _mo-

ment that starting from the decomposition formula (2.53) (with t and (3(t)t 

instead of s and t) we can derive the following integral equation: 

(2.56) (1 - a' 1(3) = 'P( ,.. ="" .. :SN/3t) + "'(t a Q ZI(O)) VI v c.- ' ,,.,, 
l,J 

+ (3-1 " J/3 d 'P(cr -CJ" <Not) 
L..O'.Y>*<i,j} a' 0 I- i',j'- ' 

{i,j}eI, t>O. 

Here and below e always denotes some functions depending (among other things) 

on t and converging to 0 as t->oo. Summing over the ( ~) pairs { i,j )eI yields 

(~)u - a'lf3) = 'P(crI:SN(3t) + e(t,a,(3,ZI(O)) + /3-1 c(~)-1) f~· do 'P(crI:SN°t). 

Then we can use the following asymptotic result on an "abstract" integral 

equation (which follows from a simple contraction argument, see [8], Lemma 2): 

If for a constant K~l the bounded measurable function q satisfies 

K(l - a'(t)/(3(t)) = q(t,(3(t)) + ~(~) J~~~~) dr q(t,ol + dt), 

where O<a sa'(t):S{3(t):S(3 <+oo, t>O, and e(t)40 as t4oo according to our con-o 0 

vention, then 
f q(t,[3(t)) - [1 - (a'(t)/[3(t))KJI -7 0 as t .... oo. 

It therefore remains to prove (2.56) by starting from (2.53). 

4°. We discuss the single terms in (2.53) separately (with [s,t) = [cx'(t)t,[3(t)t)). 

For the left hand side, inserting the limiting hitting probabilities accor-

ding to our Proposition 2.43 (which are independent of the jump rate) 

I = (1 - a' 1(3) + e(t,a,[3,Z (0)) as t .... oo. 

By the same proposition, a't I 'P(crl',j':SN ) = e(t,a,[3,Z (0)) as t .... oo, which we 

apply to the second term at the r.h.s. of (2.53) to recognize that it is a 

negligible term. The integral term in (2.53) we will split into two pieces. 

First the integral over the event that at the time Nr of the first collision 

of Z((:1') and ZU/l the walks Z((1) and Z((j) have a relative position out-

side of 2(r,2c) (recall (2.25)), and second the remaining part. Then for the 

first part we get the upper estimate 
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:'.!!: L(i',j'}:;i!:{i,j} f~\ dNr :P ( zu:i',Nr)=Z(C:j'.Nr), Z((i,Nr)-Z((j,Nr) (i: 3(r,2c)). 

Since the latter integral disappears if a'(t)sa(t), the domain of integration 

can be replaced by [[a(t)t],+oo). Apply Lemma 2.51 with T(t)=[a(t)t) to each 

of these finitely many summands to see that this results into a term 

c(t,Z1(0)). It remains to consider those walk realizations Z((i) and Z((j) 

which have at time Nr positions (,('E3 with (-('E:::(r,2c), which implies that 

llC:-C:' II = r + o(r) as r-'>oo. They have to collide in the remaining time N{3(t)t'-Nr. 

By Proposition 2.43 with setting there p(t)=a(t)=r(t)/t, the latter collision 

probability equals (1 - r/{3t) + dt,r/t,{3,(,(' ), uniformly in those r,(,('. 

With the strong Markov property, we can summarize all these asymptotic rela-

tions as t-'>oo as follows: 

(1 - a'/[3) I = c(t,cx,[3,Z (O)) + :P( <J'I=<J' • • sNJ3t) 
l,J 

+ \' J(3t :P(CJ' =CJ' EdNr) (1 r/[3t) L{i',j'}:;C{i,j} a't I i',j' - . 

Replace the integrand by {1/[3t) f~t dr, change the order of integration, sub-

stitute r=0t, and apply again Proposition 2.43 to rewrite the integral as 

= /3-1 J~. do :P(CJ'1=CJ'i',j'sNot) + c(t,a,~1 ',c:j\ 

This gives (2.56) and finishes the proof. • 

2.h) On Moments of Interacting Diffusion Systems 

We return to our interacting diffusion system x as in Definition 1.6, 
~ 

starting with a deterministic initial state zE[0,1).:.. Write IPq instead of z 
IP~ . We want to show how independent random walks in ::: can be used to descri-

z 
be moments of x, a technique we shall need later. 

But first we mention a technical point. In comparison arguments in the 

Sections 4-6 we need a notion of Fisher-Wright diffusions on a subinterval of 

[0,1]. Therefore at some places we will replace the assumption of (strict) 

positivity of q., on the whole open interval (0,1), imposed in (1.2) and Defi-

nit ion 1. 6. Let §' denote the set of all those functions q satisfying 

(2.57) q: [O,l] HIR is Lipschitz continuous, q>O only on an open subinterval. + 

Note that the Definition 1.6 still makes sense (see [27)) if we replace !1° by 
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0 §':::>§' ; we will apply all notation introduced also in the more general situation. 

To describe the moments we need some further objects. Fix n:!l, set I:= 

{1,. .. n}, and write - I (;;:=[({1),. . .,(;;(n))E3 . Consider a system of n independent 

random walks in 3 each with generator q, denote the generator of this system 

by :a1, the corresponding semi-group by :l, and the transition probabilities 

I by p . In a direct generalization of Lemma 1 in Cox and Greven (199lb), where 

n:::2, we get: 

Lemma 2.58. (moment equations). Let qe§'. Then the interacting diffusion sys-
~ 

tem :f=[l,!Pq,J.LE!f)] satisfies the foUowing µ 
moment equations. For aU ze[O,lf, 

- ~I vectors t;;=[t;;(l),. .. ,t;;(n)]E.'.:'.., and t:!O, 

IE~ niEI J((i)(t) = L~E3I PI(t,(.~) nmEI z~(m) 

+ Jot I - - ( q n ) ds _L 1 p (t-s,<;;,~) L A o€m €(j> IEzq(J~(i)(s)) J~(m)(s) . 
~E3 {i,J}El ' mEI\{i,j} 

(with I the set of alL pairs of I, as in the previous subsection, and o the 

Kronecker symbol). In particular, the first moments are explicitly given by 

(2.59) IE~J<(t) = Z::~ p(t,t;;,~)z~ =: az,t;;(t), ze[0,1]3 , t;;e3, t~o. 

and do not depend on the diffusion coefficient qe'ff. 

Proof. Let U=Uq denote the (Feller) semigroup of l acting on C[[O,l].'.:'..]. The 

corresponding generator @=@q is the closure of the following operator acting 

on functions h on [0,1]3 which depend only on finitely many components in a 

twice continuously differentiable way (compare Shiga and Shimizu (1980)): 

(2.60) (@h)(x) = (z::t;;.~ q<;;.~(x~-x<:)(8/8xt;;) + 2-1z::t;;q(xt;;)(8/8x<;/)h(x), xe[O,lf. 

Fix (=[<;;(1),. . .,t;;(n)]e31 for the moment and define the following function 

h~(x) := n!EI X(;;(i)' XE[0,1J3 . Apply (2.60) to this function to get 

(@h(Hx) = LiEI L~t::;3 q<:m.~ (x~-x(Ol) nyt=i x(<j) 

+ L A o q(x ) IT x , xe[0,1].'.:'... 
{l,J}El t;;m, (Ul <;;m mEI\{i,J} (<m> 

Hence, from the Uq-semigroup property related to the Markov process .t 

~t IE~ fli Jt;;(l)(t) = ~t IE~h((.f(t)) = [~(Sjh((:f(t)) 

= LiEI L~E3 q<:m.~ [~[J~(t) nj¢i J((j)(t) - nkJt;;<k/tl] 
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~ 

Fix ze[0,1].::. and abbreviate 

v (:;;) : = ~ A 0 !Eq, n( T ( t)) n 1' ( t ) • t '> L...{i,j}EI (Ol,({j) z'3' c((i) rnEI,{i,j} c-((rn) 

ut(<) := !Eq fl J~ (t), t?::O, (=[((1),. . .,((n)]e31. 
Z kEI .,Ck) 

Then the latter system of differential equations can be rephrased by using 

I the generator a of n independent walks introduced before the lemma: 

d I 
dtUt = 2t Ut + Vt. 

Its solution is 
t?::O; 

see Theorem I.2.15 in Liggett (1985). But this is nothing else than the claim 

of the lemma. • 

Consider now the Fisher-Wright case q=bC of (1.3). By an abuse of nota-

tion, we will often replace the upper index q=bC by b. Start with the cons-

tant initial state e, where e~=ee(0,1). The speed at which the process moves 

to the boundary points is described in the following 

Lemma 2.61. In the case of an interacting Fisher-Wright system with constant 

initial state e, b !E9f(J((t)) ~ 2C(B)/a.Nblogt as t~oo, (E3, 

where a. is the constant defined in (2.18), and b is the diffusion constant. 
N 

Proof. Set <;;=O by the shift-invariance of J. From Lemma 2.58, by the constan-

cy in t; of b !EzC(Jf;(s)), and the symmetry of the random walk, we have 

b b !EeC(;r0 C • l) = &Ce) - b p(2· ,o,o) * IE0C(J0 C • )}. 

Thus, Lemma 2. 40 yields the claim. • 

3. PREPARATIONS: COALESCING RANDOM WALKS ON THE HIERARCHICAL GROUP 

This section provides the essential results on coalescing random walks 

on 3 which will be needed to verify the Theorems 1-4 in the Fisher-Wright ca-

se via the duality relation. This will be formulated and proved in the Propo-

sitions 3.13 and 3.28 in the Subsections 3.d) and e) below. We start by first 

preparing the necessary tools in 3.a) and c), 
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3.a) The Dual Process T/ 

The purpose of this subsection is to introduce a dual process T/ to the 

system of interacting Fisher-Wright diffusions on the interval [O,l] and de-

rive a first result. The dual process will be an interacting system with fi-

nitely many particles, namely a system of coalescing random walks with delay. 

Roughly speaking, particles move independently as random walks of the type in 

the previous section, except that particles at the same position may react, 

that is, each pair of particles coalesces independently into a single partic-

le at the constant rate b (which is the Fisher-Wright diffusion constant of (1.3)). 
~ 

Let if> denote the countable set of all those elements rp={ <pt;; t; E3} in 1'.~ 

which have only finitely many coordinates <pt; different from 0. We interpret <p 

as a finite particle system in :::, where <pt; counts the number of particles at 

site t;. The one-particle system consisting of a single particle situated at 

t;E3 is denoted by ot;. The addition in if> is defined component wise. Write ll<pll 

for the total number Lt;e::: <pf;, of particles in <pEif>. For fixed b>O, set 

(3.1) 

if l/J=rp-c/"+of;,, 

if l/J=rp-o<;, 

otherwise 

Q : = - } · Q 1/1 ' <pEif>. 
<p ' <p '-'tjFl'<p <p' 'I' 

We obtain a generator Q of a continuous time Markov chain with trajectories 

in D[IR +'if>]. This is our coalescing random walk T/ := ( {T/£;,(t);t~O} )£;,EE with de-

lay which has . random walk generator q (defined in ( 1. 9) and ( 1.10)) and coa-

lescing rate b. The distribution of T/ with starting population <pEi'P is denoted 

by P In this case we also write T/<p instead of 1}. 
<p 

To explain the crucial relation between the stochastic process T/ and the 

system of interacting Fisher-Wright diffusions .t, we introduce the following 
<p 

notation. For ze(0,1f and <pEif> we write z<p := nf;,ES (zf;,) t; where we set 0°=1. 

Note that this definition of z<p makes sense since <p has only finitely many 

coordinates different from 0. Applying the generator @=@b defined in (2.60) 

to the function h (z) .- z!f!, ze[0,1f, yields <p 
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ze[0,1].:., rpelP. 

From this one easily derives (cf. Shiga (1980)) the following duality rela-

tion between the systems of interacting Fisher-Wright diffusions I and coa-

lescing random walks 11 with delay, which is extremely powerful. 

~ 

Lemma 3.2 (duality). For ze[O,lf, rpe/P, and t::::O: 

Since for fixed t all moments [b(I(t))<P, q>EIP, determine uniquely the di-z 

stribution 

study the 

of I(t)=(JE;(t))E;eS with respect to IP~, by duality it suffices to 

generating functions E z 11(t), ze[0,1]3 , of 1)(t) with respect to P 
<p q> 

which is a considerably simpler task. In this sense, the infinite system of 

interacting Fisher-Wright diffusions is replaced by a collection of finite 

systems of coalescing random walks. 

3.b) An Application of Duality 

Occasionally it is useful to read the duality relation in the opposite 

direction, namely to verify a property of coalescing walks with delay. For 

instance, later on we need to know the behavior of 

that is the conditional probability that the random walk with delay 1l did not 

coalesce by time t given the system started off with exactly two particles at 

a common location. 

Lemma 3.3. With the constant a. from (2.18), 
N 

(3.4) q (t) ~ 2/a. blogt as t4ro. 
2,2 N 

Proof. By the first moment formula (2.59) and the duality Lemma 3.2, 

[~C(J (tl) = 8 - E 0 ll 11(t) II = q (t) (8 - 0 2 ), e o 200 2,2 
8e(0,1), t~o. 

Finish the proof with Lemma 2. 61. a 

3.c) The Approximate Dual Process 1l 

For our purpose it is useful to still simplify the right · hand side of 

the duality relation (Lemma 3.2) by introducing a process 1) which is for our 

purpose approximately equivalent to 1) as t 4 ro. The point is that the system 11 



34 K. FLEISCHMANN AND A. GREVEN 

of coalescing random walks with delay introduced above has the property that 

particles may or may not coalesce when they collide. Instead of that, in de-

fining T/ we will now require, that each pair of colliding particles coalesces 

instantaneously into a single particle. 

More precisely let ¢> denote the set of all those l/JE¢> which satisfy l/Jf;,:51, 

f;,E3. Define 
= <p - c/" + (1-<p(f;,))of;,, {:(,~ if 

"' 
f;;tt_: 

o<p,l/J .- <p,l/JE¢>, <p;f;l/J, 
otherwise 

o<p, <p := - 'f;µ;f;<p Q<p,l/J ' <pE¢>. 

We obtain the generator Q of the desired continuous time Markov chain T/ with 

sample paths in D[IR ,~}. The distribution of this coalescing random walk T/ + 
with starting population <pE~ is denoted by P <p; here again we write ~=~<p. 

The fact we need is now that T/ and T/ are in a sense approximately equi-

valent as t4oo, even when the initial states are time-dependent. Roughly spea-

king, if two independent copies of our walk meet once, by their recurrence 

they will meet infinitely often; and if they get each time the chance to coa-

lesce with the fixed positive rate b (as in the coalescing walk with delay), 

they will finally coalesce. 

To obtain a more formal statement we need some notation. Associate with 

each <pE¢> the truncated element cp*e~ defined by <p~ := <pE;Al, ~e:::. On the other 

hand, if z1={Z(f;(i));ieI} is a finite system of independent walks with star-

ting points f;(i)eS, ieI, introduced in the beginning of Subsection 2.g), then 

formally associate the ¢>-valued Markov process z<f> := {Z<P(t);t~O} defined by 

Z<P(t) ·.= ~ . ,.,Z{f;(i),t) t>-0 E;(l) f;(n) · 1 "d "f Li EI o , , where <p=o + ... +o . Actually, we w1l 1 ent1 y 

z1 and z<f>. From now on we will use the following concept of coupling. 

Convention 3.5 (coupling). Choose our basic probability space [Q,~,:Pl in such 
rp l/J ~x ~ a way that it supports all three Markov families [Z ,rpe¢>], [i/ ,l/Je¢>], [i/ ,xe¢>] 

and that they satisfy zlP(s)~i/l/J(s)~~X(s) for all s>O, whenever <p~l/J~x. <p,l/JE¢>, 

Now we are in a position to formulate the following approximation result. 
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( . . ) F F 1 ' t (t)-s<".:(1, t) s<"::(n, t) ..-.. Proposition 3. 6 approx1mat10n . ix n<:l. or t> , ie <p -u + ... +u E"" 

and assume 

(3.7) 11<".:(i,t) - <:(j,t)ll = 

for some constants <X <:0. Then 
i,j 

(3.8) 

<X t + o(t) 
i,j 

as t->oo, 

Proof. Let E denote the event in (3.8). Trivially, the claim holds for n=1; 
n 

suppose that it is true for some n-1?:1. First we consider the case when 

<X ?:1 for all i=t= j. Then, by (3. 7) we can assume without loss of generality 
i,j 

that <p=<p*. Continue with 'P('GE ) !!: L...... 'P(<Y' . . !!:Nt) --7 0 by Proposition 2.43. 
n irj i,J t->oo 

Now we come to the 

such [i,j]. For M>l, let 

main case if there exists a pair i:t j with <X . . <1. Fix 
l,J 

EM,t denote the event that Z(<:(i,t)) and Z(<"::(j,tl) 
i ,j 

meet at least M-times before time Nt and coalesce during one of these mee-

tings. Moreover, define £ 1 as E but with rp(t) - o<:(i,t) in place of <p(t). 
n-1 n 
i Mt Then we get 'P(E ) :=: 'P(E nE. '.) n n-1 1 ,J 

;:: 'P(Ei ) - 'P(ti'E~'\ However, by Proposi-n-1 i ,j 

tion 2.43, and by the recurrence according to Lemma 2.21, 'P(E~'~) converges 
1 ,J 

to 1 by first letting t->oo and then M->oo. Therefore liminf 'P(E ) :::: liminf 'P(E 1 ). t->oo n t->oo n-1 

Apply the induction hypothesis to complete the proof. • 

3.d) Longterm Behavior of ~ in the Case of Time-dependent Initial Points 

The next task is to formulate a scaling limit proposition about the coa-

lescing random walk ~; compare with the corresponding property on the two di-

mensional lattice in Cox and Griffeath (1986), Theorem 3. 

First we want to introduce the expressions for the limit probabilities. 

Consider 

(3.9) 

(3.10) 

(recall 0°=1). It is easy to see that this system of (continuous) functions 

defined on [0,1] is uniquely solvable, and that each Pn,C"l(<X), n:::l, O!!:<X!!:l, 

is a probabUity law on {1, ... ,n} which will describe the limit probability 
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for the number of particles living at time Nt (t"'oo) when n initial particles 

escape from each other with speed ex. Note that 

(3.11) p (cx/f3) = f13 d (1 - (a/0Jnzl)) p (0 //3), 
n+l,k <X o n,k 

l:Sk:Sn, O:S<x.:S/3, /3>0, 

(with a as the integration variable). Hence, by Proposition 2.55, we can in-

terpret this as a "Limiting decomposition" with respect to the first colli-

sion at time N°t of n+l initial particles (see also (2.53). 

To formulate the relevant assumptions, for n:::l, and c,r ::: 0, write 

(3.12) . ~ <':( 1) ((n) ~ 
<I>(n,r,c) := {o + ... +o e<I>; £:(i)-((j)e3(r,c) for i;e j} 

for the set of all n particle configurations with particles' distance [r], 

except a logarithmic error (recall (2.25)). Note that :P(n,r,c) is empty if 

r~l and n:::2. 

Proposition 3.13 (scaling limit). Fix n::::l and constants c::::l, 0</3 -:S/3 <+oo. For - + 

t>O, consider <x.:=cx(t):::O, /3:=/3(t)e[/3 _,/3 +J, p:=p(t)e[-oo,cx(t)], and <p:=<p(t)e 

~(n,cx(t)t,c). Then 

(3.14) H~ Ip <p(t) (II ~(Nf3(t)t -Np' (t)t) II =k) - p (cx'(t)/f3(t))I = o. 
n,k 

where again ex' := cx/\f3 and p' := p/\f3. 

Of course, the case 0<a.(t)=tx.</3=/3(t), p(t)=-oo is of a particular inte-

rest. On the other hand, allowing a t-dependence of <X and (3, and adding p(t), 

the relation (3.14) implies a uniformity in the convergence. This uniformity 

will be crucial in some induction arguments later on. 

Remark 3.15. As pointed out in [8], by differentiation and a change of varia-

ble, (3. 9) can be transformed into the backward equations for the transition 

probabilities of a pure non-Linear death process on {1,2, ... } which jumps 

from n to n-1 at rate (~), n:::2. Calculating eigenvalues and eigenfunctions, 

and using the spectral representation of solutions, one can actually show 

(see Tavare (1984), Appendix I) that 

(3.16) L n (-l)i+k (2i-1) (i+k-2)! Y (~) 
p ( -;r) = . ---------.,..----..'~ 0 ' 

n,k 1 =k k ! ( k -1) ! ( i _ k )! n + 1-1 0 

Proof of Proposition 3.13. 1°. As in the second step of proof of Prop. 2.55, 

it suffices to consider the case p(t) = -oo. In fact, the first term in the 
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assertion (3.14) differs from the one with p(t) = -oo at most by 

~ 2 :r(~<p has some collision in (N(3t_Np't,N(3t)). 

But then there must exist a pair i* j such that the first collision (} 
i,j 

37 

oc-

curs 
(3t 't (3t in (N -Np ,N ). Apply twice Proposition 2.55 (with n=2) to see that 

this gets a vanishing probability as t4oo. Also, as in 1° and 2° of proof of 

our Proposition 2.55 we may assume that cx(t) is bounded away from 0 and infi-

nity. Note that in this case ~(n,cx(t)t,c) is non-empty for t sufficiently large. 

2°. Fix the final number of particles k~1. The proof will be by induction on 

the number n~k of initial particles. The initial step of induction n=k is 

provided by (a special case of) the limiting collision probability Proposi-

tion 2.55. Assume that the claim is true for some n-1~k and all c~1. Accor-

ding to (3. 9) it suffices to prove that 

PCll~<p(Nf3t)ll=k) ~ - J~. do (~)cx'(~)a-(~)- 1 (3.17) p (1/(3) 
n-1,k 

where we write ~ for equality except an additive error term dt,cx,(3,<p). 

Observe that by Proposition 2.55, besides an error term as t4oo, the 

first collision time tJ of the whole system starting in <p(t) is not smaller 
<p 

than Ncx' (t)t. Hence, decomposing 

(3.18) 

The integrand can further be decomposed according to the countably many pos-

sible configurations XE~ at this first collision time Ns. By the strong Mar-

kov property of the process ~ we can therefore continue with 

(3.19) f f3 t s ~<p s ~x (3t s 
= a't Lx:l!xll=n-1 '.P(cr<p=dN, T/ (N )=x) '.P(Jlri (N -N )ll=k). 

Now we proceed as in step 4 ° of proof of Proposition 2. 55: Besides an error 

term, x can additionally be assumed to belong to the set ~(n-1,s,2c) (defined 

in (3.12)). By 1°, in the expression (3.19) we may replace PCll~X(N(3t_Ns)ll=k) 

by '.PCll~XCN(3tlll=k) + dt,(3,x), uniformly for s in the interval [a'(t)t,(3(t)t] 

and X in ~(n-1,s,2c). Moreover, by the induction hypothesis (replace c by 2c) 

uniformly for s in [cx'(t)t,(3(t)t] and x in ~(n-1,s,2c). Hence (3.19) can be 
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continued with 

(3.20) 

Go back from ~(n-1,s,2c) to any (n-1)-particle configurations, and use 

p (s/(3t) = fs p (dr/(3t), 
n-1,k 0 n-1,k 

Change the order of integration, and write (3.20) as 

(3.21) ~ J(3t p (dr/(3t) 'P (o- e(Nrva'\Nf3t)}. 
0 n-1,k rp 

By Proposition 2.55 and (3.10), we can continue with 

~ p (a't/(rva't)) - p (a't/(3t) - f(3t p (a't/ds}, 
n,n n,n - rva't n,n 

uniformly in re[a'(t)t,(3(t)t]. Insert this in (3.21) and change again the or-

der of integration to get ~ Jf3,t p (a't/ds) p (s/(3t). Again by Propo-a t n,n n-1,k 

sition 2.55, and by (3.10), this is equivalent to (3.17). This completes the 

induction step and hence finishes the proof of Proposition 3.13. • 

3.e) Multi-scale Spreading of Initial Points 

Before we will generalize Proposition 3.13 (scaling limit) for callee-

tions of initial particles which spread apart at possibly different speed, we 

mention the following consequence of Lemma 2. 26. 

Lemma 3.22 (speed of spread). Fix n2=1 and c>O. For t>O, Let T(t)>O and rp(t)e~ 

satisfy JJrp(t) JJ=n and 

(3.23) U<:(l)-<:(2)11 :S [T(t)] + ct(T(t)) 

Then s(t)-2 > r(t) 2: -ro and s(t) 

p (~(Ns(t) -Nr(t)) 
rp(t) Y/ • 

2= T(t) --7 ro imply 
t~ro 

e ~(j,s(t),2c) for some j2=1) --7 1. 
t~ro 

Proof. Consider the opposite event. Then there is a pair of particles in 

~YJ(Ns(t)_Nr(t)) . h . . c C' wit pos1t10ns .., 7=._, satisfying ~ -t;' 9' 3(s(t),2c). Moreover, 

there must exist initial points <:(1), <:(2) with properties as in (3.23) and 

h h h · · lk d 1 b · Ns(t) Nr(t) d d t sue t at t e arismg wa s o not coa esce y time - an en up a 

t;,t;'. The probability of this event can be estimate from above by 

:S 'P(z(c_:(l),Ns(t)_Nr(tl) - Z(<:(2),Ns(t}_Nr(tl) e 3(s(t),2c)J. 

According to Lemma 2.26, for all t sufficiently large we may continue with ~ 

-2c canst [s(t)] converging to 0 as t~ro. This finishes the proof since the 
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number of pairs of· initial particles remains bounded. • 
-Remark 3. 24. The fact that in 1) particles coalesce instantaneously is not 

used in the previous proof. Hence, a statement analogously to Lemma 3.22 also 

holds for YJ, the coalescing random walk with delay. o 

Assumption 3.25. Fix a constant c?::.1, natural numbers m?::.1, n(l), ... ,n(m) ?!:. 1, 

and let I be the index array {[i,u]; lsism, lsusn(i)}. For t>O, consider 

Osa(l,t)s ... sa(m,t), and t-dependent starting positions <,:(i,u) := <,:(i,u,t), [i,u]eI. 

F ·-1 (' ) ·- (,:(i,1) <,:(i,n(i)) d ( ) ·- ( ) ( ) R 1 or 1- , ... ,m set q> 1,t .- o + ... +o an q> t .- q> 1,t + ... +q> m,t . eca -

ling (2.25), on these starting systems we require q>(t)E~ and 

(3.26) <,:(i,u)-<,:(j,v) E 3(o:(j,t)t,c) whenever [i,u]:t[j,v], isj. I 
That is, o:(j, t) describes the order of speed of spread within the j-th 

subsystem, and particles from different subsystems escape from each other 

with the order of speed of the particle with the bigger subsystem index. 

Set p (a;f3) := l{n?!:.k}p (o:/(3), 
n;k n,k 

n,k ?!:. 1, Osasf3, 

with the p taken from (3.9) and (3.10). For m>l, n(l), ... ,n(m),k ?!:. 1, and 
n,k 

Osa s ... scx s(3, recursively define 
1 m 

(3.27) p (a , ... ,a ;(3) 
n(l), ... ,n(m);k 1 m 

co 
:= Li P L(a , ... ,a ;a ) p, (ex ;/3). 

=1 n(l), ... ,n(m-1); 1 m-1 m i+n(m);k m 

Now we are prepared for 

Proposition 3.28 (multi-scale limit). In addition to Assumption 3.25, fix 

constants 0<(3 sf3 <+co. For t>O Let (3(t)e[(3 ,(3 ]. Then - + - + 

I ~ ~ (3(t)t _ _ • • . I P (t)(!i7l(N llJ-k) p (a (1,t), ... ,a (m,t),(3(t)) 
q> n(l), ... ,n(m);k 

where 1 s k s n(l)+ ... +n(m) and rx' := cxA/3. 

Proof. In the case m=l the claim is our scaling limit Proposition 3.13. We 

shall prove the result by induction over m. Suppose the claim holds for some 

m-1 ?!:. 1. We may assume that a(m, t) is bounded away from 0. Introduce the event 

E(t) :={a- > Na'(m,t)t, [i,u]:t[m,v], ism}, 
[i,u],[m,v] 

i.e. that there is not a single collision by time Ncx' (m, t)t with a particle 
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of the m-th subsystem. First observe that for the complement l;'E(t) of E(t) 

'.P(~E(t)) s L l{i::sm} '.P{IY ::s Na'(m,t)t} 
[ i,ul*[m,v] [i,u],[m,vl 

holds, where each of these finitely summands converges to 0 as t~oo by our 

Proposition 2.55. Therefore it is enough to study 

L '.P ( Ef\{~rp-q>(m) (Na' (m)t)=W, ~rp(m) (Na' (m)t)=x, II ~rp (N/3t) II =k}) 
.P,x: XAW=O, ll·X JI =n(ml 

(for convenience, in notation we suppressed the t-dependence at several pla-

ces), where we could restrict to x_,.pe~ "disjoint" since nrp-rp(m) and nrp(m) do 

not interact before time Na' (m)t under £( t), and hence on this event 

nrp(Ncx'(m)t) = nrp-rp(m)(Na'(m)t) + nrp(m)(Na'(m)t). 

We can use the Markov property to write the summands in the sum above as 

'.P ( Ef\{ nrp-rp(m) (Na' (m)t)=l/J, nrp(m) (Na' (m)t)=x}) '.P (II nl/J+x(Nf3t _Na' (m)t) II =k). 

Set JIWll=:l. Applying Proposition 3.13, we can conclude that for w = w(t) E 

~(L+n(m),a' (m, t)t,2c) 

u~ l:P(11nw(Nf3t_Na'(m)t)il=k) - p, (a' (m);f3) I = 0. 
i+n(m);k 

Next we use that the w=.P+x excluded so far do not contribute, by Lemma 3.22 

(with r:=-oo). Hence, we need to find the limit as t~oo of 

L '.P(Jllirp-rp(m)(Na'(m)t)ll=l) P, (a'(m);/3). 
L i+n(m);k 

Since l takes on only finitely many values, we can use the induction hypothe-

sis and the definition (3.27) to complete the proof. • 

4. THE TIME PICTURE OF COMPONENTS 

The purpose of this section is to prove the Theorems 4.a) and b) which 

we shell need later in the proof of the Theorems 1-3. The main tools will be 

comparison arguments and moment estimates. We start by developing these tools 

in 4.a-c), the final proofs of the Theorems 4.a),b) are in 4.d),e), respectively. 

4.a) Comparison and Coupling Techniques 

Because in the claims of our theorems the limiting expressions do not 

depend on the diffusion coefficient qerJ0 (defined in (1.2)), the basic idea 

to get universality in q is to compare the general interacting system corres-

ponding to a given qerJ0 with adequate interacting Fisher-Wright systems. In 
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fact, since such q is (strictly) positive on (0,1), and q is Lipschitz con ti-

nuous, for each ee(0,112) there exist positive constants be and b such that 

e 8 8 t(r) 
+ + 

( 4.1) q :=b& :Sq:Sb& with := (r-e) (1-e-r) , 0:Sr:S1. 

Of course, the majorizing term b& determines a Fisher-Wright system on the 

interval [0,1] (recall ( 1. 3)). 

h h h d h n 8 _-beoe b 1 '° '°o (2 57) If On t e ot er an , note t at -a- i-- e ongs to ';::!-::>';::! , see . . 

however for the moment we restrict our consideration to those initial laws 

e µ eip satisfying 

(4.2) 
e 

then we can identify the interacting diffusion system .f=[X,IPqe'µeep] on [0,1] 

e µ 

with an interacting Fisher-Wright system .fe=[.X8 ,1Pq ,µepe] on [e,1-e], µ 

Pe denotes the set of all probability laws on [e,1-ef'). In fact, the 

transformation Le: [e,1-e]3 H [0,1]3 defined by 

(4.3) e (L x)i; := (xi;-e)/(1-2e), i;e3 

where 

linear 

maps this Xe into an interacting Fisher-Wright system 
be 

:!J=[:!),IP µ ,µep] on [0,1] 

with diffusion constant be, since 

(4.4) xe[e,1-ef, i;es. 

In the case of an interacting diffusion system with diffusion coeffi-

e e e cient q =b C , we need therefore a method to reduce proofs to initial laws 

e µ e!p with (4.2). We use the following concept of coupling of interacting dif-

fusions (in Subsection 5. b) we shall deepen this concept). 

Definition 4.5 (coupling principle). Fix qet:i and two (possibly different) 

initial laws µ,ve!J). Let r be a distribution on [0,1]3 x[0,1]3 with marginals 

µ,v. Choose [X(O),D{O)] according to r, and solve (1.7) separately for µ and 

v, but using the same collection w={wi;}i;es of the driving Wiener processes 

(recall that equation (1. 7) has a unique strong solution). Then the bivariate 

process [X,2J] is called the coupling of the interacting diffusion systems · .t 

and 2) with joint initial law r. I 
We will use this coupling principle to show the following 
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Lemma 4.6. Fix µep and ee(0,112). Then there is a µ8 ep satisfying the condi-
~ ~ 

tion (4.2), and a Law r on (0,1].::.x[O,lf with marginals µ,µ8 and such that 

for the coupling [!,:!}] with joint initial Law r, 

(4.7) 

Proof. Let be given µ,e as in the lemma. Realize !(O)e[0,1].::. according to the 

law µ. Define 2)(0) by projecting components Jf;(O) of !(O) with values in 

[O,e] or (1-e,l] to l)f;(O)=e or l)f;(O)=l-e, respectively, and set l)f;(O)=Jf;(O) 

e otherwise, f;eS. Let r and µ denote the laws of [!(O),!J(O)] and 2)(0), respec-

tively. Then 

(4.8) !Er I Jf;(O)-t)f;(O) I ~ e for all f;eS. 

Pass to the coupling [!,VJ with joint initial law r according to the Defini-

tion 4.5. Applying the expectation formula (2.59), we get 

t2:0, f;eS, q,e¥3. • 
Remark 4. 9. If µ belongs to :t8 , then µ8 c.onstructed in the previous proof is 

also shift-invariant and ergodic, and its density e8 tends to e as e-)0. o 

4. b) Comparison of Moments 

Now we come to the following basic comparison formulas for general sys-

terns by Fisher-Wright systems (recall (4.1)). 

Proposition 4.10 (comparison of moments). Fix q,e¥3, t2:0 and rpeif!. Then the fol-

lowing inequalities hold. 

(j) 

(jj) 

If b>O satisfies q,~b& then: IE~(l(t))rp ~ lE~(l(t))rp, ze[O,lf. 
e . · e ee o If ee[0,112) and b >O satisfy q, :=b & ~q, (with C :=CJ then: 

e 
0 ~ IE~ (l(t))rp ~ lE~(J(t))rp, 

Proof. We will give only the proof of the statement (jj) since (j) can be 

considered as (jj) reversed in the special case e=O. 

Recall the semigroup Uq, with generator (!;q, related to J, which was defi-

ned in (2.60). Take q,,t,e,b8 , as assumed in (jj). We have to show that 

(4.11) 



where again h (z)=z<f>. 
<p 

DIFFUSIVE CLUSTERING 43 

As pointed out in the previous subsection, the interacting diffusion .t 

with diffusion coefficient q,e=be&8 and initial state in [e,1-d~ can be con-

sidered as an interacting Fisher-Wright diffusion fe on [e,1-e]. Moreover, 

the linear transformation Le defined in (4.3) trc1nsforms fe to an interacting 

Fisher-Wright system V on (0,1] with diffusion coefficient be. Hence for s~O, 
e e £ 

(4.12) Uq, h (z) = [q, (x(s))<p = [b (He!J(s))<p, 
s <p z Le 

~ ~ z 
where He: [0,1]1:.H[e,l-e]1:. is the inverse mapping to Le, that is 

( 4.13) 

We want to show: 
e 

(4.14) zHUq h (z), 
s <p 

ZE(e,1-£].':., is convex in each component zi;, i;EE. 

At the r.h.s. of (4.12), extract (1-2£)11<pll and compute the binomial in each 
i; 

factor ( t)i;(s )+e) <p to recognize that the r.h.s. can be written as a non-

negative combination of terms of the form 

(4.15) 
b8 t/J be e 

[ {!J(s)) = U h,"(L z) with t/JE~. 
Lez s 'f' 

For b>O, by the duality Lemma 3.2: 

Therefore, 
U~ht/J(y) = [~(l(s)l = Et/Jy'f/(s), ye[O,l].>.:., l/JE~, s~O. 

(8/8yf!)2U~ht/J(y) = (8/8yi;)2Ei/JyT/(s) = Et/JT/i;(s)(1JE;(s)-l)y11 (s)-20E; ~ 0, i;e:=:. 

Hence, (for fixed b,s,t/J) the function y HU~hrµ(y), ye[0,1]3 , is convex in each 

component Yi;· E;eE. Consequently, the r.h.s of (4.15) is convex in each compo-

nent zE;, i;ec:, hence, as a non-negative combination, the r.h.s. of (4.12) is 

as well. This proves (4.14). 

Thus, :S 0 on le,1-£)1:. since e q, -q, :S 0. Then the integra-

tion by parts formula 

(4.16) 
e e £ 

uq, - u<J = Jt ds uq, ({!)q, -(S)q,)Uq, t t 0 t-s s 

(see e.g.Liggett (1985), p. 367) yields (4.11). This finishes the proof. • 

Using part of the argument of the previous proof we get 

Lemma 4.17. Fix q,E'§, t~O, <;;,<;;'e3. If £ 
£Eto,v2), b >0, £ £ £ and <f =b e ~g, then 
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£ 
(4.18) 0 :S IE~'J< 8 (J<;;(t),J<;;,(tl) :S IE~ 'J< 8 (J<;;(t),J<;;,(t)), ZE[£,l-£].:., 

where 

(4.19) £ -1 + + + + 'J< (r,r') := 2 ((r-£) (1-£-r') + (r'-£) (1-e-r) ), 0:Sr,r':S1. 

~ 

Proof. First note that · x 1-7 h(x) := ~8(x<;;,x<;;,), xe[0,1].:., belongs to C[[O,lf], 

and we may apply the uCJ-semigroup to it. Then 
8 £ 

(4.20) U~ h(z) = IE~ ?J8 (J<;;(s),J<;;,(s)), s~o. 

which is a concave function in each component z~E[£,1-c], ~e3. In fact, f(s) 
~ £ 

belongs to [£,1-£].:. with [Pq -probability one (for s fixed). Moreover, by the z 
symmetric definition (4.19) of ~8 , 

(4.21) r,r' e [e,1-e]. 

Hence, the ~8 -expression at the r. h. s. of ( 4. 20) can easily be computed lea-
£ 

ding to a constant and first moment expressions except the term -IE~ J<;;(s)J<;;,(s). 

But first moments are linear in z (see (2.59)) whereas the latter summand is 
8 8 

concave in each component z~ according to (4.14). Hence, (~CJ -~CJ)u; h ~ 0 on 

[£,1-£]3 , and again the integration by parts formula (4.16) yields the claim. • 

4.c) Some Uniform Moment Estimates 

A crucial ingredient for the proof of Theorem 4 are moment estimates 

which we will derive in this subsection (see Proposition 4.24 below). 

We start with some preparations. From (2.59) and Lemma 2.16 we immedia-

tely obtain the following first moment estimate. 

Lemma 4.22. Fix <;;,<;;'eB. There exist constants c,C>O such that 

(4.23) I IECJ,. (t) - IECJ,. (t) I :S C e -ct 
zc:<;; zc:<;;' ' ze[O,lf, t~O, CJEr!l. 

We will need the following (partial) generalization of Lemma 2.61. Re-

call the notations in (4.1) and (4.19). 

Proposition 4.24 (a speed of convergence estimate). Fix <;;,c:;:'e3 and qer!J. Then 

there are constants c,C>O such that for £e[O,vz) £ £ £ CJ =b c :S<J, 

(4.25) q e ( -ct be IEZ 'Y< (J<;; t),J<;:,(t)) :S C(e + 1/ logt), ze[e,1-e].::., t>l. 

f . . h 8 b808 r· Proo . By Lemma 4.17, we loose no generality in supposing t at CJ = /r • irst 
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we shall deal with the particular case <:;;=<:;;'. We even want to show 
e 

(4.26) IE~ c8CJf;(t)) :S const/belogt, zele,1-ef, t>l, c;es. 

By (4.4) and the transformation formula (4.12), 
e e 2 be be 

IE~ & (Jf;(t)) = (1-2e) IEY f(Jf;(t)) :S IEY C(Jt;(t)). 

with y:=L8 z. By the duality Lemma 3.2 (with coalescing rate be) 
e 

(4.27) !Eb &CJc(tl) = Eo Y11(t) - E2o Y11(tl. 
y .., f; f; 

45 

Split the last expectation according to 111]( t) II =1 or 2. Then in the second ca-

se the restricted expectation can be bounded from above by the probability 

q (t) of not coalescing by time t, which is independent of £;,y, and of or-
2,2 

der 1/belogt according to Lemma 3.3. Using the coupling Convention 3.5, the 

remaining expressions can be written as 

&'yZ(f;,t)(1 - :r{z(f;) and Z'U;) coalesce by time tJz(t;)}) 

= l?y Z(f;, t) :r{ Z(f;) and Z' (£;) do not coalesce by time t I Z(f;) }• 

where Z(f;) and Z'(f;) are independent random walks. Thus, this can also be es-

timated from above by :S q (t). Summarizing, (4.26) holds, and the lemma is 
2,2 

true in the particular case <:;;=<:;;'. 

In order to remove the restriction to <:;;=<:;;' by comparison, we will show 
8 e 

(4.28) J IE~ ~8(J<;;(t),J<;;,(t)) - IE~ C8 (J<;;(t)) J :S C(e -ct + 1/belogt), 

ze[8,1-el3 , t>l (for fixed <:;;,<:;;' and constants c,C independent of e,b8 ). By 
8 

the formula (4.21), the l.h.s. of (4.28) equals J IE~ [ J ~ ( t) - J <:;; ( t) J <:;;' (t)] I . 
Using twice Lemma 2.58 in the case n=2, this can be estimated from above by 

8 
:S Ja ,,..(t)-a ,,..,(t)J + Jtds Le p(t-s,<;;,c;lJp(t-s,<;;,~)-p(t-s,<;;',f;)JIEq, <{CJc(s)) z,.., z,..,, 0 .., z .., 

By the Lemmas 4. 22 and 2.16, we can continue with 
8 

:S Ce -ct + Jt ds Ce -c(t-s) supc ~IEq c{(Jc(s)). 
0 ._,E.!:. Z ._, 

But f{=b8 &8 where 8 Thus it suffices to show that b :S 4sup q(r) = canst. 
O<r<l r -c(t-s) 

8 
(4.29) CJ 8 8 ds e supf; ~IE & (Jf;(s)) :S const/b logt. 

0 E.!:. Z 

For s>2, according to (4.26) we can bound the supremum by :S 
8 const/b logs. 

Jt -c(t-s) . Then continue by splitting the integral 2 ds e /logs according to 

ds e /logs :S (1/log(t/2)) ds e :S const/logt, Jt -c( t-s) Joo -cs 
U2 0 
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(4.30) ft212 ds -c(t-s)/l -ct/2 Jt/2 d e ogs s e 2 s /logs. 

But, for all m,n?;O, 

(4.31) Jtlds nl m s I og s -1 n+l m (n+ 1) t /log t as t->oo. 

Therefore we may continue to estimate (4.30) by 

-ct/2 s const e t/logt s const/logt, t>2. 

If ss2, estimate the supremum in (4.29) by 1 and use 
-c(t-s) 

e s 2c -ct e e 

const/logt, t>l. Combining these estimates gives (4.28), and the proof is fi-

nished. • 

Based on the previous result we will get some fourth moment estimate 

(recall the notations in (4.1) and (4.19)): 

Lemma 4.32. Fix <:,<:'e2 and q,erJ. Then there exists a constant C>O such that 

for all ee[0,112) and t/\o satisfying q,e=betsq,, 

q,(ft 8 ) 2 8 2 (4.33) IEz 0 ds 'ffe (J<:(s),J<:,(s)) s C(l + t/b logt) , ZE(c,1-8)=., t>2. 

Proof. We start with a technical point. Since 'J8 (introduced in (4.19)) is 

uniformly bounded, we may obviously restrict our consideration to 

IE~ t-l ds 'ffe8(J<:(s),J<:,(s)) f:+l dr ;g;8(J<:(r),J<:,(r)). 

Using the Markov property of I, we can rewrite this as follows: 

= J~-l ds IE~ :J8(J<:(s),J<:,(s)) J:+l dr 1Ei(s)'ffe8(J<:(r-s),Jf'(r-s). 

By Lemma 4.17 we may replace q, by q,8 . Then I(s)e[e,1-e], !Pq, -a.s. Thus, with z 
the help of Proposition 4.24, we may bound the expectations to continue with 

Jt-1 -cs £ Jt-s -er b£ s const 1 ds (e + 1/b logs) 1 dr (e + 1/ logr). 

Hence, again by symmetry, it suffices to estimate the quadratic expression 

u~-l ds (e-cs + 1/b8 logs)) 2 

which is by (4.31) of the desired order. • 

4.d) Clumps Sticking at the Boundary 

Before we will come to the proof of Theorem 4.a), we prepare an impor-

tant tool and study the occupation time of a certain function of components 

(recall (4.1) and (4.19)): 



DIFFUSIVE CLUSTERING 47 

~ 8 8 8 8 Lemma 4.35. Fix (,(', µeip, q,e'§. Let µ([e,1-el~)=l and q, =b C sq for some b >O 

and ee[O, 112). Then 

(4.36) t -1 ft0 e ds '!J (J;.(s),Jr,(s)) ~ 0 
-,, -,, t-"oo 

Proof. By Lemma 4.32 we have 

(4.37) [~(t- 1 J~ ds '!J 8 (J<':;(s),J<':;,(sl)) 2 s C(llt + 1/b8 logt)2 s const/(logt)2 

as t-"oo (since e is fixed). Then by standard arguments, see e.g. the proof of 

Theorem 2 in Cox and Griffeath (1983), the statement follows. In fact, for 

fixed r>l and o>O, from (4.37) we conclude 

(4.38) -2 
n ' n?::n, 

r 
n for some n . Then by Botel-Cantelli, (4.36) holds along the sequence t=r . By 

r 

monotonicity in t of the occupation time, for rnstsrn+l we have 

frn w.e ) -t ft · e 
0 ds 'J' (Js(s),J<,(s)) s t 0 ds '!J (J<(s),J<:,(sl) 

( -n-lfrn+t 8 ) s r r 0 ds '!J (J<':;(s),J<:,(s)) , 

and letting first t-"oo and then r-"1 (through a countable sequence) the state-

ment (4.36) follows. a 

Now we are in a position to complete the 

Proof of Theorem 4. a). We shell first prove the stronger a. s. statement under 

the additional Condition 1.20. Later we point out how to drop the assumption 

to get the weaker statement of the theorem. Fix (,<:'E3, µeip, qe'§0 , and 0<0<112. 

First we work with the additional condition (1.22), i.e. we assume that 
~ 

µ(k ,1-e f)=l for some O<e <112. As already discussed in the beginning of 
0 0 0 

Subsection 4.a), to each eE(O,e Ao] we may choose a constant b8 >0 such that 
0 

q,8 =b8 c8sq,. Assume for the moment that <:=<:', and consider the contribution to 

the integral in (4.36) on the set of s-values such that On 

this set, 8 8 '!J (J<(s),J<:(s))=C (J<:(s)) is bounded away from 0, and we get the 

a.s. convergence (1.19) for m=l. Hence, 

(4.39) 

l;,<:'e3, IP~-a.s. Now we repeat the arguments with (,<:'. Namely: :1' 8 (J<(s),J<,(s)) 
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is bounded away from 0 on the set {o:SJ((s), J(,(s):sl-o}, and we conclude by 

symmetry that 

t-1 J~ ds l{J<(s)<o' or J<,(s)>l-o'} l{J<,(s)<o' or Js(s)>1-o'} ~ 1 IP~-a.s. 

Combined with (4.39), we get (l.19) for m=2. The cases m>2 follow by exclu-

q sion/inclusion from the cases m=l,2. Summarizing, we showed the IP -a.s. con-µ 

vergence (l.19) under the additional assumption (1.22). 

Now we come to the proof under the condition (1.21). Here we can find a 

constant b 0>0 such that b 0 ~q. Then we proceed in the same manner as above 

but with 8=8 =0. Summarizing, (1.19) holds IP<J-a.s. hence in !Pq,-probability, 
0 µ µ 

provided that Condition 1. 20 is fulfilled. 

Finally, for general µ and q (i.e. without either (1.21) or (1.22) hol-

ding), we obtain the stochastic convergence by using the coupling Lemma 4.6 

to reduce the assertion to fhe case where (1.22) is assumed. This finishes 

the proof of Theorem 4.a). • 

4.e) Law of Large Numbers and Oscillations: Proof of Theorem 4.b) 

For the proof of (1.24) we need the following basic fact concerning the 

convergence of expectations. 

Lemma 4.40. Fix qefi, µe:t9 , i.e. µ is shift-ergodic with density ee(0,1). Then 

f µ(dz) I !E~Js(t) - e I 2 ~ o, <:e:::. 

Proof. By the expectation formula (2.59), the claim follows from the abstract 

L 2-ergodic theorem in Fleischmann (1978), applied to the asymptotically uni-

formly distributed laws p(t,<:, • ), t~O (for fixed <;:), according to Lemma 2.16. • 

The weak Law of Large numbers (1.24) in Theorem 4.b) is an immediate 

consequence of the following property: 

Lemma 4.41. For q..e'ft0 and µe:t8 with ee(0,1), 

( 4. 42) War~ (t-1 J~ ds J~(s)) ----7 0, 
t->ro 

0 Proof. 1 . By shift-invariance, we may set ~=O. Write at for the random vari-

able t-1 J~ ds J 0 (s), t~o. From (2.59) we know that !E~at - e. Hence, it suf-
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fices to show that · 

(4.43) 

2°. Obviously, as t~oo we may restrict the domains of integration to l:Ss:St-1 

and s+lss'st. By the Markov property and (2.59), 

(4.44) IE~J0(s)J0(s') = IE~J0(s) Lt: p(s'-s,O,l:)J((s). 

Moreover, according to Lemma 2.58 (n=2) we have 

(4.45) IE~J0(s)J«s) = Jµ(dz) az,O(s)az,((s) 

+ J~ dr L:~ p(s-r,O,~)p(s-r,(,~) IE~q(J~(r)). 

By shift-invariance, in the latter expectation we use IE~ q,(J~(r ))=IE~ q(J0 (r) ). 

Since the random walk is symmetric, we may apply Chapman-Kolmogorov three ti-

mes to rewrite (4.44) as follows: 

(4.46) IEiJ0 (s)J0 (s') = Jµ(dz) az,O(s)az,O(s') + J~dr p(s+s'-2r,O,O) IE~q(J0 (r)). 

By (2.59) and Lemma 4. 40, 

(4.47) J µ(dz) a o(s)a o(s') ~ e2 . z, z, t~oo 

To complete the proof it suffices to show that 

(4.48) Jt-1 Jt fs q 2 ds ds' dr p(s+s'-2r,0,0) IE q(J0 (r)) = o(t ) 
1 s+l 0 µ 

3°. We will prove (4.48) by considering several domains of r,s' ,s values in 

the integral. Let us first restrict the interior integral additionally to 

rsl, then it can be bounded from above by s const/(s+s'-2) since by Lemma 2.20, 

(4.49) p(t,0,0) s constlt, t~l. 

Consequently, this part of (4.48) leads to a negligible term of order O(t). 

Thus, we may restrict our attention to the remaining case lsrss. 

4°. For fixed ee(O,uz), we may choose constants b,b8 >0 such that q 8 sq,sb£. 

Assume for the moment that for some constants c,C>O independent of e, 

(4.50) q -er e IEµq(J0 (r)) s C(e + e + 1/b logr), 

Then for the remaining part of (4.48) substitute s'=u+1 and use (4.49) to get 

the bound 

s const fds Jdu Jdr l{lsrsssust-1} (s+u-2r+lf1 (e + e-cr + 1/b8 Iogr). 

Change the order of integration to obtain 
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Jt-1 - -er £ Jt-1 Jt-1 -1 = const 1 dr (e + e + 1/b logr) r ds s du (s+u-2r+1) . 

The interior integral equals log(s+t-2r) - log(s-r+112) - log2. Using L(x) 

xlogx - x = flogx, we can further integrate with respect to s to get 

(4.51) [U2t-2r-1) - L(t-r)] - [Ut-r-112) - L(112)] - (t-r-l)log2. 

But L(2t-2r-l) = 2(t-r-112)1og2 + 2L(t-r-112), 

and L is monotonously non-decreasing on (l,+oo). Hence, (4.51) can be bounded 

from above by ::: (t-r)log2 + const. The latter additive constant leads to a 

term of order O(et + 1 + t/b8 logt). Splitting the final integral gives 

(4.52) (e + e + 1/b logr)(t-r) ::: const t (et + 1 + t/b logt) Jl<t-1)12 dr -er e e 

by (4.31), and 

Jt,-1 d ( 
(t-1}/2 r e 

-er e + e + 1/b logr) (t-r) 

:S const ( e + exp[-c(t-1)/2] + 1/log((t-1)12)) t 2, 

which is of the same order as the r.h.s, of (4.52). Summarizing, the l.h.s. 

of (4.48) is of order t(et + 1 + t/b8 logt) as t4oo, for each eE(0,112), which 

gives the claim (4.48). Consequently, to complete the proof it remains to 

show (4.50). 

5°. Recall that e is fixed and b 8 { :Sq:sbf. Since &:::{ +e, it suffices to consi-

der 1E~{(J0 (r)). By Lemma 4.6, except an e-error we may pass to IE9-8{(J0 (r)), 
µ 

µ 8 Eij) with µ8 ([e,1-£13 )=1. Then we are able to apply Proposition 4.24 to arri-

ve at the desired estimate (4.50). This finishes the proof. • 

Remark 4.53. If µ is even a product law and q?:bf for some b>O then 

War~(t-1 J~ ds J0 (s)) = 0(1/logt) as t4oo, 

In fact, based on .the previous proof but in the boundary case e=O (which can 

be admitted in the present case q?:bf) one has only to deal with the error 

term related to the statement (4.47), which under a product law is given by 

p(s+s' ,0,0) War µJo(O). Integrate and normalize this as in (4.43), and use (4.49) 

to get the claimed order of the error term. Actually one can expect that un-

der these assumptions the fourth centered moments have a decay of order 

1/(logt)2 as t4w, which then implies the strong law of large numbers. o 

Proof of the oscillation property (1.25). Fix µEI0 and Q-Er:i0. Without loss of 
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generality we assume that s=O. Suppose that IPq,(limsup Jo(t) < 1) > 0. Then µ t4CQ 

rPq,(limsup t-1 Jt ds J0 (s) < 1) > 0, µ t4oo o . 
and by (l.19) we get 

IPq, (limsup t -i ft ds J0 (s) < e12) > O µ t400 0 

since O<e<l. But this contradicts the weak law of large numbers (1.24). The 

complementary statement follows by reflection. • 

5. THINNED OUT SYSTEMS 

Here we want to verify Theorem 1. The proof proceeds in two main steps. 

First by comparison results from Section 4 we reduce to the Fisher-Wright ca-

se, give the proof for this situation using duality, and then in the second 

step we show via coupling that it suffices to consider a product measure as 

initial distribution. 

5.a) Reformulation and Reduction to the Fisher-Wright Case 

Fix a law µe!8 , a diffusion coefficient q,erJ°, and a~O. Since all counta-

bly many components of the thinned out system ax(t), t>O, take values in [0,1], 

we may apply the method of moments: Take any collection of finitely many dif-

ferent l:abels ~(1), ... ,~(n), 

(5.1) 

where 
a a 

x(oo) = ( JE;(oo))~E2' 
with the product law rr~ 

9 

and integers m(l), ... ,m(n) :=:: 1 and show that 

n n a (a a ) ES i=l J~(i)(oo) = 'P . J~(l)(oo)= ... = J~(n)(oo)=l 

F = 2(Y(a)) e,a 
and the time transformed Fisher-Wright diffusion Y 

from Definition 1.14. Next we will rewrite both sides of (5.1). 

1°. The r.h.s. ·or (5.1) equals 

(5.2) a' := a/\l. 

Let Zn denote the pure non-linear death process on {1,2, ... } with jumps from 

k to k-1 at rate (~), k:=:2, and starting in n. Via duality of the standard Fi-

sher-Wright diffusions Y8 , 0<8<1, and Zn, n:=:l, that is 

(5.3) E(Y8 (s))n = EeZn(s), s:=:O, 

and the relation to the probability laws p Cr) of the scaling limit Pro-
. n,(<) 

position 3.13, it can be shown that P(Zn(s)=k) = p (a') with s=-loga'; see 
n,k 
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Cox and Griffeath (1986), p. 357 (recall also the Remark 3.15). Therefore the 

r.h.s. of (5.2) coincides with 

(5.4) n k L e P k(a' ); 
k=l n, 

2°. To rewrite the l.h.s. of (5.1), let <:;(1), ... ,<:;(n) denote the "spaced11 la-

bels which correspond to l'.;(1), ... ,i;(n) according to the notation (1.13), and 

·- (,:(1) <:;(n) set <p .- <p(at) .- m(l)o + ... + m(n)o . Then the l.h.s. of (5.1) equals 

(5.5) IEq(I(Nt))<p(at) :::: IE IEq (I(Nt))<p(at). 
µ µ I(O) 

3°. We shall now analyze the r.h.s. in (5.5) above further. By Lemma 4.6 com-

bined with Remark 4. 9 and since (5.4) is continuous in e, we may assume from 

now on in this subsection that the initial law µ is even concentrated on 
~ 

M e 0 
[e,1-el~ with ee(0,1n). Choose b ,b >0 such that 

(5.6) e e e o q :::: b & s q s b c. 
Having in mind the comparison Proposition 4.10 and the fact that the limit 

expression (5.4) does not depend on the diffusion coefficient q, we study now 

e e e first (5.5) for systems with diffusion coefficient b & where b >0 and ee[O,uz), 

which covers both comparison cases. Apply (4.12) to pass in (5.5) to 
e e 

IE !Eb (Hel(Nt))<p(at) :::: IE !Eb (.f(Nt))<p(cxt) + 0(£) as e~o, 
µ L 8 I(O) µ L 8 .f(O) 

where O(e) is uniform in t by the boundedness of I and since m(l), ... ,m(n) is 

fixed. Using the duality Lemma 3. 2 with z::::L e .f(O) for the interacting Fisher-

Wright system I with diffusion constant be, the latter expectation expression 

can be written as 
t 

lE E (L 8 I(0))7J(N ) 
µ <p(at) (5.7) E IE ( .f(O)) 7J(Nt) + 0( e) 

<p(at) µ 
as e~o, 

again uniformly in t. 

4°. The analysis of the r.h.s. of (5.7) leads us now back to coalescing ran-

dom walks. Note that each pair of particles in rp::::rp(at) has hierarchical dis-

tance 0 or at + 0(1) as t~oo, depending on whether the particles have the same 

position or not. The approximation Proposition 3.6 tells us that as t~oo we 

may replace the expectation at the r.h.s of (5.7) by 

(5.8) 
~ t 

E IE (.f(0))7](N ) rn* = 0<:;(1) + ... +o<:;(n). 
<p* µ ' .,, 
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50. Assume for the moment that the initial law µe!9 is even a product measure 

e µ e ~ J e := nE;eS µ£; on [0,1]~ where µf;(dr) r = 9e(0,1). Then (5.8) can be written as 
~ t 

(5.9) - ~ J 8 "IJE;(N ) ~ ll~(Nt)!I 
- E<p*nf;ES µ0 (dr E;) r E; = E<p* 8 . 

Now we evaluate the r.h.s. of (5.9). If a=O, then by Proposition 2.43 

the latter expression converges to 8 as t->oo, and we are done since Y 8 (oo) has 

law 90 + (1-e)o . Suppose a>O. Then ip* belongs to ~(n,cxt,1) (recall (3.12)) 
1 0 

for all sufficiently large t, and the scaling Limit Proposition 3.13 yields 

the convergence of (5.9) to (5.4) as claimed. 

e This limit expression (5.4) does not depend on b and ee[O,v2). Hence, 

for the boundary cases in (5.6) we get the same limit (5.4) as t->oo, except 

the O(e) error term in (5. 7). But since we may let e->O, this means that we 

0 verified the theorem for general qeti , of course, in the present case of a 

product initial measure. 

6°. To complete the proof of Theorem 1, it remains to show that in calculat-

ing the limit of the Fisher-Wright expression (5.8) to actually consider pro-

duct initial laws. This will follow from the coupling Proposition 5.11 below. 

5.b) Successful Coupling of Fisher-Wright Systems 

Fix initial laws µ, ve!9 , that is two (possibly different) homogeneous 

and ergodic laws µ and v on [0,1].:., both with density 8. Consider the coup-

ling (;£,!)] with a joint initial law r which has marginals µ,v according to 

the Definition 4.5, but in the Fisher-Wright case q=b&, b>O fixed. This coup-

ling is called successful if 

(5.10) 

Proposition 5.11 (successful coupling). Given µ,ve!8, the coupling [.t,VJ of 

Fisher-Wright systems with joint initial law r=µxv is successful. 

Remark 5.12. Coupling arguments have been proved useful in the theory of in-

teracting systems, when the spatial ergodicity of a system is preserved under 

the evolution even in the limit as t->oo; see Liggett and Spitzer (1981), Gre-

ven (1991), Cox and Greven (1991b). Here we will even employ this technique 
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in a context where the preservation of ergodicity does not hold. o 

Since we are in the clustering regime, the proof of the previous propo-

sition is non-standard and needs a preparatory lemma. 

For notational simplification, write [x,y] for the initial configuration 

[I(O),!J(O)] of the coupling [.f,'.!J], and t,.f;(t) := Jt;'(t)-t}f;(t), f;eS, t?:O. For 

given E;,x,y, w introduce 

(5.13) + -1 ft + l;;(x,y,w) := limsup t ds (Ac(s))-, 
<,, t~oo O <,, 

respectively. Let P denote the law of w (the collection of Wiener processes). 

+ Lemma 5.14. l~(x,y,w) is µxvxP-a.s. constant in E;,x,y,w and will be denoted 
+ by l-, respectively. 

Proof. 1°. First we show by contradiction that 

(5.15) + l.;(x,y,w) is µxvxP-a.s. constant in E;. 

Assume that 

(5.16) µxvxP(l~(x,y,w) - l~(x,y,w) > e) > 0, for some (t:<:: and O<e<uz. 

Then 

{5.17) ( 
-1 µxvxP limsup t 

t~oo 
J~ ds (ti.~(s) - ti.~(s)) > e) > O. 

Fix a o satisfying O<o<e/2. Set A := {ze[O,Jl=.; zE;,z(<o or zf;,z(>l-o}. Since 

in the Fisher-Wright case Condition 1.20 is satisfied, we may twice apply the 

a.s. statement (1.19) for m=2 to get 

(5.18) lim t-1 ft ds 1{.f(s),2.}(s) E A} = 1, µxvxP-a.s. 
t~oo o 

Thus, in (5.17) we may additionally introduce the indicator 1{.f(s),2J(s)eA} 

without loosing the positivity of the probability. But l{.f(s),!)(s)EA} = 1 · im-

+ + plies that ti.E;(s) - t,.((s) :S 20, which leads to the contradiction e<2o. There-

fore (5.16) + cannot be true. Thus, L.;(x,y,w) is µxvxP-a.s. constant in .;, and 

we write L+(x,y,w) for it. 

2°. Now we want to show that l+{x,y,w) is constant in (x,y,w). Denote by TE 

the shift by £;. We know by homogeneity of the model (see Definition 1.6) and 

by (5.15) that 

+ + = L0 (x,y,w) = l (x,y,w), E;eS, µxvxP~a. s., 
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that is L+(x,y,w) is µxvxP-a.s. invariant with respect to the simultaneous 

shift of x, y, and w. From the shift ergodicity of [.f(O),:!:J(O)] under µxv and 

the i.i.d. assumption on w we conclude that the random field (x~,y~,w~)~e:=: 

+ . under µxvxP is shift ergodic. Hence L (x,y, w) is µxvxP-a.s. constant in [x,y, w]. 

Summarizing, l~(x,y, w) is µxvxP-a. s. a constant, denoted by l +. In the 

same way, l~(x,y,w) µxvxP-a.s. equals a constant l-. This proves the lemma. a 

Proof of Proposition 5.11. 1°. It suffices to show l+l-=O. In fact if [.f(ro),'.!J(ro)] is 

distributed according to a weak limit point L of .!e([.f(t),:!J(t)J) as t~ro (where 

[.f,:!J) is the coupling with joint initial law f=µxv), we get L({O,l}x{0,1})=1 

by the ergodic theorem (1.11), thus, l+=O or L-=O implies L(.f(ro):$:!}(ro))=1 or 

L(.f(oo):::'.!J(ro))=l, respectively. But since we know that 8'(l'~(ro)-:!}~(ro))=O under 

L, we can conclude that in fact L(.f(ro)=:!}(ro))=1. This finally yields that the 

coupling is successful, and it really remains to show l +l - =0. The proof is by 

contradiction. 

0 + -
2. Suppose L L >0. Fix ~.l;;e3. From the almost sure statement (l.19) of Theo-

rem 4.a) (note that we are in the Fisher-Wright case) we know that £1.~(t) is 

+ -"typically" close to 1, 0, or -1. But the hypothesis l L >0 and the very de-

+ -finition (5.13) of l ,l imply that it is actually close to both 1 and -1, 

more precisely, it infinitely often oscillates between values close to 1 and 

-1 as t~oo. Moreover, again by (1.19), £1.C:(t) a.s. oscillates synchronously 

with Li~(t). This will be used to derive a contradiction for the behavior at 

time points s where £1.~(s) and £1.<(s) have different sign. 

3°. It is proved in Cox and Greven (1991b), assertion (ii) in the proof of 

Lemma 4, that 

(5.19) I~ dt e (I £1.~(t) I l{sign(Li~(t)) * sign(6<(t))}) < 00 

where by definition sign(r )=1 if r>O, and =-1 otherwise. For O<o<uz define 

the event 

Et,o := { sign(b.~(t)) :;:. sign(.t.<(t)), I £1.~(t) I :::a}· 
If in (5.19) we restrict the expectation additionally to Et,o then we can es-
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timate from below to conclude that J: dt l(Et,o) < +oo a.s. It is standard to 

show that this means sup{t;l(Et,o)=1} < +oo a.s. All we use for this is that 

we deal with diffusions with bounded drift and diffusion coefficient, so that 

the duration of a stay within Et,o is bounded from below, say by c>O, with 

positive probability (depending on · c). We omit the standard but tedious de-

tails. Consequently, by monotonicity in o, we have proved that 

(5.20) sup{t~O; l(Et,o)=l} < +oo for all O<o<u2 a.s. 

4°. Recalling step 2° of the proof, we want to show that if the two-dimensio-

nal process (li~(t),li<(t)) oscillates between (1,1) and (-1,-1) synchronously 

as t-->oo, then (5.20) cannot hold, so that we arrive at a contradiction. To 

that end we shall establish in step 5° below the following crossing property 

of (li~(t),li<(t)): With positive probability we find random time points 

with li~(s) = +o but li<(s) < 0. Then, obviously sup{t~O; l(Et,o)=1} = +oo a.s. 

+ -This contradiction to (5.20) shows that l l =0 and therefore then finishes 

the proof of Proposition 5.11. 

5°. It remains to verify the crossing property formulated in step 4° above. 

For constants h>O and 0 < a < us, denote by F h,o the following event: There 

exists a (random) sequence s , s , ... such that for n~l, 
1 2 

(5.21) (i) s -s > h, li~(sn) = -o, li(,(s n) s -o, n+l n 

(ii) li ( ( s n +s) < 0, Osssh, 

(iii) J~(sn) e [1/2 - o, 1/2 + ol, 

Set 
o: := 'P(Fh,o)' 

We want to show that 

f3 := 'P ( li~(s n +s) = o for some se[O,hJ IF h,o). 

0:(3 > 0 for h,o sufficiently small, which proves the 

claimed crossing property. 

We start by showing that cx>O. If in the definition of F h,o we drop the 

requirement (ii) and (iii), then we get an event of positive probability be-

cause of the infinitely many synchronous oscillations as t-->oo described in 2°. 

If we now add (ii) again, then the positivity of the probability is maintai-

ned, since the continuous semimartingale !if;, (with respect to the family of 
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CJ-fields CJ{(I(s),2J(s)) < }, t~O,) 
s-t 

has bounded local characteristics. Also, 

since (Jc;,, nc;,) is a semimartingale where the components of the martingale part 

have increasing processes with density (with respect to Lebesgue measure) 

bounded away from 0 if the components are not in [112 - o, vz + o) we can 

additionally impose (iii). The details are straightforward but tedious. (For 

a detailed exposition of such techniques, see the Appendix of Cox and Greven 

(1991b).) Altogether we see that we can choose h,o such that cx.>0. 

We come to showing that {3>0. Since f'J.t; is a semimartingale where the 

bounded variation part is bounded in t for tE[s,s+h], it suffices to show 

·that the martingale part M, say, can produce excursions in time h of size o 

with positive probability. This martingale M is in law equal to a time trans-

formed Brownian motion B, that is M(t) ~ B( «M» ). For the Brownian motion B 
t 

the excursions required have positive probability. It suffices therefore to 

show that the time transformation increases between s and s +h by at least 
n n 

say 8>0 with positive probability uniformly in n. But the quadratic variation 

process of the martingale part M is given by 

(5.22) b J~ ds [v'&(Jc;,(s))' - v'C(nc;,(s))'] 2,. t~O. 

The integrand can be 0 (recall (iii)) only if f'J.t;(s)=0,+1,-1. The local time 

of f'J.t;(s) at 0,+1,-1 is zero if the drift does not vanish at the same time, 

for a whole interval. This is not possible since independent Wiener processes 

act on all components. 

This finishes the proof of Proposition 5.11, hence also the proof of 

Theorem 1. • 

6. BLOCK AVERAGES 

In this section we will prove Theorem 2. Let <JE'flo and µElf)' By the shift 

invariance, without loss of generality we may assume that l;=O. Theorem 2 is 

equivalent to: For m~l, n(1),. .. ,n(m) ~ 1, and 0 ~ cx.(1) < ... < cx.(m) 

(6.1) --0 E n m (Y(cx.)t(i). 
t ... 00 l = 1 

The proof of (6.1) will 'proceed in the following steps. We will reformulate 
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both sides of (6.1), reduce to the Fisher-Wright case by comparison, use the 

duality with TJ, approximate by the coalescing random walks T/, and finally ap-

ply the multi-scale limit proposition. 

1°. First we want to rewrite the r.h.s. of (6.1) in terms of the quantities 

introduced in (3.27). Recall that ~ e 
Y(o:) = Y (-logo:'(i)) by definition, where 

o:':=o:t.J, and Y9 is the standard Fisher-Wright diffusion starting in e (which 

corresponds to the right "boundary values" of Y at o:~l). We will show (cf. 

[8], Lemma 4): 

(6.2l E(ni : 1(Y(o:l)nu>) = L oo ek P (o:'(l), .. .,o:'(m);l). 
k=l n(l),. .. ,n(m);k 

For m=l, this was already used in Subsection 5.a), see (5.3) and (5.4). Let 

m>l and set r 
i 

-logo:'(i), l:=::ism. By conditioning Y8 on the time interval 

Applying r -r = - log(o:'(1)/o:'(2)) and (6.2) for m=l gives 
1 2 

= L P (o:'(l);o:'(2)) E(n . (Ye(r.J)n(i)(Ye(r l)L+n(2)). 
l n(l);l m~1~3 1 2 

By induction and (an equivalent variant of) (3.27), we actually get (6.2). 

2°. Using the definition (1.5) of block averages, we have to evaluate the li-

mit of the l.h.s. of (6.1) in terms of products of certain J2(Nt). For this 

purpose, introduce again the index array I := {[i,u);lsi:=::m,l:susn(i)}, and na-

tural numbers k(i)~l, lsism. In the various occurring sums it is useful to 

label components of the system with the help of some ((i,u)E3, [i,u)El. For 

s>O and k(l), ... ,k(m) ~ 0, we calculate 

(6.3) !Eq n m n(i) 
µ i =1 (JO,kUJ(s)) 

- N-(k,n) !Eq n \' . ( ) 
- µ [ 1,u]EI L...11 (0,u} II Sk(i) J (Ci,u) S 

where (k,n) abbreviates the sum k{l)n(l)+ ... +k(m)n(m). Continue with 

(6 4) - N-(k,n) \' \' IEq ( ) ( ) 
' - L...11 ((1,1) II :Sk(l) L...11 (;;(m,n(m)) ll:Sk(ml µJ (Cl,ll S ... J ((m,n(m)) S · 

Specialize to s=Nt and k(i)=[o:(i)t]. 

3°. Here we will show that we may additionally restrict (again in a t-depen-

dent way) the summation variables ((i, u) by the requirement 

(6.5) ll((i,u)-((j,v)ll :i:: [o:(j)t) - £(o:(j)t), [i,u):;t:[j, v), isj, 
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(recall (2.25)). For r:?:.1 and elements ((i,u) and ((j, v) of the hierarchical 

group 3 we have ll((i,u)-((j,v)ll < r if and only if the first r-1 coordinates 

of both ((i, u) and ((j, v) are arbitrary but the remaining coordinates coinci-

de. Hence, for fixed [i,uh=[j,v) with i~j, the number of {<(i,u),((j,v)} whe-

re the inequality in (6.5) is violated, is bounded by N[o:(i)t)+[a(j)t]-t(o:(j)t), since 

we may restrict our considerations to those t, where [o:(i)t) < [cx(j)t) - t(a(j)t), 

whenever i<j. Each remaining ((k,w) runs as written in (6.4), i.e. it takes 
[a(k)t] 

on N many values. Thus the total number of summands in (6.4) for which 

the condition (6.5) is violated is bounded by C(n) N([at],n) e(t), where C(n) 

is some constant, ([at],n) stands for [a(l)t)n(l)+ ... +[a(m)t)n(m), and dt) 

abbreviates " m N-t(a{j)t)_ Note that dt) --7 0 except the case a(l)=O. 
L j = 1 t->oo 

But if a(l)=O, then all ((1, u) are 0, and there is not any pair 

[1,u]:;t[l,v] which violates (6.5). Then it is not necessary to include the 

term with j=l into the definition of dt), and dt)->O also in this case. 

The restriction of summation to those ((i,u), [i,u)eI, satisfying (6.5) 

is justified because of the prefactor N-([at],n} in (6.4) and the boundedness 

by 1 of the expectation expression. Note that those ((i,u) also obey (3.26) 

(with a(j,t) = a(j) and c=l), since, using (2.28), ll((i,u)-((j,v)ll ~ [a(j)t). 

4°. We finally come to an asymptotic evaluation of the l.h.s. of (6.1). In-

troduce again the notation <p(i, t) ,.,(Ci,1) ,.,((i,n(l)) 
u + ... +u , and rp(t) 

:= <p(l,t)+ ... +<p(m,t). Denote with A(t) the set of all those <p(t)e<P which cor-

respond to the range of the ((i,u) in (6.4) but with the additional restric-

tion (6.5). Then it remains to show that 

(6.6) N-([at],n) L IE:q(X(Nt))<p(t) 
<p(t)eA(t) µ 

converges as t->oo to the limiting term in ( 6. 2). 

5°. Since the limiting expression (6.2) is continuous in e, as in step 3° in 

Subsection 5.a), we may reduce the further proof to the case of a Fisher-

Wright diffusions q,=b&. Moreover, by the coupling Proposition 5.11 we can 

pass to a product initial law µ=µ e e:t8 . Then with the duality Lemma 3. 2, we 
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may rewrite (6.6) a·s 
t 

= N-([cxt],n) L E [ (I(O))l](N ) 
q;(t)eA(t) q;(t) µ 

Since the number of particles in q;(t) is fixed, and because together with (3.26) 

(with cx(j) independent of t) also the assumptions of the approximation Propo-

sition 3. 6 are fulfilled, we can pass to the asymptotically equivalent expression 
~ t 

(6.7) N-([cxt],n) L E [ (X(O))l](N )_ 
q;(t)eA(t) cp*(t) µ 

Using the product measure assumption and [ Jc(O) = e, we write (6.7) as 
µ.., ~ t 

= N-([cxt],n) L E elllJ(N )II 
cp(t)EA(t) q;*(t) . 

Note that cp(t)=q;*(t) for all sufficiently large t by (6.5), except the case 

cx(l)=O where n(l)oo shrinks down to 0°. In any case, cp*(t) fulfills the As-

sumption 3.25. Thus, by the multi-scale limit Proposition 3.28, the terms of 

the sum tend uniformly to the r.h.s. of (6.2), since for cx(l)=O (the left 

hand side of) (6.2) does not depend on n(l). This finishes the proof because 

of N-([cxt],n) #A(t) ------? 1. • t~oo 

7. CLUSTER SIZES 

In this section we are going to provide the proof of Theorem 3 which by 

assumption is restricted to the Fisher-Wright case q.=bf. In Subsection 7.a) 

we start with analyzing the appropriate properties of the dual system. The 

argument in 7. a) follows closely Bramson et al. ( 1986), whereas new arguments 

are needed in 7.b) and c). There we have to show that the size of blocks in a 

cluster can actually be transformed via the duality into a statement about 

coalescing random walks. Since the probabilities for {J~2:l-d or {J~:Se} 

not directly obtainable from the moments, we have to work here a bit. 

7.a) The Scaling Proposition 3.13 for Growing Solid Blocks 

are 

The following hypothesis is some analog of The Proposition in Bramson et 

al. (1986) on simple coalescing random walks on 71.2 . (The proof of it is be-

yond the scope of the present paper and will probably be discussed in the fu-

ture in connection with tightness questions related to Theorem 2.) To formu-

late it, we introduce the notation 

(7.1) t/J(t) := I~: 11~11:st o~ e ~. t>O, 

describing the configuration that exactly the block of size [ t] around the 
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origin ~=O is filled up with particles ("soLid block"). Recall that YJ denotes 

the coalescing random walk of Section 3. 

Hypothesis 7.2. For each exe(0,1), 

lim limsup r-) oo t-) oo I 
Roughly speaking, the N[o:t] initial particles "uniformly smeared" around 

0 have at time Nt asymptotically only a finite mean number of survivors, and 

they are kept in the box of approximate size t+logr. Recalling the p from n,k 

Subsection 3.d), this hypothesis will be shown to imply that the total number 

of particles at time Nt even has a well-defined limit distribution (for an 

explicit formula, see (1.3) in [2]): 

Proposition 7.3 (solid blocks scaling limit). For o:>O, 

Proof. First of all note that the limits p (0 ) := 1 im p (0 ), k?:l, os0s1, oo,k n4 oo n,k 

exist since L, p (0 ), lsksmsn, Oso;sl, is monotone decreasing in n, namely 
k==l n,k 

by its probabilistic contents, see Proposition 3.13. The claimed identity 

will be proved by estimation. 

For fixed n;?:k?:1 and sufficiently large t, by the definition (2.25) there 

exist t-dependent ;-1 ;-n ~ 
":J , ••• ,~Et:. with 

Thus, by (3.12) we find gi(t)E~(n,ext,1) such that gi(t)s!/J(at) for all suffi-

ciently large t.· Hence, 

~ 11 ~ t II ~ ~ t k limsup P,,.( t)( YJ(N) sk) s limsup P ( )(!IYJCN lljsk) == L. p _(a/\1), n?:k, t 4 oo 'f' ex t 4 oo <p t 1 ==1 n, 1 

by Proposition 3.13. Letting n4oo, we conclude 

(7.4) s Ek P ( a/\1l, 
i :=1 oo,i 

k?:l. 

It remains to prove the "reversed" inequality 

(7.5) ?; E~ P .Ca/\l), 
l ==1 00,1 

Since p (1)=0, this is trivially fulfilled if a?:l, and we may assume that 
oo,i 

O<ex<l. We will proceed similar as in Bramson et al. (1986): Let M,r?:1 be na-

tural numbers, and choose a(l) and ex(2) such that ex < a(l) < ex(2) < 1. Impor-
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tant will be the event 

(7.6) G (t) := {ll~(No:(l)t)Ji~M. 
M,r 

~ (Na(l)t)-0 for t; - II f; II 2: o'.(l)t + lo gr} 

which, roughly speaking, says that . o:(l)t 
at time N we have only a bounded num-

ber of particles which moreover are not too much spread. Recalling the nota-

tion (3.12), use the Markov property at time ·No:(2 )t to estimate 
~ ~ t 
p l/J(o:t)Cli1J(N )i!~k) 

;:: Ij~1 Lxe~(j,o:(2)t,2) Pl/J(o:t}(cM,r(t) () {~(No:(2)t)=x}) 
From the scaling limit Proposition 3.13 we know that 

HIJI i>x(ll~CNt-No:(2Jt)il~k) 
uniformly on ~(j,o:(2)t,2). Hence, 

where 

= \'k/\j (o:(2)) 
Lii =1 Pj,i 2: 111:Ln I~/\j P .. (o:(2)), 

J-1 i=l J,1 

rµJ.n L J P .. (o:(2)) 'U(r,M), ( k/\. ) 
J -1 I =1 j,1 

(7.7) 'U(r,M) := liminf P,/,( t) (c (t) () {~(No:(2 )t) E u.IXI ~(j,o:(2)t,2)}). · t~oo 'I' 0: M,r J=l 

Since l:~:~ Pj,i(o:(2)) is non-increasing in j, the minimum on j2:l will be rea-

by the limit I~=l p00,i(1X(2)) as j ... oo. But by continuity, p00,i(1X(2)) 

tends to p .(IX) as IX(2ll1X. Thus, to finish the proof of Proposition 7.3, it 
00,1 

lized 

remains to show: 

Lemma 7.8. For 1X<a(l)<o:(2)<1 fixed, liminf 'U(r,M) = 1, with 'U defined in (7.7). 
M, r _.oo 

Proof. The first step is to note that, already for fixed M,r, 

limsup P,/,( t) (c (t) () {~(NIX(2)t) ~ U.00 ~(j,o:(2)t,2)}) = 0. 
t_.oo 'I' IX M,r J=l 

In fact, . o:(l)t apply the Markov property at time N , and use the speed of 

spread Lemma 3.22 with T(t)=r(t)=o:(l)t, s(t)=IX(2)t, <p(t)=~(No:(l)t), and c=L 

Hence, the main step of proof consists in showing that 

limsup limsup P,1,( t)(r;G (t)) = O, M, r _.00 t _. oo 'I' IX M,r 

with G defined in (7.6). To this end, it suffices to demonstrate that M,r 

(7.9) < oo, 

(7.10) lim r ... oo llf;ll2:o:(1)t+logr} = 0. 
~ 

But these properties follow from Hypothesi_s 7.2 above since o: < o:(l) and 1)2:1} 

by our coupling Convention 3.5. This finishes the proof of Lemma 7.8, hence 

also the proof of Proposition 7.3. • 
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By dominated convergence (recall that O<e<l), as an implication of Pro-

position 7.3, for cx>O we get 

(7.11) 1-im(E ellnCNt)ll + E (1-e)lln(Nt)") 00 k k = L p (a.Al) (8 +(1-8) ). 
t~oo l/J(cxt) · l/J(cxt) k=l oo,k 

But 

(7.12) oo k k e L p (cxAl) (e +(1-e) ) = P (T::::cx), 
k=l oo,k cx>O, 0<8<1, 

where T was defined in (l.18). In fact, if <X.:::1, use p (1) = 0, oo,k which fol-

8 lows from p (1)=1, and P (T:::l)=O. On the other hand, if O<a.<1, see (8), be-
n,n · 

fore formula line (4.1) (recall the transformation s H -logs reverses or-

der). Note that in this case p is a probability law on {1,2, ... }. oo,( •) 

By (7.11) and (7.12), for a proof of Theorem 3 it remains to identify 

the 1. h. s. in (7 .11) as the limiting probability of the event 

(7.13) {Sc ::: 
t 

t,cx > 0, O<c<112, 

with respect to b IP as µ first t~oo and then c~o. This will be done in the remai-

ning two subsections. 

7.b) Proof of Theorem 3 under Product Initial Laws 

Here we restrict our considerations to the special case of a product 

· · · 1 ° 't' w ·11 h m1t1a measure µ=µ E..t.0 . e wt s ow next: 

Lemma 7.14. For fixed O<q<l, a.>0, and m::::l, 

(7.15) 

Proof. From the duality Lemma 3.2, 

(7.16) 
t 

IEb(l(Nt))ml/J(at) = E IE (J(0))11(N l. 
µ ml/J(cxt) µ 

By our coupling Convention 3.5, 11(Nt) ::: n(Nt) if· 11(0) ::: n(O), hence 
t ~ t ~ t 

E IE (J(Ol)11(N) ::: E IE (l(Ol)11(N) = E ell11CN lll 
ml/J(cxt) µ l/J(<Xt) µ l/J(a.t) ' 

(7.17) 

where we used that µ is a product measure µ8 and IEµJf;(O) = 8. 

For an estimate in the opposite direction we may assume that a<l. In 

fact, the r.h.s of (7.15) is part of the expression in (7.11) which by (7.12) 

disappears if cx:::1. Choose ex < cx(l) < 1. From our Hypothesis 7. 2 follows that 

for each o>O, . with probability :::1-0 we have at most M particles at . time 
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Na(l)\ and they are located in the block of size a(l)t + logr, r2::r around 
0 

0. By the approximation Proposition 3. 6, the resulting state 11(Nt) at time Nt 

belongs to <P, and we derived the r.h.s. of (7.17), restricted to an event of 

probability 2=1-o. Since .o is arbitrary, the proof is finished. • 

For fixed a>O, set 

(7.18) Y(t) := (.t(Nt)}ljJ(at), Z(t) := (1-J(Nt))l/J(at), t>O. 

Since the r.h.s. u .- lim E,,.( )ell~(NtJll of the identity (7.15) does not de-t..,.oo 'I' at 
b e pend on m, we conclude that with respect to IP (where µ=µ ) 
µ 

(7.19) .!e(Y(t)) ~ uo1 + (1-u)o0 . t->oo 

Similarly, by reflection and symmetry 

(7.20) 
~ t 

.;t:(Z(t)) ====} vo1 + (1-v)o0 with v := lim E (1-e)IJ17(N )11. 
t..,.oo t->oo l/J(at) 

Next we show: 

Proof. We will use the fact just derived that the weak limit law of Z(t) as 

t->oo has mass v at 1. By definition, 

t 
logZ(t) = L11£;1lsat log(l-Jf;(N )) :S - Lllf;llsat 

so that 
Z(t) s exp[- Lnf;llsat Jf;(Nt)J. 

Hence, for O<o<l, 

(7.22) IP:(Z(t) 2:: 1-o) :S IP~(Eu~usat J~(Nt) :S (1 c.) 
with some constants Cl 0 0 ... 3 O+. Letting first t->oo and then o->O yields 

(7.23) v :S liminf liminf !Pb (Eiictt t Jc(Nt) :S e). e->o t->oo µ ..,, sa ..,, 

Conversely, to each ee(0,1n) choose a constant c >1 such that 
£ 

log(l-r) 2:: - c r, O<r<e, 
£ 

and c ~ 1. 
£ £->U 

t Let Ln~ll=sat .!~(N ) :S e. Then even each term of the sum is se, and we can con-

clude that 
t t 

L1tf;ll=sat log(l-J~(N )) 2:: - ce Lllf;llsat Jf;(N) ~ 

Hence Z(t) ~ exp[-c el. Consequently, e 

- c £. e 

r1111~up IP~(Euf;ll:Sat Jf;(Nt) :S e) s limsup IPb(z(t) ~ exp[-c 0 el) - v, t->oo µ c-

for each £. Combined with (7.23), the claim follows. • 
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By Lemma 7.21, reflection and symmetry, 

(7.24) blW Hw IP~ (L11t;11:sat (l-Js(Nt)) ~ e) = u. 

Combined with Lemma 7.21, 

lim lim IP0 (I(Nt)EBe) = u+v, a>O. E:-'> o t-'>oo µ at 

Consequently, the limiting probability of the event (7.13) is given by (7.11) 

as we had to show. This completes the proof of Theorem 3 in the case of pro-

duct initial laws. 

7 .c) Theorem 3 under General Initial Laws 

Let µet8 that is µ is shift-ergodic with density ee(O,l). The following 

e lemma will be used for a reduction to a product measure case µ=µ . 

Lemma 7.25. For a>O and as t-'>oo, 

.E [ (I(O))~(Nt) ~ .E [ (X(O))~(Ntl = .E ell~(Nt)JI 
l/J(atl µ l/J(o:t) e l/J(at) µ 

Sketch of Proof. The idea of proof consists of applying the ergodic theorem 

mentioned already in the proof of Lemma 4.40, based on asymptoticatiy uni-

formLy distributed sequences (v ) of probability laws on 3m (m::::l fixed). 
n n2:1 

The latter means that the variational distance between v and any shifted v 
n n 

will disappear as n-'>oo: 

2: I v ( t;) - v ( t; +<: l I ~ o, 
l;ESm n n 

From Proposition 7.3 we know that for O<a<l, 

1 i m P.t,( t)(~(Nt):sk) /" 1, t-'>oo 'I' a k-'>oo 

i.e. roughly speaking, at time Nt we have only a bounded number of particles. 

Together with Lemma 2.26, for k"=l this implies 

~ (~ t ~ t 
lll!;~up P ip(at) 1)t;(N l11<(N )>O for some t;,<:e3 with (t:l; and llt;-<:ll:sk) = 0, 

i.e. loosely speaking, the boundedly many points at time Nt spread away. Fi-

nally, the step distribution p of our random walk in is everywhere positive. 

Therefore, the spreading points are asymptotically uniformly distributed as t-'>oo. 

Now µ is ergodic by assumption, hence the mentioned statistical ergodic 
~ t ~ t 

theorem yields, roughly speaking, that ( I(O)) 1)(N ) approaches e II 11<N ) II in 

mean square as t-'>oo. This results in the claim of the lemma in the case O<a<l. 
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If a:::l, the number of particles at time Nt additionally grows unbounded-

ly, hence the first term in the lemma will disappear as t->ro, just as the 

other terms. • 

Completion of Proof of Theorem 3. It is easy to check that throughout the 

proof of Theorem 3 given in the last subsection we can 
I ~ t 

pression Et/J(at)e j 'lJ(N ) II in the product measure case by 

which finishes the proof for general initial measure. • 
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