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Abstract

We present a continuum model that incorporates rate-dependent damage and fracture, a
material order parameter field and temperature. Different material characteristics throughout
the medium yield a strong inhomogeneity and affect the way fracture propagates. The phase-
field approach is employed to describe degradation. For the material order parameter we assume
a Cahn Larché-type dynamics, which makes the model in particular applicable to binary alloys.
We give thermodynamically consistent evolution equations resulting from a unified variational
approach. Diverse coupling mechanisms can be covered within the model, such as heat dissipation
during fracture, thermal-expansion-induced failure and elastic-inhomogeneity effects.
We furthermore present an adaptive Finite Element code in two space dimensions that is capable
of solving such a highly nonlinear and non-convex system of partial differential equations. With
the help of this tool we conduct numerical experiments of different complexity in order to
investigate the possibilities and limitations of the presented model. A main feature of our model
is that we can describe the process of micro-crack nucleation in regions of partial damage to
form macro-cracks in a unifying approach.

1 Introduction

Phase-field models for damage and fracture have recently gained increasing interest in material
science as a complement to other established methods like peridynamics [1] and cohesive-zone models
[2]. The phase-field approach can be traced back to the work published in Refs. [3] and [4]. Therein,
cracked solutions are minimizers of a quasi-static variational problem that obey Griffith’s criterion
[5]. In Ref. [4] this approach was regularized and thus, made tractable for numerical simulations by
introducing a scalar order-parameter field that describes the degradation state of the material. The
gradient form of the surface energy density leads to a smearing of the crack surface (with a small
characteristic length scale) and makes the theory essentially local.
The use of the phase-field description for fracture simulation is convenient for a couple of reasons:
There is no need to track the crack paths or surfaces. No a-priori information about the crack path
is required like, for instance, in LEFM. Furthermore, the transition from microscopic crack models
to macroscopic (averaged) damage models is more straightforward. The class of averaged damage
models is well suited to predict crack nucleation for a certain geometry and load, since knowledge
about the microstructure such as the location of flaws is not required. From the modelers perspective
the damage phase-field can be coupled to other physical fields in an elegant and straightforward
manner by the formulation of a suitable free energy functional.
There are two basic approaches of phase field models that are of interest in this framework: 1)
the microscopic fracture model, where the phase field represents an approximation of sharp cracks
[3, 4], and 2) the macroscopic homogenized approach where the phase field is represents a micro-
crack density [11]. In the following we make use of a hybrid ansatz of these two possibilities. This
enables us to observe crack-growth in numerical simulations without giving any crack-initiation
sites. Different extensions of these models were proposed that deal with dynamic fracture, where
two different concepts play a role: rate-dependent and rate-independent models. The first in its
simplest form was introduced in [11] and later used by many authors (see e.g. [26, 6, 13]) due to its
robust numerical treatment. For brittle materials, where the crack propagation times are of much
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smaller scale than the applied load changes rate-independent models are applied (see [7, 8, 14]).
These require additional techniques like, for instance, backtracking [8, 9] or stochastic optimization
schemes [10] and make them more difficult to implement numerically. A particularity of the damage
phase field is its pointwise irreversibility in time (at least at scale of crack propagation). This “no-
healing condition” was realized in Ref. [11] by extending the dissipation functional by an indicator
function. An alternative provides the use of a strain history functional as it was proposed in Ref.
[12]. The first alternative, we pick up here, is rigorous and applies to more general situations, though
it is less robust from the numerical point of view.
Even in small-strain scenario materials usually exhibit a stretch-compression anisotropy. This has
to be taken into account by the coupling terms between strain and damage. Therefore, in Ref.
[13] a shear-trace splitting was introduced beside the spectral decomposition used in [11, 26]. A
comprehensive overview about the zoo of phase field models for fracture can be found in [14].
We believe that the phase field approach is in particular suited to deal with multiphysics and
also strongly inhomogeneous systems. Such heterogeneous materials are of essential importance in
today’s engineering applications. The ability of a material to resist loads depends on a wide number
of phenomena on different spatial and temporal scales, for instance, the formation of dislocation
systems (slip, twinning, pile-up, etc. ), ductility, the presence of initial micro-voids and cracks,
delamination, and the influence of grain boundaries, just to mention a few. We limit the scope
of this work to quasi-static, brittle damage and investigate the effect of strong inhomogeneities
in mechanical and thermal properties on dynamic fracture propagation. However, despite these
limitations, crack patterns in a static cementitious material could be reproduced by a phase-field
model [15]. In solder joints that are cooled down near the eutectic point the material distribution
undergoes a coarsening process. In some cases this can cause brittle fracture to occur [17, 16].
It is known that mechanical stresses influence the structure of the material domains during the
coarsening process. A coupling between a Cahn-Hilliard equation with elasticity was investigated
in [18]. This provides a feedback mechanism by changing the stress distribution. A suitable model
extended by damage but still neglecting thermal effects was developed [19] and existence of weak
solutions was shown. The coupling of damage and material-phase dynamics to heat is introduced in
[20]. However, a coupling between strain, material phase and temperature via thermal expansion is
missing, which we believe is of particular interest for structural engineers. In a recent publication
[21] thermal expansion was included in a damage model for a homogeneous material. For numerical
simulations an enrichment method is used, which requires pre-notching for crack initiation.
In the following we present a regularized thermodynamically consistent model that incorporates
linear elasticity with damage, a material phase field that describes inhomogeneity, and a temperature
field. The quasi-static evolution is obtained by minimizing a suitable free energy functional. The form
of the free energy we assume permits different interpretation of the damage phase field: Depending
on the choice of the parameter it can either be regarded as a homogenized field over microcracks or
a conventional phase field models for fracture [4]. The first was justified in Ref. [22]. Using a hybrid
ansatz between those two we are able to obtain crack nucleation and propagation without any pre-
existing notches or flaws. We allow for anisotropic elasticity and compare the crack morphology with
the isotropic case. To explore the possibilities and limitations of the model we present numerical
simulations with different complexity. Since it is not clear how the microstructure maps to the
various effective material properties, we do not claim to give quantitative predictive simulations.
Numerical simulations of this highly nonlinear and coupled PDE system are challenging and time-
consuming. We restrict our scheme to two spatial dimensions. Moreover, the multiscale nature of
cracks leads to steep gradients in certain regions while others are almost homogeneous. Thus, it
makes sense to apply an adaptive scheme. We give a closer description of the used algorithm in the
numerics section.
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2 Model

In this section we give a model description by constituting free energy functionals of our order
parameter fields and pseudo-dissipation potentials, which contain first-order time derivatives. The
following subsections first cover elasticity with a displacement field uuu and a scalar damage phase
field z. Then we introduce a free energy for the material phase field c. Finally, we deal with the
heat contribution that involves the temperature field θ. The total free energy and the dissipation
potential are the sum of these contributions:

F [uuu, z, c, θ] =Fel[uuu, z, c, θ] + Fch[uuu, z, c, θ] + Fth[uuu, z, c, θ] =

∫
Ω
f(uuu,∇∇∇uuu, c,∇∇∇c, z,∇∇∇z, θ)dxxx (1)

R[uuu, z, c, θ] =Rel[uuu, z, c, θ] +Rch[uuu, z, c, θ] =

∫
Ω
r(uuu,∇∇∇uuu, c,∇∇∇c, z,∇∇∇z, θ)dxxx. (2)

We close this section by giving evolution equations for these fields that result from a variational
procedure. We assume the small-strain approximation and thus limit our considerations to linear
elasticity. Consequently, differential operators do not have to be transformed in curvilinear coordi-
nates.

2.1 Elasticity and damage/fracture

We consider a linear elastic body with geometry Ω in reference space and a displacement field uuu
depending on the reference-space coordinate xxx and time t. Inertia effects are neglected in the scope
of this work, i.e. we use the quasi-static approximation. Further, we introduce a scalar damage phase
field z ∈ [0, 1], where z = 1 corresponds to “healthy” material and z = 0 to complete damage.
The coupling between damage and displacement field is given by the form of the free energy con-
tribution stated in Ref. [4] for brittle fracture:

F̃el =

∫
Ω

(
ϕel(εεε, z, c, θ) + ξ(1− z)2 + kz|∇∇∇z|2/2

)
dxxx. (3)

The expression contains the elastic energy density ϕel and the remaining terms give (regularized)
surface energy density of the cracks. In its original form the surface energy parameters are related
to the fracture toughness Gc and the crack width `z by ξ = Gc/(2`z) and kz = Gc`z. In the limit
`z → 0 one gets the sharp-interface model [3]. Fixing the crack width `z to the smallest resolvable
length scale ξ and kz are not independent any more. However, in this work, we consider homogenized
fields, and hence effective parameters that we choose independently.
The elastic energy density will degrade when the material is damaged. While some theoretical
work consider complete damage ϕel(εεε, z = 0, c, θ) = 0 (see e.g. [9, 23]), for numerical simulation
this approach is not applicable. Instead the degradation is regularized by a small residual stiffness
ηε > 0:

ϕel(εεε, z, c, θ) = (g(z) + ηε)ϕ̃el(εεε, c, θ). (4)

Here, ϕ̃el(εεε, c, θ) is the elastic potential as if no damage was included and g is the degradation
function, which has to be continuous and monotonous (g′(z) > 0) with g(0) = 0 and g(1) = 1− ηε.
In the elastic energy we introduce the shifted strain tensor as a first-order approximation to account
for thermal expansion of the material:

εεε′(εεε, c, θ) = εεε− α̃(c)(θ − T0(c))111 (5)

with linear strain tensor εεεαβ = (∂xβuα + ∂xαuβ)/2. The parameter T0(c) denotes a material-
dependent reference temperature. At θ = T0(c) there are no eigenstrains in the material. However,
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to include effects like lattice mismatch this temperature may depend as well as the thermal expan-
sion coefficient α̃ on the material phase field c (see e.g. [24] for experiment and [19] for theory).
The elastic energy density is is given by a bilinear constitutive relation of the shifted strain tensor:

ϕ̃el(εεε, z, c, θ) = εεε′(εεε, c, θ) : CCC(c) : εεε′(εεε, c, θ)/2. (6)

In the case of isotropic elasticity the moduli have the (coordinate) form:

Cisoαβγδ(c) = G(c)(δαγδβδ + δαδδβγ) + λ(c)δαβδγδ (7)

with the Lamé parameters G(c) and λ(c) that depend strongly on the material phase field c. 1

It is widely accepted that, concerning damage, there exists a strong anisotropy in most materials,
not only in a directional sense, but also with respect to stretch and compression: Under moderate
stress only stretch induces damage. Different formulations of a suitable constitutive law to avoid
compressive cracking were proposed. In Ref. [11, 26] a spectral decomposition of the strain tensor
is applied and in Ref. [13] a shear-trace decomposition. It was shown that the crack morphology
does not depend significantly on the choice of these alternatives. Here, in order to avoid numerical
difficulties, we choose a rather simple factorial extension:

CCC+(εεε, z, c, θ) =
(
AAA
(
tr(εεε′)

)
+

1−AAA
(
tr(εεε′)

)
g(z) + ηε

)
CCC(c). (8)

The degree of stretch-compression anisotropy can be set by the function AAA depending on the strain
trace. For AAA ≡ 1 one recovers the isotropic damage model. Instead, we use

AAA (r) =
{ 0 for r < 0

1 for r ≥ 0.
(9)

As a result, compression does not induce any damage at all, while for stretch the model behaves like
an isotropic damage model. In contrast to Eq. (7) the modified constitutive law ϕ̃+

el = εεε′ : CCC+ : εεε′/2
is highly nonlinear.

To achieve a certain freedom in the choice of the damage degradation function g, the free energy is
extended by an indicator function I[0,∞) that ensures the damage z to always stay in the interval
[0, 1], even if the bounds are no fixpoints of the unconstrained system like in Ref. [11], for instance.
It is defined by IS(z) = 0 for z ∈ S and IS(z) =∞ for z ∈ R\S. Minimizers of the free energy are
now given by subdifferentials of the functional

Fel[u, z, c, θ] = F̃el[u, z, c, θ] +

∫
Ω
I[0,∞)(z)dxxx. (10)

As a crack propagates stored elastic energy is dissipated, transferred to surface energy or to mi-
crostructural changes. We assume a pseudo-dissipation functional as in Ref. [23]:

R̃el[ż] =

∫
Ω

(
− αż + βż2/2

)
dxxx, α, β ≥ 0. (11)

The first parameter α corresponds to rate-independent microstructural changes, while β represents
rate-depen- dent processes such as, for instance, friction. It is essential to impose the condition
ż ≤ 0, since material healing is forbidden. The final dissipation-pseudopotential is:

Rel[ż] = R̃el[ż] +

∫
Ω
I(−∞,0](ż)dxxx. (12)

1Small Greek letters are used for spatial indexing. We use the summation convention for coordinates unless
otherwise stated.
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The “viscosity” β has a regularizing effect on the temporal dynamics of the crack, since it propagates
with finite speed vcrack ∼ β−1. Omitting this viscosity β results in a rate-independent or truly brittle
damage model. Unfortunately, this involves energy-balance issues, since finding the global minimizer
at each time step is not guaranteed due to the non-convex functional structure of (10) and (12).
Back-tracking schemes (see Refs. [8, 9]) provide a solution but for the cost of computational expense.
In this work we assume a rate-dependent medium with a small but finite value of β and rather adjust
the time step to sufficiently small values if needed.

2.2 Material phase-field

A widely used approximation for the free energy density ϕch(c, θ) of a binary interacting mixture
is the double-well potential. It involves an order parameter c, for which, in our case, c = ±1 means
that only one of the chemical species is present. In Ref. [27] an interface model was developed that
describes a phase transition from a homogeneous mixture to the formation of domains below a
critical temperature θc, called spinodal decomposition. The polynomial form of the double-well is
widely used but has the drawback that it permits also values being outside the interval [−1, 1]. If the
dynamics is not coupled to other fields, this is not an actual problem. In this case thermodynamic
“forces” may push the values far outside the admissible interval. In the worst case this can lead to
unphysical values if material parameters are linearly interpolated between the two pure phases, e.g.
when G(c) = (1 + c)G+/2 + (1 − c)/G−/2. The theoretic term for an interacting binary mixture
fbin(b) = Rθ

(
b ln b+ (1− b)ln (1− b)

)
+ Ξb(1− b), b = (1 + c)/2 provides such a potential barrier.

But here, instead, we make use of an indicator function, as in Eq. (10), that we add to the Landau
potential similar to Ref. [28]:

ϕch(c, θ) = ϕ0

(1

4
c4 − 1

2

θc − θ
θc

c2
)

+ I[−1,1](c). (13)

We do not in general expect c ≡ 0 to be a homogeneous steady state (HSS) of the system but
another material ratio ce. This may be the eutectic point of a binary alloy, for instance. However,
the free energy in (13) is not unstable for any states with |c| > (1 − θ/(3θc))1/2. To ensure the
presence of an instability at c = ce with necessary condition ϕ′′ch(ce) < 0 for all ce ∈ (−1, 1) the
transformation χ : c 7→ (c− ce)/(1− cec) is applied. The free energy then has the form:

ϕ̃ch(c, θ) = ϕ0

(1

4
χ(c, ce)

4 − 1

2

θc − θ
θc

χ(c, ce)
2
)

+ I[−1,1](c) (14)

with ϕ̃′′ch(c) = ϕ0(1− θ/θc)/(1− c2
e)

2 > 0 for θ < θc. The modification is shown in Fig. 1.

Together with an interface-energy term the material part of the free energy is

Fch[c, θ] =

∫
Ω

(
ϕ̃ch(c, θ) + kc(∇∇∇c)2/2

)
dxxx. (15)

The field c represents a conserved order parameter. The evolution is given in the form of a continuity
equation with a gradient flux of the chemical potential µ:

µ =
δF
δc

+
δR
δċ
, (16)

∂tc =∇∇∇ · (m(c, θ)∇∇∇µ). (17)

This equation is an extended Cahn-Hilliard equation, which involves the isotropic mobility parame-
ter m. The classical Cahn-Hilliard equation exhibits a type II (Cross-Hohenberg classification [29])
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Figure 1: Modified double-well potential
given by Eq. (14) for θ < θc (solid blue)
and θc > θc (solid red). The unstable equi-
librium is shifted according to the vertical
black line at ce = 0.26. The original Lan-
dau potential for both cases is shown by
the dotted lines.

instability and coarsening behavior for θ > θc. If the dissipation potential Rch[ċ] =
∫

Ω ηcċ
2/2dxxx is

considered additionally one obtains a special form of the “viscous” Cahn-Hilliard equation (see e.g.
[30]).
As indicated in Eq. (17) the mobility in our model depends on both, the material phase and the tem-
perature. In solder alloys these variables can change the mobility over several orders of magnitude
[33]. We assume that the temperature-dependence follows an Arrhenius law:

m(c, θ) = A(c)exp
(
−∆G(c)/(Rθ)

)
. (18)

2.3 Temperature

A solid with a temperature far above the Debye temperature has an approximately constant specific
heat cp with respect to temperature. Therefore, we use the ansatz

Fth[c, θ] =

∫
Ω
fth(c, θ)dxxx = −

∫
Ω
cp(c)θ ln(θ)dxxx, (19)

and the relation cp = −θ∂2
θfth is fulfilled automatically.

The entropy density of the system is given by s = − δF
δθ and the inner energy density by e = f + θs,

where f is the total free energy density. A thermodynamically consistent heat equation, which we
will give in the following, is obtained by the associated balances

∂ts+∇∇∇ · JJJs = ṡirr ≥ 0 (20)
∂te+∇∇∇ · JJJe = 0. (21)

The entropy flux is related to the heat flux by JJJs = JJJ the /θ. A standard expression for the heat flux
(Fouriers law) is used:

JJJ the (c,∇∇∇θ) = −K(c)∇∇∇θ, (22)

where the heat conductivity K will depend on the material phase.

2.4 Evolution equations

The minimizers of the free energy together with the pseudopotential have to fulfill the following
necessary conditions with respect to uuu and z:

δF
δuuu

+
δR
δu̇uu

= 0, (23)

δF̃
δz

+
δR̃
δż

+ ∂zI[0,∞)(z) + ∂żI(−∞,0](ż) 3 0. (24)
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They yield the thermoelastic equation

−δF
δuuu

=∇∇∇ · σσσ = 0, (25)

σσσ =∂εεεϕel = CCC+ : εεε′ +
1

2
(εεε′ : ∂trεεεCCC+ : εεε′)111 (26)

and the damage evolution equation

β∂tz − α+ 2ξ(z − 1)− kz∆z + ∂zϕel + ∂zI[0,∞) + ∂żI(−∞,0] 3 0, (27)

which is a subdifferential equation.
By computing the chemical potential with Eq. (16), the material phase field equation is obtained:

∂tc−∇∇∇ ·
(
m(c, θ)∇∇∇

(
ϕ0c
(
c2 − (1− θ/θc)

)
− kc∆c+ ∂cϕel

− ∂ccpθ ln(θ) + ηc∂tc+ ∂cI[−1,1](c)
))
3 0. (28)

In order to obtain a transport equation for heat, we consider the balance of the entropy and internal
energy given by Eqs. (20) and (21). We use standard arguments of thermodynamics near equilibrium
and split between flux divergences and positive-definite quadratic terms to identify entropy sources.
A detailed derivation is given in Appendix A. Here, we merely state the result, which is

cv∂tθ +∇∇∇ ·
(
K(c)∇∇∇θ

)
−
(
∂θσσσ : ε̇εε+ ∂θν ċ+ ∂θγ ż

)
θ

= m(c, θ)|∇∇∇µ|2 + ηc(∂tc)
2 − α∂tz + β(∂tz)

2, (29)

with the volumetric heat capacity cv = −θ ∂
2f
∂θ2

, ν = ∂cf and γ = ∂zf . This quantity is approximately
constant in temperature:

cv(c, θ) = cp(c)− α̃2Cααββ(c)θ ≈ cp(c). (30)

The negative temperature dependence is small and outweighed by the increase of cp according
to the Debye model for solids. In the presented model even this effect is neglected, since we set
cp(θ) = const.
For the material parameters that depend on the material phase field c we use a simple linear
interpolation between the extremal values. If p is such a parameter, then we set

p(c) = p+1(1 + c)/2 + p−1(1− c)/2
p ∈ {CCC, α̃, T0, cp,K,A,∆G}. (31)

2.4.1 Boundary and initial conditions

Suitable boundary conditions have to be imposed. We use the subscripts D,N and R for the disjoint
sets of Dirichlet, Neumann and Robin conditions, respectively. The superscript denotes the field the
boundary condition is associated to. For all times t ∈ [0, T ] it is imposed that

xxx ∈ ∂Ωu
D : uuu(xxx, t) = bbb(xxx, t) (32)

xxx ∈ ∂Ωu
N : σσσ(xxx, t) ·nnn(xxx) = tttb(xxx, t) (33)

xxx ∈ ∂Ω :∇∇∇z(xxx, t) ·nnn(xxx) = 0 (34)
xxx ∈ ∂Ω :∇∇∇µ(xxx, t) ·nnn(xxx) = 0 (35)
xxx ∈ ∂Ω :∇∇∇c(xxx, t) ·nnn(xxx) = 0 (36)
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xxx ∈ ∂Ωθ
D : θ(xxx, t) = θb(xxx, t) (37)

xxx ∈ ∂Ωθ
N : K(xxx, t)∇∇∇θ(xxx, t) ·nnn(xxx) = jb(xxx, t) (38)

xxx ∈ ∂Ωθ
R : K(xxx, t)∇∇∇θ(xxx, t) ·nnn(x) = −κ(xxx, t)

(
θ(xxx, t)− θout(xxx, t)

)
. (39)

These conditions introduce a boundary displacement bbb, force tttb, heat flow jb and heat conductivity
κ. At the transition point between Dirichlet and Neumann conditions for the displacement the
undesirable effect of large stress concentration occurs (see Fig. 2 a),b)). Simulations of the presented
model usually show cracks that initiate first at these points. Dirichlet conditions are not fulfilled
ideally, since the material where the sample is clamped is deforming as well. One possibility is to
extend the model by mounting pads with a certain (usually larger) elastic modulus (see c, in gray).
Instead, Robin-boundary conditions are applied as an approximation (see d). This can be justified
for sufficiently small pad width h: At the interface between the sample and the pads the jump
condition nnn · (σσσ+ − σσσ−) = 0 and uuu+ = uuu− must hold. Now, approximate

σσσ−(xxx−) ·nnn = (CCC+ :∇∇∇uuu)(xxx+) ·nnn = DDD′ ·
(
uuu(xxx+ + hhh)− uuu(xxx+)

)
/h+O(h0)

≈DDD ·
(
bbb(xxx+ + hhh)− uuu(xxx−)

)
/h, (40)

where we assume DDD to be diagonal and including the elastic properties of the pads. Consequently,
we have to add a Robin condition

xxx ∈ ∂Ωu
R : σσσ(xxx, t) ·nnn(xxx) = DDD ·

(
bbb(xxx, t)− uuu(xxx, t)

)
(41)

to Eqs. (32-39). In this case the function bbb gives the displacement of the pad boundary. In the limit
Dαβ/‖CCC‖ → ∞ one obtains Dirichlet conditions again.

The initial conditions are given by the functions

z(xxx, 0) =z0(xxx) = 1 (42)
c(xxx, 0) =c0(xxx) = ce + ζ(xxx) (43)
θ(xxx, 0) =θ0(xxx) (44)

θ(xxx, 0) =θb(xxx, 0) on ∂Ωθ
D (45)

that have to be consistent with the boundary conditions (34)-(39). The function ζ may be zero or
some small random noise.

2.5 Model parameters and scales

It is not the aim of this manuscript to provide predictions for certain composite materials but rather
to examine the model in general. Therefore, we only focus on reasonable orders of magnitude for
the system parameters.

2.5.1 Parameter estimates

First of all, we take a look at the different timescales that the model possesses. Let L ≈ 100µm
be the length scale of our domain. From a scaling argument one obtains for the cracking timescale
τz ∼ β/||CCC||. From linear stability analysis of the HSS the timescale domain formation computes
τc ∼ kc/(mϕ2

0) when ηc is zero or small enough. Domain coarsening has a different dynamic behavior
and scales with a power law τdom. ∼ `ndom., where 3 ≤ n ≤ 4 [31, 32]. Temperature equilibrates along
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Figure 2: Effect of Dirichlet conditions for
the displacement: When Dirichlet conditions
at the vertical boundaries and Neumann
conditions (zero stress) are given at the hor-
izontal boundaries (indicated in b)) large
stress concentrations at the transition points
occur. Consequently, as the plot of the dam-
age field a)) shows, cracks initiate at the
edges of the square domain. To avoid this
effect an elastic outer material between the
specimen and the ideally fixed walls is as-
sumed c). This situation can be approxi-
mated by the use of Robin conditions when
the buffer material thickness h is sufficiently
small d). Instead of an additional elastic
modulus Eo, a spring matrix ||DDD|| ∼ Eo/h
is introduced.

the body roughly with time τθ ∼ cpL2/K, which is obtained from the heat equation. The interface
length scales for the damage phase field is `z ∼

√
kz/ξ and for the material phase `c ∼

√
kc/φ0.

In order to obtain an estimate for possible chemical and mechanical parameters, we follow Refs.
[33, 34] that focus on the common solder alloy Sn63Pb37 and [35]. For the damage-related parameters
the situation is more complicated, since it is not clear to us how these map to the effective quantities
in the homogenized model. To prevent longish parameter lists for each simulation, we give the
corresponding tables in the Appendix C (there, see tables 1-4). Only the parameters of immediate
interest will be stated in the figures.
The damage viscosity β can be set very small in order to model brittle fracture but there is a
lower bound: The crack speed must not be larger than the speed of sound vs and our model
fails when inertia effects come into play. If we assume a rough estimate of the propagation speed
vcrack ∼ ||C||`z/β < vs we obtain in tin, for instance (vs,tin ≈ 3 ·103 m

s and `z ≈ 100nm), β > 10Pas
giving the lower bound. The typical resulting timescales are then:

• Crack propagation time for length L: τz ∼ 10−7 s

• Heat transport: τθ ∼ 10−4 s

• Domain formation: τc ∼ 103 s

• Coarsening: τdom. =∞.

This consideration clearly illustrates the multiscale character of the model. In real solder alloys the
characteristic time τc is smaller then the values given here, usually in the range of seconds (∼ 100 s).
This deviation is caused by the choice of the interface-energy parameter kc. The significantly smaller
value of this quantity (see e.g. [33]) cannot be achieved for numerical reasons. But since we are not
interested in the initial phase of spinodal decomposition, we believe our choice is not critical.

2.5.2 Regularization

We assume the regularization parameter ηε to be sufficiently small if the remaining stored elastic
energy in the fully damaged regions (z = 0) is very small compared to non-damaged regions (z > 0).
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To estimate this value, we consider a one-dimensional stretched bar (by s) of length L with a crack of
width `z at some position. The linear elastic equation can be solved directly and the corresponding
energy is:

Wel =
1

2
Es2/(ηεL+ (1− ηε)`z), (46)

and the ratio to the undamaged case W 0
el = 1

2E(s/L)2L is

Wel/W
0
el =

(
1 +

1− ηε
ηε

`z
L

)−1

. (47)

Thus, for ηε � 1, it is required that
ηε � `z/L. (48)

The viscosity parameter ηc in Eq. (28) is kept solely for regularization. It can also be set to zero but
it improves numerical robustness. For the small value, that we choose here, the effect of the viscous
term, like e.g. a movement of the domains, plays a role only at very large times.

3 Numerical methods

In the following, a brief description of the numerical scheme is given that solves Eqs. (25)-(82). We
restrict the numerical simulations to spatial dimension two, due to the complicated, highly nonlinear
structure of the evolution equations. However, the presented algorithm can be extended to three
dimensions in a straightforward manner.

3.1 Discretization

Space discretization is done by a standard linear Finite Element approach (FEM). The triangular
meshes are generated by the free software Triangle [36]. In the following Ωδ will denote the trian-
gulation of Ω. A subscript δ will mark a discrete version of some quantity.
We use backward differences for discretization in time. Let the time be indexed by n and δtn the cor-
responding time increment, then the approximate derivative is (∂ty(tn))δ = (y(tn)−y(tn−1))/δtn, y(tn) =:
yn. A semi-implicit time scheme is chosen as follows for Eqs. (25) and (82):

fεεε(uuu
n,uuun−1, zn, cn, θn) =0 (49)

θn − f δtnθ (uuun,uuun−1, zn, cn, cn−1, θn) =θn−1. (50)

The stretch-compression anisotropy in Eq. (8) makes the elastic potential non-convex and iterative
schemes turned out to unstable. To circumvent this problem, we use the strain trace from the last
time step to compute the elastic tensor CCC+. Without this anisotropy (AAA ≡ 1) the scheme becomes
fully implicit again.

To deal with the constrained evolution for z and c, the subdifferential equations (27) and (28) are
reformulated as constrained minimization problems:

zn = argmin
0≤ζ≤zn−1

(
F̃ [uuun,uuun−1, ζ, cn, θn] + R̃δtn [ζ, zn−1, cn, cn−1]

)
(51)

cn = argmin
−1≤ρ≤+1

(
F̃ [uuun,uuun−1, zn, ρ, θn] + R̃δtn [zn, zn−1, ρ, cn−1]

)
. (52)
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3.2 Space adaptivity

Modeling damage and fracture involves a wide range of length scales as illustrated in the previous
section. The characteristic length scale of the crack width ` and the domain size are orders of
magnitude apart. Furthermore, dynamic fracture properties, such as the crack propagation speed,
for instance, have poor convergence properties with respect to the mesh resolution. Enrichment
methods (XFEM) are used in some cases to deal with that problem. Here, we rely on an adaptive
algorithm that strongly refines the mesh near the tip of the crack.
A mesh Mn is assigned to each time step tn that is constructed via refinement of a coarsest base
mesh B. The data from the solution at time tn−1 is used to generate the next Mesh Mn. The
computational cost, even when re-meshing takes place at every time step, is small compared to the
iteration process to obtain the solution. For refinement Triangle allows to impose an upper area
constraint at each node of the base mesh. At node index i we define this area as

ani = min(aI ni , aII ni , aIII ni ) (53)

depending on the following three criteria:

I. Gradient criterion

aI ni = Hamin

(
n2
f/ max
y∈{uuu,z,c,θ}

(|∇∇∇y(xxxi, tn)/δy|2)
)

(54)

with cut-off function

Hamin(r) =

{
aImin if r < aImin
r else.

and some weights δy for each field. If the refined area exceeds the area of the corresponding base
triangle there will be no refinement. The parameter nf gives the magnitude of the number of nodes
resolving a front.

II. Stress concentration detection

The rate-independent parameter α introduced in Eq. (12) serves as threshold of the elastic energy
density for damage to occur. Therefore, we consider the normalized elastic energy w(εεε, z, c, θ) =
ϕel(εεε, z, c, θ)/α as an indicator for damage to set in. Given a threshold wthres for refinement it may
happen that the mesh is over-refined. To avoid this, we define the monotonous function A(w′) =∫

Ω Θ(w(xxx) − w′)dxxx (Θ unit-step function) and define the refinement threshold as the root of the
nonlinear equation A(w′)−Amax = 0. Amax is the maximum area of the domain Ωδ we allow to be
refined. With minimum threshold wmin we set

wthres(wmin, Amax) = max
(
wmin, argzero

w′>0
(A(w′)−Amax)

)
and

aII ni =

{
aIImin if w(xxxi) > wthres

area(Ωδ) else.
(55)
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III. Damage detection

Refinement is also applied if the material is partly damaged to a critical value 0 < zc < 1:

aIII ni =

{
aIIImin if z(xxxi) < zc
1 if z(xxxi) ≥ zc.

(56)

When zi = 0 for some node index (i.e. when fracture occurs), it is additionally imposed that this
node i is preserved under further re-meshing. This prevents interpolation from smearing out existing
cracks.
An example of a mesh, that was generated according to the above criteria during crack propagation,
is shown in Fig. 3 a)-c).

Interpolation

Since the set of nodes (apart those with zi = 0) usually changes under re-meshing, fields have
to be interpolated. The use of barycentric interpolation is fast but does not conserve the integral
Nc =

∫
Ωδ
c(xxx, t)dxxx by construction. This is a serious problem when a conserved order parameter

field is considered. Let {φk}k=1,...,m and {φ̃i}i=1,...,m̃ be the element bases functions of the meshes
Mn−1 and Mn, respectively. It is presumed that no element (triangle in this case) of mesh n − 1
shall be located outside the mesh n, and vice versa. This is not a serious limitation, because the
body-reference frame is fixed. We construct the linear interpolation map represented by the sparse
matrix

Pik =

∫
Ωδ

φ̃i(xxx)φk(xxx)dxxx, c̃i =

m∑
k

Pikck. (57)

It can be shown easily that this map is conserving (see Appendix B):∫
Ωδ

m̃∑
i

c̃iφ̃i(xxx)dxxx =

∫
Ωδ

m∑
k

ckφk(xxx)dxxx.

3.3 Time adaptivity

For continuous functions of z in the rate-dependent setting the constraint work vanishes:

Wcon(t, t+ δt) =

∫
Ω

∫ t+δt

t

(
∂żI(−∞,0](ż(s))

+∂zI[0,∞)(z(s))
)
ż(s)dsdxxx = 0.

However, for the corresponding time-discrete version this is not true any more. Let %n and νn be
the time-discrete versions of the constraint forces % ∈ ∂żI(−∞,0] and ν ∈ ∂zI[0,∞)(z(t)) at time step
tn. Then, we have

Wcon(tn−1, tn) =

∫
Ω

(%n + νn)(zn − zn−1)dxxx

(58)

with the complementary conditions %n(zn − zn−1) = 0 and νnzn = 0. It follows that

Wcon(tn−1, tn) = −
∫

Ω
νnzn−1dxxx (59)
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Figure 3: Discretization control in time
and space: Exemplary clipping of a
mesh that is refined according to the
criteria in Sec. 3.2 is shown in a)-c).
The mesh is color-coded by the ma-
terial phase field a) the elastic energy
density b) and the damage phase field
c). The subfigures illustrate the effect
of the criteria I a), II b) and III c).
d) Example of timestep control: As the
crack starts to propagate (crack length
in solid red) the timestep size δtn
(dashed blue) is decreased. The simu-
lation starts with δt0 = 2 · 10−3s and
can have a minimal value of δtmin =
10−4 · δt0. At n ≈ 600 the crack has
reached the end of the domain. It was
chosen β = 10−6GPa s.

is not necessary zero. With decreasing time step (β 6= 0!) it holds W δ
con(tn−1, tn)/δtn → 0. This

quantity in its discrete version is used as a measure of time step quality. W δ
con(tn−1, tn) can be

computed with help of Eq. (24):

W con(tn − δtn, tn) =

−
∫

Ω

((δF̃
δz

)
n

+
(δR̃
δż

)
n,n−1

)
(zn − zn−1)dxxx. (60)

Time step control works in the following manner:
If |W δ

con(tn − δtn, tn)/δtn| > wtol the obtained solution is rejected and recomputed with smaller
time increment δt′n = b δtn, 0 < b < 1 until the condition is fulfilled. If the condition |W δ

con(tn −
δtn, tn)/δtn| < wtol holds for nb consecutive time steps the increment is increased: δt′n = δtn/b.
Additionally, the time increment always has to stay in the given bounds [δtmin, δtmax]. This is il-
lustrated exemplarily for a crack that propagates through the whole medium in Fig. 3 b).

The threshold wtol should be chosen small enough, not only to ensure energy balance, but also such,
that the propagation speed of emerging cracks converges. In Fig. 4 the timestep is varied among
several simulations but no time adaptivity is used. A standard situation with a notch under mode-I
load is assumed (see b)). In a) the time-averaged speed (during propagation) is plotted against the
time step δt. This shows that convergence behavior is not very well when linear FEM discretization
is applied even when spatial refinement takes place at the crack tip. This is a known issue for FEM
methods in fracture mechanics and lead to the usage of enrichment methods (XFEM) [37, 38].
Since, here, we are only interested in qualitative results, we stick to the linear-FEM discretization
and choose an adequate timestep.
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Figure 4: Influence of time discretiza-
tion: In a) the averaged crack propa-
gation speed v̄ = 〈da/dt〉a,a+∆a,L at
length a = 0.2L is plotted against the
fixed timestep δt. Relative units are
used where the characteristic speed is
vch = `z/τz, τz = β/ϕtip

el and `z =√
kz/(2ξ). Typical elastic energy den-

sities at the crack tip ϕtip
el can be es-

timated as shown in the Appendix C,
(see Eq. (96)). Fig. b) shows the setup
for the simulations, in which a notch
sample is constantly stretched by a
mode-I load.

Figure 5: Convergence rate of simula-
tions: An example of a crack propagat-
ing through a loaded square is shown.
Left: the number of iterations in needed
for convergence (εtol = 10−9) at each
time index n. Right: Error ri = |Xi −
Xconv.|/|X0 − Xconv.| vs. iteration i,
where X = (uuu, z, c, θ) and Xconv. is the
converged solution. Three representa-
tive trajectories are depicted (marked
in the left figure in the corresponding
color).

3.4 Solver

The non-convexity of the functional F makes the system (49)-(51) hard to solve in a one-step and
fully-coupled procedure. Instead, a staggered scheme that combines the alternative minimization
scheme [8] with a Newton-Raphson method is applied (SNR).
A quite robust method to find local constrained minimizers of (also indefinite) quadratic function-
als is the Reflective Newton Method (RN) introduced in Ref. [39]. It adopts the concepts of a
trust-region method and lowest-eigenvalue line search. For linear equation solving the free software
UMFPACK (Unsymmetric Multi Frontal Package) is used [40]. The relatively slow convergence of
the staggered scheme is the main cause of computational effort. It includes two nested iterative
schemes: the inner RN and the outer SNR. As it is shown in Fig. 5 the convergence of the SNR can
be slow. This limits the number of nodes to a maximum of ∼ 105 nodes.

4 Numerical simulations

In this chapter we present a number of numerical experiments that shall reveal the possibilities and
limitations of the above described model. At first, in subsection 4.1, we neglect damage and show
the effect of mechanical stress on phase separation. Then, we discuss the implications of the hybrid
damage/fracture formulation in 4.2. We further illustrate the effect of anisotropy in our model both,
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Figure 6: Different modes of
phase separation-instability
(θ > θc) around a notch with
applied load: a) mode-I load, b)
mode-II load. The (isotropic)
elastic modulus of phase c = −1
is softer: G+1 > G−1 and
λ+1 > λ−1. The figures show a
clipping from a notched square
domain.

with respect to stretch and compression and directional anisotropy of the elastic tensor (4.3). In
subsection 4.4 we demonstrate the coupling between damage and material phase field. Thermal
effects are shown in the two subsequent sections: Subsection 4.5 deals with temperature profiles at
the crack tip, while 4.6 shows effect of thermal expansion on damage evolution.

4.1 Phase separation on notch a geometry

Mechanical stress has a significant influence on spinodal decomposition in alloys. The coupling is
given by the elastic tensorCCC(c) which depends on the material phase and the lattice misfit expressed
in the term T0(c). Since, given a certain load, the material will minimize its free energy the softer
phase is driven to regions of larger stress. The mechanism in general was studied extensively (see
e.g. [41, 42, 43]). Here, we present the effect of stress on a notched geometry in Fig. 6. We consider
an isothermal setting with θ > θc. The homogeneous initial conditions c(xxx, 0) ≡ ce are unstable.
Without any stress concentrators the instability would grow from some random fluctuations. Here
instead, phase separation starts at the tip of the notch. Under different loading modes (mode I in 6
a) and mode II in b) different modes of instability occur. Since the phase c = −1 is softer in these
simulations, the highest concentration of this material will appear directly at the tip of the notch.
For realistic mobility m spinal decomposition is much slower than macroscopic crack propagation.
The effect might play a role in fatigue cycling on a micro-scale.
Different parameters ce in the transformed Landau potential are used in Fig. 7 a)-c), where a mode-I
load is increased linearly in time. It illustrates that the instability of the HSS at ce is maintained
for all ce ∈ (−1, 1). The relevant contributions to the total free energy are shown in Fig. 6 d). In
this example the chemical part Fch initially decreases faster than the elastic energy Fel grows. But
since domain growth becomes almost frozen at later times (scales with `dom. ∼ t1/n, n > 3), the
elastic energy compensates this effect.

4.2 A hybrid formulation of damage and fracture

We adopt two concepts: One is the damage phase field formulation from [11] with a dissipation
rate functional like in [19]. The other is the fracture phase field model [3], which allows only sharp
cracks and requires crack initiators. The choice of the parameters α and ξ determines which of
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Figure 7: Material phase field
evolution under linearly in-
creasing mechanical stress for
different parameters ce = 0
a),−0.26 b), −0.75 c) and ini-
tial condition c(xxx, 0) = ce.
The snapshots are in a)-c)
are taken at same time t =
2.58h. In d) the chemical
free energy contribution (see
Eq. (15)) is plotted vs. time
(solid blue) as well as the
elastic free energy contribu-
tion (dashed red, Eq. (3)).

both is intended to be described. In the fracture model the quantity ξ is connected to the fracture
toughness via ξ = Gc/(2`z). Since `z characterizes the crack width, this parameter should be quite
large compared to the typical elastic energy density wtyp. = ||CCC|| · |bbb|2/(2L2), where ∗ denotes
the spatial average and bbb the given boundary displacement. Initiators must be given for a crack
to initiate with σσσ(r, ϑ) ≈ Kfff(ϑ)/

√
2πr (r, ϑ polar coordinates) acting as stress concentrators.

With the mode-I-critical stress intensity factor KIc ≈ 8MPam1/2 for an Sn63Pb37 solder [44] the
fracture toughness is estimated to be about Gc = K2

Ic/E ≈ 3 ·10−6GPam. This yields the estimate
ξ = Gc/(2`z) ≈ 102GPa.
Throughout this manuscript we choose a very simple form of the damage degradation function,
namely

g(z) = (1− ηε)z. (61)

This permits to identify the rate-independent damage parameter α as the threshold for the elastic
strain energy to induce damage at all. A very rough estimate can be obtained from Eq. (27) for a
given stress distribution when the gradient energy (∼ |∇∇∇z|2) is neglected. In this case, there is a
fixpoint at

z? ≈


1− (ϕ̃el[z

?]− α)/(2ξ) if α < ϕ̃el[z
?] < α+ 2ξ

1 if ϕ̃el[z
?] ≤ α

0 if ϕ̃el[z
?] ≥ α+ 2ξ.

(62)

In Fig. 8 we show simulations of cracks in a homogeneous material initiated at an elliptical-shaped
flaw. In the cases a) and b) the parameter ξ is large (ξ � wtyp.) but α ∼ wtyp. is moderate. There
is no macroscopic crack formation, although the material is damaged partially in a), where the axes
ratio of the ellipse is a/b = 0.5. In b), where a/b = 0.1, the stress concentration is much larger and
therefore, two cracks appear. In subfigure c) it is α � wtyp. and ξ ∼ wtyp.. Partial damage occurs
throughout the whole specimen and finally cracks form. In d) it is α ∼ wtyp. but larger than in c)
and ξ ∼ wtyp.. Here, cracks occur but partial damage is suppressed except near the cracks. The
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Figure 8: Interpretation of the crack model in the ξ-α-parameter plane: The damage phase field
is shown for parameters ξ = 0.5GPa, α = 0.1MPa in a) and b), ξ = 10MPa, α = 0.1MPa in
c), and ξ = 10MPa, α = 0.1GPa in d). The factor ξ is related to the fracture toughness and
interface width by ξ = Gc/(2`z) and kz = Gc`z = 3 · 10−5 Pam2. The remaining parameters are
the same in all presented cases. A diagrammatic plot of the ξ-α-plane is given in subfigure e) with
interpretation. Cases a) and b) are located in the upper left corner, c) in the lower left, and d) in
the lower right corner.

idea is illustrated in e): Choosing α, ξ � wtyp., we interpret the model as a fracture model suited
to describe cracks in a microscopic framework. In the opposite case, when α, ξ ∼ wtyp., we interpret
partially damage material as regions where microcracks are present but not resolved. When cracks
emerge in partially damaged regions we interpret this as crack nucleation. The gradient term in
the Eq. (3) is interpreted as a crack-to-crack-interaction energy (as stated in [11]). Therefore, we
consider the model presented here as a hybrid ansatz between [3] (fracture, sharp) and [11] (damage,
homogenized).

4.3 Elastic anisotropy

The stretch-compression anisotropy (SCA) is widely used as given in [26] by spectral decomposition.
The trace term we use in this framework (see Eq. (8)) gives qualitatively the same results. In Fig.
9 a) we show the crack path induced by a shear load (mode-II) when there is no SCA, i.e. AAA ≡ 1.
The typical branching that originates from the tip of the notch is observed. With SCA in b), that
we choose by a step function as given in Eq. (9), the compressive branch is suppressed. In subfigure
c) a stress-strain diagram is depicted for a periodic saw-tooth-like mode-I load. It becomes obvious
that the gradual degradation takes only place in the upper-right quadrant.
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Figure 9: Stretch-compression
anisotropy in mode-II crack b)
and mode-I crack c). The top pic-
tures compare crack evolution under
a constant shear load for a linear
isotropic constitutive law a) and
according to Eq. (8) in b). The effect
of stretch-compression anisotropy
becomes obvious in the stress/strain
diagram in subfigure c), where a
periodic mode-I load is applied. The
inset in c) shows the crack length a
(dotted red) and the applied strain
(solid purple) over time in arbitrary
units. The rate-dependent damage
viscosity was set to β = 5 · 10−3GPa s.

In a model that does not allow for compressive material degradation the mode-II-load mechanism
ceases to apply for the cause of branching. For rapid changes of load and when inertia is included in
the model a branching instability is observed as shown in Ref. [45]. Though inertia is not included in
the presented model, branching can be obtained due to directional anisotropy of the elastic tensor. In
two dimensions there are six independent components: Cxxxx, Cyyyy, Cxxxy, Cyyyx, Cxyxy and Cxxyy
(x1 → x, x2 → y). For an orthotropic material (with Cyyyx = Cxxxy = 0) we define

Cxyxy := G Cxxyy := λ

Cxxxx := X Cyyyy := Y. (63)

In case of a square-symmetric material it is X = Y . In Fig. 10 numerical simulations are shown
where the anisotropy is large enough for branching to occur. The material is homogeneous but
orthotropic for a) and b). The anisotropy |X − Y | is larger in b) than in a). In a) a vertical crack
initiates at the notch and starts to branch as it propagates further. In b), with stronger anisotropy,
two diagonal branches start from the notch and several branches are formed under the same angle.
For a square symmetry X = Y (X = Y 6= 2µ + λ → non-isotropic) branching can appear as well
like shown in c). The mechanism becomes obvious by the elastic energy density (see d)-f)) that has
maxima that are tilted with respect to the propagation direction of the crack. This is a consequence
of the specific anisotropy.
Here, we do not intend to use directional anisotropy coupled with a phase separation dynamics and
damage. The problem arises that for each material-phase domain one has to give an orientation for
the crystal lattice. It is not realistic to assign the same orientation in all domains. Therefore, an ex-
tension of the free energy by an orientational order parameter would be necessary. The treatment of
the resulting evolution equations would be cumbersome and is beyond the scope of this manuscript.
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Figure 10: Branching under mode-I load in a homogeneous (c ≡ 1) notched specimen with directional
and stretch-compression anisotropy of the elastic tensor. The figures show the damage field z for
two different orthotropic materials a) and b) and a cubic material c) with symmetry planes oriented
horizontally and vertically. The corresponding elastic energy density ϕel d)-f) is plotted beneath
each picture.
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Figure 11: Phase separation of a notched
material under vertical plain stress: The ma-
terial is loaded in an under-critical man-
ner (no crack initiation) until domains have
formed a),b). Then, at a certain time (see
d)) the load is increased, such that a crack is
initiated and propagates through the whole
domain c),e). The propagation process itself
takes only 88µs. The elastic moduli of the
two phase differ: λ+1 = 120GPa, G+1 =
60GPa and λ−1 = 40GPa, G−1 = 15GPa.
In subfigure e) the crack path (in black) for
two different meshes with the same reso-
lution is shown revealing minor differences
but qualitatively the same deflection at the
phase boundaries. Two regions of interest
are magnified: In f),g) the inclination an-
gle between the crack and the phase bound-
ary is small enough for deflection, whereas in
h,i) the this angle is too large and the crack
penetrates the region of phase c = +1. The
subfigures g) and i) show the elastic energy
density around the crack tip.

4.4 Coupling between damage and material phase field

The different elastic moduli of the two material components that undergo spinodal decomposition
do not only affect the domain formation but also can change the morphology of cracks. During
propagation cracks are attracted to the softer material phase. When an interface to a stiffer region
is hit it depends on the inclination angle if the crack will follow the interface line or crosses it. Both
cases are illustrated by a single simulation of the fully coupled system in Fig. 11. A notched square
is loaded at a constant temperature for a while by an under-critical amount, such that no fracture
appears (see a) and b)). Then, at some time where domains have already formed the load is rapidly
increased and crack initiation sets in (see c and d). This process is finished before any changes are
observable in the material distribution e). Two snapshots during propagation are shown in f),g) and
h),i). In this first example the crack can circumvent the stiffer phase (c = +1) since the inclination
angle is very small. In the latter case where this angle is about 25◦ it is energetically more favorable
to penetrate in the stiffer region. It turned out in the simulations that the elastic moduli of the two
phases must differ about an unrealistically large amount to obtain crack patterns observed in solder
alloys (see e.g. [16]).

4.5 Damage-induced heat dissipation

Damage processes are dissipative and, depending on the material properties, a different rise in
temperature is observed at the crack tip during propagation. This is taken into account in the
pseudo potential (11) and it leads to a source term in the heat equation (82). In Fig. 12 temperature
profiles are shown. The peak temperature around the tip in our simulation depends mainly on the
damage dissipation rates α and β, the specific heat capacity cp and the thermal conductivity K.
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Figure 12: Temperature distribution
during crack propagation for a homo-
geneous material with varied thermal
heat conductivities: a) 65W/(mK),
b) 6.5W/(mK), c) 0.65W/(mK). d)
Damage phase field under mode-I load
(corresponding to simulation in a)).
The Rectangle illustrates the regions
plotted in a)-c). The remaining param-
eters are the same in all three cases.

While varying the conductivity K, we leave the other parameters constant and observe different
shapes of the temperature profile (see a)-c)). Similar temperature profiles have been recorded in Ref.
[46] for fatigue cracks in a Titanium alloy. However, it is stated that there is a deviation from linear
fracture theory in the measurement caused by nonlinear and plastic effects, such that a quantitative
match cannot be expected.
The energy balance of the simulation corresponding to Fig. 12 c) is depicted in Fig. 13. An external
load is increased linearly until a crack is initiated. The overall temporal evolution of the entropy
S = −

∫
Ω ∂θfdxxx and the inner energy U =

∫
Ω(f + θs)dxxx is plotted in the inset. The cracking event

is visible by an immediate rise of the entropy but no resolved. The step-wise rise of the boundary
strain εεε(= ε̄εεxx(L)) is a side-effect of the applied Robin-BC. The relevant energy contributions or
shown in the magnified view during crack propagation. Here, the total elastic free energy Fel(t) =∫

Ω φel(xxx, t)dxxx, the crack-surface energy Fsurf(t) =
∫

Ω(ξ(1 − z(xxx, t))2 + kz|∇∇∇z(xxx, t)|2/2)dxxx and the
dissipated heat
Diss(t, t0) =

∫ t
t0

∫
Ω
δR
δż (xxx, t)ż(xxx, t)dxxxdt are given. It confirms that elastic energy is transferred and

split among crack-surface energy and heat.

4.6 Thermal-induced damage

In this subsection we deal with the opposite direction of coupling, namely how temperature distribu-
tion affect damage evolution. The most relevant effect observed in many instances is crack formation
due to thermal expansion. In an inhomogeneous material, where the coefficient of thermal expan-
sion differs between regions, mechanical stresses emerge. In Fig. 14 an instance is presented with
thermal-expansion mismatch is large enough for the formation of cracks. In this simulation the
sample is fixed at its boundaries and cooled down rapidly at some time. At times t < 4950 s the
sample is hold at constant temperature and spinodal decomposition is allowed to evolve (see e).
Then, in the next 100 s it is cooled down by 158K. During this stage partial damage appears in the
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Figure 13: Energy balances during crack propaga-
tion associated with the simulation in Fig. 12 c).
The integrated crack-surface energy (solid, blue)
Wz, the elastic energyWel (dotted, black) and the
dissipated heat energy D is shown in the time
interval of interest. This time of crack initiation
is indicated by the magnifier glass in the inset
depicting entropy S (dashed, red), inner energy
U (gray) and (spatial) averaged applied strain
ε ≈ ε̄xx(L) (green).

softer regions and at time t ≈ 5022 s rapid crack formation sets in. In subfigure a) cracks are visible
that nucleated in regions with larger partial damage. In b) it becomes obvious that the crack paths
are significantly affected by the material domain structure. Cracks tend to stay in the soft (violet)
pre-damaged regions but penetrate stiff regions (orange) when it is energetically favorable. In sub-
figure d) a snapshot of the temperature distribution is shown (at some time before a)-c) are taken).
The boundary temperature is fixed by Dirichlet conditions (cooling). At the regions where cracks
propagate on observes a rise in temperature. This amount of rise depends on the propagation speed.
Some cracks have slowed down (bottom left in 14 d) which is visible by a local maximum along
the crack path but not at the tip. Others (e.g. the top-left crack) are in a stage of rapid propagation.

The phenomenon of crack nucleation is illustrated in the simulation in Fig. 15, where different
stages of damage evolution are visible. Starting from a completely homogeneous damage field on a
square domain a), thermal stresses induce partial damage b),c). We interpret this as the formation
of micro-cracks. At a certain time these cracks nucleate to rapidly form a macro-crack that can be
seen in d). In this picture we consider resolved cracks as regions with z = 0. Macro-cracks form in
different regions and may merge as shown in e).
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Figure 14: Crack formation during
cooling process: The specimen is fixed
at the vertical boundaries, hold at a
Temperature of 456K at the bound-
aries and cooled rapidly at t = 5000s
(see e)). Partial damage evolves and fi-
nally cracks nucleate. Four snapshots
at time t ≈ 5022 s are presented with
damage phase field a), material phase
field b), and elastic energy density ϕel

c). The temperature field d) is taken at
an earlier time during crack evolution.
Macro-cracks (z = 0) are indicated in
black in b)-d).

Figure 15: Process crack nucleation: A detail of the damage phase field z from the simulation in
Fig. 14 is shown for five consecutive time steps t = 0 s a), t0 + 8.953 · 10−4 s b), t0 + 9.462 · 10−4 s
c), t0 + 9.472 · 10−4 s d), t0 + 9.551 · 10−4 s e) (t0 = 5022 s).
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5 Discussion

In the previous sections we presented a thermodynamically consistent model that incorporates
rate-dependent damage, spinodal decomposition and temperature evolution in a single phase-field
approach. The particular form of the damage contribution to the free energy and its dissipation
functional permits the following interpretation: Micro-cracks which are not resolved by the model
appear as partial damage. They precede the nucleation and formation of macro-cracks which are
resolved in the model and are represented by regions with z = 0. Depending on the choice of the
parameters, we can also describe the extremal cases of a pure fracture model [3] or a homogenized
damage model [11]. Although the damage model is rate-dependent, the time adaptivity of the al-
gorithm over several orders of magnitude enables us to deal with (almost) brittle dynamics. One
has to keep in mind that this model does not include inertia, which should be included if the crack
propagation speed approaches the speed of sound.
We implemented a Finite Element code in order to conduct numerical simulations. The multi-scale
character of the phenomena, both in space and time, made the use of a spatiotemporal-adaptive
scheme necessary. The damage-irreversibility condition is dealt with a constraint minimization tech-
nique. This makes the use of ad-hoc terms like the history functional applied in, for instance, Ref.
[12], unnecessary. However, in return, the algorithm is less robust. The staggered scheme of the fully
coupled equations may need up to several hundreds of iterations to converge at each timestep. This
behavior might be traced back to the inequality constraints that induce nonlinear behavior at any
scale. This limits the mesh sizes that one can handle significantly. Despite the spatial adaptivity
that restricts high mesh resolution to critical regions near cracks, the approach seems, at this stage,
applicable only in two dimensions.
The complexity of the coupled Eqs. (25)-(82) yields a wide range of phenomena. In order to limit
the number of possibilities, we attempted to estimate realistic parameters that focus on a tin-lead
alloy. We conducted numerical experiments of increasing complexity and explored what mechanisms
the presented model is able to reproduce. We reproduced the suppression of crack branching under
mode-II load when stretch-compression anisotropy is assumed. Additionally, we showed that, if a
sufficiently large anisotropy of elasticity is present, single-branched cracks get unstable. This might
be seen as an additional mechanism to the inertia-caused branching mechanism found in [45]. The
coupling of this dynamics to an inhomogeneous medium with different lattice orientations is the
next straightforward step to examine. However, we leave this to future investigations, since it makes
the formulation of an orientational dynamics necessary.
If there are flaws or cracks present during the process of phase separation in an alloy, these affect
the formation of domains. We demonstrated that stress concentrators serve as nucleators for the
spinodal instability and that soft material is favored to accumulate at these sites. During propa-
gation cracks are deflected by domain boundaries. The degree of deflection is determined by the
inclination angle and the stiffens ratio of the domains. Samples of failed SnPb-solder joints show
fracture in particular at the interface between the material phases. Although deflection of crack
paths is observed in our simulations, an entrainment by interfaces cannot be shown. Decohesive
effects at the interfaces seem to play a role but are not part of this model. An approach to model
intergranular fracture in the framework of phase field models was made in Ref. [47], where grains
and interfaces where assigned phases with different fracture toughness. The grain structure, how-
ever, did not obey any dynamical equation but was given artificially. The initiation of micro-cracks
in alloys is a complicated process that involves preceding plastic deformations, the occurrence of slip
planes, dislocation pile-up, and void formation at grain boundary triple points. Furthermore, elastic
anisotropy together with varying lattice orientation of the grains/domains promote stress concen-
trators (see e.g. Ref. [48] for an overview). Therefore, an extension of the homogeneous anisotropic
elastic setup as presented in Sec. 4.3 to inhomogeneous materials with different lattice orientation
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Figure 16: Cyclic loading: Fig. a) shows a
stress-strain diagram. A notched square (see
Fig. 9) is periodically stretched until com-
plete failure. Average stress and strain val-
ues are computed in normal direction at
the right boundary x = L by vertical in-
tegration ūx(L) =

∫ L
0 ux(L, y)dy/L. Fig. b)

corresponds to a different simulation where
more (∼ 75) cycles are required for com-
plete failure. The crack-growth rate per cycle
da/dn is double-logarithmically plotted ver-
sus the maximal stress intensity factor ∆K ∼
σmax

√
a. The slopes m (da/dn ∝ ∆Km) are

plotted for two regimes.

is promising. Neglecting plastic effects does also lead to unrealistic stress-strain curves under cyclic
loading in our simulations. In Fig. 16 a) such a diagram is shown for notch square under periodic
stretch. The maximum stress degrades gradually as a crack grows but εεε(σ = 0) = 0 at any cycle,
which is not realistic for fatigue cycling. Our model also permits to investigate low cycle fatigue as
shown in Fig. 16 b). The relation of the crack growth rate to the maximal stress intensity should
obey Paris’ law: (for mode-I)

da/dn = C∆Km ≈ C(σmax
√
πa)m. (64)

The double-logarithmic plot shows a regime for small crack length a with a larger exponent ∼ 6
and a large-crack regime with a small exponent ∼ 0.4. It should be noted that Eq. (64) holds only
for small cracks a/L� 1. However, we expect that at least the implementation of plasticity in our
model is required to obtain reasonable exponents.
Within the scope of our model we are able to compute temperature distributions around propagating
cracks. The opposite coupling direction, namely the generation of damage caused by gradients of
thermal expansion is treated as well. The inclusion of plasticity will have an influence on heat
dissipation and we believe that this is a prerequisite to realistically model situations of thermo-
mechanical fatigue cycling. This is left for upcoming investigations.
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Appendix

A A thermodynamically-consistent derivation of the heat equation

In the following, we provide a general derivation of the heat equation near equilibrium based on the
free energy definition and a dissipative pseudo-potential.

A.1 General case

We consider a set of order parameter fields, where Xi, i = 1, ..., nx are non-conserved and Yj , j =
1, ..., ny are conserved. The potentials are assumed to be a functionals that contain no higher
derivatives than first-order gradients:

F [θ,Xi, Yj ] =

∫
Ω
f(θ,Xi,∇∇∇Xi, Yj ,∇∇∇Yj)dxxx (65)

R[θ, Ẋi, Ẏj ] =

∫
Ω
r(θ, Ẋi,∇∇∇Ẋi, Ẏj ,∇∇∇Ẏj)dxxx. (66)

Variation yields the dynamic equation for the non- conserved fields:

δF
δXi

+
δR
δẊi

= 0, i = 1, ..., nx. (67)
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The conserved fields obey a continuity equation:

Ẏj +∇∇∇ · Jyj = 0, j = 1, ..., ny. (68)

We start with the relation between total free energy density f = e− θs to the internal energy e and
entropy density s and compute the time derivative:

ė =ḟ + sθ̇ + θṡ

= (∂θf + s)︸ ︷︷ ︸
=0

θ̇ +
∑
i

(
∂Xif Ẋi + ∂∇∇∇Xif · ∇∇∇Ẋi

)
+
∑
j

(
∂Yjf Ẏj + ∂∇∇∇Yjf · ∇∇∇Ẏj

)
+ θ ṡ. (69)

By using ∂xf ẋ + ∂∇∇∇xf · ∇∇∇ẋ = δF
δx ẋ +∇∇∇ ·

(
∂∇∇∇xf ẋ

)
, for a sufficient smooth function x, one further

gets

ė =
∑
i

( δF
δXi

Ẋi +∇∇∇ ·
(
∂∇∇∇Xif Ẋi

))
+
∑
j

( δF
δYj

Ẏj +∇∇∇ ·
(
∂∇∇∇Yjf Ẏj

))
+ θ ṡ

=
∑
i

(
− δR
δẊi

Ẋi +∇∇∇ ·
(
∂∇∇∇Xif Ẋi

))
+
∑
j

(
− δR
δẎj

Ẏj −
( δF
δYj

+
δR
δẎj

)
∇∇∇ · Jyj +∇∇∇ ·

(
∂∇∇∇Yjf Ẏj

))
+ θ ṡ.

(70)

Now define define µj := δF
δYj

+ δR
δẎj

and rewrite the above equation:

ė+∇∇∇ ·
(
−
∑
i

(
∂∇∇∇Xif + ∂∇∇∇Ẋir

)
Ẋi −

∑
j

(
(∂∇∇∇Yjf + ∂∇∇∇Ẏjr)Ẏj − µJ

y
j

))
= −

∑
i

(
∂Ẋir Ẋi + ∂∇∇∇Ẋir · ∇∇∇Ẋi

)
−
∑
j

(
∂Ẏjr Ẏj + ∂∇∇∇Ẏjr · ∇∇∇Ẏj −∇∇∇µj · J

y
j

)
+ θ ṡ. (71)

Identify the fluxes

JXi = −
(
∂∇∇∇Xif + ∂∇∇∇Ẋir

)
Ẋi, (72)

JYj = −
(
∂∇∇∇Yjf + ∂∇∇∇Ẏjr

)
Ẏj + µj J

y
j , (73)

which correspond to each order parameter Xi and Yj . The internal energy is conserved if Eq. (71)
is a continuity equation. Therefore, all the remaining terms that are not divergences must be equal
to the thermal-flux divergence:

∇∇∇ · J the =
∑
i

(
∂Ẋir Ẋi + ∂∇∇∇Ẋir · ∇∇∇Ẋi

)
+
∑
j

(
∂Ẏjr Ẏj + ∂∇∇∇Ẏjr · ∇∇∇Ẏj −∇∇∇µj · J

y
j

)
− θ ṡ, (74)

such that

ė+∇∇∇ ·
(∑

i

JXi +
∑
j

JYj + J the

)
= 0. (75)

The local entropy production is

ṡ+∇∇∇ · Js =
1

θ

(∑
i

(
∂Ẋir Ẋi + ∂∇∇∇Ẋir · ∇∇∇Ẋi

)
+
∑
j

(
∂Ẏjr Ẏj + ∂∇∇∇Ẏjr · ∇∇∇Ẏj −∇∇∇µj · J

y
j

))
+ J the · ∇∇∇

(
1/θ
)

=: ṡirr., (76)
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where Js = J the /θ is the entropy flux. In order to fulfill the Clausius-Duhem inequality the local
entropy production must be non-negative: ṡirr. ≥ 0. This can be used to determine the unknown
fluxes that are assumed to depend linearly on the thermodynamic forces close to equilibrium:

Jyj = −mj(Xi, Yk, θ)∇∇∇µj , mj ≥ 0, j = 1, ..., ny (77)

J the = K̃(Xi, Yk, θ)∇∇∇(1/θ), K̃ ≥ 0 (78)

If equation (78) is linearized with respect to θ, then Fourier’s law

J the = −K̃(Xi, Yj , θ)∇∇∇θ/θ2 ≈ −K(Xi, Yj , θ0)∇∇∇θ (79)

is obtained. By evaluating the total time derivative of the entropy density s, one finally gets the
heat transport equation

cv θ̇ −
(∑

i

(
∂Xi∂θf Ẋi + ∂∇∇∇Xi∂θf · ∇∇∇Ẋi

)
+
∑
j

(
∂Yj∂θf Ẏj + ∂∇∇∇Yj∂θf · ∇∇∇Ẏj

))
θ

=∇∇∇ ·
(
K∇∇∇θ

)
+
∑
i

(
∂Ẋir Ẋi + ∂∇∇∇Ẋir · ∇∇∇Ẋi

)
+
∑
j

(
∂Ẏjr Ẏj + ∂∇∇∇Ẏjr · ∇∇∇Ẏj +mj |∇∇∇µj |2

)
, (80)

where it was used that the volumetric heat capacity is defined by cv = −θ∂2f .

A.2 Special case

We consider the free energy from Eq. (main:1) depending on the damage phase field z (= X1) the
displacement uuu (= XXX2), the conserved material phase field c (= Y1) and temperature θ.
The chemical potential (µ1 =)µ = δF

δc + δR
δċ is

µ = ν − kc∆c+ ηc∂tc+ ∂cI[−1,1](c) (81)

and the heat equation reads

cv θ̇ +∇∇∇ ·
(
K∇∇∇θ

)
−
(
∂θσσσ : ε̇εε+ ∂θν ċ+ ∂θγ ż

)
θ = m|∇∇∇µ|2 + ηc(∂tc)

2 − α∂tz + β(∂tz)
2, (82)

where the abbreviations

σσσ =∂εεεf =CCC : εεε′ +
1

2
(εεε′ : ∂trεεεCCC : εεε′)111 (83)

ν =∂cf = ϕ0c
(
c2 − (1− θ/θc)

)
+ εεε′ : CCC : ∂cεεε

′ + εεε′ : ∂cCCC : εεε′/2− ∂ccp θ ln(θ) (84)
γ =∂zf = εεε′ : ∂zCCC : εεε′/2 +Gc z/`z (85)

cv =− θ∂2
θf = cp − θ

(
εεε′ : CCC : ∂2

θεεε
′ + εεε′ : ∂2

θCCC : εεε′/2 + ∂θεεε
′ : (CCC : ∂θεεε

′ + ∂θCCC : εεε′)
)

(86)

are used. The volumetric heat capacity takes the explicit form

cv = cp − α̃2Cααββθ for trεεε′ 6= 0. (87)

The usage of the subscripts “p” and “v” becomes clear by this equation, since it is a special form of
the standard thermodynamic relation

CP − CV =θ

(
∂P

∂θ

)
V,n

(
∂V

∂θ

)
P,n

= θ

(
∂P

∂V

)
θ,n

(
∂V

∂θ

)2

P,n

. (88)

The trace of the elastic tensor Cααββ can be identified with processes of isothermal pressure change(
∂P
∂V

)
θ,n

and the thermal expansion coefficient α̃ by isobaric volume change
(
∂V
∂θ

)
P,n

.
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B Numerics

B.1 Conserving interpolation

Consider the two bases of linear finite element functions of two different meshes {φk}k=1,...,m and
{φ̃i}i=1,...,m̃ on the same discretized domain Ωδ and scalar product (y, z) :=

∫
Ωδ
y(xxx)z(xxx)dxxx. The

piecewise-linear (FE) representation of an arbitrary field y is

y(xxx) =

m∑
k=1

ykφk(xxx) and ỹ(xxx) =

m̃∑
i=1

ỹkφ̃k(xxx)

and it is required that ∫
Ωδ

y(xxx)dxxx = (1, y) =

∫
Ωδ

ỹ(xxx)dxxx = (1, ỹ). (89)

Given an interpolation matrix P , ỹi =
∑m

k=1 Pikyk the above conservation condition reads

(1, φk) =
m̃∑
i=1

(1, φ̃i)Pik.

With the definition of P from Eq. 57 we get

m̃∑
i=1

(1, φ̃i)Pik = (1,
m̃∑
i=1

φ̃i ⊗ φ̃i, φk) = (1, φk). (90)

C Parameters and Scales

C.1 Estimation of elastic energy density at the crack tip

The elastic energy density of a two-dimensional isotropic medium (without any eigenstrains: εεε = εεε′)
can be expressed in terms of the stress:

ϕel(σσσ) =
1

4µ

(
tr(σσσ2)− λ

2(µ+ λ)
tr(σσσ)2

)
. (91)

With the mode-I angular functions from linear fracture mechanics in polar coordinates (r, ϑ)

fxx =1− sin(ϑ/2)sin(3ϑ/2)

fyy =1 + sin(ϑ/2)sin(3ϑ/2)

fxy =sin(ϑ/2)cos(3ϑ/2) (92)

that enter in σσσI(r, ϑ) = KI√
2πr
fff(ϑ) one obtains at ϑ = 0 (where ϕel is maximal):

ϕel(r, 0) =
1

4πr

K2
I

µ+ λ
. (93)

The stress intensity factor KI can be found in tables like, e.g. in Ref. [49]. We assume a single-edge-
cracked rectangular plate of Height H, width W and crack length a:

KI = σ∞
√
πaFg(H, a/W ) (94)
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a)

Fixed material parameters
Parameter Unit c = +1 c = −1

ηε 1 10−4

T0 K θinit
ϕ0 MJ/m3 150

θc K 1130

m @25◦C m5/(J s) 4.5 · 10−24 2.5 · 10−27

∆G MJ/mol 0.624 ∼ 0

ηc kJ s/m3 0.1

b)

Fixed numerical parameters
Parameter Unit Value
L µm 100

nf 1 10

wmin α 0.1

zc 1 0.2

aII aI 0.02

aIII aI 0.02

b 1 0.1

Table 1: List of material a) and numerical parameters b) that stay fixed in all the
presented simulations. If the parameter depends on c, then its corresponding value is
shown for the pure phase c = ±1. The parameters for the Reflective-Newton algorithm
taken from [39] stay also fixed and in accordance to the standard values in this reference.

Fg =
1.1215

(1− a/W )3/2

(
1− ...

)
. (95)

The function in the bracket that is omitted here but can be found in Ref. [49] for a certain height H
(here W = H = L). For small a/L� 1 we assume σ∞ ≈ σxx(L) = (2µ+ λ)ε̄εεxx ≈ (2µ+ λ)(ūx(L)−
ūx(0))/L. At distance r = `z this finally yields:

ϕtip
el := ϕel(`z, 0) ≈ (2µ+ λ)2

4(µ+ λ)

L

`z

a/L

(1− a/L)3
ε̄εε2
xx (96)

C.2 Listing of material and numerical parameters

In this subsection we give a complete list (see Tables 2-4) of all the parameter values used for
numerical simulations in this manuscript. The material quantities are taken directly or indirectly
(by some calculation) from Refs. [33, 34, 35, 39]. The fixed values correspond roughly to lead and
tin.
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Material parameters
Figure # G λ kz ξ α β ce kc α̃ cp K

Units: GPa GPa µJ/m GPa GPa kPa s 1 µJ/m K−1 MJ
m3K

W
mK

2,8 a,b) 20 60 30 0.5 10−4 1 -
3 d), 5 20 60 30 0.3 0.1 1 -
4 20 60 1 10−3 10−2 1 -

6 a,b) c = +1
c = −1

60 120 -
0.26 50

2 · 10−5 1.5 65
15 40 - 3 · 10−5 3.0 35

7 a) c = +1
c = −1

60 120 -
0 50

2 · 10−5 1.5 65
15 40 - 3 · 10−5 3.0 35

7 b,d) c = +1
c = −1

60 120 - −0.26 50
2 · 10−5 1.5 65

15 40 - 3 · 10−5 3.0 35

7 c) c = +1
c = −1

60 120 - −0.75 50
2 · 10−5 1.5 65

15 40 - 3 · 10−5 3.0 35

8 c) 20 60 30 10−2 10−4 1 -
8 d) 20 60 30 10−2 0.1 1 -
9 a,b) 20 60 30 0.3 0.1 1 -
9 c), 16 a) 20 60 30 0.3 0.1 5 · 103 -
10 Table 3 1 10−3 10−2 1 -

11 c = +1
c = −1

60 120
30 1 5 10 0.26 50

2 · 10−5 1.5 65
15 40 3 · 10−5 3.0 35

12 a) 20 60 30 10−2 10−2 0.1 - 0 1.5 65

12 b) 20 60 30 10−2 10−2 0.1 - 0 1.5 6.5

12 c),13 20 60 30 10−2 10−2 0.1 - 0 1.5 0.65

14,15 c = +1
c = −1

45 120
0.1 10−9 10−4 0.1 0.26 40

2 · 10−5 1.5 65
15 40 3 · 10−5 3.0 35

16 b) 20 60 30 0.3 0.1 5 · 104 -

Table 2: List of material parameters that are varied given for the two pure material
phases c = ±1 if necessary.

Elastic moduli in GPa
Figure X Y G λ

a,d) 100 50 20 60

b,e) 100 40 20 60

c,f) 150 150 70 110

Table 3: Table of anisotropic
elastic moduli in Fig. 10,
where Cxxxy = Cyyyx = 0.
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Varying numerical parameters
Figure # aI Amax δt0 δtmin/δt0 wtol εstagg.
Unit L2 L2 s 1 GJ/m3 1

2, 8 a,b) 10−5 10−3 10−6 0.1 10−4 10−6

3 d), 5 10−6 5 · 10−4 2 · 10−3 10−4 10−3 10−7

4 10−5 5 · 10−4 10−8 1 10−4 10−6

6 a) 10−6 5 · 10−4 100 1 10−4 10−8

6 b) 5 · 10−6 5 · 10−4 100 1 10−4 10−6

7 a) 5 · 10−6 10−3 100 1 10−4 10−6

7 b,d) 5 · 10−6 10−3 100 1 10−4 10−6

7 c) 5 · 10−6 10−3 10 1 10−4 10−6

8 c,d) 10−5 10−3 10−6 0.1 10−4 10−6

9 a,b) 10−6 5 · 10−4 5 · 10−3 10−6 10−3 10−9

9 c), 16 a) 10−6 5 · 10−4 10−4 10−2 10−3 10−7

10 10−5 10−3 10−3 10−5 10−4 10−6

11 10−6 5 · 10−4 100 1 10−4 10−8

12 a) 10−6 5 · 10−4 10−3 10−6 10−4 10−8

12 b) 10−6 5 · 10−4 10−3 10−6 10−4 10−8

12 c), 13 10−6 5 · 10−4 10−3 10−6 10−4 10−8

14, 15 10−5 5 · 10−4 10−5 0.1 10−4 10−8

16 b) 10−6 5 · 10−4 10−4 0.1 10−3 10−7

Table 4: Numerical parameters that are varied in different simulations.
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