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Abstract

In this paper we study the structure of solutions of the one dimensional weighted total
variation regularisation problem, motivated by its application in signal recovery tasks. We
study in depth the relationship between the weight function and the creation of new dis-
continuities in the solution. A partial semigroup property relating the weight function and
the solution is shown and analytic solutions for simply data functions are computed. We
prove that the weighted total variation minimisation problem is well-posed even in the case
of vanishing weight function, despite the lack of coercivity. This is based on the fact that
the total variation of the solution is bounded by the total variation of the data, a result that it
also shown here. Finally the relationship to the corresponding weighted fidelity problem is
explored, showing that the two problems can produce completely different solutions even
for very simple data functions.

1 Introduction

A general task in mathematical signal reconstruction is to recover as best as possible a
signal u0, given a corrupted version f , which is generated by the following degradation
process:

f = Tu0 + η. (1.1)

Here T denotes a bounded, linear operator and η is a random noise component. The map-
ping T might be related to blurring, downscaling, Fourier or wavelet transform, among sev-
eral others. The problem aforementioned reconstruction problem (1.1) is typically ill-posed
and variational regularisation methods are often employed for its solution. A specific, very
successful regularisation model is given by total variation minimisation as introduced in the
seminal work by Rudin, Osher and Fatemi [ROF92]. In that paper, the authors considered
the case T = id, i.e., the denoising task, and they proposed to recover an approximation
u of u0 by solving the discrete version of the minimisation problem

min
u∈BV(Ω)

1

2

∫
Ω

(f − u)2dx+ α|Du|(Ω), (1.2)

whereα is a positive scalar and |Du|(Ω) denotes the total variation of the function u. Here
Ω represents a bounded, open domain with Lipschitz boundary. In image reconstruction
tasks, Ω is typically a rectangle on which the image is defined.

Ever since, total variation minimisation has been employed for a variety of image restora-
tion tasks mainly due its edge-preserving ability. This stems from the fact that the minimi-
sation (1.2), is performed over the space of functions of bounded variation BV(Ω). We
note that an element of BV(Ω) may exhibit jump discontinuities. One disadvantage of the
model (1.2), on the other hand, is the promotion of piecewise constant structures in the
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solution u, a phenomenon known as staircasing effect. To overcome this, higher order ex-
tensions of the total variation have been proposed in the literature. Here, we only mention
the review paper [Ste15], as well as the references collected in the introduction of [Pap14].

Another drawback of (1.2) originates from the fact that the regularisation strength is uni-
form over the entire image domain, due to the regularisation parameter α being a scalar
quantity only. This is particularly disadvantageous when the noise level or the amount of
corruption in general, is not distributed uniformly throughout the image. Regularisation of
uniform strength is also undesirable when both fine scales details, e.g. texture, and large
homogeneous areas are present in an image. In that case, one ideally should strongly
regularise in the smooth parts of the image and to a lesser degree in fine detailed areas in
order for these details to be better preserved. Therefore, the introduction of spatially dis-
tributed weights in the minimising functional in (1.2) has been considered in the literature.
This weight can be either introduced in the first term of (1.2), i.e., the so-called fidelity or
data fitting term, or be incorporated into the total variation functional. For the denoising
case, this leads to the following two models

min
u∈BV(Ω)

1

2

∫
Ω
w(f − u)2dx+ |Du|(Ω), (1.3)

where w ∈ L∞(Ω) with w ≥ 0, and

min
u∈BV(Ω)

1

2

∫
Ω

(f − u)2dx+

∫
Ω
α(x)d|Du|, (1.4)

where α ∈ C(Ω) with α > 0. Here α and w are the two weight functions that determine
locally the strength of the regularisation and the fidelity term respectively.

Versions of the weighted fidelity model (1.3) have been considered in [DHRC10a,
DHRC10b] for Gaussian denoising and deblurring image restoration problems as well as
in [HRC10] for reconstructing images that have been corrupted by impulse noise. In these
works, the weight functionw is selected based on local statistical estimators and the statis-
tics of the extremes. An adaptation of this idea to TGV (total generalised variation) [BKP10],
a higher order extension of the total variation, can be found in [BDH13]. A different statis-
tical approach with variance estimators is considered in [ABCH07]. Variants of (1.3) are
also studied in [FMM12, HMS+12] using techniques based on a statistical multiresolution
criterion. The model (1.3) is also considered in [BCRS] where a piecewise constant weight
function is determined using a pre-segmentation of the image.

The weighted total variation model (1.4) has been considered recently for image restora-
tion purposes in [HR16, HRWL16]. In these papers, the choice of the weight function α is
done via a bilevel optimisation approach, see also [CCDlR+15, CDlRS16]. Moreover, apart
from the classical denoising and deblurring tasks, the fact that the fidelity term in (1.4) ap-
pears without weights, allows the authors of [HR16, HRWL16] to consider problems also in
Fourier and wavelet domains, e.g., Fourier and wavelet impainting, something which high-
lights an advantage of the model (1.4) over (1.3). We also mention that recently, a weighted
TV regularisation for vortex density models was studied in [AJNO15].

While the analysis of the regularisation properties of the scalar total variation regulari-
sation (1.2) has received a considerable amount of attention in the literature [AV94, Rin00,
Mey01, SC03, CE05, Gra07, CCN07, All08a, All08b, All09, DAG09, Val15, Jal15, CDPP16]
this is not the case for the models (1.3) and (1.4). We note however two analytical contri-
butions towards the weighted total variation model (1.4). Specifically, in [Jal14], the author
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showed that the set of the jump discontinuities of the solution u of (1.4) is essentially con-
tained in the set that consists of the jump discontinuity points of the data f and the jump
discontinuity points of the gradient of the weight function α. This result shows that the
solution u can potentially have jump discontinuities at points where the data function f is
continuous. Hence, if the weight function is smooth, no new discontinuities are created. In
the scalar parameter case, this was first shown in [CCN07] and subsequently in [Val15]
using a different technique. In [AJNO15] the authors show, among others, that the maxi-
mal level set of the solution u is flat and has positive measure, as it is also the case for the
scalar total variation regularisation [Jal15].

However, there are still several open questions regarding the models (1.3) and (1.4).
For instance, concerning the weighted total variation model (1.4), one is interested to un-
derstand, under which specific conditions new discontinuities are created, and how these
are related to the weight function α. It is also important to examine in what degree the
structure of solutions of the weighted total variation minimisation resembles the one of
the solutions of the standard scalar minimisation problem. Finally, it is of importance to
understand the similarities and the differences of the two weighted models (1.3) and (1.4).

In view of this, the purpose of the present paper is to answer the questions raised
above as well as related ones, thus filling in that knowledge gap in the literature. We do that
by a extended fine scale analysis of the regularisation properties of the one dimensional
versions of the problems (1.3) and (1.4). We should note, however, that the majority of
our results concern the weighted total variation model (1.4), since, as we will see in the
following sections, it is the one that exhibits a greater variety of interesting properties.

Summary of the results and organisation of the paper

For the reader’s convenience we provide here a short summary of our results, stating
as well the sections of the paper that each of these belongs to. The results are put into
perspective with the literature in the corresponding sections.

Structure of solutions-creation of new discontinuities

After fixing the notation and recalling some preliminary facts in Section 2, we study in Sec-
tions 3.1–3.2 the weighted total variation problem (1.4) and the conditions under which
new discontinuities are created in its solution u. We give a simple proof of a refined ver-
sion of the result in [Jal14] in Proposition 3.3, showing that new jump discontinuities can
potentially be created at the points where the weight function α is not differentiable. Note
that in the case where α′ ∈ BV(Ω) these are exactly the set of jump discontinuity points
of α′, i.e., the set of points x ∈ Ω such that |Dα′|({x}) > 0. In fact, we show that in
order for a new discontinuity to be created at x, there must hold Dα′({x}) > 0, i.e., the
derivative of α′ must have a positive jump, Proposition 3.7. In contrast, if Dα′({x}) < 0
then a plateau is created for the solution u around x. Furthermore, we show that in every
point x ∈ Ω, the following estimate holds

|Du|({x}) ≤ |Df |({x}) + |Dα′|({x}), (1.5)

see Propositions 3.7, 3.9 as well as Corollary 3.8. Moreover, in the weighted case, the
jump of u can have different direction from the one of the data f , something that does not
occur in the scalar case. We show however that the jumps of f and u at a point, have the
same direction when α is differentiable but are not necessarily nested, see Proposition 3.9
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and the numerical examples of Figure 3. Finally it is shown that if α′ is large enough in an
area, then u is constant there, Proposition 3.10. Thus, it is not only high values of α that
can produce flat areas as someone might expect, but also high values of α′.

A partial semigroup property

In Section 3.3 we show that, denoting by Sα(f) the solution of (1.4) with data f and weight
α, it holds

Sα1+α2(f) = Sα2(Sα1(f)),

provided α2 is a scalar. This is shown in Proposition 3.12 and we call this property partial
semigroup property. On the other hand, one can easily construct counterexamples where
this property fails even in the case where α1 is scalar and α2 is not, see Figures 4 and 5,
i.e., unlike the full scalar case, this partial semigroup property is not commutative, some-
thing perhaps surprising.

Analytic solutions

In Section 3.4 we compute some analytic solutions for simple data and weight functions. In
particular, we take as data a family of affine functions and as weight functions, a family of
absolute value type functions. The formulae of the solutions are summarised in Proposition
3.13, also depicted in Figure 6. Note that this is the first example, where the creation of
new discontinuities is computed analytically.

A bound on the total variation of the solution

In Section 4 we show that for the solution of the weighted total variation minimisation
problem (1.4), the following estimate holds

|Du|(Ω) ≤ |Df |(Ω). (1.6)

Unlike the scalar case, the proof of (1.6) is quite involved and uses some fine scale analy-
sis. We do that initially for differentiable weight α in Theorem 4.2 and then for continuous
one in Theorem 5.4.

Vanishing weight function α

Provided that f ∈ BV(Ω), we show in Section 5 the existence of solutions for (1.4) even
when α ≥ 0, despite the lack of coercivity of the minimising functional, see Theorem 5.3.
Letting α having zero values, can allow an exact recovery of piecewise constant functions,
as we show in Proposition 5.5.

Relationship of the models (1.3) and (1.4)

In Section 6, we show that the structure of the solutions of the weighted fidelity problem
(1.3) is simpler and resembles more the one of the scalar case. We prove that no new
discontinuities are created, provided thatw > 0, Proposition 6.2. Moreover, by considering
the same family of simple affine data functions for which we computed analytic solutions
for the problem (1.4), we see that the solutions here are much simpler, see Proposition 6.3.
Interestingly, for these specific data functions, the sets of solutions of the problems (1.3)
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and (1.4) are totally different, regardless of the choice of weight functions α and w. In fact,
the only common solutions that they have are the ones that can be also obtained by the
standard scalar total variation minimisation, see Proposition 6.4 and Figure 12. This shows
how different can the models (1.3) and (1.4) be, even for very simple data functions.

2 Notation and Preliminaries

Functions of bounded variation play a central role in this paper. Standard references are
the books [AFP00, ABM14, EG92, Giu84]. Here we follow the notation of [AFP00]. Let
Ω ⊆ Rd be a open set, d ∈ N. Given a finite Radon measure µ ∈ M(Ω) we denote
by |µ| its total variation measure and by sgn(µ) the unique L1(Ω, |µ|) function such that
µ = sgn(u)|µ|. That is to say sgn(µ) is the Radon-Nikodým derivative sgn(µ) = dµ

d|µ| ,

which is equal to 1 |µ|–almost everywhere. A function u ∈ L1(Ω) is said to be a function
of bounded variation if its distributional derivative is represented by a Rd-valued finite
Radon measure, denoted by Du. Equivalently, u is a function of bounded variation if its
total variation TV(u) is finite, where

TV(u) := sup

{∫
Ω
udivv dx : v ∈ C1

c (Ω,Rd), ‖v‖∞ ≤ 1

}
,

and in that case it can be shown that TV(u) = |Du|(Ω). The space of functions of
bounded variation is denoted by BV(Ω) and is a Banach space under the norm ‖u‖BV(Ω) =
‖u‖L1(Ω) + |Du|(Ω). The measure Du can be decomposed into the absolutely con-
tinuous and the singular part with respect to the Lebesgue measure L, Dau and Dsu
respectively, i.e., Du = Dau+Dsu.

In this paper, emphasis is given on the functions of bounded variation of one variable
and in particular on the notion of good representatives. In order to define these, let Ω =
(a, b) be a bounded open interval in R. For a function u : Ω→ R, the pointwise variation
of u in Ω is defined as

pV(u,Ω) = sup

{
n−1∑
i=1

|u(xi+1)− u(xi)| : n ≥ 2, a < x1 < · · · < xn < b

}
,

and the essential variation as

eV(u,Ω) = inf
{

pV(v,Ω) : v = u, L − a.e. in Ω
}
.

It turns out that when u ∈ BV(Ω) then |Du|(Ω) = eV(u,Ω) and in fact the infimum in
the definition of eV(u,Ω) is attained. The functions in the equivalence class of u that attain
this infimum are called good representatives of u. That is to say ũ is a good representative
of u if ũ = u Lebesgue–almost everywhere and

pV(ũ) = eV(u) = |Du|(Ω).

We denote by Ju the at most countable set of atoms of Du (jump set of u), i.e., Ju =
{x ∈ Ω : |Du|({x}) 6= 0}. If Du({x}) > 0 we say that u has a positive jump at x,
whereas if Du({x}) < 0 we say that u has a negative jump at x. It can be shown that
there exists a unique c ∈ R such that the functions

ul(x) := c+Du((a, x)), ur(x) := c+Du((a, x]),
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are good representatives of u. Note that ul and ur are left and right continuous respec-
tively. The following equalities also hold

ul(x) = lim
δ�0

∫ x

x−δ
u(t)dt, ur(x) = lim

δ�0

∫ x+δ

x
u(t)dt, for all x ∈ Ω.

Any other function ũ : Ω→ R is a good representative of u if and only if

ũ(x) ∈
{
θul(x) + (1− θ)ur(x) : θ ∈ [0, 1]

}
.

As a result, the following functions are also good representatives

u(x) := max(ul(x), ur(x)), u(x) := min(ul(x), ur(x)).

The right and the left limits of any good representative ũ exist at any point of x ∈ Ω and
ũ(x+) = ur(x), ũ(x−) = ul(x). Every good representative of u is continuous at the
complement of the jump set of u i.e., in the set {x ∈ Ω : |Du|({x}) = 0}.

We denote by u′ the density of Dau with respect to the Lebesgue measure, i.e.,

Du = u′L+Dsu.

If u ∈W 1,1(Ω) then u′ is the standard weak derivative of u.
Recall some basic notions from convex analysis. IfX ,X∗ are two vector spaces placed

in duality and F : X → R ∪ {+∞} then F ∗ denotes the convex conjugate of F

F ∗(x∗) := sup
x∈X
〈x∗, x〉 − F (x).

The subdifferential of F is denoted as usual by ∂F . Given A ⊆ X then IA denotes the
indicator function of A

I(x) =

{
0, if x ∈ A,
+∞, if x /∈ A.

We finally note that whenever we write total variation regularisation or total variation
minimisation we always mean the total variation denoising problem with L2 fidelity term.

3 Weighted total variation with strictly positive weight
function α

The problem we are considering here is the one dimensional weighted total variation reg-
ularisation problem with L2 fidelity term, i.e.,

min
u∈BV(Ω)

1

2

∫
Ω

(f − u)2dx+

∫
Ω
α(x)d|Du|, (3.1)

where Ω = (a, b), f ∈ BV(Ω) and α ∈ C(Ω) with α > 0. Thus, there exist constants
0 < cα ≤ Cα <∞ such that

0 < cα ≤ α(x) ≤ Cα <∞, for all x ∈ Ω.

The well-posedness (existence and uniqueness) of (3.1) in all dimensions, i.e., when Ω ⊆
Rd, is proven via the direct method of calculus of variations taking advantage of the fact
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that a strictly positive weight function α provides the necessary coercivity to the weighted
TV functional, see [HR16] for details. Among others, the authors in [HR16] prove that for
the anisotropic version of weighted TV it holds∫

Ω
α(x)d|Du| = sup

{∫
Ω
udivv dx : v ∈ H0(Ω,div),

vi(x)| ≤ α(x), a.e. i = 1, . . . , d

}
. (3.2)

Using also appropriate density arguments, the isotropic version of (3.2) reads∫
Ω
α(x)d|Du| = sup

{∫
Ω
udivv dx : v ∈ C1

c (Ω,Rd),

|v(x)| ≤ α(x), for every x ∈ Ω

}
, (3.3)

where in the expression above | · | denotes the Euclidean norm in Rd. It is then clear that
the weighted TV is lower semicontinuous with respect to the strong convergence in L1.

3.1 Optimality conditions

We now proceed to the derivation of the optimality conditions for the minimisation problem
(3.1). This is done via the Fenchel-Rockafellar duality theory, see for instance [ET76].

We start with some useful definitions. For a finite Radon measure µ ∈ M(Ω) we
define

Sgn(µ) := {v ∈ L∞(Ω) ∩ L∞(Ω, µ) : ‖v‖∞ ≤ 1, v = sgn(µ), |µ| − a.e.} ,
(3.4)

i.e., the set of all the functions v that are µ-almost everywhere equal to dµ
d|µ| with the

extra property that their absolute values is less than 1, Lebesgue–almost everywhere. The
definition (3.4) originates from [BKV13]. For a function α ∈ C(Ω), we also define

α(x)Sgn(µ) := {v ∈ L∞(Ω) ∩ L∞(Ω, µ) : v = αṽ for some ṽ ∈ Sgn(µ)} . (3.5)

Notice that we slightly abuse the notation in the definition (3.5) where we denote the set by
“α(x)Sgn(µ)” instead of “αSgn(µ)” in order to stress the fact that α is not necessarily a
constant function.

The following proposition is an extension of [BKV13, Lemma 3.5] to the weighted case.

Lemma 3.1 (Subdifferential of the weighted Radon norm). Let α ∈ C(Ω). Consider the
map ‖ · ‖M,α :M(Ω)→ R where

‖µ‖M,α =

∫
Ω
α(x)d|µ|, µ ∈M(Ω).

Then for every µ ∈M(Ω)

∂‖ · ‖M,α(µ) ∩ C0(Ω) = α(x)Sgn(µ) ∩ C0(Ω),
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Proof. Fix µ ∈M(Ω) and let v ∈ ∂‖ · ‖M,α(µ) ∩ C0(Ω). Then∫
Ω
α(x)d|µ|+

∫
Ω
v(x)d(ν − µ) ≤

∫
Ω
α(x)d|ν| for every ν ∈M(Ω)⇒ (3.6)∫

Ω
v(x)d(ν − µ) ≤

∫
Ω
α(x)d|ν − µ| for every ν ∈M(Ω)⇒∫

Ω
v(x)dν ≤

∫
Ω
α(x)d|ν| for every ν ∈M(Ω). (3.7)

From the inequality (3.7) we deduce that

|v(x)| ≤ α(x) for every x ∈ Ω. (3.8)

Observe that it also holds ∫
Ω
v(x)dµ =

∫
Ω
α(x)d|µ|. (3.9)

Indeed, just consider (3.6) with ν = 0 and ν = 2µ. One can readily check that if a
function v ∈ C0(Ω) satisfies (3.8)–(3.9) then v ∈ ∂‖ · ‖M,α(µ) ∩ C0(Ω). Then it
just suffices to check that a function v ∈ C0(Ω) satisfies (3.8)–(3.9) if and only if v ∈
α(x)Sgn(µ)∩C0(Ω). The “if” implication is immediate from the definition ofα(x)Sgn(µ).
For the “only if” part, by considering the polar decomposition µ = sgn(µ)|µ| we have∫

Ω
v(x)dµ =

∫
Ω
α(x)d|µ| ⇒

∫
Ω

(v(x)sgn(µ)(x)− α(x))d|µ| = 0,

which, with the help of (3.8), implies that

v(x)sgn(µ)(x) = α(x) for |µ|-almost every x ⇒

v(x) = sgn(µ)(x)α(x) for |µ|-almost every x.

Thus, v ∈ α(x)Sgn(µ) ∩ C0(Ω) and the proof is complete.

We define now the predual problem of (3.1):

−min

{
1

2

∫
Ω

(v′)2dx+

∫
Ω
fv′dx : v ∈ H1

0 (Ω), |v(x)| ≤ α(x), for every x ∈ Ω

}
.

(3.10)
The fact that the minimum in (3.10) is attained by a unique H1

0 function, can be shown
easily using standard techniques. In order to be convinced that (3.10) is indeed the predual
of (3.1) define

Λ : H1
0 (Ω)→ L2(Ω) with Λ(v) = v′,

G : L2(Ω)→ R with G(ψ) =
1

2

∫
Ω
ψ2dx+

∫
Ω
fψ dx,

F : H1
0 (Ω)→ R with F (v) = I{|·(x)|≤α(x),∀x∈Ω}.

Then it is easy to verify that the problem (3.10) is equivalent to

− min
v∈H1

0 (Ω)
F (v) +G(Λv). (3.11)
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Now the dual problem of (3.11) is defined as [ET76]

min
u∈L2(Ω)∗

F ∗(−Λ∗u) +G∗(u). (3.12)

After a few computations the problem (3.12) can be shown to be equivalent with our
main problem (3.1). The proof follows closely the analogue proofs in [Rin00], [BKV13]
and [PB15] for the corresponding L2–TV (scalar case), L1–TGV and L2–TGV min-
imisations and thus we omit it. We note here that the derivation of the predual problem
of (3.1) in higher dimensions is more involved, see [HR16]. The solutions of the problems
(3.11) and (3.12) are linked through the optimality conditions:

v ∈ ∂F ∗(−Λ∗u),

Λv ∈ ∂G∗(u),

which, after a few calculations, can be reformulated as

v′ = f − u,
−v ∈ α(x)Sgn(Du).

Summarising, the following proposition holds.

Proposition 3.2 (Optimality conditions for weighted TV minimisation). Let Ω = (a, b),
f ∈ BV(Ω) and α ∈ C(Ω) with α > 0. A function u ∈ BV(Ω) is the solution to the
minimisation problem

min
u∈BV(Ω)

1

2

∫
Ω

(f − u)2dx+

∫
Ω
α(x)d|Du|,

if and only if there exists a function v ∈ H1
0 (Ω) such that

v′ = f − u, (3.13)

−v ∈ α(x)Sgn(Du). (3.14)

Observe here that Proposition 3.2 still holds when f ∈ L2(Ω). This is useful in the
context of image denoising, where f is a noisy, perhaps strongly oscillating function, mod-
elled as an element outside BV(Ω). Here, in contrast, we assume that f ∈ BV(Ω), since
in this study, we are more interested in the structural properties of weighted TV minimi-
sation than addressing the entire reconstruction problem. Observe that since we are in
dimension one, this also implies that we have more than H1

0 regularity for the function v.
Indeed, v′ ∈ BV(Ω) ⊆ L∞(Ω) and in particular v is a Lipschitz function.

3.2 Structure of solutions – creation of new discontinuities

One can already notice a basic difference between the scalar and the weighted total vari-
ation regularisation. Indeed, when α(x) = α ∈ R for every x ∈ Ω, the optimality condi-
tions (3.13)–(3.14) imply that when f < u (or f > u) then Du = 0 there. That is to say,
the solution u is constant in the areas where it is not equal to the data f , a well-known
characteristic of total variation minimisation [Rin00]. In the weighted case, however, the
optimality conditions (3.13)–(3.14) do not enforce such a behaviour. In this section, using
a series of propositions and numerical examples we highlight the differences between the
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scalar and the weighted case as far as the structure of solutions is concerned. Particu-
lar emphasis is given on the discontinuities of the solution u. Recall here that one of the
few analytical results concerning the weighted TV regularisation is that of Jalalzai [Jal14].
There, the author shows that given Ω ⊆ Rd open, bounded with Lipschitz boundary, data
f ∈ BV(Ω) ∩ L∞(Ω), and a bounded, Lipschitz continuous weight function α with the
extra property that∇α ∈ BV(Ω), then

Ju ⊆ Jf ∪ J∇α, (3.15)

up to Hd−1 negligible set. Here Hd−1 denotes the (d − 1)-dimensional Hausdorff mea-
sure. This result shows that new jump discontinuities can potentially appear in the solution
u at points where the derivative of the weight function also has a jump. This is in strong
contrast to the scalar TV minimisation where the discontinuities of the solution can only
occur in points where the data f is discontinuous [CCN07, Val15]. Note that this also true
in the weighted case when α ∈ C1(Ω) since then J∇α = ∅.

Here we investigate in detail, the creation of new discontinuities in the one dimensional
regime. We will show with analytical and numerical results that at least in dimension one,
the inclusion (3.15) is sharp. In order to develop an intuition for this phenomenon, we start
with a simple proof of (3.15) in the one dimensional case. Note that we do not assume
here that α is Lipschitz continuous with α′ ∈ BV(Ω).

Proposition 3.3. Let u ∈ BV(Ω) be a solution to (3.1) and let x ∈ Ω such that α is
differentiable at x and |Df |({x}) = 0, i.e., x /∈ Jf . Then x /∈ Ju.

Proof. Suppose, towards contradiction, that x ∈ Ju, i.e., |Du|({x}) > 0. Without loss
of generality we assume that Du({x}) > 0 since the case Du({x}) < 0 is treated
analogously. Hence, we have

ul(x) < ur(x). (3.16)

Since |Df |({x}) = 0 we have that any good representative f̃ of f is continuous at x.
Using (3.16), the continuity of f̃ , the left and right continuity of ul(x) and ur(x), respec-
tively, we have that there exist a small enough ε > 0 and two constants m < M such
that

sup
t∈(x,x+ε)

f̃(t)− ur(t) ≤ m < M ≤ inf
t∈(x−ε,x)

f̃(t)− ul(t). (3.17)

With the help of (3.13), the above inequalities are translated into

ess sup
t∈(x,x+ε)

v′(t) ≤ m < M ≤ ess inf
t∈(x−ε,x)

v′(t). (3.18)

Since Du({x}) > 0, condition (3.14) dictates that

v(x) = −α(x).

Using now the fundamental theorem of calculus along with (3.18) we get that for every
t ∈ (x, x+ ε)

v(t) = −α(x) +

∫ t

x
v′(t)dt

≤ −α(x) +m(t− x),
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and for every t ∈ (x− ε, x)

v(t) = −α(x) +

∫ x

t
−v′(t)dt

≤ −α(x) +M(t− x).

Using the fact that−α(t) ≤ v(t) for every t ∈ Ω and condition (3.14), we further calculate

lim
t→x−

α(x)− α(t)

x− t ≤ α(x) + v(t)

x− t ≤ M(t− x)

x− t = −M (3.19)

and

lim
t→x+

α(t)− α(x)

t− x ≥ −v(t)− α(x)

t− x ≥ −m(t− x)

t− x = −m. (3.20)

The inequalities (3.19)–(3.20) contradict the differentiability of α at x and thus the proof is
complete.

Even though it is now clear that non-differentiablity of α can potentially lead to the
creation of new discontinuities, as the next proposition shows this is not always the case.
In particular, we show in what follows that if α has an upward spike at a point x, then the
solution u of (3.1) is constant in a neighbourhood of x; see Figure 1 for an illustration.

Proposition 3.4. Let α ∈ C(Ω) and x ∈ Ω such that α ∈ C(Ω) is differentiable in a
neighbourhood of x (but not at x) with

lim
t→x−

α′(t) = +∞ and lim
t→x+

α′(t) = −∞.

Then, if u is the solution of (3.1) with weight function α and some given data f ∈ BV(Ω),
then there exists an ε > 0 such that |Du|((x − ε, x + ε)) = 0, i.e., u is constant in
(x− ε, x+ ε).

Proof. We show first that there exists an ε > 0 such that |Du|((x, x + ε)) = 0. Indeed
otherwise, using the condition (3.14), we can assume without loss of generality, that there
exists a decreasing sequence (tn)n∈N such that tn ↓ x with x < tn and

v(tn) = −α(tn), for every n ∈ N.

But then, using the mean value theorem, we have for some tn+1 < ξn < tn

|v(tn)− v(tn+1)|
|tn − tn+1|

=
|α(tn)− α(tn+1)|
|tn − tn+1|

= |α′(ξn)|.
Since |α′(ξn)| → ∞, the equality above implies that v is not Lipschitz, a contradiction.
Similarly we get |Du|((x − ε, x)) = 0 for a small enough ε > 0. Finally notice that it
also holds that |Du|({x}) = 0. Otherwise, again from condition (3.14), we would have
that v(x) = −α(x) (or v(x) = α(x), with a similar proof) and using also the fact that
v ≥ −α, we have for t > x

v(t)− v(x)

t− x ≥ −α(t) + α(x)

t− x → +∞ as t→ x+, (3.21)

again contradicting the fact that v is Lipschitz. Hence, for a small enough ε > 0 we have

|Du|((x− ε, x+ ε)) = |Du|((x− ε, x)) + |Du|({x}) + |Du|((x, x+ ε)) = 0.

11
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Figure 1: Illustration of Proposition 3.4: When the weight function α has an upward spike at a
point x (left plot) then the solution u of (3.1) is constant at an neighbourhood of x (right plot).

Observe that it is not essential to assume that α is differentiable at a set of the type
(x−δ, x)∪(x, x+δ) for small enough δ > 0. For example it would be enough to assume
that α is concave at each of the intervals (x− δ, x) and (x, x+ δ) and its graph does not
satisfy the cone property at x.

After examining the case where α has an upward spike, it is natural to ask what hap-
pens if α exhibits a downward spike. The following proposition provides some intuition.

Proposition 3.5. Let f ∈ BV(Ω) such that f is continuous and strictly increasing. Sup-
pose that α ∈ C(Ω) is differentiable everywhere in Ω apart from a point x and

lim
t→x−

α′(t) = −∞ and lim
t→x+

α′(t) = +∞

with α attaining its minimum at x. Then, if u is the solution of (3.1) for the weight function
α and data f , it has either a jump discontinuity at x or it is constant up to the boundary of
Ω.

Proof. Similarly to the proof of Proposition 3.4 we can deduce that there exists an ε > 0
such that |Du|((x−ε, x)∪(x, x+ε)) = 0, i.e., u will be constant in each of the intervals
(x − ε, x), (x, x + ε). Suppose now that u does not have a jump discontinuity at x, i.e.,
Du({x}) = 0, and thus u is constant in (x− ε, x+ ε), say equal to c.

Case 1: u(x) < f(x).
In this case we claim that u is constant, equal to c, in [x − ε, b). Suppose this is not
true. Then note first that since f is strictly increasing, it is easily checked that u will be
increasing as well. Recall from Proposition 3.3, that u will be continuous on (x, b) since α
is differentiable there. Now choose t0 ∈ [x+ ε, b) such that

d := Du(x, t0) ≤ f(x)− u(x)

2
,

with d being strictly positive. Notice that this can be done since u is increasing in [x+ ε, b)
and not just equal to a constant. Define ũ to be the following function:

ũ(t) =


u(t), t ∈ (a, x),

u(x) + d, t ∈ [x, t0),

u(t), t ∈ [t0, b),

see also Figure 2 for an illustration. In other words, ũ has all the variation of u in (x+ε, t0)
concentrated in x. Note that∫

Ω
(f − ũ)2dx <

∫
Ω

(f − u)2dx,

12
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ũ

Figure 2: The function ũ from the proof of Proposition 3.5. Shifting the variation from areas which
is costly into a single point where it is less costly. This favours the creation of a new discontinuity
point.

and since α has a minimum at x we also have∫
Ω
α(x)d|Dũ| ≤

∫
Ω
α(x)d|Du|,

hence u is not optimal which is a contradiction.

Case 2: u(x) > f(x).
This case is treated similarly to Case 1. If u does not have a jump discontinuity at x,
then by similar arguments we conclude that u will be constant on an interval of the type
(a, x+ ε).

Case 3: u(x) = f(x).
The arguments are similar to the previous cases; see also the third graph in Figure 2. We
just have to make sure that by choosing a small enough jump at x for the function ũ we
can achieve a better L2 distance from f . This can be done, for instance, by choosing d
smaller than f(x+ ε

3)− u(x+ ε
3).

Remark 3.6. Note that for the type of data (increasing) of the Proposition 3.5 the potential
jump discontinuity at x can only be positive, i.e., Du({x}) > 0. Indeed, it can be easily
checked that if Du({x}) < 0 then the function u would be not optimal.

Summarising the findings so far, we can say that whenever the weight function α has
a spike at a point x, no matter whether this spike is upward or downward, the solution
will always be constant at each one of the intervals (x − ε, x) and (x, x + ε) for a small
enough ε > 0. If the spike is upward, then the solution u will be constant in the whole
interval (x− ε, x+ ε). If the spike is downward then the solution u will be either constant
in (x − ε, x + ε) or piecewise constant with a jump discontinuity at x. In order to be
convinced that the second alternative can indeed occur, think of the following corollary of
Proposition 3.5. Suppose that f is a strictly increasing, continuous function with a graph
which is symmetric with respect to ( b−a2 , f( b−a2 )) and α is a similarly symmetric function

with a downward spike at b−a2 , e.g., α(x) =
√∣∣x− b−a

2

∣∣. Then unless u is a constant

function, it will always have a jump discontinuity at x = b−a
2 .

In fact new discontinuities can be created even with more regular weight function, i.e.,
when α′ ∈ BV(Ω). While we will come back to this with specific examples in Section
3.4, the following proposition provides conditions on when this can indeed occur and it
establishes a connection between the jump size of α′ and the jump size of u. Note that for
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such a function α we have

{x ∈ Ω : α is not differentiable at x} = Jα′ . (3.22)

Proposition 3.7. Let f ∈ BV(Ω) with f being continuous at a point x ∈ Ω. Let α ∈
C(Ω) be a weight function with α′ ∈ BV(Ω) such that |Dα′|({x}) > 0. Let u solve
(3.1) with data f and weight function α. Then the following hold true:

(i) If Dα′({x}) < 0, then |Du|((x− ε, x+ ε)) = 0, for a small enough ε > 0.

(ii) If Dα′({x}) > 0, then u has potentially a jump discontinuity at x with

|Du|({x}) ≤ Dα′({x}). (3.23)

In the particular case where there exists an ε > 0 such that (x − ε, x + ε) ⊆
supp(|Du|) then u has a jump discontinuity at x and

|Du|({x}) = Dα′({x}). (3.24)

Proof. (i) We start with the first case. We show first that |Du|({x}) = 0. Suppose
towards contradiction that |Du|({x}) > 0 and assume without loss of generality that
Du({x}) > 0. We claim that Dv′({x}) > 0. Indeed we have

v(t) = v(x) +

∫ t

x
v′(s)ds, −α(t) = −α(x)−

∫ t

x
α′(s)ds, for all x ≤ t,

v(t) = v(x)−
∫ x

t
v′(s)ds, −α(t) = −α(x) +

∫ x

t
α′(s)ds, for all t ≤ x.

From condition (3.14) we have that v(x) = −α(x) and also v(t) ≥ −α(t) for every
t ∈ Ω. Thus we can write∫ t

x
v′(s)ds ≥ −

∫ t

x
α′(s)ds, for all x ≤ t, (3.25)

−
∫ x

t
v′(s)ds ≥

∫ x

t
α′(s)ds, for all t ≤ x. (3.26)

Since −Dα′({x}) > 0 there exist a small enough ε > 0 and two constants m < M
such that

ess sup
s∈(x−ε,x)

−α′(s) < m < M < ess inf
s∈(x,x+ε)

−α′(s). (3.27)

In combination with (3.25)–(3.26), this implies that for all δ < ε

1

δ

∫ x

x−δ
v′(s)ds < m < M <

1

δ

∫ x+δ

x
v′(s)ds. (3.28)

Taking the limit in (3.28) as δ → 0 we get

(v′)l(x) ≤ m < M ≤ (v′)r(x).

This implies that Dv′({x}) > 0. However from condition (3.13) we have that

Df({x}) = Du({x}) +Dv′({x}) > 0,

14



which contradicts the continuity of f at x and hence |Du|({x}) = 0. We now claim that
not only |Du|({x}) = 0 but there exists a small enough ε > 0 such that |Du|((x−ε, x+
ε)) = 0. If that was not the case, using condition (3.14), we can find a sequence (tn)n∈N
with tn → x such that |v(tn)| = α(tn). Without loss of generality, we can assume that
v(tn) = −α(tn) for all n ∈ N. The proof is similar if we assume v(tn) = α(tn). From
the continuity of v and α, this implies that v(x) = −α(x). Then by simply following again
the steps above, we can derive again Dv′(x) > 0 and

Df({x}) = Dv′({x}) > 0,

which contradicts again the continuity of f at x.
(ii) Suppose now that Dα′({x}) > 0. If u does not have a jump discontinuity at x then
(3.23) holds trivially. Thus assume that Du({x}) > 0. Working similarly to case (i), we
arrive again at (3.25)–(3.26). Notice also that since we assumed that Du({x}) > 0 we
have from (3.13)

D(−v′)({x}) = Du({x}) > 0,

which means that (−v′)l(x) < (−v′)r(x) and thus for all δ > 0 that are small enough
we have

1

δ

∫ x

x−δ
−v′(s)ds < 1

δ

∫ x+δ

x
−v′(s)ds. (3.29)

Inequality (3.29) together with (3.25)–(3.26) gives

1

δ

∫ x

x−δ
α′(s)ds ≤ 1

δ

∫ x

x−δ
−v′(s)ds < 1

δ

∫ x+δ

x
−v′(s)ds ≤ 1

δ

∫ x+δ

x
α′(s)ds,

for all δ > 0 small enough. Taking the limit δ → 0 in the expression above we end up with

(α′)l(x) ≤ (−v′)l(x) < (−v′)r(x) ≤ (α′)r(x),

and thus
Du({x}) = D(−v′)({x}) ≤ Dα′({x}).

Assuming Du({x}) < 0, by working similarly we derive

Du({x}) ≥ −Dα′({x}),

and thus generally (3.23) holds.
For the second part of (ii), note first that since (x − ε, x + ε) ⊆ supp(|Du|) and v

is continuous, from (3.14) it follows that there exists a sufficiently small δ > 0 such that
v = 1 everywhere in (x − δ, x + δ) (or v = −1 everywhere in (x − δ, x + δ)). As a
result, from condition (3.14) we get that v = −α or v = α in (x− δ, x+ δ) and condition
(3.13) imposes there

−α′ = f − u or α′ = f − u.
Since |Df |({x}) = 0 from the above we get that

Du({x}) = Dα′({x}) or Du({x}) = −Dα′({x}).

By performing similar steps to the ones in the proof of Proposition 3.7, the following
result can be shown.
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Corollary 3.8. Suppose that x is a jump discontinuity point for the data f andDα′({x}) >
0. Then, the following estimate holds:

|Du|({x}) ≤ |Df |({x}) +Dα′({x}). (3.30)

Proof. We briefly sketch the proof. Suppose without loss of generality thatDf({x}) > 0.
• If D(−v′)({x}) > 0, then we follow the steps of the proof above starting from (3.29)
and we derive D(−v′)({x}) ≤ Dα′(x). Then from (3.13) we get

Du({x}) = Df({x}) +D(−v′)({x}) ≤ Df({x}) +Dα′({x}).

• If −Df({x}) ≤ D(−v′)({x}) < 0, then obviously

Du({x}) = Df({x}) +D(−v′)({x}) < Df({x}) ≤ Df({x}) +Dα′({x}).

• Lastly ifD(−v′)({x}) < −Df({x}) then it follows thatDu({x}) < 0. Then following
exactly the steps of (ii) in the proof of Proposition 3.7 (only the signs are reversed) we
end up to

Dv′({x}) ≤ Dα′({x}),
and thus in this case

0 > Du({x}) = Df({x}) +D(−v′)({x}) ≥ Df({x})−Dα′({x}).

We would like now to prove that if α is differentiable at a point x, then |Du|({x}) ≤
|Df |({x}). Notice that we cannot derive this straightforwardly from Corollary 3.8 as there
we use the fact that Dα′({x}) > 0. However, this can easily be shown independently as
the next proposition shows.

Proposition 3.9. Let u solve the weighted TV minimisation problem with data f and
weight function α ∈ C(Ω) with α′ ∈ BV(Ω) and α > 0. Then if |Dα′|({x}) = 0, we
have

|Du|({x}) ≤ |Df |({x}). (3.31)

Moreover, the jumps of u and f have the same direction.

Proof. If |Df |({x}) = 0 we have nothing to prove since by Proposition 3.3 we have that
|Du|({x}) = 0 as well. Thus, suppose that Df({x}) > 0. The case Df({x}) < 0 is
treated similarly. We first exclude the case Du({x}) < 0. Suppose towards contradiction
that this holds. From the left and right continuity properties of f and u and (3.13) we have
that there exists an ε > 0 and some real numbers m < M such that

ess sup
t∈(x−ε,x)

v′(t) ≤ m < M ≤ ess inf
t∈(x,x+ε)

v′(t),

Bearing in mind that v(x) = α(x) > 0 and the fact that

v(t) = v(x) +

∫ t

x
v′(s)ds, x ≤ t,

v(t) = v(x)−
∫ x

t
v′(s)ds, t ≤ x,
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together with v < α, we deduce that

α(x)− α(t) ≥M(x− t), x ≤ t,
α(x)− α(t) ≤ m(x− t), t ≤ x,

which contradicts the fact that α is differentiable at x. Hence Du({x}) > 0 and it now
remains to prove (3.31). Notice first of all that by arguing similarly as above we can exclude
the cases

u(x) < f(x) < f(x) < u(x), u(x) ≤ f(x) < f(x) < u(x) and u(x) < f(x) < f(x) ≤ u(x).

We thus focus on the cases

f(x) < u(x) ≤ f(x) < u(x), (3.32)

f(x) < f(x) < u(x) < u(x), (3.33)

u(x) < f(x) ≤ u(x) < f(x), (3.34)

u(x) < u(x) < f(x) < f(x). (3.35)

and we will show that when these happen then (3.31) must hold.
We argue for (3.32) since (3.33), (3.34) and (3.35) can be treated similarly. Assume

that (3.31) does not hold. This means that

f(x)− f(x) < u(x)− u(x).

Arguing in the same way as before, this implies that there exists an ε > 0 and some real
numbers m < M such that

ess sup
t∈(x,x+ε)

v′(t) ≤ m < M ≤ ess inf
t∈(x−ε,x)

v′(t) < 0.

This, together with the fact that v(x) = −α(x) and v ≤ −α contradicts again the
differentiability of α at x.

Recall that in the standard scalar TV minimisation we always have at a jump point x
of u,

f(x) ≤ u(x) < u(x) ≤ f(x). (3.36)

Moreover, the jumps of u and f having the same directions, i.e.,

f l(x) ≤ ul(x) < ur(x) ≤ f r(x) or f r(x) ≤ ur(x) < ul(x) ≤ f l(x).

We now summarise our findings so far. Given f ∈ BV(Ω) α ∈ C(Ω) with α′ ∈
BV(Ω), we have shown analytically the following:

(i) If |Dα′|({x}) = 0 and |Df |({x}) = 0 then |Du|({x}) = 0; see Proposition 3.3
and (3.22).

(ii) If Dα′({x}) < 0 then a plateau is created for u around x; see Proposition 3.7.

(iii) The estimate |Du|({x}) ≤ |Df |({x})+ |Dα′|({x}) holds in every point x ∈ Ω.

(iv) If |Df |({x}) = 0, Dα′({x}) > 0 and (x − ε, x + ε) ⊆ supp(|Du|), then
|Du|({x}) = Dα′(x); see Proposition 3.7.
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Case What is proved analytically Is it possible... Answer/Figure

Dα′({x}) > 0 |Du|({x}) ≤ |Df |({x}) + |Dα′|({x}) for u to remain continuous? Yes, Fig. 3a

Dα′({x}) > 0 &Df({x}) = 0 |Du|({x}) ≤ |Dα′|({x}) to have “<” ? Yes, Fig. 3b

Dα′({x}) > 0 &Df({x}) = 0 |Du|({x}) ≤ |Dα′|({x}) to have “=” ? Yes, Fig. 3c

Dα′({x}) = 0 &Df({x}) > 0 |Du|({x}) ≤ |Df |({x}) f l(x) < f r(x) < ul(x) < ur(x) ? Yes, Fig. 3d

Dα′({x}) > 0 &Df({x}) > 0 |Du|({x}) ≤ |Df |({x}) + |Dα′|({x}) ul(x) < f l(x) < f r(x) < ur(x) ? Yes, Fig. 3e

Dα′({x}) > 0 &Df({x}) > 0 |Du|({x}) ≤ ||Df |({x})−Dα′({x})| 1 ul(x) < f r(x) < f l(x) < ur(x) ? Yes, Fig. 3f

Table 1: Summary of the questions that are answered with numerical examples in Figures 3a–3f

(v) If f and u jump at x in different directions then |Du|({x}) ≤ ||Df |({x}) −
Dα′({x})|; see Corollary 3.8.

(vi) If |Dα′|({x}) = 0 and u and f jump at x, then their jumps have the same direction;
see Proposition 3.9.

Despite these first analytical results, several questions still need to be addressed. For
instance, one wonders whether Dα′({x}) > 0, always creates a jump discontinuity for u
at x. Furthermore, we note that (3.36) is related to a loss of contrast in mathematical image
processing. Here, one consequently is interested in understanding, whether such an effect
still is possible in the weighted case, provided the weight is smooth. Table 1 summarises
these and further questions. In Figures 3a–3f we provide numerical examples for all the
cases discussed in Table 1.

In Figure 3a we have an example where both the data f and the solution u are con-
tinuous at a point x despite the fact that Dα′({x}) > 0. Note also that a trivial example
here would also be the case where α is so large that u would be a constant.

In Figure 3b we depict an example where a new discontinuity is created for the solution
u at the point x = 0 where the data function f is continuous. Note that in this specific ex-
ample, the creation of this discontinuity is guaranteed to happen since f is continuous and
strictly increasing. This was shown in Proposition 3.5 for data functions with a downward
spike, but it can be easily extended to an absolute value-type function as we have here.
Note that the estimate |Du|({x}) ≤ Dα′({x}) holds here with strict inequality. Observe
that the jump of α′ is very large at the point 0 in contrast to the jump of u there. In fact
there is a further upper bound for Du({x}) which is independent of α; see Theorem 4.2
of Section 4 and Theorem 5.4 of Section 5. As we mention in the introduction, in these
theorems it is shown that |Du|(Ω) ≤ |Df |(Ω).

On the contrary, in Figure 3c we have an example where the estimate |Du|({x}) ≤
Dα′({x}) holds with an equality. We use the same f as in Figure 3c and a similar weight
function α with a small jump of α′ at x = 0. Note that here it holds that (−ε, ε) ⊆
supp(|Du|) for some small ε > 0 and, as Proposition 3.7 predicts, we have |Du|({x}) =
Dα′({x}).

In Figure 3d we encounter another, perhaps unexpected situation. Even though we are
using a smooth weight function α and, as Proposition 3.3 states, the jumps of u should
occur at the same points where f has jumps, condition (3.36) is violated. Indeed, here we
have that the whole jump of u is above that of f , i.e., f l(x) < f r(x) < ul(x) < ur(x).
Nevertheless, there still holds |Du|({x}) ≤ |Df |({x}) in accordance with Proposition

1 when the jumps of u and f have opposite directions
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(b) Case where |Du|({x}) < Dα′({x}).
Note that x = 0 is not an interior point of
supp(|Du|)
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(c) Case where |Du|({x}) = Dα′({x}).
Note that this is predicted by Proposition
3.7, since (−ε, ε) ⊆ supp(|Du|)
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(d) Case where even though the weight
function α is smooth, the jump of u is
above the jump of f , i.e., f l(x) <
f r(x) < ul(x) < ur(x)
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(e) Case where the jump of u is larger than
the jump of f and has the same direction,
i.e., ul(x) < f l(x) < f r(x) < ur(x)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.1

-0.05

0

0.05

0.1
f

u

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

25

30

α

(f) Case where the jump of u is larger than
the jump of f and has the opposite direc-
tion, i.e., ul(x) < f r(x) < f l(x) <
ur(x)

Figure 3: Series of numerical examples that confirm that certain cases, as these are described
in Table 1, can indeed occur using weighted TV regularisation
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3.9.
In Figure 3e we have an example where the size of the jump of u is larger than the one

of f since we have that α′ also jumps there. Note that in this example the jump directions
are the same.

On the other hand, in Figure 3f we have a similar situation, i.e., the jump of u is larger
than the one of f , but also the orientation of the jumps is different asDu({0}) > 0, while
Df({0}) < 0.

Let us note here that situations where condition (3.36) is violated, like the examples in
Figures 3d and 3f in which the jump is moving upwards or changing orientations, shows
that the weighted TV has fundamentally different regularising properties when compared
to the scalar TV. Moreover, this is also true in comparison with other popular regularisers
like Huber-TV or TGV. Indeed, for (the scalar parameter versions of) one dimensional
Huber-TV and TGV, condition (3.36) always holds [BKV13, PB15, BPPS16].

Finally we note that even though in Figure 3 we present only numerical results, one
can easily calculate analytically the explicit forms of the solutions depicted there. Indeed,
in Section 3.4 we do that exhaustively for the examples in Figures 3b–3c.

Before we finish this section, we mention two last results. The first one says that the
solution u is constant in areas where the weight function α has high gradient. This is
essentially a corollary of the fact that the solution u is bounded by the data f with respect
to the uniform norm.

Proposition 3.10. Let f ∈ BV(Ω) and α be a weight function, differentiable in an open
interval I ⊆ Ω, such that

|α′(x)| > 2‖f‖∞, for all x ∈ I. (3.37)

Let u be the solution of (3.1) with data f and weight α. Then u is constant in I .

Proof. One can easily observe that for the solution u the following maximum principle
holds true:

ess inf
x∈Ω

f(x) ≤ ess inf
x∈Ω

u(x) ≤ ess sup
x∈Ω

u(x) ≤ ess sup
x∈Ω

f(x). (3.38)

This stems from the fact that the function

usup f
inf f (x) := max(min(ess sup

t∈Ω
f(t), ũ(x)), ess inf

t∈Ω
f(t)),

has always equal or less energy than u, where here ũ is any good representative of u.
Using a simple translation argument, we can assume that

ess sup
x∈Ω

f(x) = ‖f‖∞,

ess inf
x∈Ω

f(x) = −‖f‖∞.

This together with (3.38) implies that ‖f −u‖∞ ≤ 2‖f‖∞ and, thus, for the dual variable
v it must hold

‖v′‖∞ ≤ 2‖f‖∞. (3.39)

Suppose now that u is not constant in I . Then from condition (3.14) we have that there
exists a point x ∈ I such that |v(x)| = α(x) and, without loss of generality, we assume
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that v(x) = α(x). We can also assume without loss of generality that α′ < −2‖f‖∞
in I . Using the fundamental theorem of calculus, the mean value theorem, the fact that
v(x) = α(x) and v ≤ α, we get for every t > x with t ∈ I

1

t− x

∫ t

x
v′(s)ds ≤ α(x)− α(t)

x− t < −2‖f‖∞. (3.40)

We claim now that for every ε > 0 small enough there exists a set A ⊆ (x, x + ε) of
positive Lebesgue measure such that v′ < −2‖f‖∞ in A, which of course contradicts
(3.39). Indeed if there was a small enough ε > 0 such that v′ ≥ −2‖f‖∞ almost
everywhere on (x, x+ ε) ⊆ I then we would get for every x < t < x+ ε

−2‖f‖∞ =
1

t− x

∫ t

x
−2‖f‖∞ ds ≤

1

t− x

∫ t

x
v′(s)ds,

which contradicts (3.40).

The last result we state is that, as in the scalar case, solutions of the weighted TV
minimisation are constant near the boundary of Ω. The proof is very simple and stems
from the facts that α is bounded away from zero as well as v ∈ H1

0 (Ω).

Proposition 3.11. Let Ω = (a, b), f ∈ BV(Ω) and α ∈ C(Ω) with α > 0. Then there
exist a < x1 < x2 < b such that the solution u of (3.1) with data f and weight α, is
constant in (a, x1) and (x2, b).

Proof. Suppose that there does not exist a x1 ∈ (a, b) such that u is constant in (a, x1).
Then from condition (3.14) it follows that there exists a sequence (an)n∈N ∈ (a, b),
converging to a and

|v(an)| = α(an), for every n ∈ N.

From the continuity of v and the fact that it belongs to H1
0 (Ω) we have

0 = lim
n→∞

|v(an)| = lim
n→∞

α(an) ≥ min
x∈(a,b)

α(x) > 0,

which is a contradiction. Similarly we deal with the right part of the boundary of Ω.

3.3 A partial semigroup property

For this section it is convenient to introduce the following notation

Sα(x)(f) := argmin
u∈BV(Ω)

1

2

∫
Ω

(f − u)2dx+

∫
Ω
α(x)d|Du|,

i.e., Sα(x)(f) denotes the solution of (3.1) with data f ∈ BV(Ω) and weight function

α ∈ C(Ω). Again we slightly abuse the notation by writing Sα(x)(f) when α is not a
constant function and Sα(f) when it is. It is a well-known fact that the following semigroup
property holds for the one dimensional scalar total variation problem [SGG+09]

Sα1+α2(f) = Sα2 (Sα1(f)) = Sα1 (Sα2(f)) , α1, α2 > 0. (3.41)

In other words, one can obtain the solution of TV regularisation with scalar parameter
α1 + α2 and data f by applying TV regularisation with parameter α2 to the result which
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is obtained by applying TV regularisation with parameter α1 to the data f . The result
remains the same if we apply TV regularisation first with parameter α2 and then with α1.
Here we examine whether this property holds true in the weighted TV regularisation or
not. The next proposition states that this is indeed the case when the second regularisation
parameter is a scalar.

Proposition 3.12 (Partial semigroup property). Let f ∈ BV(Ω), α1 ∈ C(Ω) with α1 >
0, and α2 > 0 be a scalar. Then

Sα1(x)+α2
(f) = Sα2

(
Sα1(x)(f)

)
. (3.42)

Proof. Let u1 := Sα1(x)(f) and u2 := Sα2

(
Sα1(x)(f)

)
. The optimality conditions for

the corresponding minimisation problems read

v′1 = f − u1, v′2 = u1 − u2,

−v1 ∈ α1(x)Sgn(Du1), −v2 ∈ α2Sgn(Du2),

where both v1, v2 ∈ H1
0 (Ω). Defining v12 = v1 + v2, we have v12 ∈ H1

0 (Ω) and

v′12 = f − u2.

Thus, for (3.42) it suffices to show that

− v1 − v2 ∈ (α1(x) + α2)sgn(Du2). (3.43)

Since |v1(x)| ≤ α1(x) for Lebesgue–almost every x ∈ Ω and ‖v2‖∞ ≤ α2, it obviously
holds that |v12(x)| ≤ α1(x) + α2 for Lebesgue–almost every x ∈ Ω. Consequently, it
suffices to check that

− v12 = (α1(x) + α2)sgn(Du2), |Du2| − a.e. (3.44)

In what follows we work with the continuous representatives of sgn(Du1) and sgn(Du2).
Let x ∈ Ω with x ∈ supp(|Du2|) and sgn(Du2)(x) = 1, then we will show that
sgn(Du1)(x) = 1 as well (similarly we proceed with −1). Note that in this case (any
good representative of) u2 is increasing near x in the sense that there exists a small
enough ε > 0 such that

u2(s) ≤ u2(s′) < u2(t) ≤ u2(t′), for every x− ε < s < s′ < x < t < t′ < x+ ε.

Indeed this comes from the fact that

ur2(s)− ur2(t) =

∫
(s,t]

sgn(Du2)(y)d|Du2|, s < x < t,

combined with the continuity of sgn(Du2) and the fact that sgn(Du2)(x) = 1. We
claim then, that x ∈ supp(|Du1|) as well. Indeed, if this is not true then |Du1|((x −
ε, x + ε)) = 0 for a small ε > 0, and thus the same would hold for u2 (which fol-
lows directly when using the optimality conditions). Since x ∈ supp(|Du1|), then either
sgn(Du1)(x) = 1 or sgn(Du1)(x) = −1. However, the latter case can be excluded
and thus sgn(Du1)(x) = 1. Indeed, from the optimality conditions, and by considering
different cases depending on whether x it is a jump point or not, it follows that the data u1

and the solution u2 cannot be decreasing and increasing respectively near x. As a result,
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Figure 4: Failure of the semigroup property for the weighted total variation model in the case
where both weights α1 and α2 are not constant

if sgn(Du2)(x) = 1 it follows that sgn(Du1)(x) = 1. From the optimality conditions we
obtain

−v2(x) = α2 and − v1(x) = α1(x),

respectively. Hence−v12(x) = α1(x)+α2. Similarly if sgn(Du2)(x) = 1 then−v12(x) =
−α1(x)− α2 and thus (3.44) holds.

It is natural to ask whether (3.42) holds when both α1, α2 are non-scalar continuous
weight functions. Propositions 3.4 and 3.5 indicate that this is not necessarily true. We
illustrate this fact with a numerical example in Figure 4. We start with an affine function
f and first apply weighted TV regularisation with a square root type weight function α1.
Note the discontinuity that it is created in the solution u1 exactly at the point where α1

has the downward spike; see Figure 4a. By further applying weighted TV regularisation
to the result with weight function α2 = 20−α1, a plateau is created at this point; compare
Figure 4b. The final result is different to the solution of the TV regularisation of the initial
data f with weight α1 + α2 = 20, which is shown in Figure 4c.

However, what is perhaps even more surprising is that property (3.42) of Proposition
3.12 is non-commutative, i.e., it might fail even in the case where we first regularise with a
constant weight function and then with a non constant one; hence the term partial semi-
group property in Proposition 3.12, i.e.,

Sα1(x)+α2
(f) = Sα2

(
Sα1(x)(f)

)
6= Sα1(x) (Sα2(f)) . (3.45)
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the initial data with
a non-constant weight
α1(x)
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with a constant weight
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the initial data with a
constant weight α2
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the result in Figure
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weight α1(x)
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the sum of a non-constant α1(x) and a constant function α2 is not
also obtained by successively solve (3.1) using the constant and then
with the non-constant weight, Sα1(x) (Sα2(f)) but can be obtained by
doing so, first with the non-constant and then with the constant weight
Sα2

(
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)
, as Proposition 3.12 dictates

Figure 5: Non-commutativity of the semigroup property even when one of the weights is constant

In order to get an intuition for (3.45), observe that the optimality conditions read

v′1 = f − u1, v′2 = u1 − u2,

−v1 ∈ α2Sgn(Du1), −v2 ∈ α1(x)Sgn(Du2).

Recalling (v1 + v2)′ = f − u2, for u2 to be the result obtained after regularising f with
α1 + α2(x) requires that

− v1 − v2 = (α1(x) + α2)Sgn(Du2), |Du2| − a.e. (3.46)

However, condition (3.46) could fail if for instance u2 has a new discontinuity created at a
point x around which u1 is constant and below (or above) f . That would enforce |v2(x)| =
α1(x) and |v1(x)| < α2 and thus (3.46) would not hold.

We provide a numerical example in Figure 5. In Figures 5a–5b, we display the result
which is obtained when we first regularise with a non-constant weight α1(x) and then with
a constant α2. Figures 5c–5d, on the other hand, show the result when first regularising
with α2 and then with α1(x). Figure 5e confirms that (3.45) holds for this example.
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3.4 Analytic solutions for simple data and weight functions

Next we compute several analytic solutions for the problem (3.1). We get a further intu-
ition about the structure of solutions and how it changes with respect to different weight
functions.

Suppose Ω = (−L,L), where L > 0, and

f(x) = λx, x ∈ (−L,L), λ > 0. (3.47)

We also consider an absolute value type function as weight, i.e.,

α(x) = µ|x|+ c, x ∈ (−L,L), µ, c > 0. (3.48)

Note that the symmetry of f and α imply that the solution u is also symmetric. Thus
it suffices to describe the solution in the interval [0, L). According to Proposition 3.11, u
will be constant at the right boundary of [0, L), say at the interval (x0, L). Assuming that
the solution is strictly increasing on (0, x0], the optimality conditions (3.13)–(3.14) yield
−α′(x) = f − u. Note that according to Proposition 3.7, in this case, u will have a jump
discontinuity at x = 0. Thus, we study the ansatz

u(x) =

{
λx+ µ, if x ∈ (0, x0],

λx0 + µ, if x ∈ (x0, L).

From the optimality conditions (3.13)–(3.14) it follows that v has the form

v(x) =

{
−α(x), if x ∈ (0, x0],
1
2λx

2 − (λx0 + µ)x+ d, if x ∈ (x0, L),

for some constant d. From the continuity of v at x0 and v ∈ H1
0 (Ω), we infer

lim
x→x0+

v(x) = −α(x0), (3.49)

lim
x→L

v(x) = 0. (3.50)

Using conditions (3.49)–(3.50), one computes

x0 = L−
√

2λµL+ 2λc

λ
. (3.51)

Notice that |v(x)| ≤ α(x) is satisfied for all x ∈ (0, L). Finally, we need 0 < x0. This
holds if and only if

µL+ c <
λL2

2
. (3.52)

Next we examine the case x0 = 0, that is the solution is constant in (0, L) but nonethe-
less has a jump discontinuity at x = 0. Hence, our ansatz here is

u(x) = M, x ∈ (0, L), M > 0.

Now the variable v is of the form

v(x) =
1

2
λx2 −Mx+ d, x ∈ (0, L).
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From the fact that u has a jump discontinuity at x = 0 (note that the jump must be positive)
and v ∈ H1

0 (Ω), we infer

v(0) = −α(0), lim
x→L

v(x) = 0,

which in turn give M = λL
2 − c

L . Since we require M > 0 we must have

c <
λL2

2
. (3.53)

Finally, in order to guarantee that |v(x)| ≤ α(x) for all x, it suffices to enforce v′(0) ≥
−µ, i.e.,

µL+ c ≥ λL2

2
. (3.54)

Note that the inequalities (3.53)–(3.54) form necessary and sufficient conditions for the
occurrence of this kind of solution.

The last alternative for the solution is to be constant, equal to the mean value of the
data, i.e., u = 0. Working similarly as in the previous cases we deduce that this solution
occurs if and only if

c ≥ λL2

2
. (3.55)

Note that the conditions (3.52), (3.53)–(3.54) and (3.55) define a partition of the quad-
rant {µ ≥ 0, c ≥ 0}.We summarise our findings in the following proposition.

Proposition 3.13. Let Ω = (−L,L), f(x) = λx and α(x) = µ|x|+c withL, λ, µ, c >
0. Then the solution u of the problem

min
u∈BV(Ω)

1

2

∫
Ω

(f − u)2dx+

∫
Ω
α(x)d|Du|,

is given by the following formulae:

If µL+ c <
λL2

2
, u(x) =


−λxµ,c − µ, if x ∈ (−L,−xµ,c],
−λx− µ, if x ∈ (−xµ,c, 0),

λx+ µ, if x ∈ [0, xµ,c),

λxµ,c + µ, if x ∈ [xµ,c, L),

where xµ,c = L−
√

2λµL+ 2λc

λ
.

If µL+ c ≥ λL2

2
& c <

λL2

2
, u(x) =

{
−λL

2 + c
L , if x ∈ (−L, 0),

λL
2 − c

L , if x ∈ [0, L).

If c ≥ λL2

2
, u(x) = 0, x ∈ (−L,L).

In Figure 6 we depict the different areas of the parameter space of the absolute type
weight function, {µ ≥ 0, c ≥ 0} that correspond to the different types of solutions.

In Figure 7 we summarise numerical examples to better understand the solution de-
pendence on the weight parameters c and µ. In Figure 7a, keeping µ fixed, we vary the
parameter c by adding constants. Among others, one can observe here the numerical ver-
ification of the partial semigroup property of Proposition 3.12. The first weight (light blue
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Figure 6: Different types of solutions of the weighted TV minimisation problem (3.1) with data
f(x) = λx in (−L,L) and weight function α(x) = µ|x|+ c
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(a) Varying c by keeping µ fixed
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(b) Varying µ by keeping c fixed

Figure 7: Numerical solutions of the weighted TV minimisation (3.1) with data f(x) = λx in
(−L,L) and weight functions of the type α(x) = µ|x|+ c

line) produces a result, say u1, that has a new discontinuity at the origin. As we increase
the weight function by a constant the solutions we obtain are the corresponding solutions
of the scalar TV problem with data u1 and the parameter being the very constant.

In Figure 7b, by keeping c fixed, we vary the parameter µ by increasing the slope of the
weight function. Notice that as the slope increases, i.e., Dα′({0}) increases, so does the
jump discontinuity of the solution u. This is in accordance with Proposition 3.7, i.e., we have
Du({x}) = Dα′({0}), since at least when µ is not too large, a whole neighbourhood of
x = 0 belongs to supp(|Du|). This behaviour stops when µ, and thus α′, becomes too
large (light purple line). Then the jump size of the solutions stops growing, no matter the
size of µ and it depends only on the value of c, cf. Propositions 3.10 and 3.13.

4 Bound of the total variation of the solution by the
total variation of the data

It is a standard result in the scalar total variation minimisation that the total variation of
the solution is bounded by the total variation of data, i.e., if α is a positive constant and u
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solves

min
u∈BV(Ω)

1

2

∫
Ω

(f − u)2dx+ α|Du|(Ω),

then
|Du|(Ω) ≤ |Df |(Ω). (4.1)

This is simply proven by comparing the energy of the minimiser u and the data f , that is

α|Du|(Ω) ≤ 1

2

∫
Ω

(f − u)2dx+ α|Du|(Ω) ≤ α|Df |(Ω).

Note that this holds for any dimension. A similar argument for the weighted case would
only give∫

Ω
α(x)d|Du| ≤

∫
Ω
α(x)d|Df | ⇒ |Du|(Ω) ≤ maxx∈Ω α(x)

minx∈Ω α(x)
|Df |(Ω). (4.2)

However, the estimate in (4.2) is not satisfactory since the constant in the right-hand side
depends on the weight α and in fact blows up as α tends to zero. In this section, we show
that the estimate (4.1) holds in the weighted case as well. At first glance, (4.1) is coun-
terintuitive as weighted TV may create new discontinuities, thus, increasing the variation
locally. Our proof here uses fine scale analysis of the structure of solutions of the weighted
TV problem and thus we are only able to show this result in dimension one.

We start by showing that weighted TV does not introduce oscillations in the solution
u.

Proposition 4.1. Let u ∈ BV(Ω) solve the weighted TV problem (3.1) with data f ∈
BV(Ω) and a differentiable weight functionα ∈ C(Ω) withα > 0. Then {u > f}∩{u >
f} is an open set and hence it is the countable union of disjoint intervals In. In each one
of these intervals In, the solution u has at most one initial decreasing part, followed by at
most one increasing part. The analogous result holds for the set {u < f} ∩ {u < f}.
There the solution u has at most one initial increasing part, followed by an at most one
decreasing part.

Proof. Observe first that

{u > f} ∩ {u > f} = {u > f} ∪ {f < u ≤ f < u}. (4.3)

The fact that the set {u > f} is open is shown in [BKV13]. Let now x ∈ {f < u ≤
f < u} and suppose without loss of generality that Df({x}) > 0. Then, Du({x}) > 0
as well, since α is differentiable, cf. Proposition 3.9. This means that

f l(x) < ul(x) ≤ f r(x) < ur(x).

Bearing in mind that f l(t) = c1 + Df((a, t)), ul(t) = c2 + Du((a, t)), from the left
continuity of f l and ul it follows that there exists an ε > 0 and two real numbers m < M
such that

c1 +Df((a, t)) < m < M < c2 +Du((a, t)), for all t ∈ (x− ε, x). (4.4)

But since Df((α, t0]) = limt→t+0
Df((α, t)), and analogously for u, we have that

c1 +Df((a, t]) ≤ m < M ≤ c2 +Du((a, t]), for all t ∈ (x− ε, x), (4.5)
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also holds and hence every t in (x − ε, x) also belongs to {u > f}. Similarly we show
that there exists an ε > 0 such that every t in (x, x + ε) also belongs to {u > f}
and hence from (4.3) the set {u > f} ∩ {u > f} is open. Thus it can be written as a
countable union of disjoint intervals In.

We focus on a single interval In. From the optimality conditions (3.13)–(3.14) we have
that v′ < 0 almost everywhere in In and thus v is strictly decreasing there. Suppose now
that u has an increasing part in In followed by a decreasing part. Then there would exist
points x1 and x2 in In with x1 < x2 and

sgn(Du)(x1) = 1 and sgn(Du)(x2) = −1.

However, again from the optimality conditions one obtains

v(x1) = −α(x1) < 0 and v(x2) = α(x2) > 0,

which is a contradiction since v is decreasing in (x1, x2) ⊆ In.

We are now ready to prove the main theorem of the section. Note that we will assume
for the time being that the weight function α is differentiable. In Section 5 we will extend
this result to continuous weights α via a Γ-convergence argument.

Theorem 4.2 (|Du|(Ω) ≤ |Df |(Ω), for differentiable α). Let Ω = (a, b) ⊆ R, α ∈
C(Ω) differentiable with α > 0 and f ∈ BV(Ω). If

u = argmin
u∈BV(Ω)

1

2

∫
Ω

(f − u)2dx+

∫
Ω
α(x)d|Du|,

then
|Du|(Ω) ≤ |Df |(Ω).

Proof. Since the weight function α is differentiable we have that, according to Proposition
3.3, the jump discontinuities of the solution u are contained in the ones of the data f .
Moreover, {u ≤ f < f < u} ∪ {u < f < f ≤ u} is empty; cf. Proposition 3.9. As Jf
is at most countable we can write

|Du|(Ω) = |Du|({u > f} ∩ {u > f}) + |Du|({u < f} ∩ {u < f})
+ |Du|({f ≤ u < u ≤ f}) + |Du|({u = u = f = f}). (4.6)

Notice that the sets that appear in (4.6) are disjoint. We focus first on the set {u > f} ∩
{u > f}. According to Proposition 4.1, this can be written as a countable union of disjoint
open intervals. Let (x1, x2) be one of these intervals and assume for the moment that
a < x1 < x2 < b. Then we have that (x1, x2) is maximal in the sense that in the
endpoints x1 and x2, at least one of the conditions u(x) > f(x), u(x) > f(x) does
not hold. Recall from Proposition 4.1 that in this interval, u starts with a decreasing part
followed by an increasing one (both not necessarily strict). In what follows, we will infer
bounds on |Du|((x1, x2)) by considering different alternative cases.

(i) Consider first that f , and hence u, is continuous at both endpoints x1 and x2. From
the maximality of the associated interval we have

u(x1) = u(x1) = f(x1) = f(x1) and u(x2) = u(x2) = f(x2) = f(x2).
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Then from the monotonicity structure of u and the fact that in this interval ess inft∈(x1,x2) f(t) <
ess inft∈(x1,x2) u(t) we have that

|Du|((x1, x2)) ≤ |Df |((x1, x2)).

(ii) The second case is that f is continuous at x1 and has a jump discontinuity at x2.
Note that this jump must be a positive one as otherwise the condition u > f would be
violated inside the interval, unless we have u(x2) = f(x2) in which case the estimate
|Du|((x1, x2)) ≤ |Df |((x1, x2)) holds. Notice also that due to the maximality of x2 we
cannot have f(x) < u(x) ≤ f(x) < u(x). So we must have

u(x1) = u(x1) = f(x1) = f(x1) and f(x2) ≤ u(x2) < u(x2) ≤ f(x2), (4.7)

if u has a jump in x2, or

u(x1) = u(x1) = f(x1) = f(x1) and f(x2) ≤ u(x2) = u(x2) ≤ f(x2), (4.8)

if u does not have a jump in x2. Suppose we have (4.7), then arguing similarly as before
we have that

|Du|((x1, x2)) ≤ |Df |((x1, x2)) + u(x2)− f(x2),

i.e., in that case we need to add to the right-hand side also a part of the jump of f at x2,
which is however below the jump of u. If we have (4.8) we estimate again

|Du|((x1, x2)) ≤ |Df |((x1, x2)) + u(x2)− f(x2).

(iii) The third case is that f has a jump discontinuity at x1 and it is continuous at x2.
This is treated analogously to the second case.

(iv) The fourth case is that f has jump discontinuities at both points x1 and x2. The
only case the jump of f at x1 is positive is when u(x1) = f(x1) and in that case we have

|Du|((x1, x2)) ≤ |Df |((x1, x2)) or |Du|((x1, x2)) ≤ |Df |((x1, x2))+u(x2)−f(x2),

depending on whether the jump of f at x2 is negative or positive. So we are left with the
case where the jumps of f at x1 and x2 are negative and positive, respectively. We then
have

f(x1) ≤ u(x1) ≤ u(x1) ≤ f(x1) and f(x2) ≤ u(x2) ≤ u(x2) ≤ f(x2), (4.9)

where we estimate

|Du|((x1, x2)) ≤ |Df |((x1, x2)) + (u(x1)− f(x1)) + (u(x2)− f(x2)).

Note that analogous estimates hold if x1 = a or x2 = b. By summing over the count-
able set of disjoint intervals related to {u > f} ∩ {u > f}, the following inequality
holds

|Du|({u > f}∩{u > f}) ≤ |Df |({u > f}∩{u > f})+
∑

x∈{f≤u<u≤f}

(u(x)−f(x)).

(4.10)
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This is also due to the fact that any term of the form u(x) − f(x)) appears in only one

of the corresponding estimates for the intervals In. Similarly, for {u < f} ∩ {u < f} we
obtain

|Du|({u < f}∩{u < f}) ≤ |Df |({u < f}∩{u < f})+
∑

x∈{f≤u<u≤f}

(f(x)−u(x)).

(4.11)
The final estimate then follows:

|Du|(Ω) = |Du|({u > f} ∩ {u > f}) + |Du|({u < f} ∩ {u < f})
+ |Du|({f ≤ u < u ≤ f}) + |Du|({u = u = f = f})

≤ |Df |({u > f} ∩ {u > f}) + |Df |({u < f} ∩ {u < f})
+

∑
x∈{f≤u<u≤f}

(u(x)− f(x)) +
∑

x∈{f≤u<u≤f}

(f(x)− u(x))

+
∑

x∈{f≤u<u≤f}

(u(x)− u(x)) + |Df |({u = u = f = f})

≤ |Df |({u > f} ∩ {u > f}) + |Df |({u < f} ∩ {u < f})
+

∑
x∈{f≤u<u≤f}

(f(x)− f(x))

+ |Df |({u = u = f = f})
≤ |Df |(Ω).

Here we also use Lemma 4.3 to infer

|Du|({u = u = f = f}) = |Df |({u = u = f = f}).

It remains to prove the following lemma that was used in the final estimate above.

Lemma 4.3. Let Ω = (a, b), u, v ∈ BV(Ω) and let

A = {x ∈ Ω : u, v are continuous at x and u(x) = v(x)} .

Then
|Du|(A) = |Dv|(A).

Proof. Note first that A can also be written as

A = {x ∈ Ω : u(x) = u(x) = v(x) = v(x)} .

We claim that A is a Gδ set, i.e., a countable intersection of open sets. Indeed recall first,
that the set of continuity points of a function is a Gδ ; see for instance [Olm56]. Therefore,
the sets of continuity points of u and v, i.e., Jcu and Jcv , respectively, are Gδ sets. Note
that A can also be written as

A = Jcu ∩ Jcv ∩ {x ∈ Ω : u(x) = v(x)}. (4.12)
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Observe that u, v as well as their difference w = u − v are lower semicontinuous func-
tions. In particular, for any c ∈ R the setsw−1((c,∞)) andw−1((−∞, c]) are open and
closed, respectively. Thus we have

{x ∈ Ω : u(x) = v(x)} = w−1({0})

= w−1 ((−∞, 0])︸ ︷︷ ︸
closed

∩
⋂
n∈N

w−1

((
− 1

n
,∞
))

︸ ︷︷ ︸
Gδ

,

and hence the set {x ∈ Ω : u(x) = v(x)} is Gδ as an intersection of Gδ sets
(recall here that in any metric space every closed set F is Gδ since F =

⋂∞
n=1{x :

dist(x, F ) < 1
n}). Hence from (4.12) we have that A is Gδ as well. Likewise, if I ⊆ Ω is

an open interval then I ∩A is also Gδ . It is now convenient to consider I ∩A without its
potential isolated points 2 {an}n∈N. Thus we define

Ã = (I ∩A) ∩ ({an}n∈N)c,

which remains a Gδ set as an intersection of two Gδ sets. Hence, we can write

Ã =
⋂
n∈N

An, An =
⋃
k∈N

Ikn,

where the sequence (An)n∈N can be chosen to be decreasing and with each {Ikn}k∈N
being a disjoint family of open intervals.

We are now ready to proceed with the main part of the proof. For every x1, x2 ∈ Ã
with x1 < x2 we have the following equalities

Du((x1, x2)) = u(x2)− u(x1) = v(x2)− v(x1) = Dv((x1, x2)).

We fix an interval Ikn and claim that Du(Ikn) = Dv(Ikn). Since we have removed all
the isolated points from A (left and right ones), we can assume, by potentially making Ikn
smaller, that its endpoints can be approximated by points of Ã, i.e.,

Ikn =
⋃
i∈N

(xi1, x
i
2), xi1, x

i
2 ∈ Ã, with (xi1, x

i
2) ⊆ (xi+1

1 , xi+1
2 ), i ∈ N.

This implies that

Du(Ikn) = Du

(⋃
i∈N

(xi1, x
i
2)

)
= lim

i→∞
Du((xi1, x

i
2))

= lim
i→∞

Dv((xi1, x
i
2)) = Dv

(⋃
i∈N

(xi1, x
i
2)

)
= Dv(Ikn).

It then follows that for every n ∈ N

Du(An) =
∑
k∈N

Du(Ikn) =
∑
k∈N

Dv(Ikn) = Dv(An),

2 Here by isolated points, we mean that there exists ε > 0 such that (αn, αn + ε) or (αn − ε, αn) does not
intersect I ∩A.
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and from continuity of the measures Du and Dv, since (An)n∈N is decreasing, we have

Du(Ã) = lim
n→∞

Du(An) = lim
n→∞

Dv(An) = Dv(Ã).

Finally from the fact that the isolated points of I ∪A, {an}n∈N are at most countable and
u, v are both continuous there, we have that

Du

(⋃
n∈N
{an}

)
= Dv

(⋃
n∈N
{an}

)
= 0,

and hence
Du(I ∩A) = Du(Ã) = Dv(Ã) = Dv(I ∩A),

with this equality being true for any open interval I ⊆ Ω. This implies that |Du|(A) =
|Dv|(A).

5 Weighted total variation with vanishing weight func-
tion α

In this section we are considering the problem (3.1) in the case where the weight function
α ∈ C(Ω) can also have zero values, i.e., α ≥ 0. This is motivated by the fact that a
vanishing weight function imposes locally no regularisation. In terms of image processing
this is useful when one wants the reconstructed image to be equal to the data in some
areas. Moreover, as we analyse in Section 5.2, a vanishing weight function can result to a
better preservation of contrast and exact reconstruction of piecewise constant data.

5.1 The well-posedness

Concerning existence of solutions to (3.1) with α ≥ 0, note that a simple application of
the direct method of calculus of variations fails here, due to the absence of coercivity of
the objective functional. We overcome this complication by employing a Γ-convergence
argument. First we focus on the lower semicontinuity of the weighted TV functional.

Proposition 5.1. Let α ∈ C(Ω) with α ≥ 0. Then the map u 7→
∫

Ω α(x)d|Du| defined
on BV(Ω) is lower semicontinuous with respect to the weak∗ convergence in BV(Ω).

Proof. Let (un)n∈N be a sequence converging to u weakly∗ in BV(Ω). In particular,
Dun → Du weakly∗ in the space of Radon measures, i.e.,

lim
n→∞

∫
Ω
v dDun →

∫
Ω
v dDu, for every v ∈ C0(Ω).

This implies that

lim
n→∞

∫
Ω
vα dDun →

∫
Ω
vα dDu, for every v ∈ C0(Ω),

since vα ∈ C0(Ω) for every v ∈ C0(Ω). Thus, we also have αDun → αDu weakly∗

in the space of Radon measures. From the lower semicontinuity of the total variation map
with respect to the weak∗ convergence in the space of Radon measures we get∫

Ω
α(x)d|Du| = |αDu| (Ω) ≤ lim inf

n→∞
|αDun| (Ω) = lim inf

n→∞

∫
Ω
α(x)d|Dun|.
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We now proceed with the following Γ-convergence result.

Proposition 5.2. Let α ∈ C(Ω) with α ≥ 0 and (αn)n∈N ⊆ C(Ω) being a decreasing
sequence with αn ≥ 0 for every n ∈ N and αn → α, uniformly. Defining F, Fn :
BV(Ω)→ R, by

F (u) :=

∫
Ω
α(x)d|Du|, Fn(u) :=

∫
Ω
αn(x)d|Du|,

then, the sequence (Fn)n∈N Γ-converges to F with the underlying topology being the
topology of weak∗ convergence in BV(Ω).

Proof. It is straightforward to show that (Fn)n∈N is a decreasing sequence which con-
verges to F pointwise since for every u ∈ BV(Ω) we have

|Fn(u)−F (u)| ≤
∫

Ω
|αn(x)−α(x)|d|Du| ≤ ‖αn−α‖∞|Du|(Ω)→ 0 as n→∞.

Then the conclusion follows from [DM93, Prop. 5.7] and the fact that F is lower semicon-
tinuous with respect to the weak∗ convergence in BV(Ω).

Note that the above results hold in arbitrary dimension. However, the proof of the well-
posedness of (3.1) with vanishing weight α, strongly relies on Theorem 4.2 and, thus, it
only holds in dimension one.

Theorem 5.3. Let Ω = (a, b), f ∈ BV(Ω) and α ∈ C(Ω) with α ≥ 0. Then the
minimisation problem

min
u∈BV(Ω)

J(u) :=
1

2

∫
Ω

(f − u)2dx+

∫
Ω
α(x)d|Du|,

has a unique solution u∗ ∈ BV(Ω). Moreover if

Jn(u) :=
1

2

∫
Ω

(f − u)2dx+

∫
Ω
αn(x)d|Du|,

where (αn)n∈N ⊆ C∞(Ω) is a decreasing sequence, uniformly convergent to α, with
αn > 0 for every n ∈ N, then

J(u∗) = lim
n→∞

min
u∈BV(Ω)

Jn(u).

Proof. Note first that since α is continuous, using a standard mollification argument, we
can indeed construct a decreasing sequence (αn)n∈N in C∞(Ω), uniformly convergent
to α, and αn > 0 for every n ∈ N. Using Proposition 5.2 and the fact that the map
u 7→ 1

2

∫
Ω(f − u)2dx is lower semicontinuous with respect to the weak∗ convergence

in BV(Ω) we have [DM93, Prop. 6.25] that the sequence (Jn)n∈N Γ-converges to J . Let
now

un = argmin
u∈BV(Ω)

Jn(u).

We then have

1

2

∫
Ω

(f − un)2dx ≤ 1

2

∫
Ω

(f − un)2dx+

∫
Ω
αn(x)d|Dun| ≤

1

2

∫
Ω
f2dx.
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Thus the sequence (un)n∈N is bounded in L2(Ω) and hence also in L1(Ω). Using now
Theorem 4.2 we have that (un)n∈N is also bounded in BV(Ω), i.e., there exists a positive
constant C such that

un ∈ K := {u ∈ BV(Ω) : ‖u‖BV(Ω) ≤ C}, for all n ∈ N.

This means that for every n ∈ N

min
u∈BV(Ω)

Jn(u) = min
u∈K

Jn(u),

witk K being a weakly∗ sequentially compact set. Then the conclusions of the theorem
follow straightforwardly from [DM93, Thm. 7.4] and the fact that the functional J is strictly
convex.

We would like to finish this section with an extension of Theorem 4.2 for continuous
weight functions α that are also not necessarily bounded away from zero.

Theorem 5.4 (|Du|(Ω) ≤ |Df |(Ω), for continuous α). Let Ω = (a, b) ⊆ R, α ∈ C(Ω)
with α ≥ 0 and f ∈ BV(Ω). If

u = argmin
u∈BV(Ω)

1

2

∫
Ω

(f − u)2dx+

∫
Ω
α(x)d|Du|,

then
|Du|(Ω) ≤ |Df |(Ω).

Proof. Define the weights (αn)n∈N ∈ C∞(Ω) and the functionals J , (Jn)n∈N as in
Theorem 5.3. Let also u and (un)n∈N be the corresponding minimisers. Note that we
have already shown in Theorem 4.2 that

|Dun|(Ω) ≤ |Df |(Ω), for all n ∈ N. (5.1)

Since the sequence (Jn)n∈N Γ-converges to J , we have that any weak∗ cluster point of
(un)n∈N is equal to u [DM93, Cor. 7.20]. This implies that the whole sequence (un)n∈N
converges to u weakly∗ in BV(Ω). Hence from the lower semicontinuity of total variation
with respect to L1 convergence and (5.1) we have

|Du|(Ω) ≤ lim inf
n→∞

|Dun|(Ω) ≤ |Df |(Ω).

Notice that in view of Theorem 5.4, Theorem 5.3 holds also in the case where (αn)n∈N ⊆
C(Ω).

5.2 Application: Exact reconstruction of piecewise constant
noisy data

It is well-known that scalar total variation regularisation is very efficient in recovering noisy
piecewise constant functions. Nevertheless the reconstruction typically suffers from a loss
of contrast. Techniques like Bregman iteration [OBG+05] have been used to reduce this
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effect. In this section we show that by choosing a suitable weight function α, it is possible
to avoid this loss of contrast and, under some mild assumptions on the noise, to exactly
recover the piecewise constant function.

In what follows, let f0 be a piecewise constant function, i.e.,

f0(x) =

N∑
i=1

fiXIi(x), x ∈ Ω, (5.2)

where (Ii)
N
i=1 are disjoint intervals with

⋃N
i=1 Ii = Ω and fi ∈ R for every i = 1, . . . , N

with fi 6= fj for i 6= j. Moreover let η denote an oscillatory function that belongs to
BV(Ω) and satisfies ∫

Ii

η dx = 0 for all i = 1, . . . , N. (5.3)

Proposition 5.5. Let f ∈ BV(Ω) with

f = f0 + η,

where f0 and η are as described above. Define α to be a continuous piecewise affine
function such that

(i) α(xi) = 0, where xi = sup Ii, i = 1, . . . , N − 1.

(ii) α ≥ 0 and it is of the form−µi|x− ci|+ di in every interval Ii, with µi > 2‖f‖∞
for every i = 1, . . . , N .

Then we have that

f0 = argmin
u∈BV(Ω)

1

2

∫
Ω

(f − u)2dx+

∫
Ω
α(x)d|Du|. (5.4)

Proof. Consider first the corresponding minimisation problems with weights αn := α +
1/n and solutions un. Let u be the solution of the weighted total variation minimisation
with weight α. We have to show that u = f0. Since |α′n(x)| > 2‖f‖∞ in every interval
Ii, from Proposition 3.10 in combination with Proposition 3.7 we have that un will be con-
stant in the interior of every Ii. Moreover, the Γ-convergence argument from the proof of
Theorem 5.4 implies that un → u weakly∗ in BV(Ω) and thus u will be also constant in
the interior of every Ii. From the fact that α(xi) = 0 we have that∫

Ω
α(x)d|Du| = 0,

i.e.,

u = argmin
φ∈Ker

∫
α(x)d|D·|

1

2

∫
Ω

(f − φ)2dx, (5.5)

where

Ker

∫
α(x)d|D · | =

{
u ∈ BV(Ω) : u =

N∑
i=1

uiXIi(x), ui ∈ R, i = 1, . . . , N

}
.

It is then easy to see that the minimisation in (5.5) can be separated into N minimisation
problems each of which corresponds to an interval Ii. Consequently, the solution u is of
the form

u =

N∑
i=1

uiXIi(x),

36



0

α

f0

f

Figure 8: Schematic explanation of Proposition 5.5. A noisy piecewise constant function can be
recovered exactly using weighted TV regularisation under a suitable weight function α which
vanishes exactly at the jump points of f0 and has large gradient everywhere else
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(a) Scalar TV denoising

−1 −0.5 0 0.5 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
0
,
f
a
n
d
so
lu
ti
o
n
u

 

 

f0
f
u

−1 −0.5 0 0.5 1

0

10

20

30

40

50

60

70

W
e
ig
h
t
fu

n
c
ti
o
n
α

(b) Weighted TV denoising

Figure 9: Numerical examples: Unlike the scalar case, weighted TV can recover exactly noisy
piecewise constant functions

where

ui = argmin
c∈R

1

2

∫
Ii

(f − c)2dx =
1

|Ii|

∫
Ii

f dx =
1

|Ii|

∫
Ii

f0 + η dx

(5.3)
=

1

|Ii|

∫
Ii

f0 dx = fi,

and thus u = f0.

We should remark here that this exact recovery of piecewise constant functions can
be achieved for a whole family of weight functions α that are not necessarily of the form
−µi|x− ci|+ di in every interval Ii. For instance any weight function α which is initially
increasing and then decreasing in every interval Ii with the property |α′(x)| > ‖f‖∞
(except at its maximum point in Ii) will also lead to an exact recovery of f0.

Figure 8 depicts the result of Proposition 5.5. Note that α must be zero at the jump
points of f so that these jumps are not penalised at all. On the other hand, α should be
steep enough so the remaining parts of the solution u are constant according to Proposi-
tion 3.10. We also provide some numerical examples in Figure 9. There, the data f is a
perturbation of a piecewise constant function f0, under a sin type of noisy function that
satisfies the mean value property (5.3). For the scalar TV denoising, we have chosen the
smallest α such that we get a piecewise constant solution. As expected, this results in a
significant loss of contrast, Figure 9a. However, by applying weighted TV regularisation
with a weight as it is described in Proposition 5.5, an exact recovery is achieved, Figure
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9b. One might expect that since the values of α remain small close to the jump points,
then the noise would be still present in that area. However, this is not true, since constant
parts do not only result due to the large magnitude of α but also due to high values of α′,
Proposition 3.10.

6 Total variation regularisation with weighted fidelity
term

As we have already mentioned in the introduction, one has two options when it comes to
spatially adapted regularisation, i.e., introducing a weight function either in the regulariser
or in the fidelity term. In this final section of the paper we would like to briefly examine the
second case and in particular study the total variation regularisation problem with weighted
fidelity term

min
u∈BV(Ω)

1

2

∫
Ω
w(f − u)2dx+ |Du|(Ω), (6.1)

where Ω = (a, b), f ∈ L2(Ω) and w ∈ L∞(Ω) with w ≥ 0.
Existence of solutions for the problem (6.1) follows straightforwardly using standard

methods. Note that the possibility of w vanishing in some areas does not pose extra diffi-
culties as in the weighted total variation case. It is clear, however, that the solution of (6.1)
is not always unique. The solution will be unique if the operator Tw : L2(Ω) → L2(Ω)
with Twu(x) =

√
w(x)u(x), is injective, i.e., when the set {w = 0} is of zero Lebesgue

measure.
First order optimality conditions for (6.1) are stated next, see, e.g., [Rin00] for a proof.

Proposition 6.1 ([Rin00]). Let Ω = (a, b), f ∈ L2(Ω) and w ∈ L∞(Ω) with w ≥ 0. A
function u ∈ BV(Ω) is a solution of (6.1) if and only if there exists a function v ∈ H1

0 (Ω)
such that

v′ = w(f − u), (6.2)

−v ∈ Sgn(Du). (6.3)

As it can be readily seen from (6.2)–(6.3) and also shown in [Rin00] we have that
Du = 0 when f 6= u, or more rigorously on the open sets {f > u} and {f < u},
providedw > 0 there. This is in strong contrast to the weighted TV case where this is not
true, in general. Furthermore, unlike weighted TV, no new discontinuities can be created
with the one dimensional version of (6.1). This is shown in the following proposition whose
proof is similar to the one dimensional scalar TV case.

Proposition 6.2. Let Ω = (a, b), f ∈ BV(Ω) and w ∈ L∞(Ω) with w ≥ 0. If u is a
solution to (6.1) then

Ju ∩ suppl,rw ⊆ Jf ,
where

suppl,rw =
{
x ∈ Ω : for every ε > 0, w is not zero a.e. in each of the sets

(x− ε, x) and (x, x+ ε)
}
.

In particular if w > 0 a.e. then
Ju ⊆ Jf .
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Proof. Let x ∈ Ju ∩ suppl,rw and suppose that x /∈ Jf . Without loss of generality,
we can assume that Du({x}) > 0. Then from condition (6.3) we have v(x) = −1,
where v is the corresponding H1

0 (Ω) variable of Proposition 6.1. Observe that since u
has a positive jump at x and f is continuous there we have that there exists m > 0 and a
sufficiently small ε > 0 such that

either 0 < m < ess inf
t∈(x−ε,x)

f(t)− u(t) or ess sup
t∈(x,x+ε)

f(t)− u(t) < −m < 0.

It is also possible that both inequalities above hold. If the first inequality holds, then, in view
of (6.2) and the fact that x ∈ suppl,rw, we have that

v(x)− v(x− δ) =

∫ δ

x−δ
v′(s)ds > 0, for all δ ∈ (0, ε).

This implies that v(x− δ) < v(x) = −1. If the second inequality holds then we have

v(x+ δ)− v(x) =

∫ x+δ

x
v′(s)ds < 0, for all δ ∈ (0, ε),

which implies that v(x+ δ) < v(x) = −1. Thus, in both cases we end up in a contradic-
tion since we must have |v| ≤ 1 in Ω according to (6.3).

Next we study relations between (3.1) and (6.1) by means of an explicit example, which
offers a good insight into different structural properties of the associated solutions.

Proposition 6.3. Let Ω = (−L,L), f(x) = λx with λ > 0. Moreover let w ∈ L∞(Ω)
with w ≥ 0. Then, a solution to the problem

min
u∈BV(Ω)

1

2

∫
Ω
w(f − u)2dx+ |Du|(Ω),

will be of the following form:

u(x) =


λx1, if x ∈ (−L, x1),

λx, if x ∈ [x1, x2], where− L < x1 ≤ x2 < L.

λx2, if x ∈ (x2, L),

(6.4)

Proof. We will show that for every weight function w ∈ L∞(Ω), a function u of the type
(6.4), will always satisfy the optimality conditions (6.2)–(6.3) together with an appropriate
function v ∈ H1

0 (Ω). Since v ∈ H1
0 (Ω) and it satisfies (6.2) we have

v(x1) = λ

∫ x1

−L
w(s)(s− x1)ds, v(x2) = −λ

∫ L

x2

w(s)(s− x2)ds.

Notice that if we set

φ1(x) := λ

∫ x

−L
w(s)(s− x)ds, φ2(x) := −λ

∫ L

x
w(s)(s− x)ds, x ∈ [−L,L],

then we have that φ1(−L) = φ2(L) = 0, φ1 and φ2 are respectively decreasing and
increasing continuous functions, and hence there exists a point ξ ∈ (−L,L) such that
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L

f ′ = λ

Figure 10: Different types of solutions of the total variation minimisation problem with weighted
fidelity term (6.1) with data f(x) = λx in (−L,L) and for any weight function w

φ1(ξ) = φ2(ξ) = k < 0.
Case I: k ≤ −1. In that case we set

x1 = min {x ∈ Ω : φ1(x) = −1} and x2 = max {x ∈ Ω : φ2(x) = −1} ,

and we have −L < x1 < x2 < L. Then it is easy to check that

v(x) =


φ1(x), if x ∈ (−L, x1),

−1, if x ∈ [x1, x2],

φ2(x), if x ∈ (x2, L),

belongs toH1
0 (Ω) and satisfies the optimality conditions (6.2)–(6.3) together with the func-

tion u defined in (6.4).
Case II: k > −1. In this case, we simply set

v(x) =

{
φ1(x), if x ∈ (−L, ξ],
φ2(x), if x ∈ (ξ, L),

and the optimality conditions are satisfied with this function v and the constant function
u = λξ.

As the proof above shows, if the weight function is small enough in the sense that either

φ1(L) ≤ −1 or φ2(−L) ≤ −1, (6.5)

then the solution u of (6.1) will be a constant.
In Figure 10 we depict all these possible solutions. These should be compared to the

ones of the weighted TV problem in Figure 6. Note that when x1 = −x2 (which can
be achieved for instance using a symmetric weight function w), then the resulting solution
also belongs to the set of solutions of the scalar total variation minimisation problem.

We have also performed some numerical simulations for the problem (6.1) with data
f(x) = λx; see Figure 11. Note that, as predicted by the Proposition 6.3, all the solutions
are of the form (6.4). In order to avoid the non-uniqueness issues, we have set the minimum
value of each weight function w to be a small positive constant. We briefly now comment
on these results:

(a) In Figure 11a we have chosen the weight functions to have a small value away from
the boundary of the domain, while increasing their values close to the boundary.
Observe that the solutions u converge to f as the values of the weight functions
near the boundary are increasing. Thus, for this example, in order to recover f
almost perfectly, it suffices to choosew to have large values only near the boundary.
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(a) Weight functionsw with large values near
the boundary
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(b) Linear weight functions w
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(c) Weight functions w of small mass
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(d) Step weight functions with mass concen-
trating at the one side of the boundary

Figure 11: Numerical solutions of the problem (6.1) with data f(x) = λx in (−L,L) for different
types of weight functions w. In every case the solutions are of the form (6.4)

(b) In Figure 11b, the weight functions have been chosen to be linear with increas-
ing gradient. As expected, as the gradient of w increases, resulting in large values
close to the point L, the solution u approximates f better, while the approximation
becomes worse close to −L where w has small values.

(c) In Figure 11c, all the weight functions w have been chosen such that their mass is
small and is shifted towards the boundary. In all the cases, the conditions (6.5) are
satisfied and hence constant solutions are obtained.

(d) Lastly, in Figure 11d, we have chosen weight functions w whose mass concentrates
at the right side of the boundary of Ω, observing a similar behaviour as in Figure
11b.

The following proposition states that at least for the affine data considered above, the
weighted TV problem (3.1) cannot produce those solutions of (6.1) that are not symmetric
with respect to the origin, i.e., the ones that cannot be obtained by scalar total variation
regularisation. We note that this is regardless of the choice of the weight function α.

Proposition 6.4. Let Ω = (−L,L), α ∈ C(Ω), α > 0, f(x) = λx, for every x ∈ Ω,
λ > 0. Then the weighted total variation problem (3.1) with data f and weight α cannot
have any solution u of the type (6.4) unless x1 = −x2, that is, unless the solution is
symmetric with respect to the origin.

Proof. Suppose without loss of generality that there exists a weight function α ∈ C(Ω)
such that the solution of (3.1) is a function of the type (6.4), where x1 < −x2. From
conditions (3.13)–(3.14) we have that this can only happen if α(x) = α0 for every x ∈
(x1, x2). Moreover, the dual function v would have to be quadratic in the intervals (0, x1]
and [x2, L) satisfying the conditions v(0) = 0, v(x1) = −α0, v′(x1) = 0, and v(L) =
0, v(x2) = −α0, v′(x2) = 0. One can easily see that such a v cannot exist but note
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also that in that case we would have −α0 ≤ v(x) ≤ 0 for every x ∈ Ω, i.e., u and
v would also satisfy the optimality conditions of standard total variation minimisation with
scalar parameter α0. Of course this is a contradiction since we know that any solution to
the scalar parameter problem is not of that form.

In contrast to the previous result, one can easily see that for the specific data function
of Proposition 6.4, there are choices of non-constant weight functions α ∈ C(Ω) and
w ∈ L∞(Ω) such that the corresponding solutions of the problems (3.1) and (6.1) are
solutions of scalar total variation problems. These are exactly the solutions of the type
(6.4) with x1 = −x2. Figure 12 visualises the relation between (3.1) and (6.1).

Set of solutions

of the scalar TV

problem

Set of solutions of

the weighted TV

problem (3.1)

Set of solutions of

the weighted fidelity

problem (6.1)

Figure 12: Data function f(x) = λx: The solutions that can be obtained by both problems
(3.1) and (6.1) are exactly those that can be obtained by the classical scalar total variation
minimisation.

In Section 5.2 we examined the capability of the weighted TV model to recover exactly
piecewise constant data, provided the weight function α vanishes at the jump points of the
data. On the contrary, the weighted fidelity model (6.1) cannot recover piecewise constant
functions even in the absence of noise, regardless of the weight function w. Indeed, it can
be easily checked using the optimality conditions (6.2)–(6.3) that only constant functions
can be recovered exactly using (6.1). However, as the next proposition shows, a piecewise
constant function can be recovered as a limit of a sequence of solutions of (6.1) using
suitable weight functions, which have mass concentrating at the jump points of the data.

Proposition 6.5. Let f0 ∈ BV(Ω) be a piecewise constant function as defined in (5.2)
and let

f = f0 + η,

where η is a continuous function which vanishes at the jump points of f0 (not necessarily
satisfying (5.3)). Define the sequence of weight functions

wn(x) =

N−1∑
i=1

n2XB(xi,
1
n

),

where xi, i = 1, . . . , N − 1 are the jump points of f0. Then for any sequence (un)n∈N
such that

un ∈ argmin
u∈BV(Ω)

1

2

∫
Ω
wn(f − u)2dx+ |Du|(Ω),

we have
‖f0 − un‖∞ → 0 as n→∞.
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Proof. We can assume that n is large enough so that the balls B(xi,
1
n) are all inside Ω.

Note as well that since each un is optimal, we have for every n ∈ N

1

2

∫
Ω
wn(f − un)2dx ≤ 1

2

∫
Ω
wn(f − un)2dx+ |Dun|(Ω) ≤ |Df |(Ω).

Using the above estimate, we find

1

|B(xi,
1
n)|

∫
B(xi,

1
n

)
(f − un)2dx =

1

n2|B(xi,
1
n)|

∫
B(xi,

1
n

)
wn(f − un)2dx

≤ 2n

n2
|Df |(Ω),

and hence
1

|B(xi,
1
n)|

∫
B(xi,

1
n

)
(f − un)2dx→ 0, as n→∞, (6.6)

for every xi, i = 1, . . . , N − 1. Note that (6.6) in fact implies

sup
x∈(xi,xi+

1
n

)

(f(x)− un(x))2 → 0 and sup
x∈(xi− 1

n
,xi)

(f(x)− un(x))2 → 0, (6.7)

as n → ∞, for every i = 1, . . . , N − 1. Indeed, suppose that (6.7) does not hold, say
that the first limit fails for some xi. Then there exists an ε > 0 such that for every k ∈ N
there exists an nk ∈ N, nk > k, and a xnk ∈ (xi, xi + 1

nk
) such that

(f(xnk)− unk(xnk))2 ≥ ε. (6.8)

Since f is right continuous in xi, we can pick a large enough k ∈ N such that |f(xi+)−
f(x)| < √ε/4 for every x ∈ (xi, xi+

1
nk

). Then from (6.8) and Proposition 6.1 it follows

that unk is constant in (xi, xi + 1
nk

), i.e., unk = ck and |f(x)− ck| ≥
√
ε/2 for every

x ∈ (xi, xi + 1
nk

). However, this violates (6.6) as for large k we would have

1

|B(xi,
1
nk

)|

∫
B(xi,

1
nk

)
(f − unk)2dx ≥ 2nk

nk
inf

x∈(xi,xi+
1
nk

)
(f(x)− unk(x))2 ≥ ε.

Thus (6.7) holds. Notice also that it holds as well if we replace the squares with absolute
values. Note now that from Proposition 6.2, un is continuous in the intervals (xi, xi + 1

n)
and (xi − 1

n , xi). Then it can be readily checked that (any solution) un will be just a
monotonic interpolation between uln(xi + 1

n) and urn(xi+1 − 1
n), for i = 1, . . . , N − 1

and constant in (a, x1 − 1
n) and (xN−1 + 1

n , b) taking the values urn(x1 − 1
n) and

uln(xN−1 + 1
n) respectively in those intervals. Since f0 = f + η with η being continuous

and vanishing at every xi, using (6.7) we have that

sup
x∈(xi,xi+

1
n

)

|f0(x)− un(x)| → 0 and sup
x∈(xi− 1

n
,xi)

|f0(x)− un(x)| → 0, (6.9)

as n→∞. It is then straightforward that un converges to f0 uniformly.

While the result of Proposition 6.5 could be considered of theoretical value only, note
however that using similar techniques as in Section 3.2 one can show that for the solution
u of (6.1) it holds

f(x) ≤ u(x) ≤ u(x) ≤ f(x), for every x ∈ Jf .
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Figure 13: Illustration of the result of Proposition 6.5. While a piecewise constant function cannot
be recovered exactly using the weighted fidelity total variation regularisation (6.1), this can be
achieved in the limit, as the mass of the weight functions wn is concentrated with a high rate at
the jump points of the data f

Thus, if the noise function η changes the values of f0 at its jump points one cannot expect
to recover f0 using the limiting process of Proposition 6.5. It might happen for instance
that f = f0 + η satisfies f0(x) < f(x) < f(x) < f0(x) at a jump point x and thus any
solution u of (6.1) would satify

f0(x) < f(x) ≤ u(x) ≤ u(x) ≤ f(x) < f0(x).

Let us remark also here that it is essential that the values of wn grow at a high rate
around xi. For instance, if ‖wn‖L1(Ω) → 0, we have that the solutions un tend to a
constant, up to a subsequence. Indeed, in that case we have

|Dun|(Ω) ≤ 1

2

∫
Ω
wn(f − un)2dx+ |Dun|(Ω) ≤ 1

2

∫
Ω
wnf

2 dx

≤ 1

2
‖f2‖∞‖wn‖L1(Ω) → 0, as n→∞.

Denoting by uΩ the mean value of u in Ω, from the Poincaré inequality we get

|(uΩ)n| ≤ C(‖un‖L1(Ω) + ‖un − (uΩ)n‖L1(Ω)) ≤ C(1 + |Dun|(Ω)) < C,

for a generic constant C . Thus, there exists a subsequence (uΩ)nk → c as k → ∞.
Then

‖unk − c‖L1(Ω) ≤ ‖(uΩ)nk − c‖L1(Ω) + ‖unk − (uΩ)nk‖L1(Ω)

≤ |Ω||(uΩ)nk − c|+ C|Dunk |(Ω)→ 0, as k →∞.
Figure 13 describes the limiting process of Proposition 6.5. As n tends to infinity and

the mass of the weight w is concentrated at the jump points xi, the solution un of (6.1)
approaches f (and hence f0) near these jump points, while in the areas wherewn is zero,
un is a monotonic interpolation. Note that this interpolation is not unique as depicted in the
middle part of the Figures 13a–13b.

Finally for the reader’s convenience, we summarise in Table 2 the differences between
the weighted total variation (3.1) and the weighted fidelity (6.1) models.
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Weighted TV model Weighted fidelity model

Creation of new discontinuities Potentially No

Solution u is constant when u 6= f Not necessarily Yes

Exact recovery of piecewise
constant functions

Yes, setting α = 0 at jump points Only in the limit w →∞ at jump points

Table 2: Summary of the differences between the weighted total variation (3.1) and the weighted
fidelity (6.1) models

7 Conclusions

We have performed a thorough analysis of the weighted total variation regularisation prob-
lem in dimension one. We studied conditions under which discontinuities are created in
the solution, at points where the data function is continuous. A variety of analytical and
numerical results was provided. Moreover, in contrast to the standard scalar total varia-
tion regularisation only a partial version of the parameter semigroup property holds in the
weighted case. We further computed some analytic solutions for simple data and weight
functions. We were able to infer a bound of the total variation of the solution by the to-
tal variation of the data, an estimate which was used to show the well-posedness of the
weighted total variation minimisation problem even in the case of vanishing weight function.
It was shown, that by using vanishing weights one can recover exactly piecewise constant
data. Finally, the total variation problem with weighted fidelity term was considered and it
was shown that even for very simple data, its solutions can be very different to those of the
weighted total variation problem.

Even though a few of our results hold in arbitrary dimension, the main statements of this
paper are in dimension one and their proofs rely on a fine scale one dimensional analysis.
Extension of these results in higher dimensions is a subject of future research. We note
that a higher dimension study poses some extra challenges, regarding for example the
derivation of the predual problem, a characterisation of the subdifferential of the weighted
TV, as well as deriving a bound on the total variation of the solution as we have done in
Section 4.
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