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We study the asymptotic behavior of the principal eigenvector and eigenvalue of the random con-
ductance Laplacian in a large domain of Zd (d ≥ 2) with zero Dirichlet condition. We assume that the
conductances w are positive i.i.d. random variables, which fulfill certain regularity assumptions near
zero. If γ = sup{q ≥ 0: E[w−q] < ∞} < 1/4, then we show that for almost every environment
the principal Dirichlet eigenvector asymptotically concentrates in a single site and the corresponding
eigenvalue scales subdiffusively. The threshold γc = 1/4 is sharp. Indeed, other recent results imply
that for γ > 1/4 the top of the Dirichlet spectrum homogenizes. Our proofs are based on a spa-
tial extreme value analysis of the local speed measure, Borel-Cantelli arguments, the Rayleigh-Ritz
formula, results from percolation theory, and path arguments.
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1 Introduction

In dimensions greater than one, the spectrum of the i.i.d. random conductance Laplacian displays a sharp transition
between complete localization and complete homogenization. This is the result of the present paper in combination
with recent papers from Flegel, Heida, and Slowik [FHS] and Neukamm, Schäffner, and Schlömerkemper [NSS16].
While the other two papers cover spectral homogenization, we investigate the localization phase. A simple moment
condition distinguishes between the two phases.

More precisely, we investigate the spectrum of the Laplacian Lw associated with the random conductance model
on the euclidean lattice Zd. The Laplacian acts on real-valued functions f ∈ `2(Zd) as

(Lwf)(x) =
∑

y : |x−y|1=1

wxy(f(y)− f(x)) (x ∈ Zd) . (1.1)

We assume that the conductances w are positive, independent and identically distributed (i.i.d.) random variables.
We describe the almost-sure behavior of the principal eigenvector with zero Dirichlet conditions outside a growing
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centered ball B. It turns out that its behavior strongly depends on the lower tails of the conductances. To be
more precise, let us denote the expectation with respect to the conductances by E and define γ = sup{q ≥
0: E[w−q] <∞}. Then we show that, under some further regularity assumptions,

γ < 1/4⇒

{
a.s. complete localization of principal Dirichlet eigenvector and

a.s. subdiffusive scaling of principal Dirichlet eigenvalue.
(1.2)

On the other hand, as a special case the results in [FHS] and [NSS16] imply that

γ > 1/4⇒

{
a.s. complete homogenization of first Dirichlet eigenvectors and

a.s. convergence of diffusively rescaled first Dirichlet eigenvalues.
(1.3)

We comment on this in Section 1.3. Together, (1.2) and (1.3) imply that in the i.i.d. random conductance model
there is a dichotomy between a completely homogenized and a completely localized phase.

Moreover, it is remarkable that the critical exponent γc = 1/4 coincides with the critical exponent for the validity of
a local central limit theorem (LCLT) of the corresponding random walk (see e.g. [BKM15]):

γ > 1/4⇒ LCLT holds and γ < 1/4⇒ LCLT does not hold.

The validity of a local CLT is a very strong kind of heat-kernel homogenization. But in contrast to the principal
Dirichlet eigenvector, the heat kernel does not display such a completely different behavior for γ < 1/4. Although
the heat kernel decays anomalously for γ small enough [FM06, BBHK04, Bou10, BB12], a quenched functional
CLT (QFCLT) still holds under minimal assumptions on the i.i.d. environment [ABDH12]. This is indeed not a
contradiction since the QFCLT associates with macroscopic properties of the random walk, whereas the anomalous
heat-kernel bounds as well as the local CLT and the principal Dirichlet eigenvector are all sensitive to microscopic
trapping structures.

This paper is organized as follows: In Section 1.1 we define the model and our main objects. We present our main
results in Section 1.2. In Section 1.3 we compare our results to former results. Section 1.5 contains a heuristic
explanation why the critical exponent γc = 1/4 decides between spectral homogenization and localization. In
the same section we comment on how a subdiffusive upper bound for the principal Dirichlet eigenvalue contradicts
diffusive heat-kernel upper bounds. We survey the proofs concerning the eigenvalues in Sections 1.4 and 1.6 where
we rely on technical results from the subsequent sections. Section 2 contains Borel-Cantelli arguments, which
extend results from [CD81], [Kes03] and [BKM15]. In Section 3 we adapt some standard results on percolation
theory from [Bar04], [MR04] and [BKM15] to our needs. Section 4 contains a path argument similar to the one in
[BKM15]. Finally, we prove the localization of the principal eigenvector in Section 5.

1.1 Model and main objects

We consider the lattice with vertex set Zd (d ≥ 2) and edge set Ed = {{x, y} : x, y ∈ Zd, |x − y|1 = 1}.
If two sites x, y ∈ Zd are neighbors according to Ed, we also write x ∼ y. To each edge e ∈ Ed we assign
a positive random variable we. In analogy to a d-dimensional resistor network, we call the random weights we
conductances. We take (Ω,F) =

(
(0,∞)Ed ,B((0,∞))⊗Ed

)
as the underlying measurable space and assume

that an environment w = (we)e∈Ed ∈ Ω is a family of i.i.d. positive random variables with law P. We denote the
expectation w.r.t. to P by E.

If e is the edge between the sites x, y ∈ Zd, we will also write wxy or wx,y instead of we. Note that by definition
of the edge set Ed, the edges are undirected, whence wxy = wyx. If we want to refer to an arbitrary copy of the
conductances in general, we simply write w, i.e., for a set A ∈ F , the expression P[w ∈ A] equals P[we ∈ A]
for an arbitrary edge e.

We call

F : [0,∞)→ [0, 1] : u 7→ P[w ≤ u] (1.4)

the distribution function of the conductances.
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Given a realization (wxy){x,y}∈Ed of the environment, we consider the Markov chain on Zd with transitions rates
given by the conductanceswxy . Its generatorLw is defined as in (1.1). This Markov chain is known as the variable-
speed random walk among random conductances. During the last decades both physicists and mathematicians
have analyzed the random conductance model extensively and many questions regarding central limit theorems
and heat-kernel behavior have been answered (for reviews see [BG90] and [Bis11], respectively). The model be-
came popular for the description of materials where the transition rates between different states are independent of
the states’ energy levels. This is the case e.g. for the spectral transport of optical excitations among impurity ions
[Lyo79], or charge transport in the one-dimensional ionic conductor hollandite [BBSA79].

Our goal is to study the behavior of the principal eigenvalue λ(n)
1 and eigenvector ψ(n)

1 of the sign-inverted gener-
ator −Lw in the ball

Bn :=
{
x ∈ Zd : |x|∞ ≤ n

}
= [−n, n]d ∩ Zd (1.5)

with zero Dirichlet conditions at the boundary. For a real-valued function f ∈ `2(Zd) let us define the Dirichlet
energy Ew(f) w.r.t. to the operator −Lw by

Ew(f) = 〈f,−Lwf〉 , (1.6)

where 〈·, ·〉 denotes the standard scalar product. Then, according to the Courant-Fischer theorem, the principal
Dirichlet eigenvalue is given by the variational formula

λ
(n)
1 = inf

{
Ew(f) : f ∈ `2(Zd), suppf ⊆ Bn, ‖f‖2 = 1

}
. (1.7)

The function f that minimizes the RHS of (1.7) is the principal Dirichlet eigenfunction ψ(n)
1 , whence λ(n)

1 =
Ew
(
ψ

(n)
1

)
.

Remark 1.1 (Perron-Frobenius). For a given box Bn the operator Lw together with the zero Dirichlet boundary
conditions can be written as a |Bn| × |Bn|-matrix with non-negative entries everywhere except on the diagonal.
Since the matrix is finite-dimensional, we can add a multiple of the identity to obtain a non-negative primitive matrix
without changing the matrix’ spectrum. By the Perron-Frobenius theorem (see e.g. [Sen81, Ch. 1]) it follows that
its principal eigenvalue is unique and we can assume without loss of generality that its principal eigenvector is
positive.

In this paper we are especially interested in the behavior of the principal Dirichlet eigenvalue and eigenfunction for
dimensions d ≥ 2 and for conductances with a very heavy tail near zero. More precisely, we consider those cases
where the conductances are distributed such that a local central limit theorem is not valid (cf. [BKM15, Remark
1.10]). Under different circumstances, the principal Dirichlet eigenvalue and eigenfunctions were studied before:
Boivin and Depauw [BD03] proved that the top of the spectrum homogenizes. Recent results from Neukamm,
Schäffner, and Schlömerkemper [NSS16] and Flegel, Heida, and Slowik [FHS] imply that the uniform ellipticity
condition can be weakened to suitable moment conditions. The one-dimensional case was thoroughly covered by
Faggionato [Fag12]. In Section 1.3 we comment on this background and how our results relate to this previous
work.

1.2 Main results

First we give asymptotic lower and upper bounds for the principal Dirichlet eigenvalue λ(n)
1 . How can we determine

whether a function g : (0,∞) → (0,∞) that decreases monotonically to zero, is such an asymptotic lower or
upper bound? To settle this, we will see that it is crucial to determine whether the box Bn contains a site such
that all the 2d incident conductances are less than or equal to g(n). We call such a site a g(n)-trap. A function
Λg : (0,∞) → (0,∞) that carries the information about how many g(n)-traps we can expect in the box Bn, is
defined by

Λg(n) = ndP[w ≤ g(n)]2d . (1.8)
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Note that the factor nd scales like the number of sites in the box Bn and the factor P[w ≤ g(n)]2d relates to the
probability that for a given site all the 2d incident links carry a conductance less than or equal to g(n). We will see
in Lemma 2.6 that if Λg diverges fast enough, then P-a.s. for n large enough the box Bn contains at least one
g(n)-trap. On the other hand, if Λg decreases fast enough to zero, then Bn does P-a.s. not contain a g(n)-trap
for n large enough, see Lemma 2.1.

In our results we often require recurring conditions on the function g : (0,∞)→ (0,∞).

Assumption 1.2. Let g : (0,∞)→ (0,∞).

(a) The function g varies regularly at infinity with index less than −2.

(b) The function u 7→ u2g(u) is monotone and has a finite limit as u tends to infinity.

(b’) The function u 7→ u2g(u) converges monotonically to zero as u tends to infinity.

Our first theorem gives a sufficient and a necessary condition for when the function g is an asymptotic upper bound

for the principal Dirichlet eigenvalue λ(n)
1 . Note that, given one of the Assumptions 1.2 (a) or (b’) is true, then the

sufficient and necessary conditions coincide up to the case where Λg scales exactly like log log n. We summarize
all the conditions of the following two theorems in a graphical overview (see Fig. 1.1).

Theorem 1.3 (Upper bound). Let g : (0,∞) → (0,∞) be a function that converges monotonically to zero and
let Λg be as in (1.8). Then the following statements are true:

(i) If there exists ε > 0 such that for all n large enough

Λg(n)
log log n

≥ 2 + ε , (1.9)

then there exists a constant C <∞ such that P-a.s. for n large enough λ(n)
1 ≤ Cg(n).

(ii) On the other hand, if

lim
u→∞

Λg(u)
log log u

= 0 , (1.10)

and one of the Assumptions 1.2 (a) or (b’) is true, then P-a.s. lim supn→∞
λ

(n)
1
g(n) =∞.

We prove part (i) of the theorem in Section 1.4 and part (ii) in Section 1.6. Note that in (ii) the Assumptions 1.2 (a)
and (b’) correspond to the fact that we can only deduce that the limit superior diverges if we assume that g is in

o(n−2). This is because in the diffusive regime λ(n)
1 scales like n−2.

In the case where the distribution function F (a) scales like aγ with γ > 0, Theorem 1.3 (i) implies the following
corollary.

Corollary 1.4. Let δ > 0. If F varies regularly at zero with index γ > 0, then P-a.s. for n large enough the

function g(n) = n−
1
2γ+δ is an asymptotic upper bound for λ(n)

1 .

Note that if F varies regularly at zero with index γ > 0, then γ = sup{q ≥ 0: E[w−q] <∞}, as defined in the
introduction.

The second theorem gives conditions for when the function g is an asymptotic lower bound of the principal Dirichlet

eigenvalue λ(n)
1 . Note that, given one of the Assumptions 1.2 (a) or (b) is true and Λg is bounded, then the condition

in (1.11) is sharp. We further comment on these conditions in Section 1.6. As with the conditions of Theorem 1.3,
we summarize them in the graphical overview Fig. 1.1.

Theorem 1.5 (Lower Bound). Let g : (0,∞) → (0,∞) be a decreasing function that fulfills one of the Assump-
tions 1.2 (a) or (b). Let Λg be as in (1.8). Then the following statements are true: If

∞∫
0

u−1Λg(u) du <∞ (1.11)

4



and Λg is bounded from above, then there exists a constant c > 0 such that P-a.s. for n large enough λ(n)
1 ≥

cg(n). If, on the other hand, Condition (1.11) does not hold, then P-a.s. lim infn→∞
λ

(n)
1
g(n) = 0.

We prove the first part of this theorem in Section 1.6. The second part, i.e., where Condition (1.11) does not hold,
is covered in Section 1.4.

Similarly as for Theorem 1.3, we obtain the following corollary.

Corollary 1.6. Let δ > 0. If F varies regularly at zero with index γ ∈ (0, 1/4], then P-a.s. for n large enough

the function g(n) = n−
1
2γ−δ is an asymptotic lower bound for λ(n)

1 . Furthermore, if F varies regularly at zero

with index γ > 1/4, then there exists c > 0 such that cn−2 is an asymptotic lower bound for λ(n)
1 . Then

Ew(f) ≥ cn2‖f‖2 for all f ∈ `2(Bn), which is a Poincaré inequality for functions with bounded support.

When we set g(u) = F−1(u−1/2), then Theorems 1.3 (ii) and 1.5 directly imply the following corollary.

Corollary 1.7. Assume that there exists v > 0 such that F |[0,v) is invertible and that the function u 7→
u2F−1

(
u−

1
2
)

converges monotonically to zero. Then

lim inf
n→∞

λ
(n)
1

F−1
(
n−

1
2

) = 0 and lim sup
n→∞

λ
(n)
1

F−1
(
n−

1
2

) =∞ P-a.s. (1.12)

We comment on this behavior in Remark 1.12 in Section 1.4.

Note that in the special case where there exists γ > 0 such that the law P of the conductances fulfills P[w ≤ a] =
aγ for a ∈ [0, 1], Corollary 1.7 implies that

lim inf
n→∞

n
1
2γ λ

(n)
1 = 0 and lim sup

n→∞
n

1
2γ λ

(n)
1 =∞ P-a.s. (1.13)

Finally, we show that if we define the local speed measure π : Zd → [0,∞) by

πx =
∑

y : y∼x
wxy , x ∈ Zd , (1.14)

then P-a.s. as n tends to infinity, the first Dirichlet eigenvector ψ(n)
1 localizes in the sequence of sites (zn)n∈N that

minimize π over Bn.

Theorem 1.8 (Localization of the principal Dirichlet eigenvector). Let F vary regularly at zero with index γ ∈
[0, 1/4). Further, assume that there exists v > 0 such that F |[0,v) is invertible. In the case where γ = 0, assume

additionally that there exists ε1 ∈ (0, 1) such that the product n2+ε1F−1
(
n−1/2

)
converges monotonically to

zero as n grows to infinity. For n ∈ N let zn be the site that minimizes π over Bn. Then P-a.s. the mass of the

principal Dirichlet eigenvector ψ(n)
1 with zero Dirichlet conditions outside the box Bn increasingly concentrates in

the site zn, i.e.,

ψ
(n)
1 (zn)→ 1 P-a.s.

More precisely, P-a.s. for n large enough

ψ
(n)
1 (zn)2 ≥ 1− n−ε1/4 , (1.15)

where for γ > 0 the value of ε1 ∈ (0, 1) is chosen such that 1/(2γ) > 2 + ε1. As a consequence λ(n)
1 P-a.s.

behaves like minx∈Bn πx for large n, i.e.,

P

[
lim
n→∞

λ
(n)
1

minx∈Bn πx
= 1

]
= 1 . (1.16)
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Figure 1.1: Visualization of our results from Theorems 1.3 and 1.5 for a fixed distribution function F . The figure shows the space of functions
g : (0,∞)→ (0,∞) that decrease to zero. The space is depicted such that if f ∈ o(g), then f appears left of g. For simplicity we assume
that g fulfills one of the Assumptions 1.2 (a) or (b’). If F−1(u−1/2) ∈ o(g(u)), then Λg(u) diverges. If g even decays slowly enough

such that condition (1.9) is fulfilled, then there exists C < ∞ such that P-a.s. for n large enough λ
(n)
1 ≤ Cg(n). On the other hand, if

g(u) ∈ o(F−1(u−1/2)), then Λg(u) converges to zero. If g even decays fast enough such that (1.11) is fulfilled, then there exists c > 0

such that P-a.s. for n large enough λ
(n)
1 ≥ cg(n). The figure also shows that around g(u) ∼ F−1(u−1/2) there is an interval where g is

definitely neither an a.s. asymptotic upper nor an a.s. asymptotic lower bound.

We prove this theorem in Section 5.

Remark 1.9. IfF varies regularly at zero with index γ ∈ [0, 1/4), then there exists η > 0 such that the expectation
E
[
w−1/4+η

]
diverges.

Remark 1.10 (Dimension one). Note that we cannot expect that a result like Theorem 1.8 holds in dimension one.
This is because in dimension one, the probabilistic cost to generate a hardly reachable area is independent of the
area’s diameter.

Remark 1.11 (Constant speed). If the conductances are bounded from above, we conjecture that, qualitatively,
the above results should also hold for the constant-speed random conductance model, i.e., where the Laplacian is
given by

(Lwf)(x) = π−1
x

∑
y : |x−y|1=1

wxy(f(y)− f(x)) (x ∈ Zd, f ∈ `2(Zd)) .

In this case, the critical exponent γπc = 1
8

d
d−1/2 (cf. [BKM15, Theorem 1.8 (1)]). Further, the typical trapping

structures are not single sites but pairs of sites (cf. [ADS16, Figure 1]). In a similar way as we adapt the proof
techniques of [BKM15] for the variable-speed case, this should be possible for the constant-speed model. However,
the proofs become much more technical.

1.3 Comparison with former results

Our investigation on the spectral behavior of the random conductance generator supplements the results of former
research.

Boivin and Depauw [BD03] proved spectral homogenization for stationary and ergodic conductances that fulfill
the uniform ellipticity condition, i.e., where there exist positive and finite constants a, b that uniformly bound the
conductances from above and below. As a special case they showed that for uniformly elliptic i.i.d. conductances

there exists a constant c > 0 such that if λ(n)
1 < λ

(n)
2 ≤ . . . ≤ λ(n)

k are the first k Dirichlet eigenvalues of−Lw,
then for almost every realization of the conductance landscape

lim
n→∞

n2λ
(n)
k = cλk ,
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where λk is the kth eigenvalue of the operator −∆ in (−1, 1)d with zero Dirichlet conditions. Additionally, the
principal Dirichlet eigenfunction of −Lw converges, properly rescaled, to the principal Dirichlet eigenfunction of
the operator −∆ in (−1, 1)d with zero Dirichlet conditions [BD03, Theorem 1, Corollary 1].

In the special case of dimension one, the uniform ellipticity condition was already weakened by Faggionato [Fag12]:
She showed that for d = 1 a finite inverse moment of w is sufficient for spectral homogenization [Fag12, Propo-
sition 2.6]. Further, if the inverse conductances w−1 are i.i.d. and in the domain of attraction of an α-stable law
with 0 < α < 1, then Faggionato showed that the vector of the first k Dirichlet eigenvalues rescaled by n1+1/α

times a slowly varying function converges in distribution to the vector of the first k Dirichlet eigenvalues of a random
generalized differential operator [Fag12, Theorem 2.5].

Recent results from two teams of authors imply that the uniform ellipticity condition can also be weakened in higher
dimensions: Neukamm, Schäffner, and Schlömerkemper [NSS16, Corollary 3.4, Proposition 3.18] proved amongst
other results that for γ > 1/4 the Dirichlet energy of −Lw Γ-converges to a deterministic, homogeneous inte-
gral. This together with their compactness result [NSS16, Lemma 3.9] and [Mas93, Theorem 13.5] implies that
Conditions I–IV of [JKO94, Chapter 11] are fulfilled and spectral convergence follows. On the other hand, Flegel,
Heida, and Slowik [FHS] use the method of stochastic two-scale convergence by Zhikov and Pyatniskii [ZP06] to
show that the Poisson equation homogenizes. Their approach is similar to the one of Faggionato [Fag08] who al-
ready employed two-scale convergence in order to show homogenization for a Laplacian with shifted spectrum and
bounded conductances. From the homogenization of the Poisson equation, the spectral homogenization follows
again by [JKO94, Chapter 11]. Furthermore, Flegel, Heida, and Slowik identify the corresponding limit operator.

The basis for both [NSS16] and [FHS] are Poincaré and Sobolev inequalities that were already used by Andres,
Deuschel, and Slowik [ADS16] to prove a quenched local CLT under suitable moment conditions.

1.4 Survey on proofs for upper bounds

Let us consider the variational formula (1.7). The equation implies that for any real-valued test function f ∈ `2(Zd)
with supp f ⊆ Bn and ‖f‖2 = 1 we can estimate

λ
(n)
1 ≤ 〈f,−Lwf〉 =

1
2

∑
x∈Zd

∑
y : y∼x

wxy(f(x)− f(y))2 .

Suppose that zn is a random site that minimizes π (see (1.14)) in Bn. Now we choose the function f such that its
whole mass is concentrated in the site zn ∈ Bn, i.e., f = δzn . When we insert this into the variational formula
(1.7), then we obtain that

λ
(n)
1 ≤ min

x∈Bn
πx ≤ 2d min

x∈Bn
max
y : x∼y

wxy . (1.17)

It remains to find conditions under which the above RHS can be bounded from above by a decreasing function
g(n). As we have already mentioned before, a quantity which carries this information, is the function Λg defined in
(1.8), as we see in the two following proofs.

Proof of Theorem 1.3 (i). Condition (1.9) together with Lemma 2.6 implies that P-a.s. for n large enough there
exists a site zn ∈ Bn such that maxy : y∼zn wzny ≤ g(n). Choose the test function fn = δzn and insert it into
the variational formula (1.7). The claim follows.

Proof of Theorem 1.5 if Condition (1.11) fails. If Condition (1.11) fails, then

c

∞∫
0

u−1Λg(u) du =∞ for any c > 0. (1.18)

Let N = {e ∈ Ed : 0 ∈ e} be the set of edges incident to the origin and note that |N| = 2d. A substitution of
variables and Lemma 2.1 imply that for any c > 0 the following event occurs P-a.s. infinitely often as n → ∞:
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There exists a site zn ∈ Bn+1 such that all edges in τzn ◦N have conductance smaller than or equal to g(cn).
Here, τz (z ∈ Zd) denotes the spatial shift operator.

Every time this event occurs, we choose the test function fn = δzn (as in the proof of Theorem 1.3 (i)), insert it
into the variational formula (1.7) and immediately obtain that P-a.s.

lim inf
n→∞

λ
(n)
1

g(cn)
≤ 2d for any c > 0 .

We now show that this implies the claim. Suppose that c ∈ (0, 1). We have assumed that one of the Assumptions
1.2 (a) or (b) is true. In any case it follows that there exists c1 > 0 independent of c such that eventually g(cn) ≤
c1c
−2g(n). It follows that P-a.s. lim infn→∞

λ
(n)
1
g(n) ≤ 2dc1c2. This holds for any c ∈ (0, 1), implying that P-a.s.

lim infn→∞ λ
(n)
1 /g(n) = 0.

Remark 1.12. Now we can intuitively understand the result of Corollary 1.7: For the choice g(u) = F−1(u−1/2),
the function Λg is constant one. Therefore for every c > 0 P-a.s. there exists an infinite subsequence nk where
the box Bnk contains a (cg(nk))-trap. However, as we will see in Section 1.6, P-a.s. there also exists an infinite
subsequence n′k where the box Bn′k does not contain a sufficiently good trap. It follows that the asymptotics of

λ
(n)
1 fluctuate around the asymptotics of F−1(u−1/2).

1.5 Heuristics for critical moments and relation to heat-kernel upper bounds

Our first aim in this section is to give a heuristic argument why the 1/4-moment of the inverse conductance w−1

decides between spectral homogenization and localization. Our second goal is to explain why the subdiffusive
scaling of the principal Dirichlet eigenvalue contradicts the validity of a local central limit theorem.

Let us first consider a realization of the environment in which all conductances are equal to one. In this situation the
operator Lw generates a simple random walk on Zd. It is known that in this case the principal Dirichlet eigenvalue

λ
(n)
1 of −Lw in Bn with zero Dirichlet conditions scales like n−2 (see e.g. [BD03, Eq. (7)]). We call this diffusive

scaling. In contrast, if λ(n)
1 ∈ o(n−2), we say that λ(n)

1 scales subdiffusively.

We will now investigate under what circumstances we can expect subdiffusive behavior. Let us recall (1.17), i.e.,

that λ(n)
1 ≤ 2dminx∈Bn maxy : x∼y wxy .

For simplicity we assume that there exists γ > 0 such that the law P of the conductances fulfills

P[w ≤ a] = aγ for a ∈ [0, 1] , (1.19)

and we choose g(n) = n−
1
2γ+δ with δ ∈ R. Note that γ = sup{q ≥ 0: E[w−q] < ∞} as defined in the

introduction. We recall that a g(n)-trap is a site where all the 2d incident conductances are less than or equal to
g(n). We observe that

Λg(n) = n2dγδ ,

which diverges if δ > 0 and converges to zero if δ < 0. Correspondingly, the Borel-Cantelli arguments of Lemmas
2.1 and 2.6 imply that if we fix an environment w ∈ Ω, then P-a.s. for n large enough there exists a g(n)-trap in
Bn if δ > 0. On the other hand, there does not exist a g(n)-trap in Bn if δ < 0. This was already pointed out in
[BKM15, Remark 1.10].

Now we simply note that if and only if γ < 1/4, then there exists δ > 0 such that g(n) = n−
1
2γ+δ is in o(n−2).

Hence the principal Dirichlet eigenvalue scales subdiffusively if γ < 1/4. It is remarkable that this condition is also
sufficient to prove a complete asymptotic localization of the principal Dirichlet eigenvector, see Theorem 1.8.

On the other hand, if γ ≥ 1/4, then these considerations do not provide us with a sub-diffusive upper bound for

λ
(n)
1 . To the contrary: For γ > 1/4 Theorem 1.5 implies that there exists a constant c > 0 such that P-a.s. for n

large enough λ(n)
1 ≥ cn−2.
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Note that this is equivalent to a Poincaré inequality for functions with bounded support, which states that there
exists c > 0 such that P-a.s. for n large enough

〈f,−Lwf〉 ≥ cn−2‖f‖2 (for f ∈ `2(Zd) with supp f ⊆ Bn),

which for i.i.d. conductances with finite expectation of w−1/4 is a consequence of [ADS16, Proposition 2.4] (with
q = d/2, η a step function and νω replaced a ν̃ω which for each neighbor sums over the optimal detour from the
2d independent paths in Figure 2 of [ADS16]).

Furthermore, λ(n)
1 ≥ cn−2 is also a necessary consequence of a diffusive scaling of quenched heat-kernel upper

bounds and thus the validity of a quenched local central limit theorem. The local CLT was established in 2015
by the two teams of authors Andres, Deuschel, Slowik [ADS16] and Boukhadra, Kumagai, Mathieu [BKM15] who
require that for i.i.d. conductances there exists ε > 0 such that E[w] and E[w−1/4−ε] are finite. Let us briefly
comment on this.

First we define the random walk among random conductances. This is the Markov chain Xt that is generated by
the operator Lw. Its behavior is as follows: When the walker is at a site x ∈ Zd it waits for an exponential time
with expectation π−1

x (see (1.14)) and then jumps to one of the neighboring sites. This is why we call πx the local
speed of the random walk at the site x. To which neighbor the random walker jumps is random with probabilities
proportional to the corresponding conductances: If z is a specific neighbor of x, the random walker jumps to z
with probability wxz/πx. We call Pw

x the probability w.r.t. to the random walk where the superscript w refers to
a fixed environment (quenched probability) and the subscript x refers to the starting point of the random walker:
Pw
x [X0 = x] = 1. The corresponding expectation is called Ew

x .

Let τA be the escape time from a set A ⊂ Zd, i.e., τA = inf{t ≥ 0: Xt /∈ A}. There exists a natural relation
between the principal Dirichlet eigenvalue of the operator −Lw and the expected escape time Ew

x [τBn ] from the
box Bn, see [BdH15, Section 8.4.1]:

λ
(n)
1 ≥

(
max
z∈Bn

Ew
z

[
τBn
])−1

.

Thus, an upper bound for the principal Dirichlet eigenvalue λ(n)
1 implies a lower bound on the maximal expected

escape time from the box Bn.

Now Lemma 2.1(i) of [BKM15] implies that if the heat kernel

pt(x, y) := Pw
x [Xt = y] (x, y ∈ Zd , t ≥ 0) ,

has a diffusive on-diagonal upper bound, i.e. there exists c ∈ (0,∞) and a random n0 ∈ N such that

pn2(x, y) ≤ cn−d ∀x, y ∈ Bn , n ≥ n0 ,

then maxz∈Bn E
w
z

[
τBn
]
∼ n−2. Diffusive heat-kernel upper bounds are a necessary condition for the validity

of a local CLT.

But if we assume that the principal Dirichlet eigenvalue scales subdiffusively, i.e., λ(n)
1 ∈ o(n−2), then eventually

maxz∈Bn E
w
z

[
τBn
]
� n−2 and therefore a subdiffusively scaling principal Dirichlet eigenvalue contradicts the

validity of a local CLT.

We can explain the exploding escape times by showing that a large box contains some sites where the expected
time to even leave the initial position is anomalously long. Although this effect is related to the one responsible
for the anomalous heat-kernel decay observed in [BBHK04], it is still a different one. In [BBHK04], the dominating
effect is that a random walk finds a trap elsewhere and then returns to its initial position. This behavior, however,
has a more complex dependence on the Laplacian’s eigenvalues.

1.6 Survey on proofs for lower bounds

For the lower bound of the principal Dirichlet eigenvalue we have to put in significantly more work than for the upper
bound. The key idea, however, is linked to the considerations for the shape theorem of first-passage percolation,
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see e.g. Cox and Durrett [CD81] for the sample case d = 2. The philosophy is that we have to show that each
site in the box Bn is sufficiently well reachable by conductances that are significantly greater than the lower bound
candidate g. Note that this is similar to the idea of Lemma 4.6 in [BKM15] where the authors proved this for a
polynomial tail of the conductances with parameter γ and the candidate g(n) = n−α with α > 1/(2γ). It turns
out that a crucial element of the proof is to give a condition that implies that P-a.s. for n large enough all sites in the
boxBn have at least one link with conductance greater than g(n), similar to [CD81, p. 585] and [Kes86, p. 127]. In
general, if g is monotonically decreasing and w1 . . . , w2d are 2d independent copies of the conductance w, and

E
[
g−1(max{w1, . . . , w2d})d

]
= d

∞∫
0

u−1Λg(u)du <∞ , (1.20)

then P-a.s. for n large enough, all sites in the box Bn have at least one link with conductance greater than g(n).
This together with a path argument, which we adapt from [BKM15] gives the P-a.s. lower bound for the principal

Dirichlet eigenvalue λ(n)
1 (given that g(n) is not asymptotically larger than n−2). On the other hand, if Condition

(1.20) is violated, then the same arguments as in Cox and Durrett [CD81, p. 585] yield that P-a.s. as n tends to
infinity, the box Bn contains a g(n)-trap infinitely often. We have already dealt with this case at the end of Section
1.4.

In what follows we give a survey on the proofs of Theorem 1.3 (ii) as well as Theorem 1.5 if Condition (1.11) (or
equivalently (1.20)) holds. The arguments described above are made rigorous in several auxiliary lemmas, which
we present in the subsequent sections.

Proof of Theorem 1.5 if Condition (1.11) holds. By virtue of Lemma 2.1 with A = {e ∈ Ed : 0 ∈ e} it follows that
P-a.s. there exists n∗1 ∈ N such that for all n ≥ n∗1 all sites z ∈ Bn have an incident edge with conductance
greater than g(n). Further, let b ∈ N be such that b � 4d. Since we assumed that Λg is bounded from above,
it follows by virtue of Corollary 2.4 (with m = 2d and k = d) that there exists ε > 0 such that P-a.s. there
exists n∗2 ∈ N such that for all n ≥ n∗2 and for all z ∈ Bn+b the box Bb(z) contains at most 3d − 1 links with
conductance less than or equal to g(n1−ε). Set nk = k+max(n∗1, n

∗
2). The claim follows by virtue of Proposition

4.7.

Proof of Theorem 1.3 (ii). Condition (1.10) together with the Borel-Cantelli argument of Lemma 2.7 implies that for
any c > 0, P-a.s. as the box size n grows to infinity, there exists a random subsequence n′ = n′(ω) along which
each site z ∈ Bn′ has at least one incident link e such that we > cg(n′). Further, by Corollary 2.5 we know the
following: For a fixed b ∈ N there exists ε > 0 such that P-a.s. for n large enough, there are at most 2d edges
in any subbox Bb(z) ⊂ Bn+b with conductance smaller than or equal to g(n1−ε). It follows that we can apply
Proposition 4.7 with cg instead of g and obtain that there exists C > 0 (independent of c) such that P-a.s. along
the subsequence n′k and for k large enough the following holds: For any f : Zd → R with supp f ⊆ Bn′k it is

Ew(f) ≥ Ccg(n′k)‖f‖22 .

Since this holds for any c > 0, this implies the claim.

2 Borel-Cantelli arguments

In this section we always assume that the dimension d ≥ 2 and that the conductances are i.i.d. with law P. We
further let g : (0,∞)→ (0,∞) be a function that decreases monotonically to zero. Moreover, we use the following
abbreviations: For α > 0 and an edge set A ⊆ Ed we define the event

Jα(A) = {∃e ∈ A : we > α} .

For a set A ⊂ Zd we define E(A) to be the set of edges that connect a site in A with a neighbor in positive axes
direction (i.e., right, above, in front, etc.), i.e.,

E(A) = {{x, y} ∈ Ed : x ∈ A and ∃j ∈ {1, . . . , d} such that y = x+ ej} ,
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where {ej} is the set of unit base vectors of Zd. For A ⊆ Ed we write τz ◦ A for the translation of A by z ∈ Zd.

Lemma 2.1. If b ∈ N and A ⊆ E(Bb) is an edge set with |A| = m, then

P

lim inf
n→∞

⋂
z∈Bn+b

Jg(n)(τz ◦ A)

 =
{

1 , if
∫∞
0
ud−1P[w ≤ g(u)]mdu <∞ , (2.1a)

0 , otherwise. (2.1b)

I.e., if and only if the integral
∫∞
0
ud−1P[w ≤ g(u)]mdu is finite, then P-a.s. for n large enough for all sites

z ∈ Bn+b the edge set τz ◦ A contains a conductance greater than g(n). Otherwise the counter event occurs
infinitely often.

Remark 2.2. The result of Lemma 2.1 as well as the proof are generalizations of the considerations of Cox and
Durrett [CD81] and Kesten [Kes03, p. 108] (there, m = 2d and g(n) = n−1). For the sake of completeness, we
included the proofs here.

Proof of Lemma 2.1. For (2.1a): We first show that

0 = 1− P
[

lim inf
|z|∞→∞

Jg(|z|∞−b)(τz ◦ A)
]

= P

[
lim sup
|z|∞→∞

(
Jg(|z|∞−b)(τz ◦ A)

)c]
. (2.2)

We achieve this by applying the first Borel-Cantelli lemma, i.e., we have to estimate

∑
z∈Zd\Bb

P
[(
Jg(|z|∞−b)(τz ◦ A)

)c] =
∞∑

k=b+1

∑
|z|∞=k

P[w ≤ g(|z|∞ − b)]m

≤ 2d
∞∑

k=b+1

(2k + 1)d−1P[w ≤ g(k − b)]m .

Since g(·) is monotonically decreasing, P[w ≤ g(·)] is monotonically decreasing as well. Further, there exists an
index kb such that k − b ≥ 2−1(k + 1) for all k ≥ kb. It follows that there exists C <∞ such that

∑
z∈Zd\Bb

P
[(
Jg(|z|∞−b)(τz ◦ A)

)c] ≤ C + 4dd
∞∑

k=b+1

(2−1(k + 1))d−1P
[
w ≤ g

(
2−1(k + 1)

)]m
.

Thus, there exists c <∞ such that the LHS is bounded from above by C + c
∫∞
0
ud−1P[w ≤ g(u)]mdu, which

is finite by assumption. The claim (2.2) follows from the first Borel-Cantelli lemma.

To arrive at the claim of the lemma, we observe that (2.2) implies that there P-a.s. exists n∗ ∈ N such that
for all |z|∞ ≥ n∗ the set τz ◦ A contains at least one conductance with w > g(|z|∞ − b). If n > n∗ and
z ∈ Bn+b\Bn∗ , i.e., |z|∞ ∈ (n∗, n + b], this means that τz ◦ A contains at least one conductance with
w > g(n) (recall that g is monotonically decreasing). Since n∗ is finite and g decreases monotonically to zero, it
also follows that there exists a finite n′ ≥ n∗ such that for all edges e ∈ E(Bn∗+1) we have g(n′) < we. Thus,⋂
z∈Bn+b

Jg(n)(τz ◦ A) is true P-a.s. for n large enough.

For (2.1b): Let
∫∞
0
ud−1P[w ≤ g(u)]mdu =∞. We want to show that this implies

P

lim inf
n→∞

⋂
z∈Bn+b

Jg(n)(τz ◦ A)

 = 0 . (2.3)

Let us define the setAb = (2b+1)Zd. It suffices to prove the claim (2.3) for the intersection over z ∈ Bn+b∩Ab,
which in turn follows by the second Borel-Cantelli lemma if∑

z∈Ab

P
[(
Jg(|z|+b)(τz ◦ A)

)c] =∞ ,
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since the events
{
Jg(|z|+b)(τz ◦ A)

}
z∈Ab

are independent. To prove that the above sum diverges, we observe
that there exists a constant C > 0 such that∑

z∈Ab

P
[(
Jg(|z|+b)(τz ◦ A)

)c] ≥ 2d(2b+ 1)d
∞∑
k=1

(2k − 1)d−1P[w ≤ g((2b+ 1)k + b)]m

≥ C
∞∫
0

ud−1P[w ≤ g(u)]mdu .

By the assumption that
∫∞
0
ud−1P[w ≤ g(u)]mdu =∞, the sum diverges.

Corollary 2.3 (of Lemma 2.1). Let b ∈ N and m ≤ |E(Bb)|. Then the following equivalence holds:

∞∫
0

ud−1P[w ≤ g(u)]mdu <∞ ⇔ P

lim inf
n→∞

⋂
A⊆E(Bb),
|A|≥m

⋂
z∈Bn+b

Jg(n)(τz ◦ A)

 = 1 . (2.4)

Proof of Corollary 2.3. For “⇐”, we apply Lemma 2.1 for an arbitrary A ⊆ E(Bb) with |A| = m. For “⇒”, note
that since Bb is finite, the intersection over the edge sets A on the RHS of (2.4) runs over finitely many events. By
virtue of Lemma 2.1 the claim holds for each of these events and therefore also for the finite intersection.

Corollary 2.4 (of Corollary 2.3). Let b ∈ N, m, k ∈ N with m < |E(Bb)|. If udP[w ≤ g(u)]m is bounded from
above, then

P

lim inf
n→∞

⋂
A⊆E(Bb),
|A|≥m+k

⋂
z∈Bn+b

Jg(n1−ε)(τz ◦ A)

 = 1 for all ε ∈ [0, k(m+ k)−1) . (2.5)

Proof. We show that the integral
∫∞
0
vd−1P

[
w ≤ g

(
v1−ε)]m+kdv is finite and then we apply Corollary 2.3.

The change of variable v1−ε = u yields

∞∫
0

vd−1P
[
w ≤ g

(
v1−ε)]m+k

dv = (1− ε)−1

∞∫
0

ud(1−ε)
−1−1P[w ≤ g(u)]m+k du .

Now we consider that

ud(1−ε)
−1−1P[w ≤ g(u)]m+k = ud((1−ε)

−1−1− k
m )−1

(
udP[w ≤ g(u)]m

)1+ k
m .

Since both udP[w ≤ g(u)]m and P[w ≤ g(u)]m are bounded from above, we obtain that

∞∫
0

ud(1−ε)
−1−1P[w ≤ g(u)]m+k du ≤

u1∫
0

ud(1−ε)
−1−1 du+ C

∞∫
u1

ud((1−ε)
−1−1− k

m )−1 du <∞

for any u1 ∈ (0,∞) and a suitable C < ∞. Since ε ∈ [0, 1) and d ≥ 2, the first integral on the RHS is finite.
Further, since ε < k(m+ k)−1, the second integral on the RHS is finite as well.

For the next three results, we define Λg as in (1.8).

Corollary 2.5 (of Corollary 2.3). Let b ≥ 2 and assume that Λg(u)/ log log u is bounded from above. Then there
exists ε > 0 such that

P

lim inf
n→∞

⋂
A⊆E(Bb),
|A|≥2d+1

⋂
z∈Bn+b

Jg(n1−ε)(τz ◦ A)

 = 1 . (2.6)
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Proof. We show that the integral in (2.4) is finite for m = 2d + 1 and g(u1−ε) instead of g(u). The assumption
on the function Λg implies that there exists C <∞ such that

u(d+ 1
2 )(1−ε)P

[
w ≤ g(u1−ε)

]2d+1

(log log u1−ε)1+
1
2d

< C for all u > 0 and ε ∈ (0, 1).

It follows that

udP
[
w ≤ g(u1−ε)

]2d+1 ≤ Cu−
1
2+ε(d+ 1

2 )(log log u1−ε)1+ 1
2d for all u > 0.

For all ε < (2d+1)−1, this implies that the integral
∫∞
0
ud−1P

[
w ≤ g(u1−ε)

]2d+1 du is finite. The claim follows
by virtue of Corollary 2.3.

Figure 2.1: Even (white
circles) and odd lattice
(black circles) as defined
in (2.7) and below.

For the next lemma we need the following definition: The even lattice is the set

Ae =
{
z ∈ Zd : |z|1 ≡ 0 mod 2

}
. (2.7)

Accordingly, the odd lattice is Ao = Zd\Ae, see Fig. 2.1 for a sketch. Now, the next
lemma states that if a certain condition is fulfilled, then P-a.s. for n large enough there
exist sites ze

n ∈ Bn ∩ Ae and zo ∈ Bn ∩ Ao such that all incident links to these sites
have conductance less than or equal to g(n). This implies that there are at least two
sites in Bn whose incident links are all less than or equal to g(n).

Lemma 2.6. Let N = {e ∈ Ed : 0 ∈ e} and A ∈ {Ae, Ao}. Then the following impli-
cation is true: If there exists ε > 0 and n∗ ∈ N such that

Λg(n)
log log n

≥ 2 + ε for all n ≥ n∗, then P

[
lim sup
n→∞

( ⋂
z∈Bn∩A

Jg(n)(τz ◦N)

)]
= 0 ,

i.e., P-a.s. for n large enough there exists a site zn ∈ Bn ∩ A that is completely surrounded by edges with
conductances less than or equal to g(n).

Proof of Lemma 2.6. We first prove the claim for the subsequence nj = 2j with j ∈ N and with g(2n) instead of
g(n). Then we show how to infer the claim along the whole sequence n ∈ N.

For the first part, note that the sets Ae ∩ Bn and Ao ∩ Bn have cardinality greater than 2d−1nd. Further, for
any α > 0 the events {Jα(τz ◦N)}z∈Ae

are independent, as well as are the events {Jα(τz ◦N)}z∈Ao
. Let

w1, . . . , w2d be 2d independent copies of w. Then for both A ∈ {Ae, Ao} we can estimate

P

 ⋂
z∈Bnj∩A

Jg(2nj)(τz ◦N)

 = P[max{w1, . . . , w2d} > g(2nj)]|Bnj∩A|

≤
(

1− P[w ≤ g(2nj)]
2d
)2d−1ndj

≤ exp
(
−1

2
(2nj)

dP[w ≤ g(2nj)]
2d

)
.

The assumption on Λg implies that the RHS is summable along the sequence nj = 2j . Thus, it follows directly
by the Borel-Cantelli lemma that the statement of this lemma holds along the subsequence nj and with g(2nj)
instead of g(nj).

To infer the claim of the lemma along the entire sequence, we define

M e,o
n := inf

x∈Bn∩Ae,o
sup

e∈τx◦N
we.

Note that both M e,o
n are monotonically decreasing in n. By the first part of the proof we know that

P
[
lim inf
j→∞

M e,o
nj

g(2nj)
≤ 1
]

= 1 . (2.8)
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Now for n ∈ N we choose jn such that

2jn ≤ n ≤ 2jn+1 .

Since g−1 and M e,o
( · ) are all monotonically decreasing, this implies that

M e,o
2jn ≥M

e,o
n ≥M e,o

2jn+1 and g
(
2jn
)
≥ g(n) ≥ g

(
2jn+1

)
whence especially

M e,o
n

g(n)
≤

M e,o
2jn

g(2jn+1)
=

M e,o
2jn

g(2 · 2jn)
.

Thus, the claim follows by (2.8).

Lemma 2.7. Let N be as in Lemma 2.6. If the function u 7→ ug(u) decreases monotonically to zero and

lim
u→∞

Λg(u)
log log u

= 0 , then P

[
lim sup
n→∞

( ⋂
z∈Bn

Jcg(n)(τz ◦N)

)]
= 1 ∀c > 0 . (2.9)

Proof. For A ∈ Zd, a fixed c > 0, and a fixed function g let us abbreviate

Hn
A =

⋂
z∈A

Jcg(n)(τz ◦N) .

Let us briefly outline the idea of the proof: It is sufficient to show that the claim is true along the subsequence
nj = jj . First we show that

∞∑
j=1

P
[
H
nj
Bnj

]
=∞ (2.10)

which, since H
nj
Bnj
⊂ Hnj

Bnj \Bnj−1+1
, implies that

∑∞
j=1 P

[
H
nj
Bnj \Bnj−1+1

]
=∞. Note that since for i, j ∈ N

with i 6= j the intersection ⋃
z∈Bnj \Bnj−1+1

τz ◦N

 ∩
 ⋃
z∈Bni\Bni−1+1

τz ◦N

 = ∅ ,

the events
{
H
nj
Bnj \Bnj−1+1

}
j≥2

are independent. Thus, we can infer by the second Borel-Cantelli lemma that

P
[
lim sup
j→∞

H
nj
Bnj \Bnj−1+1

]
= 1 . (2.11)

Then we show that

P
[
lim inf
j→∞

H
nj
Bnj−1+1

]
= 1 . (2.12)

Since by definition

H
nj
Bnj

= H
nj
Bnj \Bnj−1+1

∩Hnj
Bnj−1+1

,

(2.12) together with (2.11) implies the claim of the lemma.

Let us start with the proof of (2.10). We note that for Ae and Ao as defined in (2.7) the FKG-inequality implies that

P
[
H
nj
Bnj

]
= P

[
H
nj
Ae∩Bnj

∩Hnj
Ao∩Bnj

]
≥ P

[
H
nj
Ae∩Bnj

]2
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Then we recall that Ae was constructed such that H
nj
Ae∩Bnj

is the intersection of less than (2n + 1)d i.i.d.

subevents
{
Jcg(nj)(τz ◦N)

}
z∈Ae∩Bnj

, each with probability

P
[
Jcg(nj)(N)

]
= 1− P[w ≤ cg(nj)]

2d
.

Thus for j large enough, there exists C <∞ such that

P
[
H
nj
Bnj

]
≥
(

1− P[w ≤ cg(nj)]
2d
)2(2nj+1)d

=
((

1− P[w ≤ cg(nj)]
2d
)P[w≤cg(nj)]−2d)2(2nj+1)dP[w≤cg(nj)]2d

≥ exp
(
−CndjP[w ≤ cg(nj)]

2d
)

= exp(−CΛcg(nj)) . (2.13)

Now we observe that the assumptions on g and Λg imply that the RHS of (2.13) is not summable for any c > 0.
This concludes the argument for (2.10).

Let us proceed with the proof of (2.12). Note that for any ε > 0 we have nj+1 ≥ h(nj) with h(u) = u(log u)1−ε.
This is because for j large enough and any ε > 0 we have

nj+1 = (j + 1)
(

1 +
1
j

)j
jj ≥ (j + 1)nj ≥ nj(log nj)

1−ε
.

Thus, (2.12) is a consequence of

P

lim inf
n→∞

⋂
z∈Bn+1

Jcg(h(n))(τz ◦ A)

 = 1 ∀c > 0 .

By virtue of Lemma 2.1 we can thus verify (2.12) by showing that for all c > 0 the integral

∞∫
0

ud−1P[w ≤ cg(h(u))]2ddu <∞ .

To see that the integral is indeed finite, we consider the following: There exists a constant C <∞ such that

∞∫
0

ud−1P[w ≤ cg(h(u))]2ddu ≤ C +

∞∫
2

u−1

(
u

h(u)

)d(
h(u)d P[w ≤ cg(h(u))]2d

)
du

= C +

∞∫
2

u−1(log u)−d(1−ε)Λcg(h(u)) du .

By the condition on Λg and the monotonicity condition on g follows that the above RHS is finite.

3 Percolation results

In this section we adapt three standard percolation results that we need for the path arguments of the next section
in order to establish the lower bound for the principal Dirichlet eigenvalue.

We consider the standard Bernoulli bond percolation on the graph (Zd,Ed), i.e., we assume that the conductances
are independent random variables with common law P such that an individual conductance is 1 with probability p
and 0 otherwise. For an introduction to percolation we refer the reader to [Gri99]. As in the previous section, we call
w = (we)e∈Ed ∈ {0, 1}Ed an environment and we denote the law of the environment by P. If the conductance
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we of an edge e is equal to 1, then we call e an open edge. Otherwise we call the edge e closed. Given a realization
w of the environment, we denote the set of open edges by EO ⊂ Ed.

Consider the random graph (Zd,EO). Following the terminology of Grimmet [Gri99], we call the connected sub-
graphs of this graph open clusters and, for x ∈ Zd, we write C (x) for the open cluster that contains the site x.
Note that C (x) ⊂ (Zd,EO) is a graph. We define the clusters this way in order to make sense of Dirichlet forms
defined as in (3.2) below. However, when we write |C (x)|, we refer to the number of sites in C (x). Furthermore,
when C is a cluster and y is a site in the vertex set of C , then we use the shorthand notation y ∈ C . Similarly, if
e is in the edge set of C , then we write e ∈ C .

We say that a path l = (x0, . . . , xm) is open if and only if {xi−1, xi} ∈ EO for all i ∈ {1, . . . ,m}. Given a
realization w of the environment, we write dw(x, y) for the length of the shortest open path between the sites x
and y. We say that dw(x, y) =∞ whenever x and y are not connected through an open path.

Let pc(d) be the critical probability such that P-a.s. there exists an infinite open cluster C∞. This cluster is P-a.s.
unique. We assume that pc(d) < p < 1. Note that C∞ contains all sites x that are connected to infinity through
an open path as well as all open edges that are incident to a site in C∞. We further define H as the complement
of C∞ in Zd, i.e., we regard H as a set of sites.

The main object of this section is to collect results from the literature and adapt the details such they exactly fit our
needs.

Lemma 3.1. Let η ∈ (0, 1). Then for p sufficiently close to one, there exist constants C < ∞ and c > 0 such
that

P[|Bn ∩ C∞| ≤ η|Bn|] ≤ Ce−cn for all n ≥ 1. (3.1)

For the proof of this lemma we refer the reader to [BKM15, Lemma 4.2]. The second lemma is an implication of
Lemma 3.1 above.

Lemma 3.2. For p sufficiently close to one and P-a.s. for n large enough there exists an injective map ϕ1 : H ∩
Bn → C∞ such that for any site x ∈H ∩Bn the distance |x− ϕ1(x)|1 ≤ 2d(log n)(d+1).

Proof of Lemma 3.2. The proof of this lemma follows the lines of the first paragraph of the proof of [BKM15,
Lemma 4.7] but we included the proof here for completeness. For z ∈ Zd and m ≥ 0, we denote Bm(z) ={
x ∈ Zd : |x− z|∞ ≤ m

}
. Choose the percolation parameter p such that (3.1) is fulfilled with η > 1

2 . Let
m = b(log n)d+1c and consider the disjoint partition Pm := {Bm((2m+ 1)z)}z∈Zd of Zd. Then Lemma 3.1
implies that there exist c, C ∈ (0,∞) such that

P

 ⋃
B∈Pm,
B∩Bn 6=∅

{|B ∩ C∞| ≤ η|B|}

 ≤ ∑
B∈Pm,
B∩Bn 6=∅

P[|B ∩ C∞| ≤ η|B|]

≤ C(2n+ 1)d exp
(
−c(log n)d+1

)
,

which is summable. By the Borel-Cantelli lemma it follows that P-a.s. for n large enough we have |B ∩ C∞| >
|B|/2 in any B ∈ Pm with B ∩Bn 6= ∅.

Now we construct ϕ1 as follows: For x ∈ H ∩ Bn choose B ∈ Pm (unique) such that x ∈ B. Choose
ϕ1(x) ∈ B ∩ C∞ in an injective way - this is possible since |H ∩B| < |C∞ ∩B|. The `1-distance between x
and ϕ1(x) is thus smaller than or equal to 2d(log n)(d+1).

For f : Zd → R with ‖f‖22 <∞ we define the Dirichlet-form EC∞(f):

EC∞(f) =
∑

{x,y}∈C∞

(f(x)− f(y))2 , (3.2)

as well as the norm ‖f‖`2(C∞) =
∑
x∈C∞

f2(x).
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In the following lemma we give a lower bound for the principal Dirichlet eigenvalue on Bn ∩ C∞. The lemma is
similar to Theorem 1.3 from [MR04] with the difference that Bn ∩ C∞ is in general not connected and we do not
include the condition that 0 ∈ C∞.

Lemma 3.3. Let d ≥ 2 and choose p such that Lemma 3.1 holds with η > 1
2 . Then there exists a deterministic

constant c > 0 such that P-a.s. for n large enough and all real-valued functions f ∈ `2(Zd) with supp f ⊆ Bn
we have

‖f‖2`2(C∞) ≤ cn
2EC∞(f) . (3.3)

We prove this lemma at the end of the section. It is rather standard given the relative isoperimetric inequality in
Lemma 3.4 below (see e.g. [SC97, p. 83]) but since the details are slightly different, we include the proof for the
convenience of the reader. For the proof we need some additional definitions.

Let n ∈ N. If x, y ∈ Bn = [−n, n]d ∩ Zd, we write dω,n(x, y) for the shortest open path between x and y
that is contained in Bn. We further say that B is an open cluster in Bn if and only if B is an open cluster and
dω,n(x, y) <∞ for all x, y ∈ B. The largest open cluster inBn is denoted by C ∨n . Note that it is not necessarily
C ∨n ⊂ C∞.

Let A ⊆ C ∨n be a set of sites. We define the relative edge boundary of A with respect to C ∨n as the edge set

∂E(A|C ∨n ) = {{x, y} ∈ C ∨n : x ∈ A and y ∈ C ∨n \A} .

Further we need the following auxiliary lemma about properties of C ∨n and a relative isoperimetric inequality. In
this lemma we collect well-known results from [Bar04] and [MR04] and adapt them to our needs.

Lemma 3.4. Let d ≥ 2 and choose p such that Lemma 3.1 holds with η > 1
2 . Then there exists ρ ∈ [1,∞)

such that P-a.s. exists n∗ ∈ N such that for all n ≥ n∗ the following statements are true: i) C ∨n ⊂ C∞, ii)
C∞ ∩B n

2ρ
⊂ C ∨n , iii) |Bn| ≤ 2|Bn ∩ C∞|, and iv) the relative isoperimetric inequality holds:

inf
A⊂C∨n ,
|A|≤ 1

2 |C
∨
n |

|∂E(A|C ∨n )|
|A|

≥ c

n
. (3.4)

Proof. Since p > pc, item (i) follows from Lemma 2.19 and Remark 2 on page 3049 of Barlow [Bar04]. Item (iii)
follows from Lemma 3.1 together with a Borel-Cantelli argument.

Item (iv) follows by virtue of [Bar04, Proposition 2.11, Proposition 2.12(a)] and the Borel-Cantelli lemma, i.e., there
exists c > 0 such that P-a.s. there exists N1(ω) < ∞ such that for all n ≥ N1 the following statement is true:
For all connected open subsets A ⊂ C ∨n with |A| ≤ 1

2 |C
∨
n | and such that C ∨n \A is connected, the isoperimetric

inequality

|∂E(A|C ∨n )|
|A|

≥ c

n

holds. By the same arguments as in [MR04, Sec. 3.1], this implies that (3.4) also holds for arbitrary A ⊂ C ∨n with
|A| ≤ 1

2 |C
∨
n |.

Finally we show (ii), i.e., that there exists ρ ∈ [1,∞) such that P-a.s. there exists N2(ω) < ∞ such that
C∞ ∩ B n

2ρ
⊂ C ∨n for all n ≥ N2. The proof is similar to the one in Appendix B of [MR04] but we present it here

for the convenience of the reader. Assume that there exists a site x ∈ C∞ ∩B n
2ρ
\C ∨n . We estimate

P
[
∃x ∈ B n

2ρ
∩ C∞\C ∨n

]
≤ P

[{
∃x ∈ B n

2ρ
∩ C∞\C ∨n

}
∩ {C ∨n ⊂ C∞}

]
+ P[C ∨n 6⊂ C∞]

From (i) it follows that the second term on the RHS is negligible and we therefore only consider the first term. If
C ∨n ⊂ C∞, then P-a.s. for n large enough there exists a site y ∈ C ∨n with norm |y|∞ = bn/ρc, for a sketch see
Fig 3.1. But this implies that the `1-distance between x and y can be estimated from above and below by

n

2ρ
− 1 ≤

⌊
n

ρ

⌋
− n

2ρ
≤ |x− y|∞ ≤ |x− y|1 ≤ 2d|x− y|∞ ≤

3dn
ρ

. (3.5)
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Figure 3.1: Sketch for the estimation (3.5) and (3.6).
We assume that there exists a site x ∈ B n

2ρ
∩

C∞\C∨n . Further, we can show that P-a.s. for n large
enough there exists an element y ∈ C∨n such that
|y|∞ = bn/ρc.

Further, since x /∈ C ∨n but y ∈ C ∨n , it follows that the shortest open path between x and y must leave the
box Bn, see e.g. Fig 3.1. Thus, the chemical distance between the sites x and y is bounded from below by the
`∞-distances of x and y to the boundary ∂Bn, i.e.

dw(x, y) ≥ n− n

2ρ
+ n− n

ρ
≥
(

2ρ
3d
− 1

2d

)
|x− y|1 . (3.6)

By virtue of [AP96, Theorem 1.1] there exists ρ∗ = ρ∗(p, d) ∈ [1,∞) and β = β(p, d) > 0 such that

P[x, y ∈ C∞ and dw(x, y) > ρ∗|x− y|1] ≤ e−β|x−y|1 .

Let us choose ρ such that 2ρ
3d −

1
2d ≥ ρ

∗. Then it follows that

P
[{
∃x ∈ B n

2ρ
∩ C∞\C ∨n

}
∩ {C ∨n ⊆ C∞}

]
≤

∑
x : |x|∞≤ n

2ρ

∑
y : |y|∞=n

ρ

e−β|x−y|1 ≤ (2n+ 1)2de−β( n2ρ−1) ,

which is summable. It follows that P-a.s. there exists N2 <∞ such that C∞ ∩B n
2ρ
⊂ C ∨n for all n ≥ N2.

Proof of Lemma 3.3. Let n∗ be as in Lemma 3.4 and let n ≥ n∗. Further let f : Zd → R such that supp f ⊆ Bn.
It is sufficient to show that (3.3) holds if f is the principal Dirichlet eigenvector of the generator belonging to the
Dirichlet form EC∞ . Similarly to Remark 1.1, the Perron-Frobenius theorem implies that we can assume w.l.o.g.
that f ≥ 0. We apply Hölder’s inequality to obtain

‖f‖`2(C∞)

√
EC∞(f) ≥ 1

4d

∑
{x,y}∈C∞

|f(x)− f(y)|(f(x) + f(y)) =
1
4d

∑
{x,y}∈C∞

∣∣f2(x)− f2(y)
∣∣ .
(3.7)

Now we use a standard approach which is known as the co-area formula (see e.g. [SC97, p. 83]):

∑
{x,y}∈C∞

∣∣f2(x)− f2(y)
∣∣ =

∑
x∈C∞

∑
y : {x,y}∈C∞,
f(x)≥f(y)

∞∫
0

1{f2(x)>t≥f2(y)} dt ,

where we can interchange the double sum and the integral since f has bounded support. If we define the set of
sites At =

{
x ∈ C∞ : f2(x) > t

}
, then we see that∑

x∈C∞

∑
y : {x,y}∈C∞,
f(x)≥f(y)

1{f(x)2>t≥f2(y)} = |∂E(At|C∞)| .
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We aim to apply the relative isoperimetric inequality (3.4). Let us choose ρ as in Lemma 3.4. Since supp f ⊆ Bn
and n ≥ n∗, we have At ⊆ Bn ∩ C∞ ⊆ C ∨8ρn for all t > 0 by Lemma 3.4 (ii). This implies ∂E(At|C∞) =
∂E

(
At|C ∨8ρn

)
as well. We further have |At| ≤ |Bn| ≤ 1

4 |B4n| ≤ 1
2 |C

∨
8ρn| by Lemma 3.4 (ii) and (iii). By the

relative isoperimetric inequality (3.4) we therefore obtain

∑
{x,y}∈C∞

∣∣f2(x)− f2(y)
∣∣ ≥ c

8ρn

∞∫
0

|At|dt =
c

8ρn

∑
x∈C∞

f2(x) .

Together with (3.7) this implies that √
EC∞(f) ≥ c

32dρn
‖f‖`2(C∞) .

4 Path argument

In this section we give the two Propositions 4.6 and 4.7, which transfer the knowledge we obtained by the Borel-
Cantelli arguments in Section 2 to lower bounds of Dirichlet forms. In order to achieve this, Lemma 4.3 generalizes
and modifies a path argument similar to the one in [BKM15, Lemma 4.7]. Before we start, we give a definition which
is crucial for the remaining part of the paper.

Definition 4.1. Let G = (V,E) be an undirected graph and w = (we)e∈E. For f : V → R, we define the
Dirichlet energy on G :

Ew
G (f) =

1
2

∑
x∈V

∑
y∈V,
{x,y}∈E

wxy(f(x)− f(y))2 . (4.1)

Remark 4.2. For ξ > 0 let us define ae = 1{we≥ξ} (e ∈ Ed). Let us call an edge e open if and only if ae = 1
and let C be an open cluster in the environment a = (ae)e∈Ed . Then, with reference to (3.2), we obtain that
ξEC (f) ≤ Ew

C (f) for all real-valued functions f ∈ `2(Zd).

Since we apply a similar argument for two slightly different situations (i.e., once for the proofs of Theorems 1.3 and
1.5, see Proposition 4.7, and once for the proof of Theorem 1.8, see Proposition 4.6), we kept the conditions of the
following lemma as general as necessary.

Lemma 4.3. Let G = (V,E) be an undirected graph and let C = (VC ,EC ) be a subgraph of G . Assume that
v, L ∈ (0,∞) and B ⊆ V are such that the following conditions are fulfilled:

(i) There exists a constant µ > 0 such that for all f : V → R with supp f ⊆ B the following inequality holds:

Ew
C (f) ≥ µ‖f‖2`2(C ). (4.2)

(ii) There exists an injective map ϕ : B\VC → VC such that the following holds: From any x ∈ B\VC there
exists a (self-avoiding) directed path l(x, ϕ(x)) to ϕ(x) in G such that

(ii).1 all e ∈ l(x, ϕ(x)) fulfill we > v,

(ii).2 |l(x, ϕ(x))| ≤ L.

Then for all f : V → R with supp f ⊆ B the following holds:

Ew
G (f) ≥

(
(2L)d+1v−1 + 3µ−1

)−1‖f‖2`2(G ) . (4.3)
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Proof of Lemma 4.3. We generalize the proof of [BKM15, Lemma 4.7]. Let f : V → R with supp f ⊆ B. For the
following calculation we abbreviate f(y)− f(z) = df((y, z)) where (y, z) is the (directed) link from site y to its
neighbor z. For x ∈ B\VC we write f(x) as a telescopic sum

f(x) =
∑

b∈l(x,ϕ(x))

df(b) + f(ϕ(x)) .

We apply the Cauchy-Schwarz inequality and expand the terms on the RHS by the conductances:

f2(x) ≤ 2|l(x, ϕ(x))|
v

∑
b∈l(x,ϕ(x))

wb (df(b))2 + 2f2(ϕ(x)) .

Now we sum over all x ∈ B\VC and use the upper bound for |l(x, ϕ(x))| according to Condition (ii)b:∑
x∈B\VC

f2(x) ≤ 2L
v

∑
x∈B\VC

∑
b∈l(x,ϕ(x))

wb (df(b))2 + 2
∑

x∈B\VC

f2(ϕ(x)) . (4.4)

Let us look at the last term on the RHS: By definition ϕ is injective and its image is in VC . This means that∑
x∈B\VC

f2(ϕ(x)) ≤
∑
x∈VC

f2(x) .

Due to the limited length of the path l(x, ϕ(x)) the sum over b ∈ l(x, ϕ(x)) on the RHS in (4.4) uses each edge
at most (2L)d times, whence ∑

x∈B\VC

∑
b∈l(x,ϕ(x))

wb (df(b))2 ≤ (2L)dEw
G (f) .

Completing the sum to all sites x ∈ G and using the comparability between Ew
G (f) and Ew

C (f), we obtain by
virtue of Condition (i):∑

x∈V
f2(x) ≤ (2L)d+1

v
Ew

G (f) + 3
∑
x∈C

f2(x) ≤
(

(2L)d+1

v
+

3
µ

)
Ew

G (f) .

4.1 Asymptotics of the principal Dirichlet eigenvalue

From the path argument in Lemma 4.3 we can use our observations from Section 2 to obtain lower bounds of the
Dirichlet forms. We use similar arguments as in [BKM15, Lemma 5.1].

We fix ξ > 0 such that

P[w > ξ] > pc(d) . (4.5)

Moreover, we fix an environment w and define a new environment a by setting

ae = 1{we>ξ} (e ∈ Ed) , (4.6)

similarly as in Remark 4.2. We denote the unique infinite cluster of the environment a by C ξ and we use the same
shorthand notations as explained at the beginning of Section 3. Further we define C ξ

n as the restriction of C ξ to
the box Bn and and similarly the holes H ξ

n .

Additionally, we define a second percolation environment w̃g(n) for g : (0,∞)→ (0,∞) by setting

w̃g(n)(e) = we1{we>g(n)} (e ∈ Ed) . (4.7)

Thus, links with conductance less than or equal to g(n) are considered to be closed and all others keep their
original conductance. With this terminology we can now define the following clusters.
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Definition 4.4. Let Dg(n) be the unique infinite open cluster of w̃g(n). Regarding this cluster, we use the same
shorthand notations as introduced at the beginning of Section 3. Furthermore, let Ig(n) = Bn\Dg(n) be the set
of holes.

For a fixed function g and a fixed ε > 0 we often abbreviate Dn = Dg(n1−ε) and In = Ig(n1−ε).

Definition 4.5. We say a set I ⊂ Zd is sparse if the set I does not contain any neighboring sites.

Proposition 4.6. Let g : [0,∞) → [0,∞) be a decreasing function. Let b ∈ N be such that b � 4d. Further,
assume that there exists ε > 0 such that along the subsequence (nk)k∈N for all z ∈ Bn+b the box Bb(z)
contains at most 3d−1 links with conductance less than or equal to g(n1−ε). Define Dn = Dg(n1−ε). Then there
exists c ∈ (0,∞) (independent of g) such that P-a.s. for k large enough, and all real-valued functions f ∈ `2(Zd)
with supp f ⊆ Bnk we obtain

Ew
Dnk

(
f
)
≥
(

2d+1(log nk)4d
2
g
(
n1−ε
k

)−1 + cn2
k

)−1

‖f‖2`2(Dnk ) ,

with Ew
Dnk

as in Definition 4.1.

Proposition 4.7. Let the assumptions of Proposition 4.6 be true as well as one of Assumptions 1.2 (a) or (b).
Further, assume that there exists an infinite subsequence (nk)k∈N such that for all z ∈ Bnk there exists an
incident edge with conductance greater than g(nk). Then there exists c > 0 such that P-a.s. for k large enough,
and all real-valued functions f ∈ `2(Zd) with supp f ⊆ Bnk we obtain

Ew
(
f
)
≥ cg(nk)‖f‖22 .

If one of the Assumptions 1.2 (a) or (b’) is fulfilled, then the constant c can be chosen independently of g.

We prove these propositions in the next section.

4.2 Proof of Propositions 4.6 and 4.7

Proof of Proposition 4.6. We apply Lemma 4.3. Let Gn = Dn. Further, let vn = g
(
n1−ε).

In order to define C ⊂ Gn as required by Lemma 4.3, we fix ξ > 0 according to (4.5) and let C = C ξ . Since g is
decreasing to zero, C ξ ⊂ Gn for n large enough.

By Lemma 3.3 we know that there exists c1 > 0 such that P-a.s. for n large enough and all real-valued functions
f ∈ `2(Zd) with supp f ⊆ Bn we have

‖f‖22 ≤ c1n2EC (f) ≤ ξ−1c1n
2Ew

C (f) . (4.8)

Thus, if we choose µn = ξ
c1n2 in the place of µ in (4.2), then Condition (i) of Lemma 4.3 is fulfilled.

We are now going to construct the mapϕ : Bn∩Dn∩H ξ → C ξ and the path l(x, ϕ(x)). For the next paragraph
we say that a conductance is “bad” if it is smaller than or equal to g(n1−ε). By Lemma 3.2 there exists an injective
map ϕ1 : H ξ ∩ Bn → C ξ such that there exists a directed path l1(x, ϕ1(x)) in (Zd,Ed) from x to ϕ1(x) of
length |l1(x, ϕ1(x))| ≤ 2d(log n)(d+1). Let ϕ = ϕ1|H ξ∩Bn∩Dn . By assumption, along the subsequence nk,
each subbox Bb(z) with z ∈ Bn+b contains at most 3d− 1 bad conductances. In addition, by the construction of
Dn, each site x ∈ Dn is connected to infinity by a path that contains only good conductances. Thus, we construct
the path l(x, ϕ(x)) by the following algorithm: The path l(x, ϕ(x)) follows l1(x, ϕ(x)) until it hits an edge with a
bad conductance. In this case it takes the shortest detour around that edge to meet l1(x, ϕ(x)) again without using
any edge with a bad conductance. Since each Bb(z) with z ∈ Bn+b contains at most 3d− 1 bad conductances,
this detour contains less than 6d edges. After the detour, l(x, ϕ(x)) continues again on l1(x, ϕ(x)) until it hits the
next bad conductance and so on. By this construction there exists aC <∞, such that for all x ∈ Bn∩Dn∩H ξ

and for n large enough the length of the resulting path |l(x, ϕ(x))| ≤ C(log n)(d+1) < (log n)2d.
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We can now apply Lemma 4.3 and obtain that along the subsequence nk P-a.s. for k large enough for all
f : Dnk → R with supp f ⊆ Bnk the following holds:

Ew
Dnk

(
f
)
≥
(

2d+1(log nk)4d
2
g
(
n1−ε
k

)−1 + 3c1n2
kξ
−1
)−1

‖f‖2`2(Dnk ) .

Since both c1 and ξ are independent of g, the claim follows.

Proof of Proposition 4.7. Again, we apply Lemma 4.3. Let G =
(
Zd,Ed

)
and vn = g(n). Further, let Dn be as

in Proposition 4.6 and let Cn = Dn. Then Condition (i) of Lemma 4.3 is fulfilled with

µn =
(

2d+1(log n)4d
2
g
(
n1−ε)−1 + 3c1n2ξ−1

)−1

.

By assumption, along the subsequence nk, each site x ∈ In := Bn\Dn has only neighbors in D and there
exists a a neighbor ϕ(x) such that the conductance wx,ϕ(x) > g(n). Since each box Bb(z) for z ∈ Bn+b

contains at most 3d − 1 links with conductance less than or equal to g(n) and b � 1, the map ϕ : In → Dn

is injective. By the choice of ϕ, there exists a path l(x, ϕ(x)) of length one that fulfills the requirements of Lemma
4.3.

It follows that P-a.s. for k large enough the following holds for all f : Zd → R with supp f ⊆ Bnk :

Ew
(
f
)
≥
(

2d+1g(nk)−1 + 2d+3(log nk)4d
2
g
(
n1−ε
k

)−1 + 9c1n2
kξ
−1
)−1

‖f‖22 .

We have assumed that one of Assumptions 1.2 (a) or (b) is fulfilled. Let us first assume that Assumption 1.2 (b) is
true and that the limit of u2g(u) is smaller than c2 ∈ (0,∞). It follows that eventually

9c1ξ−1n2
kg(nk) < 9c1c2ξ−1 and 2d+3(log nk)4d

2 g(nk)
g
(
n1−ε
k

) < 2d+5(log nk)4d
2
n−2ε
k < 1 ,

and therefore P-a.s. for k large enough

Ew
(
f
)
≥ g(nk)

1 + 2d+1 + 9c1c2ξ−1
‖f‖22 (suppf ⊆ Bnk) .

If we assume that Assumption 1.2 (b’) is fulfilled, then eventually even 9c1ξ−1n2
kg(nk) < 1 and thus the lower

bound becomes independent of c1, c2, and ξ.

Let us now assume that Condition (a) is true. Then there exists ρ < −2 such that we can write g(n) = nρL(n)
where L varies slowly at infinity. It follows that eventually

9c1ξ−1n2
kg(nk) < 1 and 2d+3Cg(nk)(log nk)4d

2
g
(
n1−ε
k

)−1 = nρεk
2d+3C(log nk)4d

2
L(nk)

L(n1−ε
k )

< 1 .

It follows that in this case P-a.s. for k large enough

Ew
(
fk
)
≥ 1

2d+1 + 2
g(nk)‖fk‖22 .

5 Localization of the principal eigenvector

We start with a collection of auxiliary lemmas and give the proof of Theorem 1.8 in Section 5.2.
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5.1 Auxiliary lemmas

Let v be as in Theorem 1.8 and let n∗ be the smallest integer greater than or equal to
(
F−1(v)

)−2
. For n ≥ n∗

we abbreviate

g(n) := F−1(n−1/2) . (5.1)

Note that Λg(n) = 1 for n ≥ n∗. In Lemma 5.3 we are going to see that the principal eigenvector ψ(n)
1 tends

to concentrate in the site zn ∈ Bn that minimizes the measure πz . In addition to zn we are also interested in
properties of the site z(2,n) which is the location of the second-smallest value of πz for z ∈ Bn.

The first lemma states some structural properties of the environment.

Lemma 5.1. Let g be as in (5.1) and ε2 ∈ (0, 1/3). Let b ∈ N such that b� 4d. Then P-a.s. for n large enough
and for all z ∈ Bn+b the boxBb(z) contains at most 3d−1 links with conductance less than or equal to g(n1−ε2).
Furthermore, if Dn is as in Definition 4.4 with ε = ε2, then P-a.s. for n large enough the set In = Bn\Dn is
sparse and both zn, z(2,n) ∈ In.

Proof. Since Λg is constant for n ≥ n∗ and therefore bounded, the first claim follows by virtue of Corollary 2.4
(with m = 2d and k = d).

To show that In is P-a.s. sparse, we have to show that no two sites in In are neighbors. Let us assume that
for infinitely many n there exists a pair of neighbors x, y ∈ In. We note that at least 4d − 2 closed links are
necessary to separate two neighboring sites from an infinite open cluster in Zd. But 4d − 2 > 3d − 1 in any
dimension d ≥ 2. This is a contradiction. Therefore the above considerations imply that P-a.s. for n large enough
the set In is sparse.

For the last statement consider the following: Since the quotient Λg((·)1−ε2/2)/ log log n diverges for n growing to

infinity, Lemma 2.6 implies that P-a.s. for n large enough πzn ≤ πz(2,n) < 2dg(n1−ε2/2). But this already implies
that eventually zn, z(2,n) ∈ In.

Let ψ(n)
1 be the principal Dirichlet eigenvector of the operator −Lw in the box Bn with zero Dirichlet conditions.

Lemma 5.2. Let the function g be as in (5.1). Assume that there exists ε1 ∈ (0, 1) such that one of the two cases
occurs: g varies regularly at infinity with index ρ < −(2 + ε1) or the product n2+ε1g(n) converges monotonically
to zero as n grows to infinity. Further, let ε = ε2 = 7ε1

8(2+ε1)
and Dn be as in Definition 4.4. Then P-a.s. for n large

enough ∥∥ψ(n)
1

∥∥2

`2(Dn)
≤ n−ε1/2 . (5.2)

Proof. By Lemma 5.1, we can apply Proposition 4.6 to the set Dn, i.e., there exists c > 0 such that P-a.s. for n
large enough

Ew
Dn

(
f
)
≥
(

2d+1(log n)4d
2
g
(
n1−ε2

)−1 + cn2
)−1

‖f‖2`2(Dn) , (5.3)

for any function f : Zd → R with supp f ⊆ Bn. In any case, the assumptions imply that the product n2+ε1g(n)
converges to zero as n grows to infinity. It follows that n2g

(
n1−ε2

)
/(log n)4d

2
converges to zero as well. There-

fore, if C = 2d+1 + 1(5.3) implies that P-a.s. for n large enough

Ew
Dn

(
f
)
≥ 1
C

g
(
n1−ε2

)
(log n)4d2

‖f‖2`2(Dn) .

On the other hand, we know that for any ε3 > 0 the term Λg((·)1−ε3 )(n)/ log log n diverges. Let us specifically

choose ε3 = ε1(8(2 + ε1))−1. Now we use Theorem 1.3 (i) and the fact that the Dirichlet form Ew majorizes
Ew

Dn
to infer that there exists c1 <∞ such that P-a.s. for n large enough

c1g(n1−ε3) ≥ λ(n)
1 = Ew

(
ψ

(n)
1

)
≥ Ew

Dn

(
ψ

(n)
1

)
≥ 1
C

g
(
n1−ε2

)
(log n)4d2

∥∥ψ(n)
1

∥∥2

`2(Dn)
. (5.4)
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When we solve this inequality for
∥∥ψ(n)

1

∥∥2

`2(Dn)
, we obtain that

∥∥ψ(n)
1

∥∥2

`2(Dn)
≤ c1C

g(n1−ε3)(log n)4d
2

g(n1−ε2)
.

To finish the proof we use one of the additional assumptions about g: If g varies regularly at infinity with index
ρ < −(2 + ε1), then we can write g(n) = nρL(n) where L varies slowly at infinity. In this case we observe that
eventually

c1C
g(n1−ε3)(log n)4d

2

g(n1−ε2)
= c1Cn

3ρε1
4(2+ε1)

(log n)4d
2
L(n1−ε3)

L(n1−ε2)
≤ n−ε1/2 ,

which implies the claim. In the other case, i.e., if the product n2+ε1g(n) converges monotonically to zero as n
tends to infinity, we observe that eventually

c1C
g(n1−ε3)(log n)4d

2

g(n1−ε2)
= c1Cn

−(2+ε1)(ε2−ε3)(log n)4d
2
≤ n−ε1/2 ,

which implies the claim as well.

Lemma 5.3. Let y, z ∈ Bn with πz < πy and y � z. Assume that ψ(n)
1 is nonnegative. Further, define

my = 2 maxx : x∼y ψ
(n)
1 (x). Then the mass ψ(n)

1 (y) is bounded from above by

ψ
(n)
1 (y) ≤ my

1− πz
πy

. (5.5)

Proof of Lemma 5.3. We assume the contrary, i.e., we assume that

myπy + ψ
(n)
1 (y)(πz − πy) < 0 . (5.6)

Then we define a new function φ : Zd → R+ by setting

φ(x) =


ψ

(n)
1 (x), for x /∈ {y, z},
my, for x = y,√
ψ

(n)
1 (y)2 + ψ

(n)
1 (z)2 −m2

y, for x = z.

(5.7)

Note that since (5.6) implies that ψ(n)
1 (y) > my , we observe that φ(z) > ψ

(n)
1 (z). Obviously, suppφ ⊆ Bn and

‖φ‖2 = 1. Therefore, by the variational formula (1.7) and Remark 1.1, the Dirichlet energy 〈φ,−Lwφ〉 is larger

than the principal Dirichlet eigenvalue λ(n)
1 .

However, the Dirichlet energy of φ is given by

〈φ,−Lwφ〉 = λ
(n)
1 +

[ ∑
x:x∼y

wxy

(
ψ

(n)
1 (x)−my

)2

−
∑
x:x∼y

wxy

(
ψ

(n)
1 (x)− ψ(n)

1 (y)
)2
]

+

[ ∑
x:x∼z

wxz

(
ψ

(n)
1 (x)− φ(z)

)2

−
∑
x:x∼z

wxz

(
ψ

(n)
1 (x)− ψ(n)

1 (z)
)2
]
. (5.8)

Evaluation of the first bracketed summand on the RHS gives:∑
x:x∼y

wxy

(
ψ

(n)
1 (x)−my

)2

−
∑
x:x∼y

wxy

(
ψ

(n)
1 (x)− ψ(n)

1 (y)
)2

=
∑
x:x∼y

wxy

(
ψ

(n)
1 (y)−my

)(
2ψ(n)

1 (x)−my − ψ(n)
1 (y)

)
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≤ −ψ(n)
1 (y)

∑
x:x∼y

wxy

(
ψ

(n)
1 (y)−my

)
, (5.9)

where the last inequality follows by the definition ofmy and since the Assumption (5.6) implies thatψ(n)
1 (y) > my .

Further, we evaluate the second bracketed summand on the RHS of (5.8) as∑
x:x∼z

wxz

(
ψ

(n)
1 (x)− φ(z)

)2

−
∑
x:x∼z

wxz

(
ψ

(n)
1 (x)− ψ(n)

1 (z)
)2

=
∑
x:x∼z

wxz

(
φ(z)− ψ(n)

1 (z)
)(
φ(z) + ψ

(n)
1 (z)− 2ψ(n)

1 (x)
)
.

Since we assumed that ψ(n)
1 is nonnegative and since the Assumption (5.6) implies that φ(z) > ψ

(n)
1 (z), we

conclude that∑
x:x∼z

wxz

(
ψ

(n)
1 (x)− φ(z)

)2

−
∑
x:x∼z

wxz

(
ψ

(n)
1 (x)− ψ(n)

1 (z)
)2

≤
∑
x:x∼z

wxz

(
φ(z)2 − ψ(n)

1 (z)2
)

=
∑
x:x∼z

wxz

(
ψ

(n)
1 (y)2 −m2

y

)
, (5.10)

where the last equality follows by the definition of φ(z). When we insert (5.9) and (5.10) into (5.8), then we obtain

〈φ,−Lwφ〉 ≤ λ(n)
1 − ψ(n)

1 (y)
∑
x:x∼y

wxy

(
ψ

(n)
1 (y)−my

)
+
∑
x:x∼z

wxz

(
ψ

(n)
1 (y)2 −m2

y

)
= λ

(n)
1 + ψ

(n)
1 (z)2(πz − πy) +my

(
ψ

(n)
1 (y)πy −myπz

)
≤ λ(n)

1 + ψ
(n)
1 (y)

[
myπy + ψ

(n)
1 (y)(πz − πy)

]
. (5.11)

Under Assumption (5.6) and the assumption that ψ(n)
1 (y) is nonnegative it follows that the Dirichlet energy of φ is

not larger than λ(n)
1 . This is a contradiction to the Perron-Frobenius theorem, see Remark 1.1.

Let Fπ be the distribution function of π, i.e., the distribution function of the sum of 2d independent copies of the
conductance w. Then we have the following lemma.

Lemma 5.4. If there exists γ ∈ [0, 1/4) such that F varies regularly at zero with index γ, then Fπ varies regularly
near zero with index 2dγ.

Proof. Let L [F ] be the Laplace transform of F . Then the Laplace transform of Fπ fulfills

L [Fπ] = (L [F ])2d .

By virtue of the Tauberian theorems, more precisely by virtue of Theorem 3 in [Fel71, XIII.5] (or, equivalently
Theorem 1.7.1’ of [BGT89]), L [F ] varies regularly at infinity with index−γ. It follows that L [Fπ] varies regularly
at infinity with index −2dγ. Hence, by another application of Theorem 3 in [Fel71, XIII.5] we obtain that Fπ varies
regularly at zero with index 2dγ.

5.2 Proof of Theorem 1.8

Proof of Theorem 1.8. Recall the definition of the local speed measure π, i.e., π(x) = πx =
∑
y : x∼y wxy for

x ∈ Zd. If πz is very small, then z is a potential trap. The smaller πz , the better the trap z. We now show that the
random sequence (zn)n∈N of sites defined by zn = arg minx∈Bn πx is the sequence that we are looking for.
Note that P-a.s. the site, where the minimum is attained, is unique. Let z(2,n) be the site inBn with second-smallest
measure π.
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Let n∗ =
⌈(
F−1(v)

)−2
⌉

and abbreviate g(n) = F−1(n−1/2) for n ≥ n∗. Let us recall that we assumed that

one of the two following cases occurs: γ ∈ (0, 1/4) or there exists ε1 ∈ (0, 1) such that the product n2+ε1g(n)
converges monotonically to zero as n grows to infinity.

In the case where γ > 0 the inverse F−1 varies regularly at zero with index 1/γ (see e.g. [Sen76, p. 21]). It
follows that g varies regularly at infinity with index −1/(2γ). Since in addition γ < 1/4, there exists ε1 ∈ (0, 1)
such that −1/(2γ) < −(2 + ε1).

In both cases we define Dn as in Definition 4.4 with ε = 7ε1
8(2+ε1)

. Let In = Bn\Dn. By virtue of Lemma 5.1 we

know that P-a.s. for n large enough the set In is sparse in the sense of Definition 4.5 and zn, z(2,n) ∈ In.

Now, let αn = n−ε1/8 and note that{∥∥ψ(n)
1

∥∥2

`2(Bn\{zn})
> α2

n

}
⊆
{∥∥ψ(n)

1

∥∥2

`2(Dn)
>
α2
n

2

}
∪
{∥∥ψ(n)

1

∥∥2

`2(In\{zn})
>
α2
n

2

}
. (5.12)

However, by virtue of Lemma 5.2 we know that P-a.s. for n large enough∥∥ψ(n)
1

∥∥2

`2(Dn)
≤ α4

n , (5.13)

and thus P-a.s. the limit superior of the first event on the RHS vanishes.

In order to estimate the probability of the second event on the RHS of (5.12), we now estimate
∥∥ψ(n)

1

∥∥
`2(In\{zn})

in terms of
∥∥ψ(n)

1

∥∥
`2(Dn)

. By virtue of Remark 1.1, we can assume without loss of generality that ψ(n)
1 nonneg-

ative. Let y ∈ In\{zn} and define my = 2 maxx:x∼y ψ
(n)
1 (x). On the event where In is sparse, it is further

y � zn. Therefore we know by virtue of Lemma 5.3 that ψ(n)
1 (y) ≤ my

(
1− πzn

πy

)−1

. By definition πy ≥ πz(n,2)
and thus it follows that

∥∥ψ(n)
1

∥∥2

`2(In\{zn})
≤

(
1− πzn

πz(n,2)

)−2 ∑
y∈In\{zn}

m2
y (given In is sparse).

Moreover, on the event where In is sparse, any neighbor of y ∈ In is in Dn and therefore

∥∥ψ(n)
1

∥∥2

`2(In\{zn})
≤ 8d

(
1− πzn

πz(n,2)

)−2∥∥ψ(n)
1

∥∥2

`2(Dn)
(given In is sparse). (5.14)

On the event where (5.13) is true and In is sparse, we hence infer that{∥∥ψ(n)
1

∥∥2

`2(In\{zn})
>
α2
n

2

}
⊆

{
4
√
dαn > 1− πzn

πz(n,2)

}
.

It remains to show that P-a.s. for n large enough 4
√
dαn ≤ 1−πzn/πz(n,2) . We achieve this by an investigation of

the extreme value statistics of the local speed measure {πz}z∈Bn , which follows below. For n ∈ N let π1,|Bn| ≤
π2,|Bn| ≤ . . . ≤ π|Bn|,|Bn| be an ordering of the set {πz}z∈Bn . Note that this means that π1,|Bn| = πzn

and π2,|Bn| = πz(n,2) . We abbreviate En =
{

4
√
dαn > 1− π1,|Bn|

π2,|Bn|

}
and Gn =

{
zn, z(n,2) ∈ In

}
∩

{In sparse}. From the previous considerations we already know that

P
[
lim sup
n→∞

{∥∥ψ(n)
1

∥∥2

`2(Bn\{zn})
> α2

n

}]
≤ P

[
lim sup
n→∞

(En ∩Gn)
]

≤ lim
n→∞

P[En ∩Gn] + lim
n→∞

P

[ ∞⋃
k=n+1

(
Ek ∩Gk ∩ Ec

k−1

)]
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We now split the event

En =
(
En ∩

{
π2,|Bn| < π2,|Bn−1|

})
∪
(
En ∩

{
π2,|Bn| = π2,|Bn−1|

})
and observe that En ∩

{
π2,|Bn| = π2,|Bn−1|

}
∩ Ec

n−1 = ∅ and thus

P
[
lim sup
n→∞

{∥∥ψ(n)
1

∥∥2

`2(Bn\{zn})
> α2

n

}]
≤ lim
n→∞

P[En ∩Gn] + lim
n→∞

∞∑
k=n+1

P
[
Ek ∩Gk

∣∣π2,|Bn| < π2,|Bn−1|
]
P
[
π2,|Bn| < π2,|Bn−1|

]
.

First, we estimate the factor P
[
π2,|Bn| < π2,|Bn−1|

]
. To this end we recall that the set {πz}z∈Bn consists of

dependent random variables. However πx is independent from πy if the sites x and y are not neighbors. Let us
recall the definition of the even lattice Ae ⊂ Zd and the odd lattice Ao ⊂ Zd as in (2.7) and below. With these
definitions the set {πz}z∈Bn∩Ae is a set of i.i.d. random variables, as well as is {πz}z∈Bn∩Ao . Let πe

1,|Bn| ≤
πe

2,|Bn| ≤ . . . be the ordering of {πz}z∈Bn∩Ae and πo
1,|Bn| ≤ πo

2,|Bn| ≤ . . . be the ordering of {πz}z∈Bn∩Ao .
Now we observe that for n ≥ 2 the statement π2,|Bn| < π2,|Bn−1| implies that πe

2,|Bn| < πe
2,|Bn−1| or πo

2,|Bn| <
πo

2,|Bn−1|. Thus, by virtue of [Res87, Proposition 4.3], there exists a constant C < ∞ such that for n ≥ 2 we
have:

P
[
π2,|Bn| < π2,|Bn−1|

]
≤ P

[{
πe

2,|Bn| < πe
2,|Bn−1|

}
∪
{
πo

2,|Bn| < πo
2,|Bn−1|

}]
≤ Cn−1 .

We now define Fπ as the distribution function of π. By definition, F
1
2d
π is an increasing function and thus

En ⊆
{
F

1
2d
π

(
π1,|Bn|

)
≥ F

1
2d
π

(
(1− 4

√
dαn)π2,|Bn|

)}
.

Our next aim is to extract the factor 1 − 4
√
dαn from inside the function argument. To this end we observe that

by virtue of Lemma 5.4 and the assumption that F varies regularly at zero with index γ ∈ [0, 1/4), we know that
Fπ varies regularly at zero with index 2dγ. For any δ ∈ (0, 1) it follows that

lim
a→0

F
1
2d
π ((1− δ)a)

F
1
2d
π (a)

= (1− δ)γ > 1− δ .

Thus, there exists a∗ > 0 such that for all a ∈ (0, a∗) we have F
1
2d
π ((1− δ)a) ≥ (1− δ)F

1
2d
π (a).

Since both αn and π2,|Bn| are converging to zero as a function of n, we obtain that for n large enough

En ⊆

F
1
2d
π

(
π1,|Bn|

)
F

1
2d
π

(
π2,|Bn|

) ≥ 1− 4
√
dαn


=
{

logF
1
2d
π

(
π2,|Bn|

)
− logF

1
2d
π

(
π1,|Bn|

)
≤ − log(1− 4

√
dαn)

}
We observe that by definition the random variable F

1
2d
π (πx) (x ∈ Zd) is an inverse Pareto variable with parameter

λ = 2d. It follows that the random variable σx := − logF
1
2d
π (πx) is exponentially distributed with parameter 2d.

In analogy to the definitions above, we define σ1,|Bn| ≥ σ2,|Bn| ≥ . . . ≥ σ|Bn|,|Bn| as an ordering of the set
{σz}z∈Bn .

Finally, we notice that the event Gn implies that the sites zn and z(n,2) are not neighbors. Thus, when we apply
Bayes’ theorem to express the probability P[En ∩Gn] as a conditional probability, we notice that

P[En ∩Gn] ≤ P
[
σ1,|Bn| − σ2,|Bn| ≤ − log

(
1− 4

√
dαn

) ∣∣∣ zn 6∼ z(n,2)] .
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By the condition zn 6∼ z(n,2), the random variables σ1,|Bn| and σ2,|Bn| become independent except for the
condition that σ1,|Bn| ≤ σ2,|Bn|. But since the exponential distribution is memoryless, this condition simply implies
that σ1,|Bn| − σ2,|Bn| is again a nonnegative exponential random variable with parameter 2d. It follows that

P[En ∩Gn] ≤ 1− e2d log(1−4
√
dαn) = 1−

(
1− 4

√
dαn

)2d

≤ 8d
3
2αn .

With the same argument (i.e., that the exponential distribution is memoryless) we infer that

P
[
Ek ∩Gk

∣∣π2,|Bn| < π2,|Bn−1|
]
≤ 8d

3
2αk ,

and thus

P
[
lim sup
n→∞

{∥∥ψ(n)
1

∥∥2

`2(Bn\{zn})
> α2

n

}]
≤ 8d

3
2 lim
n→∞

(
αn + C

∞∑
k=n+1

αkk
−1

)
,

which is zero since αk decreases as k−ε1/8.

In remains to prove (1.16). We already know that there exists ε1 > 0 such that P-a.s. for n large enough

ψ
(n)
1 (zn)2 ≥ 1− n−ε1/4 .

Further, by virtue of the variational formula (1.7) the event {ψ(n)
1 (zn)2 ≥ 1− n−ε1/4} implies that

λ
(n)
1 ∈

[
(
√

1− n−ε1/4 − n−ε1/8)2 min
z∈Bn

πz, (1− n−ε1/4) min
z∈Bn

πz + n−ε1/4λ
(n)
1

]
.

The claim (1.16) follows.
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