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OPTIMAL POINTWISE ADAPTIVE ESTIMATION 

ABSTRACT. The problem of optimal adaptive estimation of a function at a given point 
from noisy data is considered. 

Two procedures are proved to be asymptotically optimal for different settings. 
First we study the problem of bandwidth selection for non parametric pointwise kernel 

estimation with a given kernel. 
We propose a bandwidth selection procedure and prove its optimality in the asymp

totic sense. Moreover, this optimality is stated not only among kernel estimators with a 
variable kernel. The resulting estimator is optimal among all feasible estimators. 

The important feature of this procedure is that no prior information is used about 
smoothness properties of the estimated function i.e. the procedure is completely adaptive 
and "works" for the class of all functions. With it the attainable accuracy of estima
tion depends on the function itself and it is expressed in terms of "ideal" bandwidth 
corresponding to this function. 

The second procedure can be considered as a specification of the first one under the 
qualitative assumption that the function to be estimated belongs to some Holder class 
L,({3, L) with unknown parameters {3, L. 

This assumption allows to choose a family of kernels in an optimal way and the 
resulting procedure appears to be asymptotically optimal in the adaptive sense. 

1. INTRODUCTION 

1 

The standard minimax nonparametric approach is based on the assumption that the 
function to be estimated from noisy data belongs to some function (smoothness) class e.g. 
Holder, Sobolev, Besov etc. (see Ibragimov and Khasminskii, 1980, 1981, Bretagnolle 
and Huber, 1976, Stone, 1982, Donoho and Johnstone, 1992b, Kerkyacharian and Picard, 
1993). Such kind of assumption is of great importance because the rate (accuracy) of 
estimation and the corresponding optimal estimation rule depend on the structure and 
parameters of this function class. But at the same time this is the main drawback of 
the nonparametric approach because typically we don't have any prior information about 
smoothness properties of the estimated function. 

To bypass this trouble one or another kind of adaptive procedure is applied. It is 
assumed again that the function belongs to some function class but with unknown values 
of parameters. After that these parameters and the corresponding procedure are chosen 
automatically by data. We refer to Marron (1988) and Donoho and Johnstone (1992c) 
for an overview on this topic. 

A number of authors considered local selection of a smoothing parameter which seems to 
be more reasonable for curves with inhomogeneous smoothness properties, see e.g. Marron 
(1988) and Vieu (1991). We mention the results from Lepski and Spokoiny (1994) where 
exact asymptotic bounds for the choice of "locality" parameter were established. 

Principally another approach was proposed recently in the papers of Donoho, John
stone, Kerkyacharian and Picard. The idea is to apply the nonlinear wavelet estimation 
procedure which does not use any prior information about smoothness properties of the 
function to be estimated and which is near minimax (up to log-factor) for the whole scale 
of Besov classes (including Holder and Sob.olev ones). 

Moreover, for the case if smoothness of an estimated function is measured in weaker 
norm than the loss, no linear methods provide optimal or near optimal rate, Nemirovski 
(1985). This case corresponds to estimation of functions with inhomogeneous smoothness 
properties. 
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The power of the nonlinear wavelet procedure in such situations can be explained 
informally that it adapts automatically to the inhomogeneous structure of an estimated 
function. 

This property of the wavelet procedure is called spatial adaptivity and it appeared to 
be extremely important as from theoretical point of view as for practical applications. 

But one important question remains open. Why does the nonlinear wavelet procedure 
have such nice properties and what is most essential in this method? 

An interesting step answering this question was made recently in Lepski, Mammen and 
Spokoiny(1994) where another procedure, namely, a kernel estimator with a variable data
driven bandwidth was considered and it was shown that this procedure is also spatially 
adaptive. 

The idea of construction was to use the pointwise adaptive procedure i.e. the function is 
estimated at each point independently and adaptively. For pointwise adaptation a slightly 
modified version of Lepski (1992) was applied. 

The key point of that paper can be stressed as follows. If some estimation procedure 
is pointwise adaptive, then it is spatially adaptive in the sense of rate optimality over the 
whole scale of Besov classes. 

Studying the problem of pointwise adaptive estimation was initiated in Lepski (1990). 
In that paper significant difference was shown to be for estimation of the whole function 
and of a value of a function at one point . More precisely, for the problem of pointwise 
estimation we meet the phenomenon of lack of adaptability: if we knew that a function 
to be estimated belongs to a given Holder class 2:: (/3, L) , then we would estimate this 
function at a given point with the accuracy cp( e,) = e,2/3/(2/3+1), e, being the noise level. 
But if the parameter /3 is unknown then this accuracy is impossible to attain. 

The optimal adaptive rate was also calculated in Lepski (1990). It occured to be 

( ) 

2/3/(2/3+1) 
e,y"fril/6 · that differs from the nonadaptive one by the extra log-factor (see 

also Brown and Low, 1992). 
The above mentioned connection of pointwise adaptive estimation problem with the 

notion of spatial adaptivity motivates further studying the problem of adaptive estimation 
at a point. 

Below we consider two settings for which optimal (in the asymptotic sense) pointwise 
adaptive procedure can be shown explicitly. The first approach can be described as follows. 

Let a function f ( ·) be observed with noise and let us estimate the value of this function 
at a point t0 • 

We start from the situation that no assumptions were made a'priori on the smoothness 
properties of the function f . That means that we do not assume any smoothness condi
tions on f. We would like to apply a linear kernel estimation procedure. Moreover, we 
assume a kernel I< to be given and only a bandwidth h for kernel estimation is chosen 
adaptively. 

For pointwise adaptation we use the adaptive procedure from Lepski, Mammen and 
Spokoiny(1994) with a more accurate choice of its parameters. 

We prove that this estimation procedure is exact optimal in adaptive sense within the 
class of all feasible estimators not only of kernel type. This kind of result is a little 
bit surprising since we know from Sacks and Strawderman (1982) that for non-adaptive 
pointwise estimation linear (and in particular kernel) methods do not provide asymptotic 
minimaxity. 
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The next natural step is to try to optimize a kernel to be used. But any optimal choice 
of kernel seems to be impossible without some prior assumptions on the structure of the 
estimated function. 

One typical example of such kind is as follows: the function f is assumed to be in some 
Holder class but with unknown parameters. The second studied in this paper problem 
corresponds just to this case. We show that under such a qualitative assumption the 
optimal choice of kernels can be made which provides optimal accuracy of estimation. 

The paper is organizied as follows. 
In the next section we formulate the problem of optimal bandwidth selection and present 

the related results. 
In Section 3 we consider the problem of optimal pointwise adaptive estimation under 

Holder type constraints on the estimated function. 
Some possible d~velopments of the presented results are discussed in Section 4. 
The proofs are mostly deferred to Section 5. 

2. OPTIMAL BANDWIDTH SELECTION 

In this section we consider the problem of data-driven bandwidth selection for a given 
kernel J{. We propose a pointwise selection rule and show that the resulting estimator 
is optimal (asymptotically when noise level goes to zero) among the class of all feasible 
estimators not only of linear kernel type. 

2.1. Preliminaries. First we precise the problem of adaptive estimation at a point. 
Let a function f ( ·) be estimated from noisy data at a point t 0 • To formulate the main 

results we introduce some characteristic of the function f at the point t0 which can be 
treated as an "ideal" bandwidth for the kernel estimation with a given kernel. 

The standard bandwidth choice is motivated by the balance relation between the bias 
and stochastic terms in the decomposition of losses for a kernel estimator. The bias term 
b(h) for a bandwidth h is nonrandom but it depends on the function f, b(h) = b1(h), 
and it characterizes the accuracy of approximation of an estimated function by the used 
method (in the present context by kernel smoothers). The stochastic term is random 
and it depends typically on the error level c (or the number of observations n) and 
the bandwidth h but not on the function f. For usual kernel estimation procedure the 
stochastic term is a normal (or asymptotically normal) random variable with zero mean 
and the variance of order a 2 

( h) = e: (or n\ ) . 
The classical balance equation looks like 

(2.1) 

But the function f is unknown and hence the bias function b(h) is also unknown. To 
choose a bandwidth one has to apply some kind of adaptation. 

It is of interest to note that the balance rule (2.1) does not work in the pointwise 
adaptive estimation. This phenomenon was discovered by Lepski (1990), see also Brown 
and Low (1992). One has to take some majorant for stochastic term to control stochastic 
:fluctuations. Namely, the balance relation 
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~(h) = <Y(h) Q = c:JIIl17€ ym~ VJ;, 

allows to estimate adaptively but the corresponding rate includes also such a log-factor. 
One can say that this extra log-factor is unavoidable payment for pointwise adaptation. 

We stress once again that such a property is of great importance: we lose a log at a point 
but we arrive to rate near optimality in the global estimation. 

Moreover, presence of this log-factor allows to neglect the stochastic term and to select 
the.parameters of the estimation procedure in an optimal way. This is just the subject of 
this section. 

2.2. Model. We consider the simplest "white noise" model when an observed process 
X(t), t E [O, 1], obeys the following stochastic differential equation 

dX(t) = J(t)dt + c:dW(t). (2.2) 

Here c is the level of noise and we assume below that this level is "small", i.e. we 
consider the asymptotics as c-+ 0. 

The process W = (W(t), t 2:: 0) is a standard Wiener process. 
The function J(-) in (2.2) is estimated at a point t 0 E (0, 1). 

2.3. Kernel. Let now a kernel K( ·) be fixed satisfying the following conditions: 

(Kl) the function K( u) is symmetric i.e. K( u) = K( -u), u 2:: 0; 
(K2) the function K(·) is compactly supported i.e. K(u) = 0 for all u outside some 

compact set C on the real line; 
(K3) 

J K(u)du = l; 

(K4) 

llKll2 = J K 2(u)du < oo; 

(K5) 

K(O) > llKll 2
• 

Note that no assumptions were made about smoothness properties of the kernel K i.e. 
it can be even discontinuous. 

2.4. Bandwidth Selection Problem. "Ideal" Bandwidth. We consider below the 
family of the kernel estimators fh(t 0 ) of the value f(t 0 ) 

jh(t) = ~ j K ( t ~to) dX(t) (2.3) 

with a positive bandwidth h. 
Further we use the following standard decomposition of the loss for the kernel estimators 

fh(to) 

fh(to) - f(to) = Khf(to) - f(to) + ~(h) (2.4) 
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with the stochastic term ~ ( h) 

e(h) = u Kc~ to) dW(t) (2.5) 

which is obviously a Gaussian zero mean random variable with the variance 

In vvhat follows we assume that h is small enough and the support of the function 
I<Chto) contains in [O, 1]. This assumption allows to neglect the boundary effects and 
to change integration over' [O, 1] by integration over the whole real line. That is why we 
omit the integration limits here in the definition (2.3) and further. 

The problem is to select by the data X some bandwidth h to minimize the corre
sponding risk 

where p 2:: 1 is a given power. 
Now we define the notion of an "ideal" bandwidth for the function f. 
Denote for h > 0 

JChf(to) - HK C ~to) f(t)dt, 

~(h) ~1(h) = sup IKhf(to) - f(to)I. 
0<11<h 

(2.6) 

The value ~( h) characterizes the accuracy of approximation of the function J(-) at 
the point t 0 by the kernel smoothers K 11f with 17:::; h. 

Before to give the definitions we precise the problem of bandwidth selection. We assume 
that besides the kernel I< for each c two values he and h; are given such that he > c-2 , 

h;:::; 1/2 and 

c ---+ 0. (2.7) 

We will select a bandwidth h in the interval h E [he, h;] that is he is the smallest and 
h; is the largest admissible values of the bandwidth. 

Denote 

By (2. 7) one has de --1- oo as c ---+ 0. 
This factor de enters in the expression of the minimax rate of convergence. In some 

sense this factor is our payment for adaptation and the less is the range [he, h;] of adaptive 
bandwidth choice the less is this payment. In any case de is not larger (in order) than 
Jln 1 / c and this is the typical order. 
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Introduce some more notation. Put 

1/;(h) - (h)d - llKl!c v 1 h; 
(j e - Vh, p n he ' 

C(K) 

b(h) = 

K(O) 
llKll 2 - l, 

C(K)1/;(h) = K(O) - llKll 2 _!_v l h; 
llKll .Jh, p n he. 

(2.8) 

(2.9) 

Definition 2.1. Let the function b( h) be defined by (2.9) and let given J(-) the function 
~(h) = ~1(h) be defined by (2.6). The value h1 with 

h1 = sup{h:::; h;: ~(h):::; b(h)} (2.10) 

is called the "ideal" bandwidth for the function f. 
The function ~ ( h) is by definition monotonously increasing and the function b( h) 

is in the contrary monotonously decreasing with b( h) -+ oo as h + 0 . This provides 
correctness of the definition (2.10). 

Now we are ready to formulate the main results. 

2.5. Main Results. 1. Uniform optimality. Denote by Fe the class of functions 
J(-) with h1 ~he, 

Put 

K(O) c: eh; 
r(h) = b(h) + 1/;(h) = llKll vr;,V pln y;:;· 

The first result describes the rate which is attained by the proposed estimator le (for 
the explicit construction see below). 

Theorem 2.1. Let K(·) be a kernel satisfying the conditions (Kl) - (K5) and also the 
following condition 

(K6) 

sup j IK(u) - cK(cu)l 2 du= j K 2(u)du. 
O<c9 

Then there exists an estimator le(t0 ) which is a kernel estimator with an adaptive 
bandwidth h such that 

,., p 

E fe(to) - f(to) = l + (l) 
sup (h ) Oe . 
Je:F~ r J 

Remark 2.1. Here and in what follows we denote by oe(l) some absolute values depending 
possibly on c:,p and the kernel K but not on a function f and such that 

Oe(l) -+ 0, £-+ 0. 

The next result shows that the performance of the estimator le cannot be improved 
i.e. this estimator is asymptotically efficient. 
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Theorem 2.2. Let a kernel K(·) satisfy the conditions (Kl) - (K5) and also the con
dition 

(K7) 

inf j K(u)K(cu)du == j K 2(u)du. 
O<c9 

Then for each c > 0 there exist two functions Jo(·) and Ji ( ·) (depending on c) such 
that h Jo == h; , h Ji 2:: he and for any estimator Te 

I 
Te - f(to) IP 

max E (h ) 2:: 1 - oe(l). 
fE{fo,Ji} r J 

The scope of results of Theorems 2.1 and 2.2 claims asymptotic optimality of the 
estimator fe(to) if the kernel K satisfies the conditions (Kl) - (K7). 

The question for which kernels these conditions are fulfilled, is discussed in the next 
section. 

Remark 2.2. The first result states the properties of the estimator he(t0 ) which are uni
form on the very wide function class Fe whereas the lower bounds result from Theorem 2.2 
is stated on the class consisting of two functions. Moreover, we will use f 0 (t) - O and 
only f 1 depends on c . 

Remark 2.3. It is of interest to observe which accuracy of estimation provides the esti
mator fe(to) from Theorem 2.1 in the usual sense. 

Let the function f to be estimat~d belong to some Holder class Li(;3, L) i.e., with 

m == l/3 J ' 

If the kernel K has the regularity m that is K is orthogonal to polynomials of degree 
from 1 till m , then one has easily 

D..(h) == b..1(h) ==sup IK: 11 f(to) - f(to)I :s; Mh(3 
11<h 

with some absolute constant M depending only on ;3, L and K(·). Now the balance 
equation D..(h1) == b(h1) == C(K)cde//hj arrives to 

and 

where the symbol":::::::" means the equivalence in order. Therefore, and it was expected, 
the result of Theorem 1 guarantees the suboptimal rate for the pointwise adaptive esti
mation over the Holder classes. 

Moreover, an optimal kernel choice provides optimal pointwise-adaptive estimation over 
the Holder classes but the discussion of this topic is the subject of the second part of this 
paper. 
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2.6. Main Results. 2. Adaptive optimality. In Lepski (1991, 1992) a new approach 
to define optimal adaptive rate was proposed for the situation without adaptation, in 
particular, for the problem of estimation at a point. 

Below we present a result in this spirit which is, however, not only of theoretical inter
est. Some features of this result appear to be extremely important, for instance, for the 
problem of spatially adaptive estimation. 

First we explain in which sense the results of Theorems 2.1 and 2.2 are not completely 
satisfactory. Due to Theorem 2.2 if we have only two functions, one with the smoothness 
parameter he, another with h;, then we have to pay for the adaptation the factor de = 
(pln(h;/he))112 • Therefore, in the uniform sense in the whole range of adaptation the 
results of Theorems 2.1 and 2.2 cannot be improved. 

But a function f to be estimated may have a smoothness parameter h1 inside the 
interval [he, h;] , and perhaps, an improvement is possible for each particular function. 
Theorem 2.2 prompts to take a factor d~ = (pln(h;/h1 )) 1

/
2 instead of de as in the case 

if h1 were just the smallest value of bandwidth. 
Put for h E [he, h;] 

~'(h) = O"(h)y'l V [pln(h;/h)] (2.11) 

where a V b means max{a, b}. 
Set also 

b'(h) _ C(I<)~'(h) = K(O) - llKll
2 

~ y'1 V [pln(h*/h)] 
II Kii Vii e ' 

r'(h) tf/(h) + b'(h) = ~:i? ~ ,/1 V [pln(h;/h)]. 

Define the "ideal bandwidth" for a function f by Definition 2.1 changing in it b(h) by 
b'( h). 

Then we modify correspondingly the bandwidth selector. The properties of the resulting 
estimator are described by the following result. 

Theorem 2.3. Let a kernel K satisfy the conditions (Kl) -( K6) . Then the estimator 
Je(to) corresponding to the modified adaptive bandwidth h provides 

sup EI fe(to) - f(to) IP < C 
f E:Fe. r' ( h f) -

where C is some absolute constant. 
Moreover, for each f E Fe with h1 = oe(l)h; one has 

EI f,(t~!(~Jrto) r ::; 1 + o,(1). 

Remark 2.4. First we compare the accuracy provided by the modified adaptive procedure 
with that of the original one. 0 bviously ~' ( h) ~ ~ ( h) and similarly for b' ( h) . Hence the 
second statement of the last theorem claims better performance of the modified procedure 
in each range of adaptation separated away from the upper value h; . 

The first statement is also of great importance. Due to this result, in particular, the 
modified estimator provides for functions f with h1 = h; the non-adaptive rate c/ y'h-; 
(since b'(h;) = Const.c/ y'h-;). 
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This phenomenon was used in Lepski, Mammen and Spokoiny (94) to construct a 
spatially adaptive procedure which gives the optimal rate for Besov function classes in 
an integral norm. The crucial point of that paper is that for functions from such classes 
a pointwise characteristic h1(t) coincides for "almost all" t with the upper value h; 
(because of truncation at this level) where the extra log-factor disappears. 

Remark 2.5. The result of T~eorem 2 with h f instead of he guarantees that the prop
erties of modified estimator fe cannot be improved, at least, in the asymptotic sense. 

To emphasize this fact explicitely, we formulate it as a separate result. 

Theorem 2.4. Let a kernel I< satisfy the condition (Kl) through (K5) and (K7). If 
an estimator Te of f (to) is such that 

p 

E Te - f (to) < C 
o s/Vhi -

where C is some absolute constant and E0 means the expectation for the model (2.2) 
with the zero function f = 0 . 

Then for any h = oe(l)h; there is f with h1 2::: h such that 

I 
Te - f(to) IP 

E r'(hJ) 2:'.: 1 - oe(l). 

Now we give the construction of the adaptive bandwidth h and h and the correspond
ing estimators. 

2. 7. Bandwidth Selector. Put 

Je = (det 1 = (pln h;/het1! 2 --+ 0 c--+ 0. 

and define the grid 1-l 

1-£ = {h E [he,h;]: h = he(l + Je)k, k = 0,1,2, ... }. (2.12) 

Set now 

h = max { h E 1-l: lfh(to) - ]11 (to)I ~ (1+2o:e)~(77) V77 < h, 77 E 1-l}. 
(2.13) 

Here ]h(to) is defined by (2.3) and 

O:e = (detl/3 = (plnh;/het 1!6 --+ 0, c--+ 0. 

Finally put 

}e(to) = A(to). 

For the modified selectors h we use the same procedure with ~(77) changed by ~'(77), 

h = max { h E 1-l: lfh(to) - ]11 (to)I ~ (1+2o:e)~'(77) V77<h,71E1-l} · 
(2.14) 

where Je and O:e are as before. 
The modified estimator uses just this new bandwidth selector, 

]e(to) = ]h(to). 
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Notice that the number of elements in the grid 1i is of order ln l/c and the definition 
of the adaptive bandwidth h is based on comparison of the corresponding number of 
kernels estimators. 

2.8. Kernel Choice. Conditions on kernels. Here we discuss briefly some aspects of 
the choice of the kernel K( ·) and the range [he, h;]. 

Strictly speaking, Theorems 2.1 - 2.3 can be applied only for the kernels satisfying the 
conditions (Kl) - (K7). Note, however, that the procedure makes sense for any kernel 
under (Kl)-(K4) and due to Lepski, Mammen and Spokoiny (1994) it will be spatially 
adaptive. It is of interest to see what can be obtained by the methods from Theorems 2.1 
and 2.2 if the conditions K(5) - (K7) are not fulfilled. 

Analysis of the proofs allows to extract the following. Denote 

si si(K) = sup J IK(u) - cK(uc)l 2du/llKll 2
, 

O<c:9 

Ci(K) - sup IK(O) -! K(u)K(uc)dul. 
O<c:9 

Put now 

7/Ji(h) = si7/J(h), 
bi(h) = Ci(K)7f;(h). 

and define the "ideal" bandwidth h f and the adaptive bandwidth hi similarly to above 
but with 'lfai ( h ), bi ( h) instead of 7/;( h ), b( h). Now Theorem 2.1 remains valid with ri ( h f) = 
'l/Ji ( h J) + bi ( h f) instead of r ( h) . 

But Theorem 2.2 gives the same lower ·bound, namely with rate r( h f) . This means 
that the corresponding estimator J1i

1 
has the efficiency p with 

_ ri ( h 1) _ 1 + C ( K) 
p - r(h1) - si + Ci(K) · (2·15) 

Another interesting question is the optimization of the kernel K . The first insight 
prompts to take a kernel which minimizes the ratio K(O)/llKll 2 because this expression 
enters in the value of the minimax risk. But it is not true. This value enters also in the 
definition of the "ideal" bandwidth and smaller values of this ratio lead to smaller values 
of the corresponding "ideal" bandwidth and hence a smaller accuracy. 

More detail analysis shows the inverse conclusion. The optimal kernel is produced by 
the optimization subproblem: to maximize the value K(O)/llKll 2 in the given function 
class. The discussion of this problem for the case of Holder function classes is the subject 
of the next section. Note only that the solution K* of the mentioned optimization 
subproblem satisfies automatically the condition ( K6) and ( K7) . 

One more important question for the kernel choice is a proper kernel regularity. 
We see from Theorems 2.1-2.3 that the attainable accuracy of estimation is closely 

related to the accuracy of approximation of a given function by its kernel smoothers. To 
provide good rate of approximation for large bandwidth values one has to take kernels of 
high regularity. 

More precise, the following conclusion is motivated by the theoretical results from the 
previous section: If we take a kernel of regularity m ~ 1 i.e. the kernel K is orthogonal 
to polynomials of lower degree, then the upper bound h; of the adaptation range can be 
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2 1 

taken about c;2m+1 (or n- 2m+ 1 ). Indeed, the regularity m of the kernel I<(·) provides 
good rate of approximation just for bandwidth up to this value. 

Nevertheless, for practical calculation consideration of larger bandwidth values seems 
to be also reasonable. 

The lower bound he is recommended to take as small as possible. For the considered 
abstract "white noise" model this bound is of order c: 2 • 

For more realistic models (see below Section 4) this choice is restricted by reasons 
of the experiments equivalence. The mentioned there results of Brown and Low (1990) 

2 

and Nussbaum (1993) prompt to take for he the value of order he :::::::: c; i+112 = c;413 

corresponding to the smoothness parameter 1/2. 

2.9. Nested Kernels. Now we consider one generalization of the considered above prob
lem. Namely we study the situation if one takes different kernels for different bandwidth 
values. 

This idea is quite natural since small values of bandwidth correspond to low regularity 
functions and no necessity to take high-order kernels. 

More precise, we assume that a system (net) of kernels K = (I< h, h > 0) depending 
possible on c: is given. The considered above case of a fixed kernel corresponds to I<h(·) = 
I<(·). Similarly to above we impose some conditions on these kernels: 

(Kl) the functions I<h(u) are symmetric i.e. I<h(u) = I<h(-u), u 2:: 0; 
(K2) the system of.functions I<h(-) is compactly supported i.e. I<h( u) = 0 for all h and 

all u outside some compact set C on the real line; 
(K3) 

(K4) 

(K5) Set 

sup II I<h 11
2 

h 

j Kh(u)du = 1; 

s~p j Ki(u)du < oo, 

inf llI<hll 2 > O; 
h 

Then there exist two positive constants C1, C2 such that 

C1 ~ C(h) ~ C2. 

Introduce also two conditions which are natural generalizations of ( I<6) and ( I<7) . 

(K6) Uniformly in h 

J II<h(u) - cI<h/c(cu)l
2 

du _ ( ) 
sup J 1/ .. 2 ( )d - 1 + Oe 1 . 

O<c::;I Lih U U 

(K7) Uniformly in h 



12 LEPSKI, O.V. AND SPOKOINY, V.G. 

Similarly to above, consider the family of kernel estimators 

- 1; (t-to) fh(to) = h I<h -h- dX(t). 

The stochastic term for such an estimator has the variance o-2
( h) with 

2(h) = c2 llI<hll 2 

O' h . 

Let again an interval [he, h;] be given with 

h;/he-+ 00. 

and we choose a bandwidth in this range. 
Denote similarly to above 

ll(h) 

7/;(h) 

b(h) 
·r(h) 

1/ (t-to) h I<h -h- f(t)dt, 

ll1(h) = sup IKhf(to) - f(to)I. 
O<TJ<h 

o-(he) 
2 p In a ( h;) , 

o-(h )de, 

- C(h)7f;(h) = (I<h(O) - llI<hll 2)llI<hll-2 0-(h)de, 
- 7/;(h) + b(h) = Kh(O)llI<hll-20-(h)de. 

Keep now the definitions of h1 from the previous section i.e. 

h1 = sup{h:::; h;: ll(h):::; b(h)}. 

Finally define the adaptive bandwidth h as above with modifications made. 

(2.16) 

(2.17) 

(2.18) 
(2.19) 
(2.20) 

(2.21) 

The method of the proofs of Theorems 2.1 and 2.2 can be extended without any changes 
on the considered situation. We formulate the corresponding results for the reference 
convenience taking into account further applications for the problem of estimation over 
Holder classes. 

Theorem 2.5. Let a system of kernels K = (Kh) satisfy the conditions (Kl) -(K6). 
Then the estimator fe( t0 ) corresponding to the adaptive bandwidth h provides 

" p 

sup E fe(to) - J(to) < 1 + oe(l). 
fEFt r(hJ) -

Theorem 2.6. Let the conditions (Kl) through (K5) and (K7) be fulfilled. Then for 
each c > 0 there exist two functions Jo(·) and Ji ( ·) such that h Jo = h; J h Ji ~ he and 
for an arbitrary estimator Te 

I 
Te - f(to) IP 

max E (h ) ~ 1 - oe(l). 
fE{fo,11} r f 

In conclusion we present the version of Theorems 2.3 and 2.4 for the case of nested 
kernels K. -

We use again the notation o-(h) = cllKhll/v'h. 
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(2.22) 

Keep further the definition (2.16) and change in (2.19)-(2.20) and in the definition of the 
adaptive bandwidth h and the estimator fe:(to) the value 'lf;(h) with 'lj;'(h) from (2.22). 

The properties of the resulting bandwidth h and the estimator fe:(t 0 ) are described 
by the following results. 

Theorem 2.7. Let a system of kernels K = (I<h) satisfy the conditions (Kl)-(K6). 
· Then the estimator fe:(to) corresponding to the adaptive bandwidth h with the modifica
tion (2.22) provides 

sup EI fe:(to) - f(to) IP< C 
fE:Ft r'(hJ) -

where r'(h) = I<(O)llI<ll-2'l/J'(h) and C is some absolute constant. 
For each f E :Fe: with h1 = oe:(l)h; 

EI j,(t~(~J~(to) r ::; 1 + o,(1). 

Theorem 2.8. Let the conditions (Kl)-(K5) and (K7) be fulfilled. 
Let estimators Te: of f(to) satisfy the condition 

p 

1. E Te: 
Im 0 

c-+0 c/ Vh; 
where E0 means the expectation for the model (2.2) with the zero signal f ( ·) = 0 . Then 
for any h = oe:(l)h; there exists a function f(-) with h1 ~ h such that 

EI T, ~~~to) IP~ 1 - o,(1). 

3. ESTIMATION UNDER HOLDER TYPE CONSTRAINTS 

In the present section we consider the problem of pointwise adaptive estimation for the 
model (2.2) under the qualitative assumption that the function f belongs to some Holder 
class ~({3, L). Given {3, L this is the set of functions f such that, with m = lf3 J , 

lf(m)(t) - f(m)(s)I:::;; Lit - slf'-m, t, SE R1 . 

We deal with the situation when the parameters {3, L are unknown. 
Surprisingly, this adaptation can be performed in an optimal way and the result pre

sented below describe the optimal adaptive procedure and the optimal attainable accuracy. 
First we precise the problem of adaptive estimation. We assume that the parameters 

f3, L lie in given intervals f3 E [{3*, {3*] , L E [ L*, L *] with some positive {3* < {3* and 
L* ~ L * . These parameters characterize the range of adaptation in the case under 
consideration. 

Note that the smoothness parameters {3 is of the most importance for us. It can 
be qualified as an expected number of bounded derivatives of the function f. For the 
Lipschitz constant L we need actually only the qualitative assumption that it is separated 
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away from zero and infinity. Apparently the results and the procedure can be formulated 
in a way when the values L* and L* are not used. 

To formulate the main results we introduce the following optimization problem which 
is an optimal recovery problem, see Korostelev (1994), Donoho and Low (1992), Donoho 
(1994a,1994b ): 

( P13) : sup 9(0) subject to {
J 92

:::; 1 
9 E ~(/3, 1) 

Let 9/3 solve this problem and let val(P13) mean 913(0). 

Remark 3.1. The explicit solution 913 and the value val(P13) = 913(0) are known only for 
/3 :::; 1 from Korostelev(1994). Set 

Then 

where the constants a, b are defined by 

abi3 = 1, ab- 112 = llf!3ll2 = l. 
In particular, 

val(P13) = 913(0) = ((2/3+1)(/3 + 1)/4/32 )/3/(2/3+1). 

The case /3 > 1 is much more difficult and in our knowledge only for /3 = 2 the solution 
9/3 admits some explicit description. 

Some more quali.tative properties of the functions 9/3 are discussed below in this section. 

As in the case of the bandwidth selection problem we present two kinds of results and 
two procedures. The first ones are uniform on the whole range of adaptation and the 
second ones describe optimal result for each particular /3, L and relate to the notion of 
adaptive optimality. 

First we fomulate the results, the procedures are described below. 
In our results we assume that /3* :=:; 2. Possible extentions on the case of arbitrary /3* 

are discussed in the next section. 

Theorem 3.1. Let estimators 'fe of f(t 0 ) be described below. Uniformly in /3 E [/3*, /3*] 
and L E [L*, L*] 

" p 
Ts - f(to) 

sup E (f3L) :=:;l+os(l) 
f EL,(f3,L) r ' 

(3.1) 

where 

1 [ ( 2 2 )] ~ ( [l) ~ r(/3, L) = 913 (0) £2f3+1 p 
213

* + 1 - 2/3* + 1 cy ln-; (3.2) 

and 913(0) = val(P13) is the solution to (P13). 
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Remark 3.2. The value r({3, L) can be treated as the accuracy attainable by the estimator 
'fe on the Holder class f;({3, L). We see that this accuracy has the near optimal rate 

2L 

( c: P) 213
+

1 

which is worse than the non-adaptive one with the extra log factor. 

Notice also that the parameters {3, L have different influence on the accuracy of estima
tion. Growing {3 means smoothness increasing and the corresponding accuracy becomes 
better. Growing L means in the contrary worser smoothness properties and worser ac
curacy. 

In particular, the whole range of adaptation is described as follows: the lower point is 
({3*, L *) and the upper point is ({3*, L*). 

The next result claims optimality of the estimator 'fe in the uniform sense on the whole 
interval of adaptat!on. 

Theorem 3.2. For each c: > 0 there exists a function fe E f;({3*, L*) such that for any 
estimator Te of f(ta) 

{ I 
Te IP I Te - fe(ta) IP } ( ) 

max Ea r({3*, L*) , E1e r({3*, L*) , 2:: 1 - Oe 1 

where Ea means the expectation for the model (2.2) with the signal f equal to zero) and 
E le corresponds to the case f = fe . 

The next two results describe the optimal attainable accuracy of adaptive estimation 
if we use one universal estimator for all values of {3, L in the interval of adaptation but 
the perfomance is studied on a fixed class I; ({3, L) . 

First we explaim the properties of the estimators 'fe , see below. 

Theorem 3.3. There exists a constant C depending possibly only on {3*, {3* 
such that uniformly in {3 E [{3*, {3*] and L E [ L*, L *] 

" p 
E Te - f(ta) < C 

fE~~¥,L) r'({3,L) - . 

Moreover, for each o > 0 uniformly in {3 E [{3*, {3* - o] and L E [L*, L*] 

I 
Te - J(ta) IP 

SU p E 1 ({3 L) ::; 1 + Oe ( 1) 
fE'E(/3,L) r ' 

where 

r'((3, L) = g,e(O) £2p~1 max { 1,p c(3: l - 2(3.
2 + l) In~}$ c2~~'. 

(3.3) 

(3.4) 

(3.5) 

The assertion of Theorem 3.2 with {3 instead of {3* claims optimality of the result 3.4 
for each particular {3, L. But we formulate this statement as a separate result because of 
its importance in the considered context. 

Theorem 3.4. If an estimator Te provides 

Eo I c;2.6' /~.6'+1) IP :::::; C 
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with some absolute constant C} then for any (3 < (3* and any L > 0 

I 
Te - f(to) IP 

sup E '((3 L) ~ 1 - oe(l) 
fE'L.(/3,L) r ' 

(3.6) 

Now we describe the estimation rule. 

3.1. Estimation Procedures. We present two procedures which differs slightly from 
each other. The first one corresponds to Theorem 3.1 and it performs uniformly on the 
whole interval of adaptation. 

The properties of the second procedure are described by Theorem 3.3. 
The both procedures are specifications of the procedures from the previous section with 

special choice of kernels K . 
The construction of these kernels is closely related to the solutions 913 to the problems 

(P13) from above. Roughly speaking, kernels K13 are obtained by normalization from 9/3 
to provide J K13 = 1 ; 

Unfortunately the functions 9/3 were not stated generally to be compactly supported 
and, in particular, from nothing follows that the integral J 9/3 is finite. 

Apparently this values do not enter in the answer and the desirable kernels are defined 
by a proper truncation. 

Define the modification of the problem (P13) under support constraints, Donoho (1994a): 
Given A> 0, 

(P/3[-A,A]): sup 9(0) subject to { J~A 92 ::; 1 
9 E ~((3, 1) 

One has easily val(P13) ::; val(P13[-A, A]) and we use also the property (Donoho, 94a, 
Lemma 6.1) 

val(P,e[-A, A]) -+ val(P13), A-+ oo. (3.7) 

Moreover, by methods of Donoho and Low (1992, Theorem 3) one may state this assertion 
uniformly in (3 . In what follows we assume that a number A is taken large enough to 
provide the asymptotics in (3. 7) for all (3 E [(3*, (3*] . 

Denote by 9/3,A the solution to (P,e[-A, A]). For more information about behavior of 
the functions 9/3,A see Lemma 3.1 below. 

To apply the procedure from above section we have to state correspondence between 
bandwidth h and the smoothness parameters (3, L. 

Denote 

and given (3, L set 

and put 

2 

h(~,L) = (KC~) 2p+1 

h; - h((3*, L*), 

he - h((3*, L*). 

(3.8) 
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Finally define the function h(f3) as the solution in {3 of the equation 

h/3 = K,€ 0n1.7€ 
Vh ' 

that is, 

h(/3) = ln(x:c~) - 1/2. 

17 

(3.9) 

Finally we define 'fe as the estimator fe(to) from the previous section with the system 
of kernels K = (Kh) where we use for h E [he, h;] and {3 = {3(h) 

(3.10) 

with Af3 = f~A 9/3,A(t)dt · 
The second procedure is defined in the similar way with a few modifications. Namely 

we set 

d(/3) max { 1,p c/3~1 - 2/3*
2
+ 1) ln l/c r2 

2 

(
cdL({3)) 2.a+1 h'({3, L) 

h; - h'((3*,L*), 

he h' ({3*, L *), 

and let the function {3'(h) be the solution in {3 of the equation 

h/3+il2 = cd(f3). 

With these corrections the estimator Ye is just Je(t0 ) from above. 

3.2. Proof of Theorems 3.1, 3.3. We deduce Theorems 3.1, 3.3 as corollaries of The
orems 2.5 - 2. 7. For this we have to check the conditions (Kl) through (K6) for the 
kernels (Kh) and to verify that the results of Theorems 2.5, 2.7 provide just the accuracy 
necessary for Theorems 3.1, 3.3. 

We start with a technical result explaining some useful properties of the solution 9/3,A 
to the problem (P13[-A, A]). 

Lemma 3.1. Let A be arbitrary positive and {3* :::; 2 . The following stastements are 
fulfilled for each {3 :::; {3* : 

(i) The solution 9/3,A to P13[-A, A] exists and unique; 

JA 9~,A = l; 
-A 

(ii) the function 9/3,A is symmetric, i.e. 9/3,A(t) = 9/3,A(-t), t E R1
; 

(iii) the function 9/3,A has maximum at t = 0 and for {3 > 1 

9~,A(O) = 0; 
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(iv) For any f E Li(/3, 1) with f(O) == 9f3,A(O) 

/_ A f 9(3,A 2: /_A 9~,A = 1; 
-A -A 

and particulary 

/_
A > (0)-1 9(3,A _ 9(3,A i 

-A 
(3.11) 

(v) Functions 9(3,A are continuous in /3:::; /3* and u E [-A, A]. 

Proof. The first four statements follow immediately from the general results of convex 
analysis. Show, for instance, (iv). 

Let f E Li(/3,1) and f(O) ==9(3,A(O). Thenforeach a E [0,1] onehas (1-a)9f3,A+af E 
Li(/3, 1). Now by definition of 9(3,A 

l: [(1 - a)913,A + af]
2 

= l: 9lA + 2a l: 9/3,A(f - 9/3,A) + a 2 l: J2 ~ l: 9~,A· 
This yields for a small that J~A 9(3,A(f - 9(3,A) 2: 0. 

The relation (3.11) is the specification of the proved above with f = 9f3,A(O). 
Claimed in ( v) continuity of 9(3,A in /3 follows from the fact that the optimization 

criteria for the problem Pf3[-A, A] does not depend on /3 and the set of constraints is of 
the form 

l9(s)-9(t)I :::; ls-tlf3, 13:::;1, s,tE[-A,A]; 

lg' ( s) - 91 
( t) I :::; Is - t I {3- l' 91 

( 0) == 0' /3 E ( 1, 2] ' s' t E [-A' A] ' 

that again depends on /3 in a continuous way. D 

Now we check the properties of the kernels (I<h) from (3.10). The conditions (Kl)
(K5) follows directly from Lemma 3.1. To state (K6) we use the following simple fact. 

Lemma 3.2. Let the kernels (I<h) be defined by (3.9), (3.10). Then there exists c(c)-+ 
0 as c-+ 0 such that uniformly in c E [c(c), 1] 

llI<hfcll 
llI<hll ==l+oe(l). 

Proo f. One has directly from the definition ( 3. 9) of /3 ( h) that for each c E ( 0, 1) 

/3(h) - /3(h/c) == Oe(l). 

This yields the assertion through ( v) of Lemma 3.1. D 

The last result reduces (K6) to (I<6) for the kernels I<f3 == A~ 1 9f3,A1[-A,A], or, equiv
alently, 
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_ Now evidently 9/3,A(cu) E I;CB, 1) for c:::; 1 and by (iv) of Lemma 3.1 

J (913,Al[-4,AJ( u) - c913,Al[-A,AJ( cu))
2
du = (1 + c) 1: 9~,A ( u )du+ 

+2c 1: 913,A(u)913,A(cu)du:::; (1 - c) 1: 9~,A(u)du 
and the assertion (3.12) follows. 

Now we may apply Theorem 2.5 which guarantees for a function f the accuracy of 
estimation 

where h1 is defined by Definition 2.1. Theorem 3.1 will be proved if we show that for 
each /3, L and any f E 2:;((3, L) 

h1 ~ h(/3,L)(l+oe(l)) 
r(/3, L) = r(h(/3, L))(l + Oe(l)). 

(3.13) 

(3.14) 

Here h(/3, L) is defined by (3.8) and r(/3, L) by (3.2), that is 

r((J, L) - 913(0)£1/(2/3+1) ( Kc:v1nl/c)2/3/(
2
/3+1) = 9(3(0) "~f::!!:, (3.15) 

r(h(/3, L)) _ Kh(/3,L) c)pln(h;/he) (3 16) 
llI<h(/3,L)ll -jh(/3,L) . 

By direct calculation 

H.= p ( 2(3.2+ 1 - 2(3•2+ 1) In~ (1 + o,(1)) = Kv1nl/c (1 + o,(1) ).(3.17) 

Let /3' = f3(h(/3, L)) be the solution in /3 of the equation 

I h (/3 L) I /3 = K,f, v1n1Tc 
' h(/3, L) . (3.18) 

Easily 

{31 = (3(1 + Oe(l)). (3.19) 

Now using the definition of the kernels (Kh), (3.7), (i) and (v) of Lemma 3.1 and 
Lemma 3.2 we conclude 

l<h(/3 L)(O) 
llJ<h~/3,L)ll = 9/31,A(O) = 9/3,A(O)(l + Oe(l)) = 913(0)(1 + Oe,A(l)) (3.20) 

where Oe,A (1) --t 0 as c, --t 0 and A --t oo. 
Putting together (3.15) - (3.20) we get (3.14). 
It remains to prove (3.13). For this due to Definition 2.1 we have to check that, given 

/3, Land f E 2:;((3, L), one has with h = h(/3, L) and ry < h 

IK"f(to) - f(to)I :::; Kh(Oii~h1rh112 c:Jpln~h;/h,) (1 + o,(1)). (3.21) 
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As above, we get for h = h (/3, L) 

(I<h(O) - llI<hll 2 )/llI<hll = 9J3,A(O) - A~ 1 • (3.22) 

Next 

IK~f(to) - f(to)I ~ J K~ C ~to) [f(t) - f(to)] dt :<:; 

< J K~(u) [f(to + U'TJ) - f(to)]. 

Let /3' = /3( 77) . One has /3' < /3 since 77 < h. 
Note also that for f E Li(/3, L) one has g(u) = (L77J3t 1 [f(to + u77) - f(to)] E Li(/3, 1). 

Hence 

where 

IK~f(to) - f(to)I < L'T]f3 Ai,1 l: gf3',A( u)[g( u) - g(O)]du = 

- Lh13 (77/h) 13G(/3',/3; A) 

G(/3',/3; A)= sup 11A Ai,1gf3•,A(u)[g(u) - g(O)]dul. 
gE~(J3,1) -A 

Now the required assertion (3.21) follows from (3.17), (3.18), (3.22) and the next technical 
statement. 

Lemma 3.3. For any A> 0 and /3* ~ 2 one has uniformly in /3', /3 E [/3*, /3*]} /3' < /3 

G(/3', /3; A)~ C < oo 

and 

G(/3', /3; A) -t G(/3, /3; A) = 9J3,A(O) - A.~ 1 , /3' -t /3. (3.23) 

Proof. The first statement follows for /3',/3 ~ 1 and for /3',/3 E (1,2] from (v) of 
Lemma 3.1. For /3' ~ 1 and /3 > 1 we use additionally the fact that for A large 
enough 9J3',A = 9J3' and 

J ugf3•( u )du = 0. 

Show the equality in (3.23). It can be rewritten as follows: for any g E Li(/3, 1) l: gf3,A(u)[g(O) - g(u)]du :<:; gf3,A(O) l: gf3,A(u)du -1. 

But in this form the statement follows from (i) and (iv) of Lemma 3.1 since without loss 
of generality one may assume g(O) = 9J3,A(O). D 

3.3. Proof of Theorem 3.2. We cannot apply directly Theorem 2.6 since the function 
f 1 from the latter theorem does not belong necessary to Li(/3, L) (with /3 = /3* and 
L = L*. 

Buttheideaoftheproofremainsvalidand the choice fo = 0, fi(t) = (1-ae)~~~~~ g13((t-
t0)/he) provides the assertion of the theorem. We omit the details since they are literally 
the same that of in the proof of Theorem 2.2, see Section 5 below. 
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4. FURTHER DEVELOPMENTS 

4.1. Other Nonparametric Statistical Models. In this paper we concentrate our
selves on the simplest "white noise" model (2.2). This type of models allows to emphasize 
more clearly the main ideas avoiding a lot of technical details which correspond to more 
realistic models. 

However, we believe that other kinds of non parametric statistical models (discrete time 
regression models with Gaussian and nongaussian errors, density or spectral density func
tion models etc.) can be considered in the same manner, perhaps under some technical 
as sum pt ions. 

The results of Brown and Low(1990), Low (1992) and Nussbaum (1993) can be men
tioned in this context. These results guarantee equivalence in some sense between the 
regression or density function models and a proper white noise model if the smoothness 
parameter is more than 1 /2. This motivate applicability of Theorems 2.1 - 2.3 for these 
models. 

4.2. Other type of constraints. In Section 4 we considered the Holder type constraints. 
But, of course, other kinds can be considered as well. We mention only the case of Sobolev 
type constraints as a reasonable one in the present context. This type of constraints means 
that /]-th generalized derivative of the estimated function is bounded by a constant L, 
/], L being unknown. 

All the consideration from above remains valid with the obvious modifications. Only 
the family of optimization problems (P13) should be considered with the corresponding 
type of constraints~ 

4.3. Estimation of Linear Functionals. The problem of estimation at a point can be 
considered as the particular case of the problem of estimation of a linear functional. 

The problem of estimation of linear functionals was studied intensively in the present 
context in Donoho and Low (1992), Donoho and Liu (1992), Donoho (1994b ), Efroimovich 
and Low (1994). The corresponding result show close relation between the particular 
problem of pointwise estimation and a general problem for an arbitrary linear functional. 

We conjeucture that all consideration from above can be extended in a similar way on 
the general case. 

4.4. The case /]* > 2 . The fact /3* :::; 2 was used essentially in the proof of Theorems 
3.1 through 3.4, in particular, for the proof of important Lemma 3.1. 

For the case /]* > 2 the statements of Theorems 3.1 or 3.3 cannot be extended directly 
from the considered case /]* :::; 2 because the structure of Holder classes is not embedded: 
I:(/]', 1) does not belongs to I: (/3, 1) for /3' < /3 . 

It can be illustrate explicitly on the first statement of Lemma 3.3 where one has easily 
G(/3', /];A) = oo, for instance, if /3' = 1 and /3 = 3 since 2:(3, 1) contains all linear 
functions. 

Nevertheless, we have conjecture that all the results from above can be extended on the 
case of an arbitrary /] under some additional constraints on the Holder classes 2:(/3, L) 
for {3 > 2 type of bounciness of all derivatives of order 1, · · · , l/3 J . 

In this case we need only a generalization of Lemma 3.1 on the considered situation. 
But further discussion of this matter beyond the scope of this article. 
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5. PROOFS 

In the present section we prove Theorems 2.1 and 2.2. Necessary corrections for proofs 
of Theorems 2.3 through 2.8 are obvio11s and omitted. 

5.1. Proof of Theorem 2.1. Denote by Ne the number of elements in the grid 1-l (see 
(2 .. 12)) and show that this value is· of logarithmic order i.e. we choose between logarithmic 
number of possible values for the bandwidth h. 

Lemma 5.1. One has for the grid 1-l 

Ne = #1-l ::; 2d~ = 2 (p ln h; /he )312 
• 

Proof. The definition of 1-l provides 

N < lnh;/he < 2d; < 2d3 . 

e - ln( 1 + Oe) - Oe - e 

Here we used that Oe is small for c small and hence ln(l + Oe) 2::: 8e/2. D 

Let us fix some function f from Fe and let hh h be defined as above. By definition 
of Fe we have h J 2::: he . 

Without loss of generality we assume that h1 E 1-l. Otherwise we can change h1 by 
the closest from below point of 1-l and the result of Theorem 2.1 remains valid. 

Recall that the definition of h f provides for each h ::; h f the inequality 

The following notation will be helpful below. Put for each h E 1-l 

One has 

1-l( h) = { h' E 1-l : h' ::; h} , 1-l- ( h) = { h' E 1-l : h' < h} . 

E IJe(to) - f(to) IP - E IJe(to) - f(to) IP l(h 2::: h1) + 

+ E IJe(to) - f(to) IP l(h < h1) = 
R~ + R-;. 

Now through the definition of h, the decomposition (2.4) and (5.1) we find 

R~ < E (IA(to) - lh,(to)I + lih1 (to) - J(to)IY 1(/i 2::: h1)::; 

< E ((1+2ae)'l/J(h1) + b(h1) + le(h1 )I? l(h 2::: h1 ). 

If now 

r'(h) = (1+2ae)'l/J(h) + b(h) = r(h) + 2ae'l/J(h) 

and q( h) is an arbitrary positive function, then 

R~ ::; (r'(h1) + q(h1 )? P(h 2::: h1) + 
+E (r'(h1) + 1e(h1)IY1(e(h1) 2::: q(h1 )). 

(5.1) 
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Similarly for R; 

R; - L E IJe(to) - f(to)IP I(h = h)::; 
he1l-(h1) 

< L E (b(h1) + 1e(h)IY 1(ii = h)::; 
he1l-(h1) 

< L (b(h1)+q(h))PP(h=h)+ 
he1l-(h1) 

+ L E (b(h1) + l~(h)IY I(l~(h)I > q(h)). 

Getting together the estimates for R~ and for R; we obtain 

Re ::; (r'(h1) + q(h1 ))P P(h ?:_ h1) + 
+ L (b(h1) + q(h)Y P(h = h) + 

he1l-(h1) 
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+lr'(h1)IP L E (i +JS((:)) J)p l(le(h)I > q(h)). (5.2) 
hE1l(h1) J 

First we consider the last sum in this expression. 

Lemma 5.2. 

S3 = L E (i +Is((:)) J)p l(le(h)I > q(h)) = oe(l). 
hE1l(h1) j 

Proof. By (2.5) e(h) x N(O, o-2(h)). Thus 

E (1+ lr~~;) IY l(J~(h)I > q(h)) '.:: 

'.:: 2v-1
E (i + J~~}J 1c1v) I(J(I > d(h)) '.:: 

'.:: 2v-1 (i + C(p) l~~h;n exp{-~d2(h)}. 

(5.3) 

Here ( means a standard normal random variable, d( h) = q( h) / o-( h) and we used that 
for a large enough 

P(l(I > a) ::; exp{-a2 /2}, 

El(IPl(l(I >a) ::; C(p) exp{-a2 /2} 

with some absolute constant C(p) depending only on p. 
Now we choose the values q( h) and hence d( h) in a proper way. Set for h ::; h 1 

d(h) - 1 h1 + 2dl/3 -p nh e: -
o-(h) 1/3 

2pln o-(hJ) + 2de: , 

q(h) - o-(h)d(h), 

where recall de == J p In h; /he: . 

(5.4) 

(5.5) 
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By definition 

and Lemma 5.1 provides 

Ne~ 2d~. 

The assertion of the lemma follows now from 

d~ exp{-d!/3
} = oe(l). 

D 

Next we estimate the second term in (5.2). 

One has by the definitions (5.4) - (5.5) that q(h1) = O'(h1 )d(h1) = O'(h1 ).;;i/3 and 

Si = (r'(h1) + q(h1 )Y P(h ~ h1) = 

= rP(h1) (1+ 2a, + ~) P(h?. h1) = 

= rP(h1) (1 + oe(l)) P(h ~ h1 ). 

It remains to estimate S2 with 

L (b(h1) + q(h)Y P(h = h). 
het£-(h1) 

Define the value. hi by the equality 

2b(h1) = ae'l/J(hi) = d!/3 'l/J(hi). 

Of course, hi < h f . Denote 

1-l-(hi) = {h E 1-l: h <hi}, 

1-£+(hi) = {h E 1-l: hi~ h < h1}· 

(5.6) 

(5.7) 

(5.8) 

We split the summation in (5.7) into two parts over 1-l-(hi) and 1-£+(hi). Before to 
estimate these two sums we state some simple properties of the functions q( h) and d( h) 
from (5.4) - (5.5). 

Lemma 5.3. For each h E 1-l(h1) 

d(h) ~ de(l + oe(l)). (5.9) 

For each h E 1-£+ (hi) and c small enough 

q(h) ~ b(h1)d;if3
_ (5.10) 
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Proof. One has 

h 
d(h) - pln { + 2d!13 ~ 

< Jpln ~ + 2{cl0 s; 
< de+~ 

and (5.9) follows. 
The condition (5.8) implies for h E 1-£+(h1) 

'lf;(h) ~ 2b(h1)d!13. 

Now 

q(h) - O"(h)d(h) = 

- lf(h)d~~) s; 

< 2b(h )dl/3d(h) 
f e de 

and using the definitions b(h) = C(K)'lf;(h) = C(K)a-(h)de we have 

d(h) = 21 O"(h) +2d113 == 
p n O"(h1) e 

- 2 1 'lf;(h)C(I<) + 2d1f3 < 
P n b(h1) e -

< J2pln(C(I<)d!13 ) + 2d!13 ~ 
< d!l3 /2 

if c is small enough. 
This yields 

i/3 
q( h) ~ b( h J )2d!f3 

2
ede = b( h f )d-;1!3

• 

D 

The result (5.10) allows to get 

st - L (b(h1) + q(h))P P(h = h) ~ 
hetl+(hi) 

< (b(h1) + b(h1 )d-;1!3)P p (Ji E 1-£+(h1)) == 

- bP(h1) (1 + oe(l)) P (Ji E 1-l+(hi)). (5.11) 
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It remains to estimate the sum 

s; = L (b(h1) + q(h)t P(ii = h). 
he1-l-(h1) 

Lemma 5.4. For each h E 1-l-(h1 ) 

,.. 1+2ae 2 P(h = h) ~ 2Ne exp{-
2 

de}. 

Proof. Let us fix some h E 1-l-(h1 ) and denote h+ = h(l + 6e). Obviously h+ is the 
next after h element of the grid 1-l . We use also the notation 1-l- ( h) = { 77 E 1-l : 77 < h} . 

The definition of h yields 

P(h = h) ~ L P (lf11 (to) - Jh+ (to)I > (1 + 2ae)~(77)) . 
77E1-l-(h) 

Since h < h1, then 77, h+ ~ h1 and through (5.1) 

Hence 

IK77 f(to) - f(to)I ~ b(h1 ), 

IKh+f(to) - f(to)I ~ b(h1 ). 

lf11(to) - lh+ (to) I ~ 2b(h1) + le(77) - e(h+)I. 

But h E 1-l-( h1 ) and thus 

Notice also that 

e(11) - e(11+) = € J GK c ~to) - L Kc ~+to)) dW(t) 
i.e. this difference is normal N(O, 0'

2 (77, h+)) with 

u2(17,h+) = ~ J IK(u) - cK(uc)l2 du 

where c = 77/h+ ~ 1. 
The condition ( K6) provides 

(]'2( 77, h+) ~ (]'2( 77) 

and we arrive to the following estimate 

P(h=h) ~ L p (le(77) - e(h+)I > (1 + ae)~(77)) = 
77E1-l-(h) 

L P (1e1 > (i+ a,)d. (Tt(~ )) ~ 
77E1-l-(h) 77 ' + 

< L P (1(1 > (1 + ae)de) ~ 
77E1-l-(h) 

1 
< Ne exp{-2(1 + ae) 2d;} ~ 

< N { - 1 + 2ae d2 } e exp 2 e . 
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The lemma is proved. D 

One has evidently q( h) ~ q( h~:) for h E 1-l-( h1) and applying the result of the last 
lemma we obtain 

s:; < L (b(h1) + q(he)Y P(h = h) ~ 
heH-(hi) 

1+2ae < 2N; (b(h1) + q(he))P exp{-
2 

d;} ~ 

< 2P N; (b"(h1) + uP(h,)d!'(h,)) exp{ 1+
2
2

0:• d;} ~ 

< 2P N; (b"(h1) + o-P(h,)d!'(h,)) exp {-pin :i~;i -o:,pln ~:} ~ 

< 2P N; (lb(h J) :i~:i IP+ ld(h,)u(h;)IP) exp{-po:,d;}. 

Using Lemma5.l, the first statement of Lemma5.3 and that b(h1) ~ b(he) ~ C(K)O"(he)de 
we conclude 

S:; ~ 2P+2~ 11/J(h;)(l + C(K))IP exp{-pd;-1/3
} = 1fJP(h;) oe(l} 

Combining this estimate with (5.2), (5.3) (5.6) and (5.11) we obtain 

Re ~ rP ( h J) ( 1 + oe ( 1)) ( P ( h ?. h J) + P ( h1 ~ h < h J) + oe ( 1)) ~ 
~ rP ( h f) ( 1 + oe ( 1)). 

Theorem 2.1 is proved. 

5.2. Proof of Theorem 2.2. Define 

fo(t) = 0 

and 

!1(t) - (1 - o:,) ~IKll vpln ~: K c ~.to) = 

r(hs) (t - to) 
- (1 - ae) K(O) f{ T 

where 

It is obvious that 

Next we show that 

( 5.12) 
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In fact, for each 17 < he: one has by (K7) 

IK.f1(to) - f1(to)I IH KC~ to) [fi(t) - f1(to)] dtl = 

where 

v• IH Kc~ to) [Kc ~.to)- K(O)H = 

- v·IH K(u)[K(uc)-K(O)]dtl:::; 

< Ve: (I<(O) - llKll 2
) 

(- )r(he:) 
Ve: = 1 - O'.e: I< ( O) 

and c = 17/he: :::; 1. This gives for fi 
~(he:) - ~Ji (he:) :::; 

< (l _ ) (h ) I<(O) - llKll 2 = 
O'.e: r e: I<(O) 

(1 - ae:)b(he:) 

that means h Ji ~ he: . 
Let the measures Po,e: and P1,e: correspond to the model (2.2) with the functions fa 

and Ji respectively. 
It is clear that these measures are Gaussian. Moreover, by Girsanov's theorem 

where 

and 

dP1,e: 
dPoe: 

I 

- exp { c-1 j f 1(t)dX(t) - ~c-2 j fi(t)dt} = 

exp { q.(. - ~q;} 

q; - c-2 j fi(t)dt, 

(e: e-l j f1(t)dX(t), 
qe 

C ((e: I Po,e:) = N(O, 1). 

The theorem will follow if we show that for any estimator Te: 

liminf Re:= 1 
e--?0. 

where 

R. = max{ Eo,• lr(;J ,E1,• IT• ~t~;to) IP,} 
and Eo,e:, Ei,e: mean integration w.r.t. the measures Po,e:, P1,e:. 

(5.13) 

(5.14) 
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Note that 

and denote 

With this notation 

Re= jl - aelPmax{D~Eo,elBelP, E1,ell - Be IP}. 

Now (5.14) is equivalent to 

limi0nfmax{D~Eo,elBelP, E1,ell - BelP} ~ 1. 
e-+ 

Further, due to (5.12) and (5.13) 

and 

as e-+ 0. 

q; = J Jf(t)dt = 

c;-2v; J K2 (t ~eto) dt = 

e-2v;hellI<ll 2 = 
h* 

(1 - ae) 2p ln--.£ = 
he 

(1 - ae) 2d; 

1 1 2 1 ( 2 1 )2 2) qe (pln De - 2qe) = (l _ ae)de de - 2(1 - ae de ~ aede-+ 00 

Now the result of the theorem follows directly from the next lemma. 
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Lemma 5.5. Let for each e > 0 two Gaussian measures Po,e and P1,e be given with 

dPe,I 1 2 
ln dP = qe(e - 2qe 

e,O 

where 

£((e I Po,e) = N(O, 1) 

and qe-+ oo. 
Let then numbers De be such that 

1 ( 1 2) - pln De - -
2

qe -+ 00. 
qe 

(5.15) 

Then for any estimator Be such that 

liminf D~Eo,elBelP:::; C < oo 
e-+0 

(5.16) 
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. one has 

lim inf E1 elBe - 1 IP > 1. 
e~O ' -

Proof. Fix any estimators Be satisfying (5.16). Take then an arbitrary M > 0 and denote 

1 
7r == 2CM 

where C is from the condition (5.16). This condition yields for c small enough 

and 

Denote 

One has 

D~Eo,elBelp ~ 2C 

Z 
_ dPo,e 

e - dP . 
l,e 

Ze =exp {-qe(e + ~q;} =exp {-qe((e - Qe) - ~q;} 
where by Girsanov's theorem 

and hence 

P1ie((e - qe ~ M) == q)(Af) 

where q)( ·) is the Laplace function. 
Put now 

and introduce events 

Now one has on Ae n Be 

Ae - {Be ~ c)e}, 

Be { (e - qe ~ M} · 

1 2} Ze ~ exp{ -qeM - 25e 
ll - Bel ~ 1 - c)e, 

and I Bel ~ c>e on the complement A~ of Ae. Therefore, 

1 
Re > E1,ell - Belp + 7rD~Eo,elBelp - M == 

1 
E1,e (11 - Be IP+ 7r D~ZelBelP) - M ~ 

> P(Ae)ll - OelP + 7r n:o~ exp{ -qeM - ~q;} P(A~ n Be)· 
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The condition (5.15) implies 
1 

D~o~ exp{-qeM - 2q;} -
. 1 

exp{p ln De - 2q; - pqe - M qe} = 

- exp { qe [;e (pin De - ~q;) - p- M]} 
-7 oo, € -7 0. (5.17) 

Now we use that P(A~ n Be ~ P(A~) - P(B~) and P(B~) = <I>(M) = 1 - <P(M). If 
P(A~) ~ 2P(B~) = 2<l>(M), then Re is large through (5.17). But if P(A~) ~ 2P(B~) = 
2<l>(M), then 

Re~ P(Ae)(l - oe)P - l/M ~ (1 - 2<l>(M))jl - oelP - l/M. 

This proves that 

liminf Re~ (1 - 2<l>(M)) - l/M. 
e-rO 

for each finite M > 0, and the lemma follows. D 
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