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Abstract

We consider the problem of pricing basket options in a multivariate Black Scholes
or Variance Gamma model. From a numerical point of view, pricing such options cor-
responds to moderate and high dimensional numerical integration problems with non-
smooth integrands. Due to this lack of regularity, higher order numerical integration tech-
niques may not be directly available, requiring the use of methods like Monte Carlo specifi-
cally designed to work for non-regular problems. We propose to use the inherent smooth-
ing property of the density of the underlying in the above models to mollify the payoff
function by means of an exact conditional expectation. The resulting conditional expecta-
tion is unbiased and yields a smooth integrand, which is amenable to the efficient use of
adaptive sparse grid cubature. Numerical examples indicate that the high-order method
may perform orders of magnitude faster compared to Monte Carlo or Quasi Monte Carlo
in dimensions up to 25.

1 Introduction

In quantitative finance, the price of an option on an underlying S can typically—disregarding
discounting—be expressed as E[ f (S )] for some (payoff) function f on S and the expectation
operator E induced by the appropriate pricing measure. Hence, option pricing is an integration
problem. The integration problem is usually challenging due to a combination of two compli-
cations:

� S often takes values in a high-dimensional space. The reason for the high-dimensionality
may be time-discretization of a stochastic differential equation, path dependence of the
option (i.e., S is actually a path of an asset price, not the value at a specific time), a
large number of underlying assets, or others.

� the payoff function f is typically not smooth.

In this work, we shall focus on the problem of pricing basket options in models, where the
distribution of the underlying is explicitly given to us (more precisely, we consider multivari-
ate Black-Scholes and Variance-Gamma models), i.e., no time-discretization is required. We
consider a basket option on a d-dimensional underlying asset S T =

(
S 1

T , . . . , S
d
T

)
with payoff

function

f (S T ) =

 d∑
i=1

wiS i
T − K


+

for some positive weights w1, . . . ,wd, a maturity T and a strike price K. Observe in passing that
one could also allow some weights being negative, an option type known as “spread option”.
Note in addition that (discrete) Asian options also fall under this framework.
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Even in the standard Black-Scholes framework, closed-form expressions for basket option
prices are not available, since sums of log-normal random variables are generally not log-
normally distributed. Some explicit approximation formulas are based on approximate distri-
butional identities of sums of lognormal random variables, see, for instance, [25, 11]. Also
Laplace’s method, possibly coupled with heat kernel expansions when the distribution of the
factors S i

T are given only as solutions of SDEs, has been shown to yield highly exact results
even in high dimensions, see [4, 6, 5]. In this work, however, we aim at solving the problem
at hand using generic numerical integration techniques, which remain available beyond the
restrictions of the previous methods.

Efficient numerical integration algorithms are available even in high dimensions, but they usu-
ally require smoothness of the integrand. Hence, they are a-priori not applicable in many
option pricing problems. We will specifically focus on (adaptive) sparse grid methods, see
e.g. [7, 16].

Another efficient numerical integration technique is quasi-Monte Carlo. Formally, QMC meth-
ods also rely on smoothness of the integrand to retain first order convergence (up to multi-
plicative logarithmic terms), but it has been observed for some time that QMC typically works
very well for integration problems in quantitative finance, even when the theoretically required
regularity of the integrand is not satisfied, see, for instance, [26] for an overview. In a series
of works, Griebel, Kou and Sloan [19, 20, 21] have analyzed the good performance of QMC
methods for typical option pricing problems based on the ANOVA decomposition. In particu-
lar, they show that all terms of the ANOVA decomposition are smooth except for the last one.
In the context of barrier options, Achtsis, Cools and Nuyens [1, 2] successfully applied QMC
using a conditional sampling strategy to fulfill the barrier conditions. Moreover, they use a root
finding procedure to determine the region where the payoff function of the option is positive.
In other words, this root finding procedure, which has been discussed in e.g. [17, 24], locates
the unsmooth part of the payoff function. Note that the boundary of the support of the payoff
function may be quite complicated in terms of the coordinates for the integration problem, an
issue that may limit the applicability of such approach.

From a numerical analysis point of view, the obvious solution to the problem seems to be to
smoothen the integrand using standard mollifiers, and there is a prominent history of success-
ful application of mollification in quantitative finance, see, for instance, [12] in the context of
computing sensitivities of option prices. For many financial applications there seems a more
attractive approach which avoids the balancing act between providing the smoothness needed
for the numerical integration algorithm and introducing bias in the integrand. Indeed, we sug-
gest to use the smoothing property of the distribution of the underlying itself for regularizing
the integrand. This technique is quite standard in a time-stepping setting, and we indeed plan
to explore its applicability in that context in the future.

In this work, however, the regularization will be achieved by integrating against one factor of
the multivariate geometric Brownian motion first—conditioning on all the other factors. More
specifically, we show in Section 3 below that we can always decompose

d∑
i=1

wiS i
T
L
= HeY

for two independent random variables H and Y—for the precise, explicit construction see
Lemma 3.3 together with Lemma 3.1. Here, the random variable Y is normally distributed.
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Therefore, by computing the conditional expectation given H, the basket option valuation prob-
lem is reduced to an integration problem in H (corresponding to an integration in Rd−1) with a
payoff function given in this case by the Black Scholes formula, a smooth function.

The idea of integrating out one factor first, thereby obtaining an “option” on the remaining
factors with payoff function giving by the Black Scholes formula is not new in finance. For
instance, Romano and Touzi [31] have applied this idea in a theoretical study of stochastic
volatility models as a tool to show convexity of admissible prices. In this vein, see also the
work [13]. The above mentioned decomposition (allowing the use of this trick in the basket
option context), however, seems new. As conditional expectations always reduce the variance
of a random variable, this trick can also be useful in a Monte Carlo setting as well.

Let us point out already here that the smoothing approach proposed in this work can be
applied in more general situation, possibly in modified ways, including more complicated mod-
els, where the asset price process can only be simulated by a time-stepping procedure. In that
case, we may no longer obtain an explicit, exact formula for the smoothed payoff through the
conditional expectation step. Still, a properly constructed numerical quadrature to the condi-
tional expectation will still inherit the fast convergence rates.

Outline

We start by describing the setting of the problem in more detail. In Section 2 we recall two pop-
ular efficient numerical integration techniques for high dimensions, namely (adaptive) sparse
grids and quasi Monte Carlo. Then, in Section 3 we describe the smoothing of the payoff in
the multivariate Black Scholes framework. Confirming the exploratory style of this work, we
give two detailed numerical examples. In Section 4 we present numerical results for the mul-
tivariate Black Scholes model, and in Section 5 we consider a multivariate Variance Gamma
model, indicating that the smoothing method proposed here is applicable beyond the standard
Black Scholes regime. Afterwards, we present some concluding remarks including an outlook
on future research.

Setting

We consider a European basket option in a Black-Scholes model. More specifically, assume
that the interest rate r = 0 – i.e., we are working with forward prices. We consider d ∈ N assets
with prices S t =

(
S 1

t , . . . , S
d
t

)
, t > 0, with risk-neutral dynamics

dS i
t = σiS i

tdW i
t , i = 1, . . . , d, (1)

for volatilities σi > 0, i = 1, . . . , d, driven by a correlated d-dimensional Q- Brownian motion W
with

d
〈
W i ,W j

〉
t
= ρi, jdt, i, j = 1, . . . , d.

Obviously, (1) has the explicit solution

S i
t = S i

0 exp
(
−

1
2
σ2

i t + σiW i
t

)
, i = 1, . . . , d, t > 0. (2)

We note that the components of the random vector S t have log-normal distributions and are
correlated.
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A basket option is an option on such a collection of assets. We assume a standard call option
with strike K > 0 and maturity T > 0 with price

CB B E


 d∑

i=1

ciS i
T − K


+ . (3)

Let us next transform the pricing problem (3) into a slightly more abstract form. As already
observed, the random vector

(
c1S 1

T , . . . , cdS d
T

)
can be represented as

(
w1eX1 , . . . ,wdeXd

)
for

scalars w1, . . . ,wd and a zero-mean Gaussian vector X = (X1, . . . , Xd) ∼ N(0,Σ). Indeed, we
may choose

wi = ciS i
0e−

1
2σ

2
i T , i = 1, . . . , d,

Σi, j = σiσ jρi, jT, i, j = 1, . . . , d.

Therefore, we are left with the problem of computing

E


 d∑

i=1

wieXi − K


+ (4)

for X ∼ N(0,Σ) and d > 1.

Remark 1.1. Note that the problem of computing the price of a (discretely-monitored) Asian
option on a (one-dimensional) Black-Scholes asset is of the form (4) as well, but with different
covariance matrix Σ.

In Section 5, we will, also consider a Variance Gamma model, see [29] for the univariate and
[27] for the multivariate Variance Gamma model. We first recall the univariate case: Let

Xt B θt + σWγt (5)

for a standard Brownian motion W and an independent Γ process γt with parameters 1 and
ν, i.e., γ is a process with stationary, independent increments with γt+h − γt Γ-distributed with
mean h and variance νh, for any h > 0, t > 0. Additionally, we impose γ0 = 0. Under the
risk-neutral measure with r = 0 (for simplicity), we then consider the asset price process

S t = S 0 exp (ωt + Xt) , ω =
log(1 − θν − σ2ν/2)

ν
, (6)

see [29, formula (22)]. Notice that the process X is a Lévy process and can alternatively be
described as the difference of two independent Γ processes.

Economically, the time change γ is often interpreted as “business” or “trading” time. Hence, it
makes sense to assume that different stocks are subject to a single time change. A reasonable
multivariate generalization of the Variance Gamma model (also adopted in [27]) consists in
defining log terms Xi

t as in (5) based on correlated Brownian motions W i
t , parameters θi, σi,

but a common Γ-process γt (hence, with a fixed parameter ν). The stock price components S i
t,

i = 1, . . . , d, are then defined according to (6) based on Xi
t , θi, σi, but the common parameter

ν.
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2 A reminder on efficient multi-dimensional numerical integra-
tion

In this section, we give a brief review on efficient multi-dimensional integration schemes, in
particular the Monte Carlo quadrature, the quasi-Monte Carlo quadrature and the adaptive
sparse grid quadrature. To this end, let us consider a function f : Rd → R and denote the d-
dimensional standard Gaussian density function by φd : Rd → R+, x 7→ (2π)−d/2 ∏d

k=1 exp(−x2
k/2).

As we will see later on, the multi-dimensional integration problem that we are faced with is to
find an approximation to the integral ∫

Rd
f (x)φd(x) dx. (7)

2.1 Monte Carlo and quasi-Monte Carlo quadrature

The most widely used quadrature technique to tackle high-dimensional integration problems
is the Monte Carlo quadrature, see e.g. [22]. This quadrature draws N ∈ N independently and
identically distributed samples ξi ∈ R

d, i = 1, . . . ,N with respect to the d-dimensional standard
normal distribution. Then, the unbiased Monte Carlo estimator for the integral (7) is given by∫

Rd
f (x)φd(x) dx ≈

1
N

N∑
i=1

f (ξi). (8)

The big advantage of this quadrature is that it converges with a rate which is independent of
the dimensionality d, but the convergence rate O(N−1/2) is rather low. Another advantage of
this quadrature is that it works under low regularity requirements on the integrand. To be more
precisely, the variance of the integrand is a multiplicative constant in the error estimate.

The quasi-Monte Carlo quadrature is of the same form (8) as the Monte Carlo quadrature,
but the sample points xi are constructed or taken from a predescribed sequence and not
chosen randomly. There are several quasi-Monte Carlo sequences available in the literature,
see e.g. [8, 30]. Nevertheless, almost all the quasi-Monte Carlo sequences refer to integra-
tion over the unit cube [0, 1]d with respect to the Lebesgue measure and, hence, these points
have to be mapped to the domain of integration Γ by the inverse normal distribution. The
aim of a quasi-Monte Carlo sequence is to mirror with the first N sample points the uniformly
distribution on the unit cube as good as possible. A measure of the distance between the
uniformly distribution and the first N sample points is then given by the discrepancy of these
sample points, see [30]. The reason for this is that the quasi-Monte Carlo integration error
for functions with bounded variation in the sense of Hardy and Krause can be estimated up
to a constant by the discrepancy of the integration points. A quasi-Monte Carlo sequence is
called a low-discrepancy sequence if the discrepancy of the first N points of this sequence
is O(N−1 log(N)d). Thus, for the quasi-Monte Carlo quadrature based on low-discrepancy se-
quences can improve the convergence of the Monte-Carlo quadrature. In our numerical ex-
amples, we will use the quasi-Monte Carlo quadrature based on the Sobol-sequence, cf. [33],
which is a classical low-discrepancy sequence.
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2.2 Adaptive sparse grid quadrature

The construction of a sparse grid quadrature is based on a sequence of one-dimensional
quadrature rules, cf. [7, 32]. Hence, we define for a function f : R→ R quadrature rules∫

R
f (x)φ1(x) dx ≈ Q j( f ) =

N j∑
i=1

w( j)
i f

(
η

( j)
i

)
, N j ∈ N, j = 0, 1, . . . (9)

with suitable quadrature points and weights
{(
η

( j)
i ,w( j)

i

)}N j

i=1
⊂ R × R. Usually, the sequence

of quadrature rules is increasing, i.e N0 < N1 < . . ., and the first quadrature uses only one
quadrature point and weight, i.e. N0 = 1. According to the sequence {Q j} j, we introduce the
difference quadrature operator

∆ j := Q j − Q j−1, where Q−1 := 0. (10)

Assume that the sequence {Q j f } j converges, i.e∫
R

f (x)φ1(x) dx = lim
j→∞

Q j f = lim
n→∞

n∑
j=0

∆ j f .

This implies, that the sequence {|∆ j f |} j converges to zero and, hence, the importance of
the difference quadrature operators decays in j. Unfortunately, this decay is not necessarily
monotonic, but it builds the basic idea of adaptive sparse grid constructions.

With the difference quadrature operators ∆ j at hand, a generalized sparse grid quadrature for
the integration problem (7) is defined by∫

Rd
f (x)φd(x) dx ≈

∑
α∈I

∆α f :=
∑
α∈I

∆α1 ⊗ ∆α2 ⊗ · · · ⊗ ∆αd f (11)

for an admissible index set I ⊂ Nd
0. Such an index set I is called admissible if it holds for

j = 1, . . . , n and the unit multi-index e j that

α ∈ I =⇒ α − e j ∈ I if α j > 0.

As can be seen from (10) and (11), a generalized sparse grid quadrature is uniquely deter-
mined by a sequence of univariate quadrature rules {Q j} j and an admissible index set I. The
index set I can be chosen a priori, for example as

I =

α ∈ Nd
0 :

n∑
i=1

αi ≤ q

 (12)

which corresponds to a total degree sparse grid on level q.

Another option is to adapt I a posteriori. In this case an initial index set is selected, most often
I0 = {(0, . . . , 0)}. Then, the integration error of the sparse grid quadrature with respect to I0
is estimated by a local error estimator and, afterwards, the indices with the largest local error
estimator are successively added to I0 until a global error estimator η has reached a certain
tolerance. We denote the local error estimator of an index α ∈ I by gα and use for our purpose
simply the absolute value of the associated difference quadrature formula, i.e. gα := |∆α f |.
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Algorithm 1 Adaptive sparse grid quadrature for a function f
α← (0, . . . , 0)
O ← ∅

A ← α

y← ∆α f
η← gα
while (η > TOL) do

select α from A with largest gα
A ← A \ α

O ← O ∪ α

η← η − gα
for (k = 1, . . . , d) do

β← α + ek

if (β − eq ∈ O for all q) then
A ← A∪ β

x← ∆β f
y← y + x
η← η + gβ

end if
end for

end while
return y

Of course, we have to guarantee during the algorithm that the admissible condition of I is
not violated. The detailed description of this method is provided in [16]. We recall here the
algorithm from [16] and explain the most important steps.

In Algorithm 1, the index set I in (11) is partitioned into the old index set O and the active index
set A. The active index sets contains all indices α whose local error estimators gα actually
contribute to the global error estimator η. Then, the element α ofA with the largest local error
estimator is removed from the active to the old index set and the children of α, i.e. α + e j,
are successively added to the active index set, as long as all their parents belong to the old
index set. The last step is necessary in order to guarantee the admissibility condition. Then,
the contribution of the new indices to the value of the integral as well as the local and global
error estimator is updated and the procedure is repeated. The change in the current index
sets during one step of the algorithm is visualized in Figure 1.

α1

α2

0 1 2 3 4 5 6

0
1
2
3

α1

α2

0 1 2 3 4 5 6

0
1
2
3

Old Index set O Active Index set A

Figure 1: One step of the adaptive quadrature where α = (0, 2) is the index with largest g(α).
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We will use as one-dimensional sequences Gauß-Hermite and Genz-Keister quadrature rules,
cf. [15]. Gauß-Hermite quadrature rules have the highest degree of polynomial exactness for
integrals as in (9) while Genz-Keister rules have the advantage that they are nested. More
precisely, the Genz-Keister rules are extensions of Gauß-Hermite quadrature rules of relatively
low degree. As the first extension of the one point Gauß-Hermite quadrature we use the three
point Gauß-Hermite quadrature. Nevertheless, the further extensions do not coincide with any
other Gauß-Hermite quadrature rule.

At the end of this section, we visualize on the right-hand side of Figure 2 the 2-dimensional
adaptive sparse grid points which are used in our first numerical example. On the left-hand
side of Figure 2, we show the associated adaptive index set.

α1

α2

0 1 2 3 4 5

0
1
2
3
4

-8 -6 -4 -2 0 2 4 6 8

-5

-4

-3

-2

-1

0

1

2

3

4

5

Figure 2: Index set I of the sparse grid on the left and associated sparse grid points, which
are used in the first numerical example, on the right .

Remark 2.1. A further alternative could be to use multi-dimensional cubature formulas, see,
for instance, [9]. In principle, high-order cubature formulas also require smoothness of the
integrand, therefore we suspect that the approach presented here will also work well in the
cubature context. Still, we do not further discuss these methods in the current paper.

3 Smoothing the payoff

In this section, we will describe a simple technique for smoothing the integrand in (4) which,
at the same time,

� produces an analytic integrand;

� does not introduce a bias error;

� reduces the variance of the resulting integrand.

For the following, we assume that the covariance matrix Σ is invertible, i.e., a positive definite
symmetric matrix.

The general idea is that we want to integrate out one Gaussian factor in (4), conditioning on
the remaining d − 1 factors. Clearly, the outcome of such a procedure is a smooth function of
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the remaining factors. However, generically there is no closed formula for this function. The
reason for this is that there is no closed formula for the simple special case

E
[(

eσ1Z + eσ2Z − K
)+

]
for Z ∼ N(0, 1) and σ1 , σ2. Indeed, eσ1Z + eσ2Z has a log-normal distribution if and only if
σ1 = σ2. In this case, the above expression is given in terms of the celebrated Black-Scholes
formula, to be reviewed below.

It turns out, that a clever choice of factorization of the covariance matrix of the Gaussian factors
allows us to factor out one common, independent log-normal term. This is a consequence of
the

Lemma 3.1. Let Σ be a symmetric, positive definite d × d matrix. Then there is a diagonal
matrix D = diag

(
λ2

1, λ
2
d, . . . , λ

2
d

)
and an invertible matrix V ∈ Rd×d with the property that Vi,1 ≡ 1,

i = 1, . . . , d, such that
Σ = VDV>.

Moreover, we may choose the remaining columns of V such that λ2
2 ≥ . . . ≥ λ

2
d ≥ 0.

Proof. From [3, p. 126], we know that for every 0 , s ∈ Rn the rank-1 modification

Ã = A −
(As)(As)>

s>As
(13)

of a symmetric and positive definite matrix A ∈ Rd×d yields a symmetric and positive semidef-
inite matrix Ã ∈ Rd×d of rank d − 1. Let us denote 1 = [1, . . . , 1]> and choose v = Σ−11. Then it
follows from (13) that

Σ̃ = Σ −
1·1>

1>v
is a symmetric and positive semidefinite matrix of rank d − 1. Denote by (λ2

i , vi) for i = 2, . . . , d
the d − 1 eigenpairs corresponding to the d − 1 positive eigenvalues of Σ̃. Defining V =

[v1, v2, . . . , vd] with v1 = 1 and D = diag(λ2
1, λ

2
2, . . . , λ

2
d) with λ2

1 = (1>v)−1 leads to the de-
sired result. �

Remark 3.2. Of course, the vector 1 is by no means special in Lemma 3.1 and can be replaced
by any other fixed vector.

In the next step, we replace X by Y B V−1X ∼ N(0,D) and note that the components of Y are
independent. Substituting the decomposition X = VY into (4), we obtain

CB = E


 d∑

i=1

wie(VY)i − K


+

= E


 d∑

i=1

wi exp

Y1 +

d∑
j=2

Vi, jY j

 − K


+

= E
[(

h(Y2, . . . ,Yd)eY1 − K
)+

]
(14)

with

h(y) = h(y2, . . . , yd) B
d∑

i=1

wi exp

 d∑
j=2

Vi, jy j

 , y B (y2, . . . , yd) ∈ Rd−1. (15)
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Lemma 3.3 (Conditional Expectation formula). Let Y = (Y2, . . . ,Yd) = ((V−1X)2, . . . , (V−1X)d) ∼
N

(
0,D

)
, D B diag(λ2

2, . . . , λ
2
d). Then

E


 d∑

i=1

wieXi − K


+
∣∣∣∣∣∣∣∣ Y

 = CBS
(
h(Y)eλ

2
1/2,K, λ1

)
,

where

CBS (S 0,K, σ) B Φ(d1)S 0 − Φ(d2)K,

d1/2 B
1
σ

[
log

(S 0

K

)
±
σ2

2

]
,

is the Black-Scholes formula for r = 0, with maturity T = 1.

Proof. As Y1 and Y are independent and Y1 ∼ N(0, λ2
1), we have

E
[ (

h(Y2, . . . ,Yd)eY1 − K
)+

∣∣∣∣ Y = y
]

= E
[(

h(y)eλ1Z − K
)+

]
for some Z ∼ N(0, 1). On the other hand, for r = 0 and maturity T = 1, the Black-Scholes
formula is given by

CBS (S 0,K, σ) = E
[(

S 0e−
1
2σ

2+σZ − K
)+]

= Φ(d1)S 0 − Φ(d2)K,

since S T = S 0 exp
(
− 1

2σ
2T + σBT

)
for a Brownian motion B. Comparing these expressions,

we see that we have to choose K = K, σ = λ1 and S 0 = h(y)e
1
2λ

2
1 . �

Lemma 3.3 directly implies

Proposition 3.4. The basket option price in the multi-variate Black-Scholes setting satisfies

CB = E
[
CBS

(
h
( √

DZ
)

eλ
2
1/2,K, λ1

)]
, Z ∼ N (0, Id−1) ,

√
D = diag(λ2, . . . , λd). (16)

Remark 3.5. As remarked earlier, a similar closed form expression cannot be obtained when
the first column V·,1 of the matrix V is a general d-dimensional vector. However, we may still
get an explicit formula if V·,1 only takes values in { 0, 1 }. For simplicity, let us assume that the
first k entries of V·,1 are 1 and the remaining entries are 0—by Remark 3.2 this can always be
achieved. The computation before Lemma 3.3 then gives

CB = E
[(

h1(Y2, . . . ,Yk)eY1 + h2(Yk+1, . . . ,Yd) − K
)+

]
,

h1(y2, . . . , yk) B
k∑

i=1

wi exp

 d∑
j=2

Vi, jy j

 ,
h2(yk+1, . . . , yd) B

d∑
i=k+1

wi exp

 d∑
j=2

Vi, jy j

 .
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Conditioning again on Y, we once again arrive at the Black-Scholes formula, this time requiring
a shift in K, as well. In the end, we obtain

E


 d∑

i=1

wieXi − K


+
∣∣∣∣∣∣∣∣ Y

 = CBS
(
h1(Y2, . . . ,Yk)eλ

2
1/2,K − h2(Yk+1, . . . ,Yd), λ1

)
,

in the sense that
CBS (S 0,K, σ) = S 0 − K for K < 0.

In general, we therefore suggest to choose V·,1 such as to maximize the effective smoothing
parameter λ1.

Remark 3.6. Generally speaking, the decay of derivatives of the integrand in (16) depends

– inter alia – on the size of λ2
1 =

〈
1 ,Σ−11

〉−1
. If we normalize the variances of the individual

components, then λ2
1 mostly depends on the angle of 1 with the eigenspace corresponding to

the largest eigenvalue of Σ.

Remark 3.7. It is worth observing that after the conditional expectation (16) one may also
perform a change of measure on the resulting d − 1 dimensions to enhance the convergence
of all the quadratures discussed in this work. For instance, this is particularly important for out
of the money options.

4 Numerical example 1: Multivariate Black Scholes setting

In our first numerical example, we consider the pricing problem (3) of a European basket
option in a Black-Scholes model. This price depends on the strike price K, the weight vector
c and the vector S T containing the values of the different assets at the maturity T . Moreover,
the distribution of S T can be deduced from the initial values of the assets S 0, the vector of
volatilities σ and the correlation matrix ρ which determine the Black-Scholes model in (1). The
initial values in our examples are chosen randomly, i.e. independently and uniformly distributed
from the interval S i

0 ∈ [8, 20]. The volatilities are chosen randomly as well from the interval
σi ∈ [0.3, 0.4]. Following [10], the correlation matrix ρ = ττ> is given by a lower triangular
matrix τ which is constructed from a random vector x ∈ Rd−1 with independently and uniformly
distributed entries xi ∈ [0.8, 1] as follows:

τ1 =

(
1

cp(x)

)
, τ2 =

√
1 − x2

1

 0
1

cp(x2:d−1)

 , . . . , τd =


0
...

0√
1 − x2

d−1

 .
Herein, we employed the MATLAB-inspired notation x2:d−1 = [x2, . . . , xd−1]>. In addition, we
denote by cp: Rd−1 → Rd−1 the cummulative product given by

cp(x) = [x1, x1x2, . . . , x1x2 · · · xd−1]>.

The weight vector c is chosen such that the basket is an average of the different assets,
i.e. ci = 1/d. Moreover, we choose three different settings for the strike price, K = c>S 0 (ät the
money"), K = 1.2 · c>S 0 (öut of the money") and K = 0.8 · c>S 0 (ïn the money").
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Remark 4.1. We tested our experiments with different, randomly chosen weight vectors c ∈
[0, 1]d and obtained similar results. Hence, it seems that there is only a slight dependence
between the weight vector in the basket and the performance of the different quadrature meth-
ods.

We compare several integration schemes applied to the original problem (4) and the smoothened
problem (16). To be more precise, we consider the Monte-Carlo method, the quasi-Monte
Carlo method based on Sobol points and the sparse grid method described in Section 2.

4.1 Performance of the sparse grid methods
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Figure 3: Errors for d = 3, d = 8 and d = 25 with volatilities selected randomly from the interval
[0.3, 0.4].

In this subsection, we investigate the convergence behaviour of the adaptive sparse grid
method for the smoothened problem (16) (SGBS). Therefore, we apply the (SGBS) to our
model problem in dimension d = 3 in the “at the money case”, d = 8 in the “out of the money
case” and d = 25 in the “in the money case”, respectively. As a reference solution, we use an
adaptive sparse grid quadrature to determine (16) with a very small tolerance, i.e. ε = 10−11 for
d = 3, ε = 10−9 for d = 8, and ε = 10−7 for d = 25 respectively. As the sequence of univariate
quadrature points, we use the listed Genz-Keister points from [23]. Unfortunately, there exists
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only 9 different Genz-Keister extensions and it might happen that a higher precision is needed
in a particular direction. In this case, we use Gauß-Hermite points with a successively higher
degree of precision. The one-dimensional Gauß-Hermite points and weights can be easily
constructed for an arbitrary degree of precision by solving an associated eigenvalue problem,
see e.g. [14] for the details.

To observe the convergence behaviour of the SGBS, we successively refine the tolerance,
e.g. from 10−2 to 10−9 for d = 3, and compute the relative error between the correspond-
ing approximation to (16) and the reference solution. In order to compare the results with
other methods and also to validate the reference solution, we additionally apply a Monte-
Carlo quadrature (MC), a quasi-Monte Carlo quadrature (QMC) and an adaptive sparse grid
quadrature (SG) to the original problem (4) and compare the results with the reference solu-
tion as well. Herein, we increase the number of quadrature points for the (quasi-) Monte Carlo
quadrature as 3 · 6q for q = 1, . . . , 8. In addition, we use 20 runs of the Monte-Carlo estimator
on each level q and plot the median of the relative errors to the reference solution of these 20
runs.

Remark 4.2. The convergence results are shown in terms of quadrature points. Of course,
it is also interesting to compare the computational times to see the overhead of the adaptive
sparse grid construction. Therefore, we depict in Table 1 computational times in seconds and
errors for the different quadrature methods at a comparable number of quadrature points for
each dimension. As we can deduce from these times, there is indeed a huge overhead for the
SGBS. In dimension d = 25, for example, the computation of the adaptive sparse grid method
with around 25% more quadrature points requires around 23 times the computation time in
comparison to QMC. Nevertheless, the error of the SGBS is aroud a factor 600 smaller in com-
parison to QMC. Note that all the computations are done in MATLAB and that the evaluation

SGBS QMC MC
time error points time error points time error points

d = 3 0.0057 4.9 e-10 104 0.0016 1.25 e-1 108 0.0013 1.77 e-1 108
d = 8 0.3675 1.81 e-9 24622 0.0161 5.39 e-3 23328 0.0135 1.38 e-2 23328
d = 25 5.4283 1.04 e-6 174098 0.2409 6.18 e-4 139968 0.2188 1.29 e-3 139968

Table 1: Computation times for the different quadrature methods

of the integrand is completely vectorized in case of the (Q)MC. This is, of course, not possible
for the adaptive sparse grid quadrature, since we adaptively add indices, which correspond
to difference quadrature rules with a relatively low number of quadrature points, to the index
set. Although, the evaluation of the integrand in each difference quadrature rule is vectorized,
we need to do this several times during the algorithm. Hence, a MATLAB implementation is
not the most efficient one for adaptive sparse grid quadratures or adaptive methods in general
and the overhead could be reduced drastically with an efficient implementation in e.g. C.

The results for d = 3, d = 5 and d = 25 are depicted in Figure 3. As expected, the Monte-Carlo
quadrature converges in each dimension algebraically with a rate 1/2 against the reference
solution, while the rate of the quasi-Monte Carlo quadrature is close to 1. The convergence
of the SG is comparable to that of the MC for d = 3 and becomes worse for d = 8 and
d = 25. Hence, it is not very suitable to tackle the original problem (4). In contrast to that, the
SGBS outperforms all the other considered methods, especially for d = 3 and d = 8, in both
convergence rate and constant. For d = 3, the rate is rather exponential than algebraic and
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the observed algebraic rate for d = 8 is 2. In d = 25 dimensions, the rate deteriorates to 1 but
the constant is still around a factor 100 less compared to the constant of the QMC.

Summarizing, we find that the adaptive sparse grid quadrature applied to (16) yields very good
results to approximate the value of a basket option. In particular, it significantly improves the
performance of the adaptive sparse grid quadrature applied to (4). This is due to the fact that
the integrand in (16) is smooth while the integrand in (4) is not even differentiable.

4.2 Smoothing effect for Monte Carlo and quasi-Monte Carlo quadrature
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Figure 4: Smoothing effect for the (quasi)-Monte Carlo quadrature for d = 3, d = 8 and d = 25
with volatilities selected randomly from the interval [0.3, 0.4].

In this subsection, we examine the smoothing effect on the (quasi-) Monte Carlo quadrature.
To that end, we apply the (quasi-) Monte Carlo quadrature with the same number of quadra-
ture points as before, i.e. 3 ·6q for q = 1, . . . , 8, to approximate the integral in (16) and compare
the results with those of the (quasi-) Monte Carlo quadrature applied to (4). For the Monte
Carlo quadrature, we expect that the smoothing effect is not as strong as for the sparse grid
quadrature. Nevertheless, the convergence constant might be improved since we determined
a conditional expectation to deduce (16) from (4) which should decrease the variance of the
integrand. Figure 4 corroborrates that the smoothing has the expected effect for the Monte
Carlo quadrature, but the effect seems to diminish in higher dimensions. In case of the quasi-
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Monte Carlo quadrature, the smoothing does not effect the convergence rate but improves the
convergence constant as well. Moreover, the effect is even stronger as for the Monte Carlo
quadrature. The convergence constant of the quasi-Monte Carlo quadrature relies on the vari-
ation of the integrand and, hence, we suspect a larger decrease in the variation of the inte-
grand than in the variance. An explanation is that the variation of a function can be calculated
from the first mixed derivatives. Thus, the variation strongly depends on the smoothness of
the integrand, in particular this dependence is stronger than for the variance of the integrand.

4.3 Acceleration by using a sparse grid interpolant as a control variate
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Figure 5: Acceleration of the (quasi-) Monte Carlo quadrature with a sparse grid control variate
for d = 3, d = 8 and d = 25 with volatilities selected randomly from the interval [0.3, 0.4].

Another option to exploit the smoothness of the integrand is to combine a (quasi-) Monte
Carlo quadrature with a sparse grid approximation. To that end, we construct a sparse grid
interpolant on the integrand in (16), i.e. we use sparse grid quadrature nodes as interpolation
points, and employ this interpolant as a control variate. To explain the concept of a control
variate, let us consider the integration problem of a function f : Rd → R and an approximation
g : Rd → R on f . We assume that it is easy to calculate E(g) :=

∫
Rd g(x) dx. Then, we rewrite
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the integral as ∫
Rd

f (x) dx =

∫
Rd

f (x) − g(x) dx + E(g). (17)

Instead of using a (quasi-) Monte Carlo estimate of the integral on the left-hand side of 17, we
estimate the integral on the right-hand side. Then, a function g : Rd → R serves as a control
variate, see e.g. [18] for a more detailed description. Of course, the quality of the control
variate depends on how much the variance or the variation of f − g is reduced compared with
the variance or variation of f . Hence, it is closely connected to the approximation quality of g
on f .

In our examples, we use as interpolation points classical sparse grid quadrature points. That
means that we choose the index set a priori as in (12) on level q = 2. Moreover, as one-
dimensional quadrature points, we use Gauß-Hermite points with N0 = 1, N1 = 3 and N2 = 5,
respectively.

Remark 4.3. The evaluation of this sparse grid interpolant at the (quasi-) Monte Carlo quadra-
ture points becomes quite costly, especially in high dimensions. Most likely, more efficient
control variates could be used, e.g. by including only the 5 most important dimensions in the
sparse grid interpolant. Nevertheless, the aim here is to demonstrate that it is possible, due to
the smoothing, to significantly improve the convergence behaviour of the (quasi-) Monte Carlo
quadrature by a sparse grid control variate on a relatively low level but we do not incorporate
an efficiency analysis in terms of computational times here.

The results of employing such a function as a control variate to improve the convergence
of the (quasi-) Monte Carlo quadrature are visualized in Figure 5. The error reduction is quite
impressive for both methods. Especially the error of the Monte-Carlo quadrature is reduced by
around a factor 103 in d = 3 dimension and still by a factor 102 in d = 8 and d = 25 dimensions
while the convergence rate is preserved. In case of the quasi-Monte Carlo quadrature, the
constant is reduced by a similar factor as in the Monte Carlo case. Although, the convergence
rate seems to be slightly worse in comparison with the quasi-Monte Carlo quadrature without
control variate, the quasi-Monte Carlo quadrature with a sparse grid control variate achieves
the best error behaviour of the four considered methods in Figure 5.

5 Numerical example 2: Multivariate Variance Gamma setting

In our second numerical example, we consider the pricing of a basket option in a multivariate
variance gamma model as introduced in [28]. Therefore, we recall that the multivariate exten-
sion of the univariate asset price process (6) is described as follows, cf. [27] and Section 1
above,

S i
t = S i

0 exp
(
(r + ωi)t + θiγt + σiWi(γt)

)
(18)

with

ωi =
1
ν

log
(
1 −

1
2
σ2

i ν − θiν

)
.

We incorporate here also the deterministic interest rate r in order to compare our results with
those from [27]. The correlated d-dimensional Brownian motion W in (18) is as in (2) given
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by its correlation matrix ρ =
(
ρi, j

)d

i, j=1
and its volatility vector σ = [σ1, . . . , σd]>. The Gamma

process γt is independent from W and described by the parameter ν via its density function

fγt (y) =
y1/ν−1

νt/νΓ(t/ν)
e−y/ν.

The calculation of a European basket call option at time T under the variance gamma model
leads then to

CB B
∫ ∞

0
e−rT E


 d∑

i=1

ciS i
T − K


+ ∣∣∣∣∣∣γT = y

 fγT (y) dy. (19)

Herein, the integrand is for every fixed y ≥ 0 just the value of a basket call option according to
(3). Let us define

wi = ciS i
0e(r+ωi)T , i = 1, . . . , d,

Σi, j = σiσ jρi, jT, i, j = 1, . . . , d.
(20)

Then, we can as in (4) rewrite the integrand in terms of a d-dimensional Gaussian vector
Xy = (Xy

1, . . . , X
y
d) ∼ N(0, y · Σ) to

E


 d∑

i=1

ciS i
T − K


+ ∣∣∣∣∣∣γT = y

 = E


 d∑

i=1

eθiywieXi − K


+ ∣∣∣∣∣∣γT = y

 .
Hence, we can apply the technique from Section 3 to equation (19). Therefore, we recall
the decomposition of the matrix Σ = VDV> according to Lemma 3.1. The first row of the
matrix V is the vector v = [1, . . . , 1]> and we denote the entries of the diagonal matrix by
D = diag(λ2

1, . . . , λ
2
d). Continuing in the same fashion as in Section 3, we end up with the

equivalent integration problem, cf. (16),

CB =

∫ ∞

0
e−rT E

[
CBS

(
hy

(√
yDZ

)
eyλ2

1/2,K,
√

yλ1

)]
fγT (y) dy,

Z ∼ N (0, Id−1) ,
√

D = diag(λ2, . . . , λd).

(21)

Herein, the function hy is given similar as in (15) by

hy(z2, . . . , zd) B
d∑

i=1

eθiywi exp

 d∑
j=2

Vi, jz j

 , z = (z2, . . . , zd) ∈ Rd−1.

Note that the integrand in (21) is very easy to calculate with respect to y since we only need
to incorporate the factor eθiy in front of each weight wi and scale the matrix D by y. Thus, the
decomposition of the correlation matrix in view of Lemma 3.1 has only to be computed once
although the correlation matrix of the Gaussian vector Xy depends on the parameter y.

In Figure 6, we present two examples for basket option pricing under the variance gamma
model. The first picture on the right-hand side depicts the error of the calculation of an at the
money basket call, cf. (19). We choose the parameters r = 0 and ν = 0.3 in (18) determinis-
tically and randomly select θi ∈ [−0.1, 0.05]. Moreover, the correlation matrix ρ, the volatilities
σi and the initial values S i

0 are constructed as in Section 4. We compare the convergence
of the Monte-Carlo quadrature and the adaptive sparse grid quadrature for the d-dimensional
integral in (21). Note that the integration domain and the density function in (21) are given by

Γ = [0,∞] × Rd−1, p(y, z2, . . . , zd) = fγT (y) ·
1

(2π)d/2 exp

1
2

d∑
i=2

z2
i

 .
17
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Figure 6: Errors of an at the money basket call under a variance gamma model with param-
eters ν = 0.3 and θi ∈ [−0.1, 0.05] for d = 8 assets on the right and for an example from [27]
with d = 3 assets on the left.

Hence, we use as samples for the Monte-Carlo quadrature d-dimensional random vectors
where the first component is distributed with respect to fγT and independent to the remaining
d−1 variables which are normally distributed and independent as well. In case of the adaptive
sparse grid quadrature, we apply tensor products of difference quadratures rules, cf. (11),
where we use as quadrature sequence in the first variable differences of generalized Gauss-
Laguerre quadrature rules. In the remaining variables, we set the univariate quadratures as in
Section 4. Afterwards, we select the indices which are included in the sparse grid adaptively
as described in Section 2.2. As expected, the Monte Carlo method converges exactly with a
rate N−1/2. Moreover, the result demonstrates that the adaptive quadrature outperforms the
Monte Carlo method even in this variance gamma example with an observed rate of nearly
N−2.

The second numerical example is taken from the recent work [27] and stems originally from
a parameter fitting of the variance gamma model in [29]. It describes a 3-dimensional model
as in (18) where θ = [−0.1368,−0.056,−0.1984]>, σ = [0.1099, 0.1677, 0.0365]> and S 0 =

[100, 200, 300]>. Additionally, the weight vector c = [1/3, 1/6, 1/9]> and the correlation matrix

ρ =

 1 0.6 0.9
0.6 1 0.8
0.9 0.8 1


are used. In [27], several different settings for the parameter ν and the strike price K are
considered. We restrict ourselves to the setting ν = 0.5 and K = 75 which corresponds to an
ïn the money"basket. On the left-hand side of picture 6 the convergence results for the Monte
Carlo and the adaptive approach are shown. We observe that the Monte Carlo quadrature
converges as before. Although the convergence of the adaptive sparse grid quadrature is still
better than that of the Monte Carlo method, an exponential rate as could be expected for
such a low dimensional example cannot be obtained. This deterioration in the convergence
rate does not depend on the variance gamma setting but, according to Remark 3.6, there is
a connection of the smoothing to the entries of the diagonal matrix D from Lemma 3.1. For
the considered example, the matrix D has the entries λ2

1 = 0.00023, λ2
2 = 0.03432 and λ2

3 =

0.00652. In particular, the small value of λ2
1 explains the relatively low smoothing effect. In view
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of Remark 3.5, the vector 1 in Lemma 3.1 can be replaced by any other vector 0 , v ∈ {0, 1}d

in order to obtain a closed-form expression in Lemma 3.3. Therefore, we investigated also
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Figure 7: Errors for the example from [27] with d = 3 assets. On the left-hand side, we included
the convergence when the vector 1 is replaced by v = [1, 1, 0]>. On the right-hand side, we
used the modified volatility σ3 = 0.1365.

the convergence behaviour when we used a vector v , 1. On the left-hand side of Figure
7, the result is visualized for the vector v = [1, 1, 0]>, which is the best possible choice for
this example. We observed an improved convergence with this choice of v, which comes in
concordance with an increase in the size of λ2

1,v = 0.00109, i.e. (λ2
1,v is five times as high

as λ2
1. Nevertheless, λ2

1,v is still quite small compared with λ2
2,v = 0.03294 and, hence, the

improvement in the convergence is not that extraordinary. This leads to the supposition that
the considered example is not that well suited for our proposed method. In particular, the low
value of σ3 = 0.0365 compared with the other volatilities seems to have a negative effect on
the smoothing. Hence, we tested this example also for the modified volatility σ3 = 0.1365. The
results for this case are depicted on the right-hand side of figure 7 and, indeed, we observe
a drastically improved convergence. Furthermore, the entries of D are given by λ2

1 = 0.01034,
λ2

2 = 0.02255 and λ2
3 = 0.00526 which demonstrates the influence of the differences in the

volatilities on the size of λ2
1 and, thus, on the smoothing.

Conclusions

In the context of basket options, we show that the inherent smoothing property of a Gaussian
component of the underlying can be used to mollify the integrand (payoff function) without
introducing an additional bias. Having obtained a smooth integrand, we can now directly apply
(adaptive) sparse grid methods. We observe that these methods are highly efficient in low
and moderately high dimensions. For instance, the error can be improved by two orders of
magnitude in dimension 25 compared to (Q)MC methods. In dimension 3, we even obtain
exponential convergence. We have also discussed improvements for MC and QMC methods
by introducing the smoothed payoff. In the Monte Carlo case, we do not observe a significant
improvement of the computational error, as the variance reduction seems rather negligible. For
QMC methods—Sobol numbers, to be more precise—we do see considerable improvements

19



in the constant. As expected, the rate stays the same.

We note that the method employed in this work is not restricted to basket options in a multi-
variate Black Scholes or Variance Gamma setting, but can be generalized considerably. For
instance, each step of an Euler discretization of an SDE corresponds to a Gaussian mixture
model. Hence, the conditional expectation of the final integrand given all the Brownian incre-
ments but the last one is of the form of a Gaussian integral of the payoff function w.r.t. to a
normal distribution with possibly complicated mean vector and covariance matrix. If this inte-
gral can be computed explicitly, then we can directly obtain mollification of the payoff without
introducing a bias.

Even if the integral cannot be computed in closed form, there may be use cases for em-
ploying numerical integration. For instance, in the basket option case, a fast and highly ac-
curate numerical integration of the one-dimensional log-normal integral, coupled with regres-
sion/interpolation (to avoid re-computation of the one-dimensional integral for each new (sparse)
gridpoint) could well turn out to be more efficient than a numerical integration technique ap-
plied to the full problem.

Finally, note that there are also clear limitations of the technique. For instance, consider a
variety of the basket option studied in this work, namely a best of call option. Here, the payoff
is given by (

max
i=1,...d

S i
T − K

)+

for log-normally distributed, correlated variables S i
T (in the Black-Scholes setting). Clearly,

we can use Lemma 3.1 in order to construct a common normal factor Y and other factors
Y1, . . . ,Yd (all jointly normal, Y independent of the rest), such that S i

T = eYeYi . Therefore, we
obtain for the price of the best of call option

E
[(

max
i=1,...d

S i
T − K

)+]
= E

[(
eY max

i=1,...d
eYi − K

)+]
.

Taking the conditional expectation, we obtain the Black-Scholes formula applied at maxi=1,...d eYi ,
which is still a non-smooth payoff. The mollification can only remove one source of irregular-
ity in this case, not all of them. Indeed, as currently presented in this work, the conditional
expectation step is most effective when the discontinuity surface of the option’s payoff has
codimension one.
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