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ABSTRACT 

Let (it, :F, lF) be a filtered space with two probability measures P and P' 
on (it, :F). Let X bead-dimensional locally square-integrable semimartin-
gale relative to P and P' with the canonical decomposition X = Xo + 
M + A and X = X o + M' + A' respectively. We give a lower bound 
for the Hellinger process hG; P, P') of order 1/2 between P and P' in 
terms of A, A' and the quadratic characteristic of M and M'. This result 
implies simple sufficient conditions for the entire separation of measures in 
a linear regression model with martingale errors. 

1. Main Results 

Let a pair of probability measures P and P' be given on a filtered space 
(n, F, lF) with a right-continuous filtration IF= (Ft)t~o, F = V t>o Ft. Let X = 
(Xi)i~d be a cadlag adapted d-dimensional process on (it, :F, lF). We assume that 
Xi is a locally square-integrable semimartingale with respect to P and P' for each 
i < d, i.e. Xi = Xj +Mi+ Ai = Xj + M'i + A'i, where Mi (respectively, M'i) 
is a locally square-integrable martingale relative to P (respectively, P') and Ai 
and A'i are predictable processes with finite variation over compact intervals. 

The aim of this paper is to give a lower bound for the Hellinger process 
h(!; P, P') of order 1/2 between P and P' when only a partial information on P 
and P' is available, namely, when we know only the processes A= (Ai)i~d, A'= 
(A'i)i~d and the quadratic characteristic of M = (Mi)i~d and M' = (M'i)i~d· 
Such a situation arises naturally in some statistical models of stochastic processes, 
see examples in Section 4. 

We use traditional notation and concepts of the "general theory of processes". 
If y is a cadlag process, the associated jump process is .6.yt = yt - yt_ fort > 0, 
and .6.Y0 = 0. The symbol· denotes the (Lebesgue-Stieltjes or stochastic) integral 
and the symbol* denotes the integral with respect to a random measure: 

t 

H · yt = j H. dY. 
0 

and 
t 

W*µt = j j W(s,x)µ(ds,dx). 
0 ]Rd 

The transpose of a matrix U is UT, and vectors are column matrices. We refer 
to [8] for the unexplained terminology and notation. 

Let us recall (see [8, Definition III.5.8]) that a generalized increasing process 
is a process Y such that it is [O, oo ]-valued and Yo = 0 and its paths are non-
decreasing, and if T = inf ( t : yt = oo) then Y is right-continuous on [O, T[. Given 
a measure Q·, we say that a generalized increasing process Y1 strictly dominates 
a generalized increasing process Y 2 ( Q-a.s. ), and we write Y1 >- Y 2 ( Q-a.s.) or 
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Y 2 -< Y1 ( Q-a.s. ), if paths of the difference Y1 - Y 2 (with oo - oo = oo) are 
non-decreasing Q-a.s. 

To simplify the formulation of the main result we assume here that d = 1. Let 
(M) (respectively,: (M')) be the quadratic characteristic of M (respectively, M') 
with respect to P (respectively, P'). Set B = A - A' and C = ( (M) + (M') )/2. 
There exists a predictable funetion I with values in (0, oo] such that 

B = ! · C + I(! = oo) · B ( P + P')-a.s. (1.1) 

(the Lebesgue decomposition of dBt with respect to dCt)· 

THEOREM 1.1. Let I be a predictable function satisfying (1.1). There exists a 
version h of h( !; P, P') such that 

1 1 2 
(1 - ~h )2 . h >- 8' . c (P + P')-a.s. (1.2) 

REMARK 1.1: Let z = ( Zt )t2::0 (respectively, z' = ( z~ )t2::0) be the density pro-
cess of the measure P (respectively, P') with respect to Q = (P + P')/2 and 
r = {(t,w) : Zt-(w) > 0, z~_(w) > O} U [O]. We call a process h a version of 
the Hellinger process h( ~; P, P') of order 1/2 if h is a predictable generalized 
increasing process and coincides with the Hellinger process in the strict sense, of 
order 1/2, on r. Moreover, we shall always assume that fl.h :::; 1 identically on 
{ h < oo} (which is not a real restriction since ~h :::; 1 on r). The left-hand side 
of (1.2) is assumed to be equal oo at the time t for w such that ht(w) = oo or 
T(w):::; t, where T(w) =inf (t: ~ht(w) = 1). 

The proof of Theorem 1.1 is based on auxiliary results which are of indepen-
dent interest. First, we construct a predictable increasing process k with values 
in [O, oo], closely related to h(~; P, P'). In particular, if his the strict version of 
h( !; P, P'), then 

h-< k-< 2h- [h,h]. (1.3) 

Next, we construct a sequence of stopping times Tn such that {h < oo} = 
Un[O, Tn] (P + P')-a.s., and a new reference measure Qn equivalent to P + P' 
with the following properties. Let zn and z'n be the density processes of P and P' 
with respect to Qn. Then Zn = z~ E(vn) and z'n = zbn E( - vn) on [O, Tn]' where 
vn is a Qn-locally square-integrable martingale and £( ·) stands for the Doleans 
exponential. This fact has an important consequence: if Y is a semimartin-
gale with respect to P .and P' (and hence with respect to Qn) with the triplets 
T = (B, C, v) and T' = (B', C', v') of predictable characteristics respectively, 
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then its triplet Tn = ( Bn, en, vn) of predictable characteristics with respect to 
Qn can be expressed Qn-a.s. on the set r n [O, Tn] as follows 

Bn = B +B'' 
2 

en= e+e' 
2 ' 

v + v' vn __ _ 
- 2 . 

In particular, X is a Qn-locally square-integrable martingale with the canonical 
decomposition X = X 0 + (M + M')/2 +(A+ A')/2 on r n [O, Tn]. 

The connection between the objects just introduced and the initial problem 
is explained as follows. On the one hand, the Qn-quadratic characteristic (M + 
M', M + M') and the Qn-mutual characteristic (M + M', vn) can be expressed 
explicitly in terms of B and e on r n [O, Tn]· On the other hand, the Qn-
quadratic characteristic (Vn, vn) coincides with k on [O, Tn]. In combination 
with the Kunita-Watanabe inequality this leads to the inequality 

1 1 2 
1 - f),_k • k >- 41 . e ( P + P')-a.s. (1.4) 

on Un[O, Tn]. Now (1.2) follows easily from (1.3) and (1.4). 
Inequalities (1.2) and (1.4) can be regarded as a generalization of some infor-

mation-type inequalities used to obtain some form of the Cramer-Rao inequality, 
to the case of filtered spaces: compare (1.4) with the inequality in [14, Lemma 1, 
p. 127] and (1.2) with the inequalities in [11], [19, Section 5.4], [14, Corollary 1, 
p. 128]. 

Theorem 1.1 (and its multi-dimensional version) should be compared with 
another lower bound for the Hellinger process expressed in terms of the triplets 
of predictable characteristics of X with respect to P and P' (Theorem IV.3.39 
in [8], cf. also [15]). Of course, our bound is more rough in general and it can be 
deduced directly from the bound in terms of the triplets. 

The expression standing on the left in (1.2) is sometimes difficult to use. We 
suggest the following estimate for it, though the inequality is very rough for the 
continuous part of h. E(-h) is the Doleans exponential of -h: 

( ) { 
e-hT ITs<T(l - f),_hs)et:i..h", if hT < oo, 

E -h T = 0, - if hT = 00. 

LEMMA 1.1. For any stopping time T, 

T 

J 1 < 1 
(1 - f),_hs) 2 dhs - E(-h )} . (1.5) 

0 

Section 2 contains some auxiliary results mentioned above. A multi-dimen-
sional version of Theorem 1.1 and its proof will appear in Section 3. In Section 4 
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we shall consider applications of Theorem 1.1 to semimartingale regression mod-
els. 

2. Auxiliary Results 

2.1. Preliminaries 

Let (n, F) be a measurable space with two probability measures P and P'. 
Let Q be another probability measure on (n, F) such that 

p ~ Q, P' ~ Q. 

We consider the Radon-Nikodym derivatives 

dP 
z = dQ' 

dP' I 
z = dQ. 

Let <p: IRi -T IR+ and 'lfa: IRi -T IR+ be functions defined by 

cp(u, v) =~(Vu- .../V)2
, 

'lfa(u,v) = ~ (u -v)2 
2 u+v 

(here and in the sequel 0/0=0). It is easy to check that 

( ylu-y'v)4 
2'P - '1fa = 2(u + v) ~ O. 

(2.1) 

(2.2) 

Let us recall that the variation distance llP- P'll and the Hellinger distance 
p( P, P') between P and P' are defined by 

llP-P'll =EQlz-z'I, p2(P, P') = EQcp(z, z'). 

H(P, P') denotes the Hellinger integral of order 1/2 between P and P': 

H(P,P') = EQv'zl = 1- p2(P,P'). 

We also introduce another distance K(P, P') defined by 

K
2(P, P') = EQ'lfa(z, z') .. 
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This distance arises naturally in some estimation problems, see, e.g., [13] and [14], 
and was used by Hellinger himself [ 6]. All the above distances do not depend on 
the measure Q satisfying (2.1). It follows immediately from (2.2) that 

p2 (P, P') ::; K
2 (P, P') ::; 2p2 (P, P') - p4 (P, P'). 

2. 2. Definition and properties of the process k 

In the rest of this section, we consider a filtered space ( n, F, IF) with a right-
continuous filtration IF = (Ft )t2'.:0, F = V t>o 'Ft, and two fixed probability mea-
sures P and P' on (n, F). Let Q be another probability measure on (n, F). We 
assume that P and P' are locally absolutely continuous with respect to Q: 

loc 
P~Q, P l loc Q 

~. (2.3) 

Let z = (zt)t2'.:0 (respectively, z' - (zi)t2'.:o) be the density process of the 
measure P (respectively, P') with respect to Q. The processes z and z1 are 
non-negative Q-martingales. We denote by ze and z'e the continuous martingale 
parts of z and z', relative to Q. We also denote by v<z,z') the Q-compensator of 
the jump measure of the bi-dimensional process (z, z'). It is known that v<z,z') 

only charges the set A= {(w,t,x,y):t > 0, x ~ -Zt-(w), x = 0 if Zt-(w) = 0, 
y ~ -zi_(w ), y = 0 if zi_(w) = O} [8, Theorem IV.1.33]. Set 

Sn = inf( t: Zt /\ z~ < l/n ), S == lim j Sn, 
n 

(2.4) 

Note that, up to a Q-evanescent set, r == {z- > 0, z~ > O} U [O]. 
Let us recall that a version of the Hellinger process h(!; P, P') of order 1/2 

between P and P' is given by 

h i 1 { 1 ( e e) 2 ( e le) 1 ( le 1e)} =- -·z,z ---·z,z +-·z,z 
8 z:. Z-Z~ Z~ 

+ <.p (1 + _:__, 1 + JL) * V(z,z') (2.5) 
z_ z~ 

(Theorem IV.1.33 in [8]) and 
h = lr · h1 (2.6) 

is the Hellinger process in the strict sense, of order 1/2, between P and P'. Put 

1 1 { 1 ( e e) 2 ( e /e) 1 ( le le)} k=- -·z,z ---·z,z +-·z,z 
4 z:.. Z-Z~ Z~ 

H ( 1+ z~, 1+ :J * v(z,z') (2.7) 
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and 
k = lr · k'. (2.8) 

PROPOSITION 2.1. a) k is a predictable increasing [O, oo]-valued process, 

r ~ {k < oo} = {h < oo} (P + P')-a.s., 

h-< k -< 2h - [h, h] (P + P')-a.s.. (2.9) 

b) Up to a Q-null set, '6.k::; 1 and {'6.k = 1} = {'6.h = 1} ~ [S] n r. 
c) The process k does not depend upon the measure Q satisfying (2.3), in 

- ~C- -the following sense: if Q is another measure with Q «: Q, and if k and k are the 
processes computed through Q and Q, then k and k are Q-indistinguishable. 

Thus, the process k is defined uniquely, up to a (P + P')-evanescent set, 
regardless of the dominating measure Q. 
PROOF: a) All the statements except of the second inequality in (2.9) follow im-
mediately from (2.2), (2.5)-(2.8) and the corresponding properties of the Hellinger 
process. Moreover, 

h k 2cp2(l+x/z-,l+y/z'_) (zz') 
2 - = lr * v ' . (1 + x/z-) + (1 + y/z'_) 

(2.10) 

But, for any predictable stopping time T, 

(b.hr)2 = {! cp(l+ z;_ ,l+ zt_)v<z,z')({T} x dx) r 
< J cp2(l + x/ Zy_, 1 + y / z'y_) v(z,z') ( {T} X dx) 
- (1 + x/zy_) + (1 + y/z'y_) 

X j {(1 + x/zr_) + (1+ y/zT_)}v(z,z')( {T} X dx) (2.11) 

and 

j {(1 + x/zT_) + (1 + y/zT_)}v(z,z'>( {T} X dx) 

= EQ ( ( 1 + ~:~) l{AzT#O} Fr-) + EQ ( ( 1 + ~~~) l{Az~#O} fr-) 
~ EQ (z: Jrr-) + EQ (:t JFr-) = 2 (2.12) 

on { w: (w, T(w )) Er}. Now 2h - k >- [h, h] readily follows from (2.10)-(2.12). 
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b) The result follows from (2.9) and the corresponding assertions for the 
Hellinger process, see Lemma IV.1.30 in [8]. 

c) The proof is essentially the same as the proofs of Theorem IV.1.22 and 
Proposition IV.1.45 in [8], and may be omitted. 
REMARK 2 .1: Let 

K' == ~ { ~ • (zc, zc) - _3__ • (zc, z'c) + ~ • (z'c, z'c)} 
4 z:._ z_z~ z~ 

"'"""",,/, (l /j,_zs /j,_z~) +Lt 'fl + -, 1 + -,-
< Zs- Zs-s_· 

(2.13) 

and 
K == lr · K'. (2.14) 

From the definitions of K and k, if T is a stopping time, the stopped process KT is 
Q-locally integrable if and only if kT < oo Q-a.s., and kT is the Q-compensator 
of KT in this case. 
REMARK 2.2: There is a relationship between the process k and the distance K. 

In particular, if P (respectively, P') is the law of a sequence of independent ran-
dom variables with a distribution Pn (respectively, p~), then using the standard 
embedding of the discrete-time model into the continuous-time one, we obtain 

kn== L K,2(pp, p~). 
l~p~n 

But it should be noted that, though the quantity K 2(P, P') is the !-divergence of 
P and P' with J(x) == (x-1)2 /2(1+x), our process k do not coincide with the so-
called (!, g )-process introduced in [20]. On the other hand, the second summand 
in the right-hand side of (2.13) coincides with the process j(f) ([8, § IV.ld]) on 
{ z~ > O} and may have an additional jump when the density z' jumps to 0. 
REMARK 2.3: Assume that ad-dimensional process Xis given on (n, F), which 
is a semimartingale relative to P and P'. Similarly to the processes h( a; P, P') 
and i( V;; P, P') (see [8, Section IV.3] and also [15]), one can define a process k0 in 
terms of the local characteristics of X such that k >- k0 ((P+P')-a.s.) in general 
and k == k0 if P and P' are the unique solutions of some martingale problems 
based upon X. 

Assume now that Q == (P + P')/2, and let vz be the Q-compensator of the 
jump measure of the process z. Since z+z' == 2, zc+z'c == 0, (zc, zc) == (z'c, z'c) == 
-(zc, z'c), fj,,z' == -/j,_z and neither (zc, zc) nor vz charge the complement of r in 
this case, we obtain from (2.7), (2.8), (2.13) and (2.14) that 

1 ( 1 1 )
2 

c c "'"""" ( 6.zs 6.zs) K == - - + -. / · (z ,z) +Lt V; 1+-,1- - 1 • 
4 z_ z_ s~· Zs- Zs-

(2.15) 
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and 

( )
2 ( ) 

1 1 1 cc x x z k = - - + - · (z , z ) + 'ljJ 1 + -, 1 - - * v , 4 z_ z~ z_ z~ 
(2.16) 

where z' = 2 - z. 

2. 3. Definition and properties of a new reference measure 

In this subsection the setting is the same as in the previous one. It will be 
convenient to take Q = ( P + P') /2; then z + z' = 2. The processes K and k are 
given by (2.15) and (2.16), Sn, Sand rare defined by (2.4). Put I:= {k < oo }. 

Let us recall. that if a predictable function H belongs to the class Lfoc ( z, Q), 
i.e. if ( H 2 • [ z, z ])112 is a Q-locally integrable increasing process, then the stochastic 
integral H • z is well defined and is a Q-local martingale, see, e.g., [7, § II.2.b]. 

PROPOSITION 2.2. Let 
H = ~ (_2-_ - _2-_) lr. 

2 z_ z~ 

There is an increasing sequence (Tn) of pre<j.ictable stopping times, such that 

I:= Un[O, Tn] Q-a.s. 

and the following statements hold for all n. 
a) 

b) Let 
and 

(2.17) 

Then zn is a Q-uniformly integrable martingale and Q( {inft Zf > O}) = 1. 

REMARK 2.4: Of course, it follows from this proposition that there is a process N, 
unique (up to Q-indistinguishability) on the set I:, such that 

and 
NT= (Hl[o,71) · z 

for every stopping time T such that [O, T] ~ I: Q-a.s. In particular, NTn = Nn. 
Similarly, there is a process Z, unique (up to Q-indistinguishability) on the set 
I:, such that z = E(N) on I: and zTn = zn for all n. 
PROOF: Set 

Tn = inf(t: kt ~ n). (2.18) 

8 



The stopping time Tn is predictable and Tn > 0 for each n; moreover, (2.17) 
holds. 

First, we shall prove that 

for all n. (2.19) 

It is easy to check that 

D..zs D..zs D..zs D..zs 
-- - -, - = -- - 2:: -1 
Zs- Zs- Zs- 2 - Zs-

(2.20) 

on r, hence HnD..z 2:: -1/2. Therefore, (2.19) holds if (and only if) the increasing 
process 

en= (Hn) 2
• (zc, zc} + L ( 1- y'1 + H>;f>.z,)2 

s:s;· 

is Q-locally integrable ([7, Corollary 2.57]). Both l+H;1D..zs = 1+~ ( ~~ - ~-) 
and 1 always lie between 1 + -6.zs and 1 - ~zs , hence 

Zs- Zs-

( 1 - y'l+ H'; f>.z,)2 ~ u 1+ ~~ - F"f[) 2 

( 
D..zs 1D..zs) ( D..zs D..zs) =2([) 1+-,1--,- ::;2'lj; 1+--,1--,-' 
Zs- Zs- Zs- Zs-

and en is strictly dominated by 2J<Tn- (J<Tn- := lco,Tn[. I<). Since EQI<Tn- = 
EQkTn- :::; n due to (2.18), en is a Q-integrable increasing process and (2.19) 
follows. 

Moreover, the above arguments show that the Q-compensator of en is dom-
inated by 2kTn- and, hence, bounded by 2n. Let Nn = Hn • z and Zn = £(Nn). 
Since D..Nn 2:: -1/2 (see (2.20)), it follows from Theorem 12 in [9] (see also 
Corollaries 8.17 and 8.30 in [7]) that Zn is a Q-uniformly integrable martingale 
and 

Q ( {inf Z ~ > 0}) = 1. 
t 

(2.21) 

To complete the proof of a), it is enough to show that 

(2.22) 

9 



Since IY - x I ::; x + y - xy for 0 ::; x ::; 2, 0 ::; y ::; 2, (2.22) follows from 

(2.23) 

Now, zn = Zn+ ~zn1[Tn,oo[, ~zn1{Tn<oo} Zyn_~Nrnl{Tn<oo}' and 
ZTn- = z;n_ E L 1(Q) from what precedes, so (2.23) implies that ~znl{Tn<oo} E 
L1 ( Q) and, therefore, zn is a Q-uniformly integrable martingale. The final state-
ment follows from (2.21) and (2.20). 

REMARK 2. 5: Similarly to the proof above, one can check that 

1 1 
-lrn[O,Tn] E Lioc(z, Q), z_ ~lrn[O,Tn] E Lf0 c(z, Q) = Lfoc(z', Q), z_ 

so there are processes n and n', unique (up to Q-indistinguishability) on the set 
:E, such that nT and n'T are Q-local martingales and 

tT ( 1 ) I n = z~ lrn[o,T] • z 

for every stopping time T such that [O, T] ~ :E Q-a.s. Evidently, we have 

n +n' N=--
2 

on :E, where N is the process introduced in Remark 2.4. Moreover, 

z =zo£(n) and z' = z~£(n') 

on :E. Indeed, it follows from the definition of n that z = Zo + z_ • n on r; on the 
other hand, lrc • z and ( z_ lI:nrc) • n = 0. 

From now on we consider a sequence (Tn) of stopping times, satisfying Propo-
sition 2.2, and fix some n. For simplicity, put T = Tn' z = zn' N = Nn' n = n T' 
n' = n'T. It follows from Proposition 2.2 that EQZoo = 1 and Z 00 > 0 Q-a.s. 
So we can define a new probability measure Q by 
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Q being equivalent to Q = (P + P1)/2. Let z and Z' be the density processes of 
P and P 1 with respect to Q; z and z1 are non-negative Q-uniformly integrable 
martingales and 

z=zZ, I -1-z =z Z. (2.24) 

Since Q and Qare equivalent, a semimartingale with respect to one of these 
measures is also a semimartingale with respect to another one with the same 
quadratic variation; moreover, stochastic integrals with respect to Q and Q coin-
cide (see, e.g., [7, Chapter 7]). For this reason, we will not mention the reference 
measure when dealing with quadratic variations, stochastic integrals or Doleans 
exponentials. 

THEOREM 2.1. Let 

v = -_n -_n_
1 

_ 1 . [n - n
1 NJ 

2 1 + !:::..N 2 ' . 
(2.25) 

Then V is a Q-locally square-integrable martingale, its quadratic characteristic 
(V, V) with respect to Q coincides with the process k on [O, T] and 

z = zo£(V) and on [O, T]. (2.26) 

REMARK 2.6: In the terminology of Chitashvili, Lazrieva and Toronjadze [1], V 
is the L-transformation of (n - n1

) /2. 

PROOF: Of course, V is a Q-semimartingale. After some elementary calculations 
from (2.25) we obtain 

V + N + [V, N] = n and - V + N - [V, N] = n1
• 

Now, by Yor's formula for the product of Doleans exponentials, 

z0 £(V)Z = zo£(V)£(N) = zo£(V + N + [V, N]) = z0 £(n) = zT (2.27) 

and 

zb£(-V)Z = zb£(-V)£(N) = zb£(-V + N - [V, N]) = zb£(n1
) = z'T, (2.28) 

and (2.26) follows from (2.24), (2.27) and (2.28). Moreover, since both z and 
z' are Q-martingales, (2.26) implies that V is a Q-local martingale on the set 
[O,T] n ({z- > O} U {i_ > O}). But V =VT and{~- > O} U {z~ > O} = 
{ z_ > O} U { z~ > O} = n x 1R+, hence V is a Q-local martingale. 

11 



To complete the proof it is enough to check that (V, V] - kT is a Q-local 
martingale. Some uncomplicated calculations yield the relation 

(1 + ~N) · [V, V] =KT, 

or, equivalently, 
Z • [V, V] = Z _ • KT. 

Hence, Z · [V, V] - z_ • kT is a Q-local martingale. Since [V, V]Z = [V, V]- • Z + 
Z · [V, V], [V, V]Z - Z · [V, V] is a Q-local martingale. Since k is predictable with 
finite variation, kT Z = kT • Z + Z _ • kT and kT Z - z _ • kT is also a Q-local 
martingale. Combining all these relations, we conclude that ([V, V] - kT)z is a 
Q-local martingale, and the claim follows. 

Relation (2.26) is a characteristic property of the measure Q. This property 
has many consequences. We start with the most important one. 

THEOREM 2.2. Let X bead-dimensional semimartingale on (n, :F, lF, P) and on 
(n, :F, lF, P'), with respective characteristics (B, C, v) and (B', C', v'), associated 
with the same truncation function h. Then X is a semimartingale on (!1, :F, lF, Q) 
with characteristics (B, C, v) associated with h, satisfying 

- B+B' 
B= 2 ' 

- c+c' 
C= ' 2 

on r n [O,T]. 

v + v' v=--2 
(2.29) 

REMARK 2. 7: The same proof as below yields an explicit expression for ( B, C, v) 
also on [O, T] \ r. Moreover, it is easy to give an explicit expression for (B, C, v) 
outside [O, T] as well (cf. Theorem III.3.40 in [8]). 
PROOF: The process Xis a Q-semimartingale (see, e.g., Theorem III.3.40 in [8]) 
and hence a Q-semimartingale, the characteristics being denoted by ( B, C, v). 

-ij .. 
Let A be an increasing process such that C = eJ · A. Now we shall apply 
Girsanov's theorem for semimartingales (see, e.g., Theorem III.3.24 in [8]) to the 
pairs ( Q, P) and ( Q, P'). If µ is a random measure on lR+ x JR. d, we denote by 
Mµ the Doleans measure on (n x JR.+ x JR.d,:F 0 B(JR.+) 0 B(JR.d) associated with 
µand Q: 

Mµ(W) = EQ(W * µoo)· 

First, we have C = C P-a.s. and C' = C P'-a.s. Therefore, C = C on 
{z_ > O} and C' = C on {z'_ > O} Q-a.s., in particular, C = (C + C')/2 on r 
Q-a.s. 

Next, put 

and 
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where µX is the jump measure of X. By Girsanov's theorem, v = Yv P-a.s. and 
v' = Y'v P'-a.s., therefore, 

lrz-_>o}v = Ylfz->o}v 
Since 

and 

z 
=-l{L>O} = 1 + LlY z_. and 

on [O, T] by Theorem 2.1, (2.30) implies 

Y + Y' = 2 

Q-a.s. (2.31) 

(2.32) 
Mµx-a.s. and hence Mv-a.s. on [O, T]. Combining (2.31) and (2.32), we obtain 
v = (v + v')/2 on r n [O, T]. 

Finally, let predictable processes /3 = (/3i)i~d and /3' = (/3'i)i~d satisfy the 
relations 

(ZC' xi,e) = (L cij 13i-z_) • A, 
j~d 

(z'e' xi,e) = (L cij f3'iz'_) . A, 
"<d J_ 

(2.33) 

(2.34) 

where -ze, z'e and Xi,e are continuous martingale parts of z, z' and Xi relative 
to Q' and (ze' xi,e) and (-z'e' xi,e) are the corresponding mutual characteristics 
relative to Q. By Girsanov's theorem, 

Bi= Bi+ (Lcii f3i) ·A+ hi(x)(Y -1) * v P-a.s., (2.35) 
'<d J_ 

B'i =Bi+ (L cij /3'j) . A+ hi(x )(Y' - 1) * 17 P'-a.s. (2.36) 
'<d J_ 

Therefore, (2.35) and (2.36) hold Q-a.s. on {z- > O} and {z'_ > O} respectively. 
Since 

and zte = -z'_ • ye 
on [O, T] by Theorem 2.1, where ye is a continuous martingale part of Y relative 
to Q, it follows from (2.33) and (2.34) that one may take 

f3'j = -/3j on [O, T]. (2.37) 

Now the relation B = (B + B')/2 on r n [O, T] follows from (2.32) and (2.35)-
(2.37). 

Let us recall that a d-dimensional process X is called a special semimartingale 
relative to (say) P with the canonical decomposition X = X 0 + M +A, M = 
(Mi)i~d, A= (Ai)i~d, if Mi is a local martingale with respect to P and Ai is a 
predictable process with finite variation over compact intervals for every i :;; d. 
If, moreover, Mi is a locally square-integrable martingale with respect to P, then 
X is said to be a locally square-integrable semimartingale relative to P. 
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COROLLARY 2.1. Let X bead-dimensional special semimartingale relative to P 
and P' with the canonical decompositionX = Xo+M +A andX = Xo+M' +A' 
respectively. Then X is a special semimartingale on r n [O, T] relative to Q with 
the canonical decomposition 

M+M' A+A' 
X=Xo+ 

2 
+-

2
- on r n [O,T]. 

The quadratic co-variation [Mi + M'i, V] (relative to Q) is Q-locally integrable 
on r n [O, T] with the Q-compensator Ai - A'i for every i :::; d. 

PROOF: The first claim immediately follows from Theorem 2.2 and Proposition 
II.2.29 in [8]. In particular, M + M' is a Q-local martingale on r n [O, T]. But 
M + M' = 2M + (A - A') is also a P-special semimartingale. By Corollary 
7.29 in [7] (or Theorem 7.1 in [4]), the process [Mi +M'i, z] is Q-locally integrable 
on r n [O, T] and Ai -A'i is the Q-compensator of (1/z-) ·[Mi+ M'i, z], and we 
have (1/z-) ·[Mi+ M'i, z] = [Mi+ M'i, V] on r n [O, T] by Theorem 2.1. 

COROLLARY 2 .2. Let X bead-dimensional locally square-integrable semimartin-
gale relative to P and P' with the canonical decomposition X = X 0 + M + A 
and X = X 0 + M' + A' respectively. Then X is a locally square-integrable 
semimartingale on r n [O, T] relative to Q with the canonical decomposition 

M+M' A+A' 
X =Xo + 2 +. 2 

on r n [o, T], (2.38) 

and the quadratic characteristics (Mi + M'i, Mi + M'i) and (Mi + M'i, V), 
i, j :::; d, relative to Q satisfy the following relations on r n [O, T] : 

(Mi+ M'i, V) =Ai -A'i (2.40) 

where (Mi, Mi) (respectively, (M'i, M'i)) is the mutual characteristic of the 
corresponding processes relative to P (respectively, P'). 

PROOF: It immediately follows from Theorem 2.2 and Proposition II.2.29 in [8] 
that Xis a locally square-integrable semimartingale on r n [O, T], and (2.38) has 
been proved above. Denote by (B, C, v), (B', C', v') and (B, C, v) the triplets 
of X associated with a fixed truncation function h relative to P, P' and Q re-
spectively. By the same proposition 

(Mi, Mi)= Cii +(xi xi)* v - :E ~A!~A~, (2.41) 
S~· 
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(M'i' M'i) = ciij +(xi xi)* v' - L .6.A~i .6.A1' 
S~· 

(2.42) 

(Mi+M'i, Mi +M'i) = 4Cij +4(xixi)*v-'L:(.6.A~+.6.A~i)(.6.A~+.6.A1). (2.43) 
S~· 

Now (2.39) follows from Theorem 2 and (2.41)-(2.43). Relation (2.40) has been 
proved in Corollary 2 .1. 

3. Proofs 

In this section we consider a filtered space (n, :F, IF) with a right-continuous 
filtration IF= (:Ft)t:2:0, :F = Vt>o :Ft, and two fixed probability measures P and 
P' on ( n, :F). The setting is the-same as in Subsections 2.2 and 2.3, in particular, 
Q = (P + P')/2 and (2.4) holds. 

3.1. A multi-dimensional version of Theorem 1.1 

Let X = (Xi)i<d be a d-dimensional locally square-integrable semimartin-
gale relative to P and P' with the canonical decomposition X = X 0 + M + A 
and X = X 0 + M' +A' respectively. Set 

Bi= Ai -A'i, i,j ~ d, 

where (Mi, Mi) (respectively, (M'i, M'i)) is the mutual quadratic characteris-
tic of Mi and Mi (respectively, M'i and M'i) relative to P (respectively, P'). 
Note that B = (Bi)i~d and C = (Cii)i,i~d are defined uniquely (up to Q-
indistinguishability) only on the set r; nevertheless, the arguments below are 
valid for any predictable version of B and C such that Bi and Cii have finite 
variation over finite intervals. 

There are a predictable process c = ( cii)i,i-5:d with values in the set of all 
symmetric nonnegative matrices and an increasing predictable process F, with 

Q-a.s. (3.1) 

We have a decomposition 

B = ( c/3) • F + 'fi • F + F', Q-a.s., (3.2) 

where f3 = (/3i)i<d and fi = ('fii)i<d are predictable, -gt(w) is orthogonal in JR. d - -
to the image of JR. d by the linear map associated with the matrix Ct( w ), the 
components F'i have finite variation over compact intervals and the measures 
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dFt and dF;i are orthogonal. The processes f3 and '/J are not necessarily unique, 
but the decomposition (3.2) is unique. Finally, define 

Gt = { (f3T cf3) ·Ft, if 'iJ · F = O and F' = 0 on [O, t], (3.3) 
oo, otherwise. 

It is obvious that G does not depend upon the choice of f3 and fi in (3.2); moreover, 
it does not depend upon the choice of F, as long as (3.1) holds. 

The following theorem is a multi-dimensional version of Theorem 1.1. 

THEOREM 3.1. Assume (3.1)-(3.3). There exists a version h of the Hellinger 
process h( ~; P, P') such that 

1 1 
(1 - ~h)2 • h >- SG ( P + P')-a.s. 

The key result for the proof of Theorem 3.1 is the following lemma. 

LEMMA 3.1. Assume (3.1)-(3.3). Then, on the set I' n {~k < 1}, p · F = 0, 
F' = 0 and the process 

1 1 
-1 ---~-k . k - 4G 

is increasing (P + P')-a.s. 

PROOF: Let (Tn) be a sequence of stopping times, satisfying Proposition 2.2. 
Since Un[O, Tn] 2 r (P + P')-a.s., it is sufficient to prove the statement of the 
lemma on the set r n [O, T] n {~k < 1}, where T = Tn for some n. 

Let Q be a probability measure associated with the density process Z = zn 
defined as in Subsection 2.3. The process Vis the same as in Theorem 2.1. In 
the rest of the proof, angle and square brackets and stochastic integrals are taken 
with respect to Q, and all the relations hold Q-a.s. 

As it was noted above, the claim does not depend upon the choice of F, as 
long as (3.1) holds, so we can choose F so that F' = 0 and 

B = ( cf3) • F + fi · F. (3.4) 

Put w = ( cf3 + P)( cf3 + P)T ~F. Then 

~B(~B)T = w~F (3.5) 

and the matrix-valued process [B, B] =([Bi, Bi])i,j:5d has the representation 

[B,B] =w·F. 
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According to Theorem 2.1 and Corollary 2.2, V and Mi + M'i, i ~ d, are 
Q-locally square-integrable martingales on r n [O, T] and the following relations 
hold on the same set: 

(Jv.:i + M'i, Mi + M'i) == 4Cii + [Bi, Bi] == ( 4cii + wii) • F, (3.6) 

(V, Mi+ M'i) ==Bi, (3.7) 

(V, V) == k. (3.8) 

According to the multi-dimensional Kunita-Watanabe decomposition, there 
is a predictable process H == (Hi)i5:d such that the stochastic integral H·(M +M') 
with respect to the multi-dimensional locally square-integrable martingale M + M' 
is well defined and 

V == H • (M + M') +VJ_ (3.9) 

on rn[O, T], where VJ_ is a Q-locally square-integrable martingale with (VJ_, Mi+ 
M'i) = 0, i ~ d, on r n [O, T]. Substituting (3.9), (3.6) and (3.7) in the last 
relation, we get 

B == ( 4cH + wH) • F (3.10) 

on r n [O, T]. On the other hand, let G == (H · (M + M'), H · (M + M')). Then 
(3.6) implies 

G == ( 4HT cH +HT wH) • F (3.11) 

on r n [O, T], and the increasing process (VJ_, VJ_) has the form 

(VJ_, VJ_)== (V, V) - (H · (M + M'), H • (M + M')) == k - G (3.12) 

on r n [O, T] (use (3.9) and (3.8)). In particular, 0 ~ D..G < 1 on the stochastic 
interval r n [O, T] n {D..k < 1}. 

By (3.10), (3.5) and (3.11), 

D..B == (4cH + wH)D..F == 4cHD..F + D..B(D..B)T H, 

D..G == (4HTcH + HTwH)D..F ==HT D..B == (D..B)T H, (3.13) 

hence, 
(1 - D..G)D..B == 4cH D..F (3.14) 

on r n [O,T]. 
Set Fl = L:o<s<t D..Fs, Ftc == Ft - Fl, Bf == L:o<s<t D..Bs, Bf == Bt - Bf, 

Gf == L:o<s5:t D..Gs, Gi ==Gt -Gf. We obtain from (3.10) and the definition of w 
that 
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Combining this equality with (3.14), we get 

(1 - D..G) • B = ( 4cH) · F (3.15) 

on r n [O, T]. Comparing (3.4) and (3.15), we obtain 

((1 - ~G)fi') · P = 0 (3.16) 

and 
((1 - D..G)c/3) • F = ( 4cH) · F (3.17) 

on r n [O,T]. 
Now (3.16) implies 't · F = 0 on r n [O, T] n {D..k < l}. Applying (3.11) and 

(3.17) for the continuous part of G and (3.13) and (3.4) for the jump part of G, 
we get 

lf = ( 4HT cH) • pc = (HT c/3) • pc, 

-=ti """"" "'""" T ( T d G = L...t~Gs = L...JHs D..Bs = H c/3) • P 
S~· S~· 

on r n [O, T] n { D..k < 1 }, which yields 

G = (HT c/3) • F = (/3T cH) • P 

on the same set. Applying (3.17) again, we conclude that 

- 1 - T 1 -G = -((1 - ~G)/3 cf3) • P = -(1 - ~G) • G 4 4 (3.18) 

on r n [O, T] n {~k < l}. Now the claim follows from (3.12) and (3.18). 
PROOF. OF THEOREM 3.1: Taking into account Remark 1.1, Proposition 2.lb 
and Lemma 3.1, it is enough to show that 

1 1 1 
(1 - ~h )2 • h - 2 1 - D..k • k 

is an increasing process on r n { ~k < 1}. Let kc and h c be the continuous parts 
of k and h respectively. Proposition 2.la yields 

and 
1 D..k 2~h - (~h)2 ~h - < <---2 1 - D..k - 2(1 - ~h )2 - (1 - D..h )2 
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on r n { ~k < 1}' and the claim follows. 

3.2. Remark 

Let (Tn) be a sequence of stopping times, satisfying Proposition 2.2, and 
T = Tn for some n. Fix a E (0, 1 ). Similarly to Proposition 2.2 above, one can 
prove that Z(a) = £(anT + (1 - a)n'T) is a Q-uniformly integrable martingale 
and Q( {inft Z(a)t > O}) = 1. Define a probability measure Q(a) by 

dQ(a) = Z(a) 00 dQ. 

If 
N(a) = anT + (1 - a)n'T 

and 
V(a) = nT - n'T - 1 

· [nT - n'T N(a)] 
l+~N(a) ' ' 

then similarly to Theorem 2.1 one can check that the density processes z( a) and 
z' (a) of P and P' with respect to Q( a) have the representation 

z(a) = z0£((1 - a)V(a)) and z'(a) = zb£(-aV(a)) on [O, T]. 

This property implies analogues of ~heorem 2.2 and its corollaries; in particular, 
(2.29) is replaced by 

B(a) = aB + (1-a)B', C(a) = aC + (1- a)C', v(a) =av+ (1- a)v' 

for the characteristics (B(a), C(a), v(a)) of X with respect to Q(a). 
Again, V( a) is a Q( a )-locally square-integrable martingale. Let (V( a), V( a)) 

be the quadratic characteristic of V( a) with respect to Q( a). Then the process 
a(l.:... a)(V(a), V(a)), coincides with some increasing predictable process k(a) 
on [O, T]. This process k( a) can be defined similarly to (2. 7) and (2.8), replacing 
1/4 by a(l - a) and V; by 'l/Ja in (2.7) with 

,,,, ( ) _ a(l - a)( u - v )2 

If/a u, v - au + (1 - a )v · 

Moreover, the proof sim.ilar to that of Lemma 3.1 shows that the statement of 
Lemma 3.1 holds true if one replaces iG by a(l- a)G(a), where G(a) is defined 
similarly to G replacing C by C(a) = (Cii(a))i,j~d with Cii(a) = a(Mi, Mi)+ 
(1 - a )(M'i, M'i). But if a =f 1/2, there is no appropriate relationship (similar 
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to (3.19)) between the jumps of k(a) and the jumps of the Hellinger process of 
any order. 

3. 3. Proof of Lemma 1.1 

We assume that hT < oo and 0::; l:lh < 1 on [O, T]; otherwise the both sides 
of (1.5) are infinite. 

Set hf = L:o<s5:.t l:lhs, h~ = ht - hf. We have 
T 

J 1 d """"" f:lhs """"" { 1 1 } 

0 
(1 - 6.h,)2 dh, = ~ (1 - 6.h,)2 = ~ (1 - M,)2 - 1 - 6.h, 

= ~ {exp (2log 1 _ ~h.)- exp (log 1 _ ~h.)} 

::; exp (2 L log 1 _ ~h ) - exp (L log 1 _ ~h ) 
s5:_T 8 s5:_T 8 

1 1 
= II (1 _ 6.h )2 - II 1 - 6.h 

s5:_T 8 s5:_T 8 

<II i - (1 - l:lh )2 ' s5:_T 8 

(3.20) 

where we used the fact that the function f(x) = e2x - ex, x ~ 0, is convex and 
f(O) = O; hence L:~=l f(xi) ::; f(L:~=l Xi) for arbitrary n and Xi ~ 0, i = 1, ... , n. 

Now (3.20) implies 
T T I (1 - ~h.)2 dh, = hT +I (1 - ~h.)2 dh~ ::; hT + .u. (1 - ~h.)2 

::; exp(2hT) II (1 - ~h )2 = £(-h )T2. 
s5:_T 8 

4. Applications to linear regression models 

In this section we give applications of what precedes to linear regression 
models with martingale errors. 

4 .1. A general linear regression model with martingale errors 

Let us consider the following multiple linear regression model: 
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t 

Xt = Xo + J {)T f, d(M), + uMt, t :'.:: 0, 
0 

where X is a real-valued observable process, {) E JR k is an unknown parameter, f 
is an observable predictable JR k-valued function, Mis a locally square-integrable 
martingale, Mo = 0, with the observable quadratic characteristic (M), O" is a 
positive number (known or unknown). This model was studied in many papers, 
see, e.g., [18], [16], [2], [12], [3] and [17]. 

More formally, we assume that there is a filtered space (n, F, lF) with a 
right-continuous filtration lF = (Ft)t;2:0, .r = Vt>O Ft, an adapted cadlag real-
valued process X = (Xt)t~o, a predictable increasing process a = (at)t~o, a 
predictable JRk-valued function f = (ft)t;2:o and a family P of probability measures 
on ( n, F) satisfying the following properties: for every P E P, there is a vector 
{) = fJ(P) E ]Rk and a number 0"2 = 0"2(P) > 0 such that 

(i) lfl2 ·at < oo for all t 2:: 0 (P-a.s.) and the functions Ji· at, t 2:: 0, are 
linearly independent P-a.s. 

(ii) M = M(P) = X - X 0 - ({)T f) ·a is a P-locally square-integrable 
martingale. 

(iii) The quadratic characteristic of M(P) with respect to Pis equal to 0"2 a. 
It follows from (i) that {)(P) and 0"2(P) are defined uniquely. 
Define F = (f JT) ·a and let Amin(·) denote the minimal eigenvalue of a 

matrix. 
Let P, P' E P. By Theorem 1.1, there is a version h of the Hellinger process 

h( ~; P, P') of order 1/2 between P and P' such that 

1 . h > (fJ(P) -{)(P'))T JJT({)(P) - fJ(P')). a 
(1 - 6.h)2 - 4(a2 (P) + 0"2(P')) 

lfJ(P) - fJ(P')l2 
2:: 4(0"2(P) + 0"2(P')) Amin(F). (4.1) 

The last inequality allows us to find simple sufficient conditions for the entire 
separation of measures in the considered model. 

THEOREM 4.1. Let pn E P and pin E P, n 2:: 1, and Tn be a sequence of 
stopping times such that 

c > 0, (4.2) 
n 

(the subscript Tn denotes the restriction of a measure to the O"-fi.eld FTn ). Assume 

~2 = limsup (0" 2 (Pn) + 0"
2 (P'n)) < oo (4.3) 

n 
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and 
( 4.4) 

for some sequence ( <.pn) of positive numbers. Then there is a constant C < oo 
such that 

lim sup <.p~ 1 l19(Pn) - 19(P)I ~ C, 
n 

and C depends on (pin) satisfying ( 4.2) and ( 4.3) only through e and lJ. 

In particular, if (4.3) and (4.4) hold, then limsupn rp;1 119(Pn) - '!9(P)I = oo 
implies the entire separation of (P!}n) and (P1:~ ). 
PROOF: Due to ( 4.1), there is a version h n of the Hellinger process h( ~; pn, pin) 
of order 1/2 between pn and pin such that 

By Lemma 1.1, 

(4.6) 

According to the well-known lower estimate for the variation distance, see 
[10, Theorem 2.1], 

llPrn - Pfr~ II ~ 2 ( 1 -v H(Pon, p~n)E£n(-hn)Tn) 

~ 2(1- JE£n(-hn)Tn), (4.7) 

where En is the expectation with respect to pn and H(P0n, p~n) is the Hellinger 
integral of order 1/2 between the restrictions of pn and pin to the a-field :Fo. It 
follows from ( 4.2) and ( 4. 7) that 

(4.8) 

Since £( -h n )Tn ~ 1, ( 4.8) implies 

(4.9) 

for n large enough. 
On the other hand, ( 4.4) yields that, for some 8 > 0, 

(4.10) 

22 



for n large enough. Therefore ( 4.9) and ( 4.10) give 

n 2:: no=} pn(cp~Amin(Frn)E(-hn)}n 2:: &:4 /4) 2:: c2 /4. 

Combining (4.5), (4.6) and (4.11), we get 

n 2:: no=} l79(P'n) - 79(Pn)l 2 :::; 168-1c;-4 (a2 (Pn) + a2 (P'n))cp~, 

and ( 4.3) yields the claim with C = 45-1 /2 c;-2 ~. 

4. 2. Example: autoregressive model of the first order 

Assume that the observable process (xn) is such that 

Xn = 79Xn-1 +en, n 2:: 1, 

(4.11) 

( 4.12) 

where c;1 , £2, ... are independent and identically distributed with a distribution 
function F, x 0 is an observable square-integrable random variable independent 
of c; n, n 2:: 1, 79 is a real parameter. It is assumed that 

0 < o-2 (F) = j x2 F(dx) < oo, j xF(dx) = 0. 

This classical scheme is a special case of the model considered in the previous 
subsection. Indeed, let n = {(xo,x1, ... ,xn, .. . ), Xn E JR.}, Fis the product a-

field on n, Ft = a{ Xo' ... 'X[t]} ([t] is the integer part oft) and let p consist of 
the distributions of the sequence ( 4.12}, corresponding to different 79 and F. 

Put 
[ t] [t] [t] 

Xt = L Xj = 79 L Xj-1 + L(xj - 79xj-i), at = [t], ft= X[t]-1· 
j=l j=l j=l 

Then the quadratic characteristic of the martingale L:)tli (xj-79Xj-1) is a 2 (F)at. 
Let 

Since the sequence 
n 

if 1791 < 1, 
if 1791 = 1, 
if 1791 > 1. 

cp~( 79) L x]-1 
j=l 

( 4.13) 

converges in distribution to a limit with zero mass at 0, Theorem 4.1 yields the 
following result. 
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PROPOSITION 4.1. Let Pn (respectively, P~) be the distribution of the sample 
(x 0 , ..• ,xn) satisfying (4.12) with a parameter{) and an error distribution F 
(respectively, {)n and Fn)· H 

limsup llPn - P~ll < 2(1 - c:), c > 0, 
n 

and 
2::2 = lim sup (7

2 ( Fn) < oo, 
n 

then 
lim sup <p;1 ( {))( {)n - {)) ::; C, 

n 

where 'Pn( {)) is denned in ( 4.13), and C depends only on{), F, c; and 2::. 

4,3. Example: Galion-Watson branching process with nonrandom immigration 

Assume that we observe the branching process with nonrandom immigration 
Xn-1 

Xn = L Yn,i + 1, 
i=l 

n 2:: 1, Xo = 1, ( 4.14) 

where Yn,i are independent and identically distributed with a distribution function 
Fon {O, 1, 2, ... }. It is assumed that 

0 < 0"
2 (F) = j x2 F(dx) < oo. 

Put {)(F) = J xF(dx). The distributions of the sequence (x1 , •.• , Xn, •• • ), corre-
sponding to different F with the above properties, form the class P. Again, this 
model is a special case of the linear regression model of Subsection 4.1: put 

[t] [t] [t] Xj-1 [t] 

Xt = L(xj-l) = {)(F) Lxj-1+ LL (Yj,i-{}(F)), at= Lxj-1, ft= 1, 
j=l j=l j=l i=l j=l 

then the quadratic characteristic of the martingale I:}tl1 I::~1
1 (Yj,i - {)(F)) is 

(7
2 (F)at. 

Let 

It is known that the sequence 

if 0 < {) < 1, 
if {) = 1, 
if {) > 1. 

n 

<p~( {)(F)) L Xj-1 

j=l 

( 4.15) 

converges in distribution to a limit with zero mass at 0, so the following result 
follows from Theorem 4.1 (cf. Lemma 6 in [5]). 
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PROPOSITION 4.2. Let Pn (respectively, P~) be the distribution of the sample 
(x1, ... , xn) satisfying ( 4.14) with an offspring distribution F (respectively, Fn)· 
If 

limsup llPn - P~ll < 2(1 - c), c > 0, 
n 

and 
:E2 = lim sup o-2 (Fn) < oo, 

n 

then 
lim sup cp;; 1 ( '8 ( F n ) - '8 ( F)) ~ C, 

n 

where 'Pn is denned according to ( 4.15) with '8 = '8(F), and C depends only on 
F, c and :E. 
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