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Abstract. Mathematical modeling and simulation (MMS) has now been estab-
lished as an essential part of the scientific work in many disciplines and application
areas. It is common to categorize the involved numerical data and to some extend
the corresponding scientific software as research data. Both have their origin in
mathematical models. In this contribution we propose a holistic approach to re-
search data in MMS by including the mathematical models and discuss the initial
requirements for a conceptual data model for this field.

1 Introduction

In recent years the handling of research data as part of the scientific practice has created
vivid discussions within the scientific community, at research institutions as well as in funding
agencies. Specifically, the importance of research data and its storage in view of new digital
technologies is emphasized by the recent adoption of the “DFG Guidelines on the Handling of
Research Data” by the Deutsche Forschungsgemeinschaft [1], the Open Research Data Pilot
within the EU Horizon 2020 program [2], or the development of principles for research data
handling within the german scientific organizations, the Leibniz Association, the Max-Planck-,
Helmholtz-, and Fraunhofer Society by the Priority Initiative “Digital Information”1.

The importance of appropriate handling of research data is increasingly recognized in view of
its rising amount. It is central part of the discussion on Open Data and a prerequisite of the
scientific method. In the face of the emerging digital science agenda research data proves to
be an essential foundation for scientific work. Driven by such considerations universities and
scientific institutions started creating policies for the handling of research data. These include
rules for the full data life-cycle including generation, storage, preparation for subsequent re-
use, publication and curation of data. However, the nature of research data is as diverse as the
scientific disciplines requiring specific discussions and concepts.

2 Research data in mathematical modeling and simulation

Mathematics is one of the foundations of today’s key technologies and science. Mathematical
methodology is required for interdisciplinary modeling of a research problem, for its mathemat-
ical treatment and solution, and for the transfer of the results into practice. In the last decade
mathematical modeling and simulation (MMS) has been established alongside experiment and
theory and is now essential part of the scientific work in many disciplines and application areas.

1http://www.allianzinitiative.de/en/core-activities/research-data.html
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Figure 1 – This figure illustrates the three different components constituting research data in MMS:
mathematical models, simulation software and numerical data (e.g., input parameters
and data, output of simulation software).

Research in the area of MMS is characterized by mathematical models, scientific software for
their treatment, and numerical data related to computations (input, output, parameters), see
Figure 1. Here, we propose to categorize these three parts as the research data in MMS as
they are jointly required to understand and verify research results, or to build upon them.

Specifically, numerical data is generally regarded as research data in common sense and data
repositories and information services such as DataCite [3] or RADAR [4, 5] exist or are emerg-
ing. Increasingly, software is categorized as reasearch data [1] and a world-leading information
service on mathematical software, swMath [6], has already been developed.

Yet, communication in MMS suffers from the absence of a unified concept including mathemat-
ical models: instead of considering mathematical models as entities of their own class, which
can be uniquely identified, cited and categorized, they are rather found as plain text with a mix-
ture of mathematical notation and common language. This potentially leads to ambiguity, cites
to different original work, incompleteness, and “re-invention of the wheel”.

A comprehensive approach to research data in MMS should cover all three aspects in a similar
manner. While for software and numerical data the above mentioned services are reasonable
starting points for the implementation of such a concept, a corresponding definition and service
for mathematical models is missing. A similar system for computational models of biological
processes has been introduced at the BioModels Database2.

In this contribution we discuss the initial requirements for a conceptual data model for math-
ematical models, starting from a simple and widely-used example. This is a first step towards
the creation of a semantic corpus for mathematical models in MMS, which can serve as a stan-
dardized access to mathematical models with cross-links to software, data repositories, and
publications.

2https://www.ebi.ac.uk/biomodels-main/
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3 Mathematical models: the heat transport problem

As an example for mathematical modeling we consider the heat transport problem. Modeling
and simulation of heat transport is a common task in many technical applications ranging from
large heat exchangers to heating effects in small semiconductor devices. For our discussions
on a formalization concept for mathematical models we outline the corresponding description
of the heat transport model and its ingredients as plain text, which might be similarly found in
typical publications on this topic or in software documentations.

Heat transport model. We describe heat conduction by Fourier’s law

q = −λ∇T, (1)

where q denotes the heat flux, λ represents the heat conductivity and ∇T is the tempera-
ture gradient. In a bounded spatial domain Ω the time evolution of the temperature distribution
T (x, t) is then governed by the heat flow equation:

∂

∂t
(C(x)T (x, t))−∇ · (λ(x)∇T (x, t)) = f(x) in Ω, (2)

with a heat source f(x), the heat capacity C(x) of the material, and boundary conditions

−ν · q = ν · (λ(x)∇T (x, t)) = κ(x)(T (x, t)− Ta(x)) on ∂Ω, (3)

where ν denotes the outer normal vector, κ the heat transfer coefficient to the environment
and Ta is the ambient temperature. In studies of time-dependent heating phenomena the time
evolution of the temperature and thus the heat flow is given by the solution of the boundary
value problem (1)-(2) with the initial value T0(x) = T (x, t = 0). In contrast, one is often only
interested in the stationary heat paths, e.g., in studying the heat flow from a device. Then it
suffices to solve the stationary heat equation

−∇ · (λ(x)∇T (x, t)) = f(x) in Ω (4)

subject to the boundary conditions (2).

4 Towards a conceptual data model for mathematical models

The recognition of mathematical models as part of research data in MMS can be established
by the creation of a semantic digital corpus of mathematical models. An information service for
the registration and retrieval of mathematical models is then necessary for the adoption of the
approach by the MMS community and for navigation, indexing and searching the model corpus.

The creation of such a corpus cannot just rely on a plain text description as above, instead
one has to develop a normal or canonical form. A similar normalization is common in general
mathematical texts where definitions, lemmas, theorems, proofs, corollaries, propositions help
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to structure the content. Similar to the approach of the semantical annotation of mathematical
texts a normal form for mathematical models needs to be represented in a modeling-oriented
markup-language, which can be based on LATEX or MathML. In contrast to a pure plain text
description such a mark-up can be used to generate relations between the entities of the formal
description.

The encoded entities should contain the main characteristics of the model, such as the equation,
the domain, boundary conditions, material laws and constitute a signature for the mathematical
model. However, the complexity of the task is far above simple one-to-one mappings as it is
possible, e.g., for special functions. A mathematical model is an abstract notion relying on a
mathematical equation combined with semantic binding. Despite the fact that typically multiple
notations for the same equation exist, the task is further complicated by the non-trivial question
which entities are to be considered as atoms of the description. For example, the definition of
the heat flux in the heat transport model can be itself considered as a model. The same applies
to the material laws such as the heat conductivity or the heat capacity where a constant or linear
dependence can be described by a single parameter. Finally, the replacement of the boundary
conditions of the heat transfer (2) on parts of the boundary by a model for heat radiation (T 4-law)
leads to further variants of the original model with specific properties.

A data model for mathematical models must reflect a sufficient level of complexity of the for-
mal description to cover a large number of models while avoiding unnecessary duplications in
their encoding. It is a-priori not clear whether such a description exists. The problem can be
mitigated by appropriate relations between different entries of the model corpus. In its final form
an information service for mathematical model should not only include models characterized
by partial differential equations, but also statistical or discrete models, as well as systems of
ordinary differential equations and many more.

Beside the plethora stemming from different specializations of a certain model as introduced
above two further dimensions of a data model are essential which we introduce as math bindings
and application bindings.

Math bindings. The mathematical notation of a specific model is everything but unique. Even
for the non-dimensionalized heat equation with constant coefficients (λ(x) = const., C(x) =
const.) there exists a whole diversity of possible mathematical notations such as a notation
with Nabla calculus as above, a representation in Cartesian coordinates, simplification to a
Laplacian, a notation with div- and grad- operators, weak formulations, or formulations as a
gradient flow.

It is common to classify linear, second order partial differential equations as elliptic, parabolic
or hyperbolic. For instance the transient heat equation (1) is mathematically classified as a
parabolic partial differential equation, whereas the stationary heat flow problem (4) constitutes a
partial differential equation of elliptic type. The classification provides useful hints for their math-
ematical treatment and for the characterization of their solutions. The mathematically precise
formulation of the model equations relates the assumptions on the data of the problem, e.g.,
regularity of coefficient functions or smoothness of the domain and its boundaries, to mathe-
matical theory.
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Furthermore, for the numerical solution of the model equations different computational methods
can be used. This introduces another aspect related to the model description and the utilized
software, which might also be regarded as a math binding.

Application bindings. The universality of mathematical models allows for transferring models
from one application area to a different context. For example the heat flow model above can be
re-interpreted as model of diffusion processes of particles. In this case the quantities get a new
semantic meaning together with a new notation: the temperature T is the particle density u, the
heat conductivity λ becomes the diffusion coefficient D.

A second aspect is the usage of models as building blocks to describe coupled phenomena
like in thermistor models, which couple thermal and electric transport, or heat treatment of steel
which couples heat transport with phase transitions and elasticity. In these cases coefficient
functions are defined by solutions of supplemental differential equations, e.g., for thermistors
the Joule heat generated by a current flow enters the heat equation (1) as a source term f(x).

Both aspects are key features of mathematical modeling which are related to the abstraction
given by the mathematical language. They are the basis for the strength of mathematical mod-
eling and for the success of MMS as a third discipline between theory and experiment.

Connection to software and data. The application of a mathematical model, such as the
heat transport model, to a specific technical problem requires a mapping of mathematical ob-
jects such as coefficient functions to properties, or more precisely material parameters, of the
involved materials and boundaries. In our example these are the heat conductivity λ(x), the
heat transfer coefficient κ(x) and the heat capacity C(x). The numerical solution of the heat
transport problem requires the approximation of the continuous problem (1) by discretization
methods. This involves a geometric description of the simulation domain by suitable meshes.
Typically, the simulation results in numerical values of the temperature distribution T on the nu-
merical mesh constituting the output of the simulation software. Correspondingly, initial values
and the material data are the input for the software. Both, simulation results and input data,
constitute the numerical data part of the research data in MMS, see Figure 1. Certain mathe-
matical objects occurring in mathematical model have a semantical binding, namely of T being
the temperature, λ being the heat conductivity etc., but they also link input and output of the
utilized software and its interpretation.

5 Conclusions

We proposed to categorize mathematical models, scientific software and numerical data as
the research data in MMS requiring suitable information services for their management and
handling. For numerical data and scientific software the awareness of this fact in the MMS com-
munity is growing and suitable concepts and information services are emerging. However, for
the category of mathematical models, a corresponding definition and service is missing. We
highlighted the initial conceptual requirements for the definition of a suitable data model and its
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difficulties on the basis of the heat transport model. A unified approach to research data man-
agement that not only includes numerical data and scientific software but also mathematical
models can help to enhance future MMS publications by making them more concise. A digi-
tal corpus of mathematical models together with a suitable information service is necessary to
reduce the additional effort for the authors. On success its creation will be an important contri-
bution of applied math to the digital science agenda. Furthermore, it has the potential to reduce
today’s language barriers between disciplines and requires an interdisciplinary effort.
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