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Abstract

Many applications heavily rely on piecewise triangular meshes to de-
scribe complex surface geometries. High-quality meshes significantly
improve numerical simulations. In practice, however, one often has
to deal with several challenges. Some regions in the initial mesh
may be overrefined, others too coarse. Additionally, the triangles
may be too thin or not properly oriented. We present a novel mesh
adaptation procedure which greatly improves the problematic input
mesh and overcomes all of these drawbacks. By coupling surface
reconstruction via radial basis functions with the higher dimensional
embedding surface remeshing technique, we can automatically gen-
erate anisotropic meshes. Moreover, we are not only able to fill or
coarsen certain mesh regions but also align the triangles according to
the curvature of the reconstructed surface. This yields an acceptable
trade-off between computational complexity and accuracy.

1 Introduction

Countless numerical methods need to transfer information from a continuous
domain to discrete points on a grid. Most commonly this problem arises when
solving partial differential equations numerically but also it appears in the context
of surface approximation [16, 14, 24, 8] or medical image reconstruction [11].

Hence, finding optimal grids is of uttermost importance. Obviously, optimal
can mean many things. However, two desirable features stand out. On the one
hand, our grid should be built in such way that the data we are interested in
(for instance the solution of a partial differential equation) is approximated fairly
accurate. That is, we want to grasp finer details (for example along boundary
layers) as well as large-scale variations. On the other hand, we want to be able
to efficiently compute the discrete approximation and only use nodes which
enhance its quality.

This leads naturally in 2D and 3D to anisotropic grids which are able to
achieve a reasonable trade-off between accuracy and efficiency. Anisotropic grids
are often used in the context of finite element and finite volume methods and
thus appear very frequently in practical applications [13, 15, 12]. However, how
to obtain such an anisotropic mesh for a given application is a very open problem.
Unfortunately, not many numerical analysts focus on the art of designing precise
grids but rather on discretization techniques for the solution of the continuous
problem (e.g. the governing differential equation).

In this paper, we study how to automatically obtain curvature-adapted
surface meshes from low-quality ones. The initial mesh may be too coarse in
certain regions or too dense in others. Also, in practice one also has to deal
with not properly oriented triangles. While a strechted triangle is not per se
unacceptable, it should not be elongated in the direction where the curvature
varies a lot. Figure 1 shows what our method is capable of. The original mesh
on the left is extremely coarse and uniform. The adapted mesh, on the other
hand, is denser and refined where necessary. The stretched triangles reflect nicely
the curvature. For example, the curvature along the dashed arrows varies more
than along the corresponding solid ones. Hence, we need to refine more in the
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direction of the dashed arrows which means that the triangles will be stretched
along the solid arrows.

Figure 1: A coarse input mesh on the left and the adapted mesh using the novel
adaptation procedure on the right. Both figures show a bone from the vertebrae
mesh in Subsection 5.4.

The key idea of our method is to combine surface approximation by radial
basis functions with the higher dimensional embedding technique. Radial basis
functions (RBFs) have been used for decades in the context of multivariate data
approximation [10, 20, 26, 9]. Ironically, their main selling point is that they can
be used to interpolate unstructured data without relying on a mesh. Even though
they are most commonly used in the context of meshfree data approximation,
they sometimes have been employed in the context of mesh repair. Carr et al.
used polyharmonic radial basis functions to fill in incomplete meshes. Similarly,
Marchandise et al. [22] developed a method to repair meshes obtained from a
CAD model or an STL triangulation [4].

The higher dimensional embedding (HDE) was introduced by Cañas et al.
in [2]. Since then several authors have expanded their ideas [21, 5, 3]. HDE
produces an anisotropic triangular curvature-adapted surface mesh that fits
an input surface. The anisotropy is obtained by finding a higher-dimensional
space in which the mesh is assumed to be uniform and isotropic. Previously
other approaches based on metric tensor fields [16, 14] or minimizing objective
functionals [24, 8] have been studied. However, in order to be able to apply
both of these strategies one needs to have a priori or a posteriori knowledge of
the error, which depends on the problem itself. The HDE, on the other hand,
does not require any information on the error. It is solely based on information
provided by the embedding map.

This paper is organized as follows. After introducing the higher dimensional
embedding technique and radial basis functions in the second and third sections,
we present our novel surface remeshing approach in the fourth and supplement
it in the fifth section with extensive numerical studies and successfully apply it
to real-life problems.

For the rest of the paper, we will assume that the surface Γ is given implicitly
by the zero level set of some function F : Ω ⊆ R3 → R, i. e.

Γ =
{

(x, y, z)T ∈ Ω | F (x, y, z) = 0
}
, (1)

for some bounded domain Ω.
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2 Higher Dimensional Embedding

The higher dimension embedding technique fits a triangular surface mesh to a
given geometry by enlarging the space we are originally interested in. The key
assumption of HDE is that a uniform isotropic mesh in a higher-dimensional
space will correspond to an anisotropic mesh in a lower-dimensional space.

This concept is best explained with Figure 2. The left image shows a uniform
isotropic triangular mesh in R3. However, if projected onto R2 the mesh becomes
anisotropic which is shown in the picture on the right.

Figure 2: An isotropic mesh in the higher-dimensional space R3 (left) and the
corresponding anisotropic mesh in R2 (right). This picture encapsulates the key
idea behind the higher dimensional embedding technique [21].

To obtain an anisotropic curvature-adapted mesh of an input surface Γ ⊂ R3,
we define the embedding map Ψ : Γ→ R6 by

Ψ(x) = (x, y, z, σ nx, σ ny, σ nz)
T , (2)

where n = (nx, ny, nz)
T denotes the unit normal to Γ at x = (x, y, z)T and

σ > 0 is a constant that controls the influence of the normals in the embedding
map. For small σ the mapping Ψ is close to the identity in R3 embedded in
R6, i. e. Ψ(x) ≈ (x, y, z, 0, 0, 0)T . Larger values of σ put more emphasis on the
normal components of the surface Γ.

In the higher-dimensional space points on Γ are enriched with surface normal
information. Consider for instance two generic points a,b ∈ Γ and the edge ab.
If the surface is flat, the normals at the endpoints are the same. Consequently,
the length of the edge in R3, denoted with lab, coincides exactly with the length
measured in the higher-dimensional space l6dab. On the other hand, if the surface
is curved, the normals at the endpoints are different and l6dab becomes much
larger than lab.

2.1 Mesh Generation in Higher Dimensions

There are two established ways to build a uniform isotropic mesh in the higher-
dimensional space. In [21], the authors propose an approach based on the
Restricted Centroidal Voronoi Tessellation. Starting from the embedding defined
in (2), they compute the Voronoi Tessellation of an initial point set {pi}Ni=0. Then,
they optimize this tessellation to get a Restricted Centroidal Voronoi Tessellation,
i. e. a Restricted Voronoi Tessellation where pi = gi for all i = 1, 2, . . . N . Here,
gi denotes the centroid of the Voronoi cell associated with the point pi. The
triangular mesh is finally obtained by duality from this Voronoi diagram.
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This mesh generation strategy presents a couple of challenges. Firstly, the
computation and the optimization of the Restricted Voronoi Tessellation is
made in the higher-dimensional space, so it incurs a high computational cost.
Secondly, the sharp features of the input geometry are smoothed and over refined.
Moreover this method can produce invalid mesh with self intersection.

In [3, 5], a different method was proposed to construct a uniform isotropic
mesh in the higher-dimensional space. The idea is to exploit the standard scalar
product in the higher-dimensional space. Consider three points a, b and c on
the surface Γ, then the lengths and the angles in the higher-dimensional space
are defined via

l6dab :=
∣∣∣∣Ψ(a)−Ψ(b)

∣∣∣∣
6d

:=

√(
Ψ(a)−Ψ(b),Ψ(a)−Ψ(b)

)
6d

,

(3)

cos
(
θ6d
acb

)
:=

(
Ψ(a)−Ψ(c),Ψ(b)−Ψ(c)

)
6d

l6dac l
6d
bc

.

Now, one can fix a target edge length l6d in the higher-dimensional space and
modify an initial mesh Γini

h in such a way that

l6de ≈ l6d and cos
(
θ6d
α

)
≈ 1

2
∀e ∈ E and ∀α ∈ A , (4)

where E and A are the sets of edges and angles of all mesh triangles.

Remark 1 The method proposed in [3, 5] does not embed the mesh in R6. Only
the lengths and angles are computed in the higher-dimensional space. The mesh
is modified in R3 by standard mesh operations for triangular elements such as
edge flipping, edge splitting/contraction and node smoothing.

This method overcomes all of the previously discussed drawbacks. It is
computationally cheaper, the sharp features of the input mesh are preserved and
no triangle of the resulting mesh intersects with itself [5].

3 Geometry Reconstruction with Radial Basis
Functions

Radial basis functions are commonly divided into two categories: positive definite
and conditionally positive definite functions. We state both definitions here.

Definition 1 (Positive definite function) Let Φ: Rd → R be a continuous
function. We define the matrix AΦ,X via its ijth entry

aij = Φ(xi − xj) ,

for any data set X = {x1, . . . ,xN} ⊆ Rd of arbitary length N ≥ 1. The function
Φ is called positive definite if the quadratic form

cTAΦ,Xc (5)

is positive for all vectors c ∈ RN \ {0}.
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Definition 2 (Conditionally positive definite function) Let Pm(Rd) de-
note the space of d variate polynomials with absolute degree at most m and
dimension q := dimPm(Rd) =

(
m−1+d

d

)
. For a basis p1, . . . , pq of this space,

define the N × q polynomial matrix PX through its ijth entry

pij = pi(xj) ,

where xj ∈ X. The function Φ is called conditionally positive definite of order
m if the quadratic form (5) is positive for all X and for all c ∈ RN \ {0} which
additionally satisfy the constraint PTXc = 0.

One typically speaks of radial basis functions if one additionally assumes
that Φ is a radial function, i.e. there exists a function φ : R≥0 → R such that
Φ(x) = φ(‖x‖). Trivially, a positive definite function is also a conditionally
positive definite function of order m = 0 and conditionally positive functions of
order m are also conditionally positive for any order higher than m. Hence, the
order usually shall denote the smallest positive integer m.

Suppose we want to recover a function f : Rd → R known on some data set
X = {xi}Ni=1. We can solve the interpolation problem

f(xi) = s(xi), 1 ≤ i ≤ N (6)

for the interpolant s : Rd → R using radial basis functions by making the ansatz

s(x) =
N∑

j=1

αjΦ(x− xj) (7)

in the case of a positive definite Φ and

s(x) =

N∑

j=1

αjΦ(x− xj) +

q∑

k=1

βkpk(x) (8)

in the case of conditionally positive definite functions. The coefficients α =
(αj) ∈ RN ,β = (βk) ∈ Rq need to be determined by applying the interpolation
condition (6) to either (7) or (8). Hence one needs to solve either

AΦ,Xα = f or

(
AΦ,X PX
PTX 0

)(
α
β

)
=

(
f
0

)
, (9)

where f = (f(xj)).
For positive definite functions, the linear system is positive definite by con-

struction. Hence the coefficients can be determined uniquely. It is also not
difficult to verify that the second choice for an interpolant leads to unique coeffi-
cients in the case of conditionally positive definite functions, see [26, Theorem
8.21] for details. In the case of conditionally positive definite functions the
Courant-Fischer theorem guarantees that at least N−q eigenvalues of the matrix
AΦ,X are positive.

Another criterion to classify RBFs is whether they have compact support or
not. This is an advantageous feature for very large data sets since the matrix
AΦ,X becomes sparse if the support radius is small enough. It is well known that
for compactly supported RBFs the polynomial part in (8) has to vanish. There
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Global support Compact support (d = 3)

e−r
2

Gaussian φ3,1(r) = (1− r)4
+(4r + 1) C2√

1 + r2 Multiquadric φ3,2(r) = (1− r)6
+(35r2 + 18r + 3) C4

1/
√

1 + r2 Inv. Multiquadric φ3,3(r) = (1− r)8
+(32r3 + 25r2 + 8r + 1) C6

r3 Polyharm. Spline due to Wendland [25]

Table 1: Common examples of globally and compactly supported RBFs. All
functions are positive definite except the polyharmonic spline which is condi-
tionally positive definite for d = 3 with (minimal) order 2. For positive r the
truncation operator (·)+ leaves its argument unaltered. For negative arguments
it is set to zero. The last row indicates the regularity of the Wendland RBFs.

are no nontrivial conditionally positive definite functions with compact support
[26, Theorem 9.1]. Wendland [25] presented a class of compactly supported
radial basis functions which consist of polynomials within their support. The
degree of the polynomials for a given space dimension and smoothness parameter
is minimal.

Common examples of RBFs are shown in Table 1.

3.1 Surface reconstruction with RBFs

We cannot simply replace the target function f in (6) with the function F whose
zero level set describes the implicit surface (1) since the right hand sides of the
linear systems (9) vanish which implies that the coefficients vanish as well. Carr
et al. therefore made the additional assumption that the normal vectors are
known. One then can also prescribe on-surface and off-surface points. Assume
that the points on the surface are denoted with X = {x1, . . . ,xN} and the
corresponding normal vectors with M = {n1, . . . ,nN}. Then one can define the
surface interpolation problem

s(xi) = F (xi) = 0, 1 ≤ i ≤ N (on-surface points)

s(xi + εni) = F (xi + εni) = ε, N + 1 ≤ i ≤ 2N (off-surface points)
(10)

for some parameter ε > 0. Since the right hand side is no longer zero, we find now
nontrivial solutions to the linear systems (9). Actually, it is enough to define just
one off-set point to get a nontrivial solution. Moreover it is even possible to add
more constraints. One possibility is to consider s(xi − εni) = F (xi − εni) = −ε
for 2N + 1 ≤ i ≤ 3N .

3.2 Partitioning the RBF Interpolant

To reduce the computational cost when solving the linear system (9) or when
projecting points onto the surface (see Subsection 4.3) we consider a disjoint
partition of the surface

Γinih = Γini1,h ∪ Γini2,h ∪ . . . ∪ ΓiniK,h (11)
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(c) Condition numbers
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(d) Legend

Figure 3: Comparision of different RBFs for varying mesh norms for ε = 1/8
and the implicit function F given by (13). The arguments are scaled by 1/10.

for K ∈ N. Let Xi and Mi denote the points on the surface patch Γinii,h and the
corresponding normals. Now we can solve the interpolation problem (10) locally
defined on each patch Γinii,h and obtain local interpolants si whose zero level sets

Γsi0 approximate Γinii,h .
Then the global interpolant is defined as

s(x, y, z) :=





s1(x, y, z) if (x, y, z)T ∈ Γini1,h

s2(x, y, z) if (x, y, z)T ∈ Γini2,h
...

...
sK(x, y, z) if (x, y, z)T ∈ ΓiniK,h

. (12)

3.3 Errors and conditioning of the RBF interpolant

In order to study the approximation quality and the conditioning of the RBF
interpolant, we choose a simple ellipsoid surface which is given by the zero level
set of the function

F (x, y, z) = x2/4 + y2/4 + z2/0.2− 1. (13)

The reason for this relatively simple surface is that it allows to compute the
error between our approximation and the exact solution. For nested point sets
on the ellipsoid where the mesh norm h (the radius of the largest ball which
does not contain any data point) is reduced each time by a factor of two, we
see the results in Figure 3. The L2 and L∞ errors of all radial basis function
approximations considered seem to converge at least quadratically.

The condition numbers, however, behave quite differently. Whereas all
globally supported radial basis functions behave eventually roughly like h−4, the
condition numbers of the compactly supported radial basis functions grow only
very mildly (which is not even visible in the log plot). As mentioned before,
this is not a surprise as their compact support leads to a sparse matrix system.
Even though these results might not yet capture the long term behavior, they
are from a computational point of view more interesting as one would like to
use as few points as possible.

We report here that other surfaces (sphere and one-sheeted hyperboloid)
have been examined with similar results: at least quadratic convergence for both
errors and a growth in condition number of at least h−4.
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4 A Novel Anisotropic Surface Remeshing Ap-
proach

In this section, we describe in detail the novel anisotropic curvature adapted
remeshing procedure. Starting from a conformal triangular surface mesh Γinih ,
we proceed as follows:

(1) Build RBF approximation Γs0 of the initial surface mesh Γinih (Sec-
tion 4.1) and

(2) Construct final adapted mesh Γfinh via HDE including:

• several local mesh modifications (Section 4.2) and

• projections onto the surface Γs0 (Section 4.3)

4.1 Approximation of Γs
0

When constructing the continuous approximation of Γinih , the user has to specify
the type of radial basis function Φ, the parameter ε, the number of partitions
K and the overlap parameter Ov . In order to setup the interpolation problem
defined in (10), we use the vertices of Γinih as interpolation nodes X. By averaging
the normals of the triangles that share a generic vertex xi, we define the normals
ni at this point and obtain the set M . Finally, we construct and solve the linear
system (9) to derive the continuous interpolant s.

4.2 Remeshing Algorithms

Next, using Algorithm 1 we modify Γinih so that it becomes a uniform isotropic
mesh in the higher-dimensional space. The algorithm takes two inputs: the
parameter σ, appearing in the embedding map Ψ, as well as the target length in
the higher-dimensional space l6d. It employs several mesh modifiction procedure
such as edge flipping, edge contraction, edge splitting and vertex smoothing [19,
18, 6, 16], computing only the edge lengths and angles in the higher-dimensional
space. We explain these mesh modificatons in the following paragraphs.

Edge-Flip. Consider two triangles ∆abc and ∆bad whose common edge is
ab. Flipping the edge ab creates two new triangles ∆cda and ∆dcb and replaces
the edge ab with cd, see Figure 4.

It is not always possible to flip the edge ab in a triangular surface mesh. The
edge ab is flippable if it satisfies the following conditions:

(i) ab does not belong to the boundary of the mesh;

(ii) cd does not already belong to the mesh;

(iii) the internal angles of the triangles satisfy

θabc + θabd < π and θbac + θbad < π ;

(iv) the angle between the normals of the triangles ∆abc and ∆bad is lower
than some threshold value. Here we consider 80◦.
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Algorithm 1 The anisotropic mesh adaptation.

Improve(Γinih , maxIter)

1: for i ∈ {1, ..., maxIter} do
2: repeat
3: contract all edges which satisfy l6de < 0.5 l6d;
4: smooth 30% of vertices;
5: flip edges if Equation (14) holds;
6: until l6de ≥ 0.5 l6d for all edges e
7: split all edges which satisfy l6de > 1.5 l6d;
8: flip edges if Equation (14) holds;
9: smooth 30% of vertices;

10: flip edges if Equation (14) holds;
11: end for

(a) (b)

Figure 4: Example for an edge flip (a) and two neighboring triangles in (b) that
do not satisfy criterion (iii).

If an edge ab satisfies all these conditions, it is flippable. We dedice to
actually flip the edge ab if the relation

θ6d
acb + θ6d

adb > π (14)

holds, where θ6d
acb and θ6d

adb are the angles measured in the higher-dimensional
space. This condition is inspired by the well-known Delaunay criterion, reinter-
preted in the higher-dimensional space [7].

Edge contraction and edge splitting. We try to approximately match
all edge lengths of our mesh to a given target edge length l6d by

• contracting the edge e if l6de < 0.5 l6d,

• splitting the edge e if l6de > 1.5 l6d,

• and otherwise applying neither edge contraction nor edge splitting.

Node Smoothing. Unlike the previous mesh modification procedures, this
operation does not change the topology of the mesh. It simply moves a point x
to a new location x′. This new location can be computed as follows:

x′ = x + α
∑

xi∈ωx

w(d(x ,xi))ui . (15)
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Here α is a scaling parameter, w : R→ R is a weight function, ωx is the set of
vertices that are connected to the old point x, ui denote the unit vectors that
point from x to xi and d is the distance between x and xi.

Different choices of α and w in (15) lead to different node smoothing methods.
Here we use the node smoothing method proposed in [5]. That means, the
distances d are computed in the higher-dimensional space and the parameter α
is set to 1/(

∑
xi∈ωx

w(d(x ,xi))) and w(x) := (1− x4)e−x
4

as introduced in[1].

4.3 Projection of nodes onto Γs
0

In this section, we describe how we apply edge splitting and edge contraction
while constraining all new points onto the RBF surface Γs0. Applying these
operations naively will fail.

Projection after Edge Splitting or Node Smoothing

If we apply edge splitting or node smoothing on a triangular surface mesh, it is
not a priori guaranteed that these operations yield a new point that lies on the
reconstructed surface Γs0.

Consider, for instance, the edge splitting operation. If we simply halve the
edge, the new point lies only under very special circumstances on Γs0. Moreover,
since the new point is usually not on the surface, the unit normal is not defined.
Node smoothing leads to a similar problem.

To avoid this issue, we exploit a projection algorithm. If we split an edge or
move a point using node smoothing, we project the resulting point onto the RBF
surface reconstruction Γs0. Hartmann [17] provides a robust algorithm to project
a point onto a surface defined via the zero level set of a function. This procedure
is a combination of evaluating foot points on tangent planes and approximating
foot points on tangent parabolas. It requires only first order derivatives and uses
a steepest descent method. In our case, the surface is described via Γs0, i. e. the
zero level set of the interpolant s. Figure 5 provides a two dimensional example
of node projection after edge splitting.

(a) (b) (c)

Figure 5: Figure (a) shows a coarse input mesh (solid line) which approximates
the reconstructed curve (dashed line). In Figure (b) the edges are halved. The
midpoints v1 and v2 do not lie on the reconstructed curve. Finally, Figure
(c) shows how the points are projected onto the dashed curve using a steepest
descent method which yields new points v∗1 and v∗2.
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Edge Contraction to End Point

An edge e can be contracted to different locations. We decide to contract it
to one of the endpoints [7] to avoid having to project this point onto Γs0. The
endpoints lie on Γs0 by construction where the normals are well-defined. Figure 6
provides a two-dimensional example.

(a) (b) (c)

Figure 6: Figure (a) shows a fine input mesh (solid line) which approximates the
reconstructed curve (dashed line). In Figure (b), the edge v1v2 is contracted
to its midpoint v, which does not lie on the reconstructed curve. However, in
Figure (c) the edge v1v2 in contracted to the end point v1 which by construction
automatically lies on the dashed curve.

Defining normals on Γs
0

Consider the interpolant s and the RBF approximation of the discrete input
surface Γs0. We use the gradient components of the function s to obtain the unit
normal of Γs0 at a point x.

Let (∇s)x, (∇s)y and (∇s)z be the x, y and z the components of s, respec-
tively. Then, the unit normal n = (nx, ny, nz)

T at point x is defined as

nx :=
(∇s)x
||∇s|| , ny :=

(∇s)y
||∇s|| , nz :=

(∇s)z
||∇s|| , (16)

where ||∇s|| denotes the standard Euclidean norm of ∇s. We point out that by
construction ||∇s|| does not vanish on Γs0.

Overlapping and Projection

To reduce the computational effort, we may choose to partition the domain
according to (11). Then the interpolant s whose zero level set defines the surface
Γs0 is given by (12).

Each time we project some node onto the surface, we have to determine the
local function si on which we want to project. However, near the boundary
between patches the node can be projected on more than one local interpolant.
Also having to determine which local interpolant to project on involves a costly
point search algorithm. Unfortunately, we cannot use a standard nearest-neighbor
search since it is not a priori guaranteed that the closest reconstructed patch is
the one we want to project our point on.

For a given patch Γinii,h with 1 ≤ i ≤ K, we assign to each of its points the
flag i. Whenever we halve an edge, we have to project the new point on one
of the patches. If both endpoints belong to the same patch, the new point
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inherits the same flag and we project it on this patch. On the other hand, if the
endpoints have different flags, say i and j, we assign to the new point the flag
k := min{i, j} and project it on Γsk0 .

(a) (b)

(c) (d)

Figure 7: A two-dimensional example illustrating the discontinuity arising from
projecting on a partitioned surface. The dashed lines are the reconstructed
curves. For each point we denote the patch it belongs to by a number (a). When
we split an edge whose endpoints belong to different patches, we choose the
smaller one, leading to a discontinuity (a kink) in the surface (b). The third
figure shows the new curves constructed from overlapping interpolation point
sets (c). This considerably reduces the discontinuity along the boundary between
both patches (d).

This strategy will avoid the onerous searching procedure, but it may lead
to discontinuities near the boundary of two patches, see Figure 7 (a) and (b).
Hence, we introduce overlapping patches. Consider a partition Γinii,h and the
set of vertices that lie on its boundary. We add to the sets Xi and Mi the
vertices of Γinih which share a triangle T that has at least one vertex on the
boundary of the patch ∂Γinii,h , see Figure 8. This process is usually also done for
the neighboring patch, creating two patches which now overlap. If necessary, we
successively increase the overlap thus enlarging the sets Xi and Mi, see Figure 8
(c) and (d). The parameter Ov will count how many overlap layers have been
added. The impact of this parameter on the global approximation is studied in
Subsection 5.1.1.

5 Numerical Examples

In the following, we study different input meshes to assess the quality and
robustness of our new anisotropic remeshing method, described in Section 4.
We start by examining three model geometries to analyze the impact of the
different parameters such as the overlap parameter Ov , the edge length l6d and
the embedding parameter σ on the final mesh Γfinh . Additionally, we show that
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Γinih and Ov =0 points to be added Ov =1 Ov =2

(a) (b) (c) (d)

Figure 8: A simple example of the overlap for a structured mesh on a square.
In (a) we show the patch Γini1,h. We show in (b) the patch Γini1,h, its boundary

∂Γini1,h and the points which will be added are highlighted with circles. The cases
Ov = 1 and Ov = 2 are provided in (c) and (d), respectively.

our method can not only be used to fill in more detail but also to thin out out
very complex meshes. In the last subsection, we apply our method to real-life
examples from medical applications for which we would like to build anisotropic
meshes.

To assess the degree of anisotropy of our mesh, we compute the global aspect
ratio

qΓh
:= max

T∈Γh

qT , (17)

where qT := RT /(2 rT ) is the so called aspect ratio of the triangle T . Here RT and
rT are the radii of the circumscribed and inscribed circle of T , respectively [23].
We observe that qT ≥ 1 by construction. If qT = 1, then T is an equilateral
triangle, while if qT � 1, the triangle T is stretched.

5.1 Sensitivity Analysis of the Parameters

We analyze the most relevant parameters in the adaptation procedure. More
precisely, in Subsection 5.1.1, we focus on the influence of the Ov parameter
when constructing Γs0. In Subsection 5.1.2, we conduct a sensitivity analysis of
the edge length l6d and the embedding parameter σ. Throughout this subsection,
we consider the discrete input surface shown in Figure 9 (left).

5.1.1 Overlap Analysis

We study more carefully the influence of the overlap parameter Ov . This is a key
parameter when dealing with a partition (11) since it reduce the discontinuities
of Γs0 along the patch boundaries. To understand its effect on the reconstructed
geometry, we use thin plate splines, ε = 0.1 and K = 20.

From Figure 9 we infer that the smoothness of the approximation increases
for higher values of the parameter Ov . Heuristically, an overlap parameter of 2
or 3 yields acceptable approximations.
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initial data Ov = 0 Ov = 1 Ov = 2

Figure 9: The cat geometry used for the sensitivity analysis of the overlap
parameter Ov , the edge length l6d and the embedding parameter σ. The RBF
surface reconstruction Γs0 for the cat with different values for Ov .

5.1.2 Mesh Adaptation Parameters

Next, we give a sensitivity analysis of the target length l6d and the embedding
parameter σ. To construct Γs0, we use as before thin plate splines, ε = 0.1 and
K = 20. Additionally, we set Ov = 2 and consider the following sets of values

σ ∈ {1, 5, 10} and l6d ∈ {20, 15, 10} .

In Figure 11, we show the resulting meshes and provide a quantitative analysis in
Table 2. Our remeshing algorithm behaves as expected. If we fix the parameter σ
and decrease l6d, the resulting mesh becomes finer, see the columns in Figure 11
and Table 2.

On the other hand, if we fix the target edge length l6d and increase the
parameter σ, we observe a similar behavior, see the rows of Figure 11 and
Table 2, respectively. The lengths in the higher-dimensional space (3) grow when
increasing the parameter σ, which implies there is a higher sampling to achieve
the same target embedded length. However, since σ controls the influence of the
normals in the embedding map, the sampling is localized only in high curvature
regions, see the details in Figure 10.

l6d \σ 1 5 10

20
qΓh

2.597e+00 qΓh
1.449e+01 qΓh

3.567e+01
#ele. 1826 #ele. 3318 #ele. 7743

15
qΓh

1.684e+00 qΓh
8.441e+00 qΓh

2.076e+01
#ele. 2142 #ele. 4960 #ele. 13 248

10
qΓh

2.419e+00 qΓh
1.914e+01 qΓh

2.935e+01
#ele. 3264 #ele. 10 029 #ele. 27 943

Table 2: Number of elements and global aspect ratios qΓh
for different values of

σ and l6d.
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σ = 1 σ = 5 σ = 10

Figure 10: A detail of the cat for l6d = 15 and different values of σ. In this
region the normals vary greatly. Hence, the mesh adapation procedure refines
more and more for increasing values of σ.

5.2 Bunny

We examine the well-known Stanford bunny, depicted in Figure 12. To construct
Γs0, we use thin plate splines, ε = 0.001, K = 200, Ov = 3. We run the
anisotropic adaptation procedure with l6d = 0.001 and σ = 1.0. In Figure 12,
we show both the initial and the resulting mesh. The resulting mesh is strongly
anisotropic, in fact the global aspect ratio qΓh

is 3.989e+02 and it is more refined
than the initial one. While the initial mesh has 69 451 elements, the final one
has 110 350 triangles.

The triangles are aligned and stretched according to the curvature of the
surface. This can be clearly seen when zooming in on the ears of the bunny, see
Figures 13. In the initial mesh Γinih , the triangles are too big to capture the helix
of the bunny’s ears and their orientation and shape do not reflect the curvature
of the surface. However in the final mesh Γfinh all these features disappear.

Moreover, the final anisotropic adapted mesh makes details in the mesh more
apparent. For instance, unlike for the initial mesh Figure 12 (left), finer details
in the fur of the bunny are clearly visible in the final mesh, see Figure 12 (right).

5.3 Lucy

In both previous examples, we started from a coarse initial mesh that poorly
approximates the input geometry. However, our mesh anisotropic mesh adapta-
tion procedure can also be used to simplify a dense initial mesh, coarsening it in
regions with little curvature variation.

We consider the geometry shown in Figure 14. This mesh is another well-
known benchmark in surface mesh adaptation (”Lucy”). Here the mesh is so
fine that one would not be able to see the faces of the triangles because of
the density of the edges, see Figure 14 left. Hence we only show the faces of
the surface without the edges. To construct the surface approximation, we use
thin plate splines, ε = 0.1, K = 3000, Ov = 3 and the σ = 10. We point out
that the number of partitions is rather high. If we want to reduce the number
of partitions or avoid dealing with large dense linear systems, we can employ
compactly supported RBFs.

The initial mesh offers a very fine approximation of the input geometry,
but managing this huge data set requires an unacceptably high computational
effort. By choosing a large target length l6d our anisotropic adaptation procedure
effectively becomes a mesh simplification method. The detail in Figure 15 show
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σ = 1 σ = 5 σ = 10

Figure 11: Adapted cat meshes for different values of σ (columns) and l6d =
20, 15, 10 (rows, from top to bottom).

that the shape of the initial mesh is still preserved, however, using considerably
fewer elements. To be more precise, we reduce the number of elements by 73%
for l6d = 30 and by 87% for l6d = 50. The final meshes are more anisotropic
compared to the initial one. We increase the global aspect ratio qΓh

from 1.21
to 95.83 and to 65.04, for l6d = 30 and l6d = 50, respectively.
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initial mesh final mesh

Figure 12: The initial bunny mesh (left) and the resulting anisotropic adapted
one (right).

initial mesh final mesh

Figure 13: A detail of the initial bunny mesh (left) and the same detail for the
anisotropic adapted one (right).

5.4 Real-life Examples

Finally, we study two real-life applications from magnetic resonance imaging
processes.

Bronchus

This mesh represents the trachea and the main branches of the bronchi [11].
The geometry is rather complex. It consists of a sequences of branches that
become smaller at each bifurcation. Triangles in the initial mesh are not aligned
according to the curvature of the geometry, see Figure 16 and the detail in
Figure 17.

The surface Γs0 is built using thin plate splines, ε = 0.1, K = 200, Ov = 3.
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initial mesh l6d = 30 l6d = 50

Figure 14: The “Lucy” mesh with 510 180 elements (without edges) as well as
the thinned out meshes for l6d = 30 and 141 674 elements as well as for l6d = 50
and 67 888 elements.

initial mesh l6d = 30 l6d = 50

Figure 15: A detail of the “Lucy” mesh which is thinned out according to
different target edge lengths.
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We set σ to 1 and consider three different target edge lengths

l6d ∈ {0.25, 0.5, 1.0} .
After applying our remeshing procedure the previously problematic trian-

gles disappear and are replaced by new curvature-aligned ones. This example
underlines the flexibility of the proposed adaptation procedure. In fact, it is
possible to achieve different tasks by tuning the parameter l6d. On the one
hand, if we consider a large value for l6d, the remeshing process becomes a mesh
simplification method, see the detail in Figure 17 corresponding to l6d = 1.0. On
the other hand, if we consider a relatively short target edge length, our algorithm
creates a surface mesh that is smoother and finer than the initial one, see the
detail in Figure 17 corresponding to l6d = 0.25. Moreover, if we tune the target
length in such a way that we obtain approximately the same amount of elements
as in Γinih , the computational effort to deal with this mesh is the same as before
but its triangles are curvature-aligned. See Figure 17 with target edge length
l6d = 0.5.

This observation is numerically verified by the data in Table 3. Here we state
the number of elements in the initial and adapted meshes for different target
lengths. In this table, we additionally provide the values of the global aspect
ratio qΓh

which quantify the degree of anisotropy.

initial mesh l6d = 0.5 l6d = 1.0 l6d = 0.25

#ele.
42 692 34 954 12 026 132 784
100% 82% 28% 311%

qΓh
6.00e+01 1.28e+02 7.53e+02 7.08e+02

Table 3: The number of elements for the bronchus meshes. We provide the
percentage of the triangles in the mesh with respect to the number of triangles
in the adapted meshes as well as the global aspect ratios.

Vertebrae

Finally, we look at a mesh which represents one vertebra of the dorsal spine.
The triangles in the Γinih are highly irregular. Many regions are too coarse and
nonsmooth, see the initial mesh in Figure 18 and the detail in Figure 19.

The surface Γs0 is built using thin plate splines, ε = 0.1, K = 19, Ov = 2.
We set σ to 5 and consider three different edge lengths

l6d ∈ {0.5, 1.5, 3.0} .
The triangles in the resulting meshes are perfectly oriented and stretched

to fit the input geometry, which can be seen in Figure 19. Even though some
regions in the input mesh are too coarse and miss some details, in the final
adapted meshes these undesirable features completely disappear, see Figure 19.
Moreover, the smaller l6d, the smoother the approximation of the input surface.

6 Conclusion

We presented a new anisotropic surface remeshing algorithm, which can be used
to improve problematic inputs coming from discrete surface data sets. The
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initial mesh l6d = 0.5

l6d = 1.0 l6d = 0.25

Figure 16: The initial bronchus mesh, courtesy Fetita et al. [11], and the adapted
ones for different target edge lengths.

anisotropy is guided by the curvature of the surface. Depending on the target
edge length parameter, our new method becomes either a mesh simplification, a
surface remeshing or a fill-in algorithm. In particular, when the initial mesh is
extremely coarse, the algorithm increases the resolution of the poor initial data.
The influence of the different parameters in the algorithm were studied and
tested on several classical and even real-life meshes. In this paper, we assume
that the discrete data represent a smooth surface, future research may look at
discrete data which contain sharp features.
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initial mesh l6d = 0.5

l6d = 1.0 l6d = 0.25

Figure 17: A detail of the initial bronchus mesh and the adapted ones for different
target edge lengths.
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