
Weierstraß-Institut

für Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Numerical methods for drift-diffusion models

Patricio Farrell, Nella Rotundo, Duy Hai Doan, Markus Kantner,

Jürgen Fuhrmann, Thomas Koprucki

submitted: May 18th, 2016 (revision July 8th, 2016)

Weierstraß-Institut
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: patricio.farrell@wias-berlin.de

nella.rotundo@wias-berlin.de
duyhai.doan@wias-berlin.de
markus.kantner@wias-berlin.de
juergen.fuhrmann@wias-berlin.de
thomas.koprucki@wias-berlin.de

No. 2263

Berlin 2016

2010 Mathematics Subject Classification. 65N08, 35K55.

Key words and phrases. Scharfetter-Gummel scheme, thermodynamic consistency, Drift-diffusion equations, non-
Boltzmann statistic distributions, diffusion enhancement.

This work has been supported by ERC-2010-AdG no. 267802 Analysis of Multiscale Systems Driven by Function-
als (N.R.), by the Deutsche Forschungsgemeinschaft DFG within CRC 787 Semiconductor Nanophotonics (T.K.,
N.R., M.K) and partially funded in the framework of the project Macroscopic Modeling of Transport and Reaction
Processes in Magnesium-Air-Batteries (Grant 03EK3027D) under the research initiative Energy storage of the
German Federal government.



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/



Abstract

The van Roosbroeck system describes the semi-classical transport of free electrons
and holes in a self-consistent electric field using a drift-diffusion approximation. It became
the standard model to describe the current flow in semiconductor devices at macroscopic
scale. Typical devices modeled by these equations range from diodes, transistors, LEDs,
solar cells and lasers to quantum nanostructures and organic semiconductors. The report
provides an introduction into numerical methods for the van Roosbroeck system. The main
focus lies on the Scharfetter-Gummel finite volume disretization scheme and recent efforts
to generalize this approach to general statistical distribution functions.
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1 Introduction
The semiconductor technology is undeniably one of the most important branches in mod-
ern industry. Apart from its obvious significance to our daily lives, this technology is an
excellent example of a broad collaboration among various disciplines. The development of
novel technologies and devices has not only been driven by engineers, but also by physi-
cists, mathematicans and numerical analysts. On the one hand, rigorous mathematical
models allow sophisticated predictions which might be difficult to observe experimentally.
On the other hand, numerical simulations have the potential to optimize device designs
without the costly and time-consuming development of prototypes.

In 1950, van Roosbroeck introduced the fundamental semiconductor device equations
[1] as a system of three nonlinear coupled partial differential equations. They describe
the semi-classical transport of free electrons and holes in a self-consistent electric field
using a drift-diffusion approximation. Since then, the so-called van Roosbroeck system
(frequently also called drift-diffusion system) became the standard model to describe the
current flow in semiconductor devices at macroscopic scale. Typical devices modeled by
these equations range from diodes and transistors to LEDs, solar cells and lasers [2,
3]. In recent years, the emergence of quantum nanostructures [4, 5, 6, 7] and organic
semiconductors [8, 9, 10] has invigorated the research activities in this area.

In this chapter, we will focus on solving the van Roosbroeck system numerically.
From a mathematical point of view, the challenge lies in the strong nonlinearities, the
drift dominated nature of the underlying physics, the formation of internal and bound-
ary layers as well as the need to accurately mirror qualitative physical properties such
as nonnegativity of carrier densities and consistency with thermodynamical principles.
The finite difference scheme invented by Scharfetter and Gummel [11] was the first to
deal appropriately with most of these difficulties for charge carrier densities described
by Boltzmann statistics. Later on, Fichtner, Rose and Bank [12] extented it to higher
dimensions as a finite volume scheme, providing geometric flexibility. Selberherr com-
bined a lot of these results along with his own contributions in his textbook [13] which
has become one of the standard reference works in the field.

However, often the Boltzmann approximation is insufficient and one has to impose
Fermi-Dirac statistics or other constitutive laws for the charge carrier densities. For this
reason, we present recent attempts to generalize the Scharfetter-Gummel approach while
still reflecting the physics correctly.

In order to enable readers not familiar with semiconductor simulations to quickly
grasp the main points in the discretization process of the van Roosbroeck system, we start
by studying a one-dimensional problem in Section 2. Even though we have to postpone
some of the solid state physics to the third section, we can already introduce many key
concepts of the standard finite difference ansatz proposed by Scharfetter and Gummel
which we will interpret as a one-dimensional finite volume scheme.
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1 Numerical solution of the one-dimensional stationary semiconductor equations 2

In Section 3, we introduce the full van Roosbroeck system in higher spatial dimen-
sions along with its physical concepts. In Section 4, we look at its numerical solution. We
present the two-point flux finite volume method for the stationary case which allows to
use the Scharfetter-Gummel scheme in higher dimensions and discuss its generalization
to more general carrier statistics. The remaining sections are devoted to special numer-
ical aspects: nonlinear solvers, mesh generation, time stepping, the correct computation
of terminal currents and the finite element method. In the final section, we discuss gen-
eralizations of the approach and its embedding into more complex physical models.

2 How to get started: Numerical solution of the one-
dimensional stationary semiconductor equations

This section serves as a quick introduction to convey the main idea behind the van Roos-
broeck system and its discretization. The van Roosbroeck system consists of three equa-
tions modeling the charge carrier flow as well as the electrostatic potential distribution
in a semiconductor device. However, since the physics behind these equations is rather
cumbersome and the focus of this chapter are numerical methods, we will omit some of
these physical details for now and start with a relatively simple 1D problem. Thus, we
can highlight the key elements (and difficulties!) in the discretization of the van Roos-
broeck system. This approach may appeal to newcomers to the field of optoelectronics.
Experienced readers may jump directly to Section 3, where we will dive into the physical
meaning of this model.

Here, we wish to model the stationary state of a one-dimensional semiconductor de-
vice consisting of a homogeneous material on an interval ≠= [0,L] with Ohmic contacts
at each end. This configuration already covers the simulation of p-n and p-i-n junctions.

2.1 One-dimensional van Roosbroeck model
The one-dimensional stationary van Roosbroeck system consists of three nonlinear ordi-
nary differential equations for the unknown electrostatic potential √(x), the quasi Fermi
potential for electrons 'n(x) and the quasi Fermi potential for holes 'p(x). It links Pois-
son’s equation for the electric field to the continuity equations for carrier densities as
follows

° d
dx

µ

"s
d
dx

√

∂

= q
≥

C+ p(√,'p)°n(√,'n)
¥

, (1a)

d
dx

jn = qR(√,'n,'p), (1b)

d
dx

jp =°qR(√,'n,'p). (1c)

The fluxes or current densities are given by

jn =°qµnn(√,'n)
d
dx

'n and jp =°qµp p(√,'p)
d
dx

'p. (2)

The electron density n and the hole density p are related to the electric potential √ as
well as the quasi Fermi potentials of electrons and holes via

n(√,'n)= Nc exp
µ

q(√°'n)°Ec

kBT

∂

and p(√,'p)= Nv exp
µ q('p °√)+Ev

kBT

∂

. (3)



2 Numerical solution of the one-dimensional stationary semiconductor equations 3

We stress here that in (3) we have used the so-called Boltzmann approximation. In
general, the exponentials will be replaced by some monotonically increasing statistical
distribution function F . This function will be discussed in greater detail in Section 3.

Next, we explain the constants and functions in the van Roosbroeck system. The ele-
mentary charge q and the Boltzmann constant kB are universal constants. The (absolute)
dielectric permittivity ! s = ! 0! r is given as the product of the vacuum dielectric permittiv-
ity ! 0 and the relative permittivity of the semiconductor ! r in static (low frequency) limit.
The carrier mobilities µn and µ p, the conduction and valence band densities of states Nc
and Nv as well as the conduction and valence band-edge energies Ec and Ev are assumed
to be constant even though in general they can vary with the material (for example due
to abrupt or graded heterojunctions). The temperature T is also assumed to be constant;
in general it can be space and even time dependent. The doping profile C = C(x) describes
material properties and the function R(" ,# n,# p) models the recombination and genera-
tion of electron-hole pairs. The electric field E is determined by the derivative (in higher
dimensions the gradient) of the electrostatic potential

E = !
d
dx

" ex,

where ex denotes the unit normal along the x axis. A more detailed discussion on the
physics behind these different quantities will be given in Section 3.

In the literature, authors frequently use a different set of unknowns for the van Roos-
broeck system by replacing the quasi Fermi potentials with the carrier densities n and
p. However, we prefer to use the quasi Fermi potentials for several reasons: they allow
to easily model abrupt or graded heterostructures and appear naturally in the thermody-
namic description of the van Roosbroeck system since the negative gradients of the quasi
Fermi potentials are the driving force of the currents [14]. Even mathematically they are
more beautiful as they make it possible to write the whole van Roosbroeck system in a
gradient form [15] consistent with the principles of nonequilbrium thermodynamics [16].
Also carrier densities as opposed to quasi Fermi potentials vary drastically in magnitude
which may lead to numerical difficulties.

The system (1) needs to be supplied with boundary conditions at x = 0 and x = L. For
applied external voltages U1 and U2, we require the Dirichlet boundary conditions at the
Ohmic contacts, that is

" (0) = " 0 (0)+ U1, " (L) = " 0 (L)+ U2, (4a)
# n (0) = U1, # n (L) = U2, (4b)
# p (0) = U1, # p (L) = U2. (4c)

We discuss the meaning of the potential " 0 in the next section.

2.2 Thermodynamic equilibrium and local charge neutrality

The goal is to enforce that the van Roosbroeck system (1) is consistent with thermody-
namic equilibrium which is a physical state defined by vanishing currents

jn = jp = 0 implying # 0 := # n = # p = const. (5)

Without loss of generality, we can set # 0 = 0. We also discuss thermodynamic equilibrium
in Section 3.1. As a consequence, the three differential equations (1) reduce to the one-



2 Numerical solution of the one-dimensional stationary semiconductor equations 4

dimensional nonlinear Poisson equation

° d

dx

!
! s

d

dx
"

"
= q

!
Nv exp

!
E v ° q"

kB T

"
°N c exp

!
q" °E c

kB T

"
+C

"
. (6)

We supply it with the Dirichlet boundary conditions (4a) for zero voltages U1 = U2 = 0.
The solution of (6) with these boundary conditions is the built-in potential denoted with
" eq. In general, we cannot expect to find an analytic expression for " eq.

Another important physical concept is local charge neutrality , characterized by a van-
ishing left-hand side in the Poisson equation. Combined with the equilibrium condition
(5), this leads to

0= q
!
Nv exp

!
E v ° q" 0

kB T

"
°N c exp

!
q" 0 °E c

kB T

"
+C

"
(7)

which can be solved for " 0 by solving a quadratic equation and omitting the unphysical
solution, yielding

" 0(x)= E c+E v

2q
° 1

2
UT log

!
N c

Nv

"
+UT arcsinh

!
C

2N intr

"
(8)

where the intrinsic carrier density N intr and the thermal voltage UT are given by

N 2
intr = N cNv exp

!
°E c°E v

kB T

"
and UT = kB T

q
. (9)

The potential " 0(x) serves two purposes. In Section 2.4 it will be used to obtain
an initial guess for the nonlinear iteration to solve a discretized version of (6). On the
other hand, modeling (ideal) Ohmic contacts requires local charge neutrality. Hence, the
boundary values in (4a) are obtained by evaluating the function " 0 at the contacts x = 0
and x = L . The voltage difference between the boundary values " 0(0) and " 0(L ) is called
built-in voltage .

2.3 Discretizing the Poisson problem

Our goal is to find a discrete solution to (1a). For this we will use the Þnite volume method
which naturally preserves many important physical properties. To see this, the reader
may have a quick look in the table of contents and compare the next two sections devoted
to the van Roosbroeck system and its numerical solution. It will become apparent that for
many aspects the continuous model and its discretized counterpart are closely related.

We discretize the interval using a (possibly) nonuniform mesh of the form

0=: x1 < ·· · < xN := L .

We associate each node xk with a control volume # k defined by the interior subintervals

# k =
#
xk°1,k , xk,k+1

$
for k = 2, . . . , N °1

and the boundary subintervals

# 1 =
#
x1, x1,2

$
and # N =

#
xN°1,N , xN

$
.
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|! k |

hk ! 1,k hk,k +1

xk ! 1 xk xk+1xk ! 1,k xk,k +1

Figure 1: 1D discretization around the kth node along with the corresponding notation.

The boundaries of the kth control volume are given by

xk! 1,k :=
xk! 1 + xk

2
and xk,k+1 :=

xk + xk+1

2
.

for k = 2, . . . , N ! 1. We point out that we have generated a disjoint partition of the the
interval, ! =

! N
k=1 ! k . This discretization along with its notation is illustrated in Figure

1.
We introduce a Þnite volume discretization for PoissonÕs equation. Using the Funda-

mental Theorem of Calculus, we integrate (1a) over the interior control volumes ! k and
obtain GaussÕ law of electrodynamics

! " s

"
d#

dx

#
#
#
#
xk,k+1

!
d#

dx

#
#
#
#
xk! 1,k

$

=
%

! k

q
&
C + p(# ,$ p) ! n(# ,$ n)

'
dx. (10)

This equation constitutes a balance law, which can be interpreted as follows: the total
charge in the kth control volume is given by the difference of the electric displacement
D = ! " s

d
dx # at its interfaces.

So far, we have derived an integral form of PoissonÕs equation for every interior control
volume. We need approximations of the electric displacements at the boundary of each
control volume. For this we employ central Þnite differences:

d#

dx

#
#
#
#
xk,k+1

"
# k+1 ! # k

hk,k+1
(11)

with the distance between two neighboring nodes given by

hk,k+1 := xk+1 ! xk .

Moreover, the integral over the net charge density is approximated by the rectan-
gle method, evaluating the integrand at node xk times the size of the control volume
|! k | = xk,k+1 ! xk! 1,k . That is, the balance equation (10) is approximated by

! " s

(
# k+1 ! # k

hk,k+1
!

# k ! # k! 1

hk! 1,k

)
= q

&
Ck + p(# k,$ p;k ) ! n(# k,$ n;k )

'
|! k |

or slightly rearranged

0 = ! " s

(
1

hk,k+1
# k+1 !

*
1

hk,k+1
+

1

hk! 1,k

+
# k +

1

hk! 1,k
# k! 1

)

! q
&
Ck + p(# k,$ p;k ) ! n(# k,$ n;k )

'
|! k |,

(12)

where k = 2, . . . , N ! 1. The subindices denote evaluation at a given node. So for example
# k means # (xk) as well as $ n;k indicates $ n(xk). We will use this nodal notation fre-
quently within our chapter. To incorporate the Dirichlet boundary conditions (4a), we
simply impose two more equations for the endpoints, namely

# 1 = # 0(0)+ U1 and # N = # 0(L )+ U2. (13)
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2.4 Solving the discrete nonlinear Poisson problem

Using the Þnite volume discretization scheme we have just described, we solve the non-
linear Poisson equation (12) with Dirichlet boundary conditions (13) in thermodynamic
equilibrium ( U1 = U2 = 0) to obtain the built-in potential ! eq. Recalling that there are
N ! 2 interior and two boundary nodes, we end up with a system of N variables which
can be summarized by the nonlinear discrete system

0 = F1(! eq),

where ! eq = (! eq(xk))N
k=1 is the vector of the nodal values. Solving this system is not

straightforward due to its inherent nonlinearity. One approach to obtain a solution is
NewtonÕs method, which we discuss in more detail in Section 5. NewtonÕs method con-
verges quadratically Ð if one has a starting guess sufÞciently close to the solution [17].

Solution procedure: Nonlinear Poisson problem

1. The easiest way to obtain a starting guess for the solution of (12) with Dirichlet
boundary conditions (13) is to neglect the left-hand side. That is, we use the local
charge neutrality condition (7) for each node, which we can solve explicitly for ! 0 via
(8). With this function we determine the components (nodal values) of our starting
guess for the nonlinear Poisson problem ! 0 via

! 0 = (! 0(xk))N
k=1.

2. Solving the discrete nonlinear Poisson problem via NewtonÕs method with the start-
ing guess ! 0 yields the built-in potential vector solution ! eq.

This solution procedure for the nonlinear Poisson equation for a p-i-n structure is
illustrated in Figure 2. In the following, we address how to discretize the continuity
equations. A task which turns out to be nontrivial.

2.5 Discretizing the continuity equations using the Scharfetter
Gummel scheme

Now, we turn our attention to the continuity equations (1b) and (1c). We proceed just
as for PoissonÕs equation: we integrate over the control volumes " k = [xk! 1,k , xk,k+1], ap-
ply the Fundamental Theorem of Calculus for the left-hand sides and approximate the
integral of the recombination term as before. For the interior control volumes we obtain

0 = j n;k,k+1 ! j n;k! 1,k ! qR(! k ,# n;k ,# p;k )|" k |,

0 = j p;k,k+1 ! j p;k! 1,k + qR(! k ,# n;k ,# p;k )|" k |,
(14)

where k = 2, . . . , N ! 1. Similar to before, these equations constitute a balance law in
integral form which we can interpret as follows: the carrier densities within the control
volume " k change either due to in- and outßow or by recombination effects.

The ßuxes (14) need to be expressed in terms of our set of unknowns, namely the nodal
values of the electrostatic and the quasi Fermi potentials. Deriving a suitable approxi-
mation for the current expressions j n;k,k+1 and j p;k,k+1 describing the carrier exchange
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Figure 2: Convergence of the electric potential towards the thermodynamic equilibrium
solution (built-in potential) for a GaAs p-i-n diode on an equidistant mesh with 51 nodes.
The locally electroneutral initialization quickly converges to the built-in potential by
means of a Newton iteration. The device has total length of 10 m (1 m n-doped with
ND = 1016 cm! 3, 8 m intrinsic, 1 m p-doped with N A = 1017 cm! 3. Standard parameters
for GaAs at T = 300 K: E v = 0 eV, E c = 1.424 eV, Nv = 9.0" 1018 cm! 3, N c = 4.7" 1017 cm! 3

and ! r = 12.9.

between neighboring control volumes " k and " k+1 is crucial for numerical simulations.
Since standard discretization techniques such as central Þnite differences may lead to
unphysical behavior (see Section 2.7), the derivation of such an approximation requires
particular care.

For the Boltzmann approximation (3), a numerically stable scheme was invented in
1969 by Scharfetter and Gummel [11]. In fact, it has been discovered independently
several times [18, 19, 20]. Its derivation is based on integrating the ßux along the interval
[xk , x#] between two neighboring discretization nodes xk and x# under the assumption of
constant current density and constant electric Þeld. That is, either # = k ! 1 or # = k + 1.
We illustrate the approach for the electron current density j n.

In order to obtain a ßux approximation we will make two important assumptions,
namely

1. The electric Þeld along each edge is constant. This implies that the derivative of
the electric potential d$

dx along the edge [xk, x#] is approximated by $ #! $ k
hk,#

, where
again $ # = $ (x#) and $ k = $ (xk). This is consistent with the central difference
approximation for the electric Þeld in the Poisson equation, see (11).

2. The current density j n is assumed to be constant along the edge.

The second assumption means that the current ßuxes through the boundary from one
control volume to another are conserved, which implies that the derivative of the ßux
along the interval [ xk , x#] vanishes. This means that we assume that there is no recombi-
nation along the edge between neighboring nodes. Hence, we obtain for the electron ßux
(the hole ßux follows analogously)

d

dx
j n =

d

dx

!
! qµn N c exp

!
q($ (x) ! %n(x)) ! E c

kB T

"
d

dx
%n(x)

"
= 0. (15)
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Figure 3: On the left the Bernoulli function B(x) is shown. The picture on the right
shows different current approximations for qµnUT /hk,! = 1, n! = 10 and nk = 1 in terms
of the potential difference "# k,! . The dashed black line denotes the equilibrium poten-
tial difference. The green lines show the drift currents, that is the asymptotics of the
Scharfetter-Gummel ßux (20) for large positive and for large negative arguments. The
central-difference ßux is denoted with j CD and the Scharfetter-Gummel ßux with j SG

We supply the differential equation with the boundary conditions

$ n(xk) = $ n;k and $ n(x! ) = $ n;! . (16)

The values $ n;k and $ n;! have to be determined. But for now we assume they are given.
Equations (15) and (16) constitute a two-point boundary value problem. Upon integrating
once and multiplication by the integrating factor

M (x) = exp
!
!

# ! ! # k

hk,! UT
x
"
,

we obtain for the integration constant j n;k,! the equation

j n;k,! M (x) = qµn N cUT
d

dx

!
M (x)exp

!
q(# (x) ! $ n(x)) ! E c

kB T

""
.

Integrating once more from xk to x! and using the boundary conditons (16) yields after
some algebraic manipulations the Scharfetter-Gummel expression for the current ßux
along the edge [ xk, x! ] between neighboring control volumes

j n;k,! = j n;k,! (# k ,# ! ,$ n;k ,$ n;! ) = !
qµnUT

hk,!

#
B

!
!

# ! ! # k

UT

"
N c exp

!
q

$
# k ! $ n;k

%
! E c

kB T

"

! B
!

# ! ! # k

UT

"
N c exp

!
q

$
# ! ! $ n;!

%
! E c

kB T

"&
,

(17)
where we have introduced the Bernoulli function

B(x) =
x

exp(x) ! 1
.

This function smoothly interpolates between zero and ! x, see Figure 3. Remembering
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the relationships (3), the ßux can be brought into the simpler form

j n;k,` = !
qµnUT

hk,`

!
B

"
!
√` ! √k

UT

#
nk ! B

"
√` ! √k

UT

#
n`

$
. (18)

An important property of this scheme is its consistency with the thermodynamic equi-
librium. That is, similarly to (5), we have

j n;k,` = 0 for 'n;k = 'n;` = const. (19)

For vanishing electric Þelds corresponding to ±√k,` := √` ! √k = 0, the ßux j n;k,` reduces
to a purely diffusive ßux

j n;k,` = ! q
"
! D n

n` ! nk

hk,`

#
.

The diffusion constant D n is deÞned via the so-called Einstein relation D n = µnUT , which
we discuss in Section 3.2 in more detail. For large electric Þelds, we obtain asymptotically
a drift ßux

j n;k,` =

%
&

'

! qµn nk
√`! √k

hk,`
, for ±√k,` " + UT ,

! qµn n`
√`! √k

hk,`
, for ±√k,` # ! UT .

(20)

These two extreme cases show that the Scharfetter-Gummel scheme naturally encom-
passes drift and diffusive currents depending on the strength of the local electric Þeld,
see Figure 3.

Using analogous considerations, we can derive a current expression for the holes

j p;k,` =
qµpUT

hk,`

!
B

"
√` ! √k

UT

#
pk ! B

"
!
√` ! √k

UT

#
p`

$
.

Since we have an approximation for the ßuxes at the control volume boundary, we can
derive from the discrete system (14) nonlinear equations for the interior nodes in terms
of our set of unknowns ( √,'n,'p).

We stress once more that the previous discussion is only valid for the Boltzmann
approximation made in (3). A discussion on more general distribution functions follows
in Sections 3.2 and 4.2.

2.6 Solving the full discretized van Roosbroeck system

So far we have described how to derive a set of discrete and nonlinear equations from the
one-dimensional van Roosbroeck system (1), namely

0 = ! "s

"
1

hk,k+1
√k+1 !

!
1

hk,k+1
+

1

hk! 1,k

$
√k +

1

hk! 1,k
√k! 1

#

! q
(
Ck + p(√k ,'p;k ) ! n(√k ,'n;k )

)
|!k |,

0 = j n;k,k+1(√k ,√k+1,'n;k ,'n;k+1) ! j n;k! 1,k (√k! 1,√k ,'n;k! 1,'n;k ) ! qR(√k ,'n;k ,'p;k )|!k |,

0 = j p;k,k+1(√k ,√k+1,'p;k ,'p;k+1) ! j p;k! 1,k (√k! 1,√k ,'p;k! 1,'p;k )+ qR(√k ,'n;k ,'p;k )|!k |,
(21)
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with k = 2, . . . , N ! 1. For the boundary nodes x1 and xN , the equations are given by the
boundary conditions (4):

! 1 = ! (0) = ! 0(0)+ U1, " n,1 = " n(0) = U1, " p,1 = " p(0) = U1,

! N = ! (L ) = ! 0(L )+ U2, " n,N = " n(L ) = U2, " p,N = " p(L ) = U2.

Just as for the Poisson problem we assume there are N control volumes in total. We
end up with a system of 3 N variables which we can summarize by the nonlinear discrete
system

0 = F(! , " n, " p) :=

!

"
#

F1(! , " n, " p)
F2(! , " n, " p)
F3(! , " n, " p)

$

%
&,

where
! = (! (xk))N

k=1, " n = (" n(xk))N
k=1, " p = (" p(xk))N

k=1.

Again, we employ NewtonÕs method to solve this system. We aim to guarantee an ap-
propriate starting guess by starting from thermodynamic equilibrium where the three
equation reduce to one. The solution of the full van Roosbroeck system with an applied
bias is then obtained via an iteration technique which we state here.

Solution procedure: full van Roosbroeck system

1. We assume thermodynamic equilibrium (5) and set the constant quasi Fermi po-
tentials to " 0 = 0. With the solution procedure introduced in Section 2.4, we obtain
a solution vector ! eq for the nonlinear Poisson problem with Dirichlet boundary
conditions.

2. We denote with " 0
n and " 0

p the constant vectors, consisting of the equilibrium value
for the quasi Fermi potentials, namely

" 0
n = (" 0)N

i =1 and " 0
p = (" 0)N

i =1.

We choose zero boundary voltages U1 = U2 = 0 and remember that we have obtained
! 0(0) and ! 0(L ) via the charge neutrality condition. Thus we have determined the
boundary conditions (4). Using the equilibrium vector ( ! eq, " 0

n , " 0
p ) as a new start-

ing guess, we can now solve the full discrete system (21) with these boundary con-
ditions via NewtonÕs method, yielding a solution ( ! 1, " 1

n , " 1
p ). That is, we compute

the equilibrium state of the full van Roosbroeck system using the equilibrium of the
Poisson equation as a starting guess. We point out that solution and starting guess
should agree up to machine precision by construction.

3. We slightly increase U1 and U2 to generate a ÒsmallÓ bias#U = U2! U1. What small
here means is not very precise and needs to be determined via trial and error. Now
we solve the full discrete system (21) via NewtonÕs method with the starting guess
(! 1, " 1

n , " 1
p ) to obtain a new solution ( ! 2, " 2

n , " 2
p ).

4. Now we iterate the last step: gradually increase the bias and use the old solution
as starting guess for the new one.
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Figure 4: Computed band edge energy and quasi Fermi levels for a GaAs p-i-n diode at
different values of the applied voltage. (a) Thermodynamic equilibrium (off-state, 0V),
(b) U = 1.5 V (ßat band), (c) U = 3.0 V. Device has total length of 10 m (1 m n-doped
with ND = 1016 cm°3, 8 m intrinsic, 1 m p-doped with N A = 1017 cm°3. The param-
eters used are standard parameters for GaAs as given in the caption of Fig. 2 and
µn = 8500cm2 V°1 s°1, µp = 400cm2 V°1 s°1, øn = øp = 1ns, Cn = Cp = 1£ 10°29 cm6 s°1

and r spont = 1£10°10 cm3 s°1.
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how the intrinsic region gets populated by free carriers while increasing the applied bias.
(b) Current-voltage curves for the same device with altered values of the donor density
ND . Same parameters as in Figure 4.
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Figures 4 and 5 show the numerical results for the p-i-n structure, already intro-
duced in Section 2.4. They depict the band edge energies, the quasi Fermi energy levels
E Fn = ! q! n and E F p = ! q! p as well as the carrier densities for different bias values.
Additionally, the current voltage characteristics for different n-dopings are shown.
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Figure 6: The exact solution (red) of (22) and its central difference approximation (blue)
on a uniform mesh with mesh width h = 1/12. The boundary conditions (24) lead to a
numerical solution which violates the maximum principle (left). On the other hand, the
boundary conditions (25) produce a numerical solution which violates the positivity of the
density (right). Here qD n = 0.01 and qµn!" = 1.

2.7 Why not use central Þnite differences for the ßuxes?

Thus far, we have discussed the Scharfetter-Gummel scheme to approximate the ßux at
the control volume interface. One might ask why not use a simpler ßux approximation,
for example, central Þnite differences. This question we address now.

For simplicity we assume a linear electrostatic potential. In this case

d

dx
" = " (1) ! " (0) = : !" .

We focus on the continuity equation for electrons on the domain ! = [0,1] which results
into a linear differential equation of second order,

d

dx
j n = qD n

d2

dx2
n ! qµn!"

d

dx
n = 0. (22)

In this equation we have introduced the drift diffusion form of the (electron) ßux

j n = q
!
D n

d

dx
n ! nµn

d

dx
"

"
, (23)

where we have used again the Einstein relation D n = µnUT . We omit the physical deriva-
tion of the ßux here. It is only important to know that this way of characterizing the ßux
is equivalent to (2).

We have already seen how to solve this type of equation numerically by solving local
two-point boundary value problems for the ßux, which yields the Scharfetter-Gummel
scheme (18). Of course there are many different ways to discretize the ßux (23) at a con-
trol volume interface xk,#, needed in (14). For example, looking at (23) one might consider
replacing the derivative of the electron density d

dx n with a central Þnite difference and
the density n with an average. That is, at the control volume interface we make the
approximation

j CD
n;k,# = qD n

n# ! nk

hk,#
! qµn!"

n# + nk

2
= !

qµnUT

hk,#

!
nk ! n# +

!" k,#

UT

n# + nk

2

"
.
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This, however, is a very bad idea since the scheme will become unstable, resulting under
certain conditions into large oscillations. To show this, we supply (22) with two different
types of boundary conditions

n(0) = 1 and n(1) = 0 (24)

as well as

n(0) = 0 and n(1) = 1. (25)

Then, the discretization using central Þnite differences shows large oscillations for
µn!" /D n = 100, which can be seen in Figure 6. For the Þrst boundary conditions, we can
see that the maximum principle is violated, that is the solution exceeds both boundary
values [21, 22]. For the second boundary conditions the numerically computed density
becomes negative. Both observations constitute huge violations of basic physical laws
and are unacceptable in applications.

The problem here is that the diffusion constant D n is small compared to the drift
constant µn!" . We point out, that in this special one-dimensional case of vanishing
recombination the Scharfetter-Gummel scheme, on the other hand, yields exact nodal
values due to its construction. The Scharfetter-Gummel and the central difference ßux
are compared in Figure 3.

3 Van Roosbroeck system

In this section, we make several generalizations to the van Roosbroeck system (1). In
particular, we will make the model time dependent and allow higher spatial dimensions.
Before stating the equations, we discuss the physical concepts we want to encode in the
model.

As in the one-dimensional case, the van Roosbroeck system consists of three equa-
tions: the Poisson equation and two continuity equations for the carrier densities. The
Poisson equation describes the electric Þeld E = !" " which is generated by a scalar
electric potential " (x , t) in the presence of a free charge carrier density. In a (doped)
bi-polar semiconductor device, this charge density has three ingredients: the density of
free (negatively charged) electrons n(x, t) occupying the conduction band, the density of
(positively charged) holes p(x, t) occupying the valence band and the density of ionized
built-in dopants C(x) = N +

D (x) ! N !
A(x), where N +

D denotes the density of singly ionized
donor atoms and N !

A is the density of singly ionized acceptor atoms.
The continuity equations (in differential form), on the other hand, model the ßow of

the charge carrier densities due to diffusion and drift governed by the self-consistent elec-
tric Þeld which is generated by the net carrier density. Furthermore, the recombination
and generation of electron-hole pairs inßuences the electron and hole densities.

The van Roosbroeck system of equations

For a bounded spatial domain ! # Rd where d $ {1,2,3}, the van Roosbroeck system con-
sists of three coupled nonlinear partial differential equations of the form

!"á
!
#s" "

"
= q(p ! n + C), (26a)

! q$t n + "á j n = qR, (26b)

q$t p + "á j p = ! qR, (26c)
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for x ! ! and t ! [0,T ]. The current densities in (26b) and (26c) are given by the usual
expressions

j n = " qµn n# ! n and j p = " qµ p p# ! p. (26d)

That is, the negative gradients of the quasi Fermi potentials are the driving forces of the
currents [14]. These relationships correspond directly to equations (2) in the previous
section.

Within the framework of effective mass approximation [2] the densities of free carriers
in a solid are given by

n = N cF

!
q(" " ! n) " E c

kB T

"
and p = NvF

!
E v " q(" " ! p)

kB T

"
. (27)

Equations (27) indicate that the electric potential effectively leads to a bending of the
energy band edge levels and thus a nonlinear, self-consistent coupling to the carrier den-
sities is achieved. We assume a globally constant temperature for both carrier species
and the crystal lattice.

The function F describes the occupation of energy states in the semiconductor. Since
it plays an important role in the following discussion, we will deÞne and discuss it later
in Section 3.2. We only point out here that equations (27) are analogous to equations (3)
when choosing for F the exponential function, the so-called Boltzmann approximation .

Initial and boundary conditions

The system (26) must be supplemented with initial and boundary conditions. The initial
conditions at time t = 0 are given by the initial distributions " I , ! I

n and ! I
p, i. e.

" (x ,0) = " I (x), ! n(x ,0) = ! I
n(x), ! p(x ,0) = ! I

p(x) for x ! ! .

Regarding the boundary conditions, we will brießy discuss the most important case where
the boundary of the domain ! can be decomposed into Ohmic contacts, a gate contact and
artiÞcial interfaces, i. e.

#! =

#
NO$

$ =1
" O,$

%

$ " G $ " A.

Semiconductor-metal interfaces, such as Ohmic contacts, are modeled by Dirichlet bound-
ary conditions. For any Ohmic contact " O,$ with $ = 1, . . . , NO, we set

" (x , t) = " 0(x)+ U$ (t), (28a)

! n(x , t) = U$ (t), for all x ! " O,$ and t ! [0,T ] (28b)

! p(x , t) = U$ (t), (28c)

where U$ denotes the corresponding externally applied contact voltage. The value " 0 at
the boundary is deÞned by local charge neutrality similar to (7), where the exponential is
now replaced by F :

0 = NvF

!
E v " q" 0 (x)

kB T

"
" N cF

!
q" 0 (x) " E c

kB T

"
+ C (x) .

We just remark, that in general, this equation yields no analytical solution, and therefore
its solution needs to be obtained by a nonlinear solver. The boundary conditions for
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the more advanced nonlinear semiconductor-metal interfaces (Schottky contacts) can be
found in [13].

Gate contacts are modeled by Robin boundary conditions for the electrostatic potential
and homogeneous Neumann boundary conditions for the quasi Fermi potentials

! s ! " (x , t) á! + ! ox
dox

(" (x , t) " UG(t)) = 0,

j n(x , t) á! = j p(x , t) á! = 0,
for all x # ! G and t # [0,T ], (29)

where ! ox and dox are the absolute dielectric permittivity and the thickness of the oxide,
respectively. The function UG(t) is the applied voltage at the outside of the insulating
gate oxide at ! G.

On the remaining (artiÞcial) interfaces one typically imposes homogeneous Neumann
boundary conditions (natural boundary conditions), namely

! " (x , t) á! = j n(x , t) á! = j p(x , t) á! = 0 for all x # ! A and t # [0,T ]. (30)

Here ! denotes the outer normal vector on the interface.

Recombination processes

The net recombination rate R on the right-hand side of equations (26b) and (26c) de-
scribes the radiative and non-radiative generation or recombination of carriers due to
thermal excitation and various scattering effects. We assume that the recombination
rate R(n, p) is given by the sum of the most common processes, namely the Shockley-
Read-Hall recombination RSRH, the spontaneous radiative recombination Rrad and the
Auger recombination RAuger . All of these rates are of the form

R(n, p) = r (n, p)np
!
1 " exp

!
q# n " q# p

kB T

""
, (31)

where r (n, p) is a model-dependent generation-recombination rate [2, 13, 23]. In Figure
7, one Þnds the deÞnitions of these rates together with a schematic illustration of the
corresponding processes. For Boltzmann statistics, (31) is equivalent to the widely used
R(n, p) = r (n, p)(np " N 2

intr ), where Nintr is the intrinsic carrier density deÞned in (9).

3.1 Thermodynamic equilibrium

The thermodynamic equilibrium is characterized by vanishing current ßuxes j n(x , t) =
j p(x , t) = 0. As a consequence,R(n, p) = 0 and the quasi Fermi potentials assume constant
values which due to (31) are equal:

# 0 := # n = # p = const.

Without loss of generality, we set # 0 = 0. Therefore, the van Roosbroeck system (26)
reduces to the nonlinear Poisson equation

"!á ! s! " = q
!
NvF

!
E v " q"

kB T

"
" N cF

!
q" " E c

kB T

"
+ C

"
. (32)

We supply it with Dirichlet boundary conditions (28a) for zero voltages U$ = 0 for $ =
1, . . . , NO and homogeneus Neumann boundary conditions elsewhere (30). The solution of
(32) with these boundary conditions deÞnes the built-in potential denoted with " eq.
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Recombination processes

Auger recombination rate SRH recombination ratespont. radiative recombination rate

Shockley-Read-Hall
recombination

Phonon

Phonon

Auger
recombination

Photon

spontaneous radiative
recombination

r spont r Auger = Cn n + Cpp r SRH =
1

! p (n + nT ) + ! n (p + pT )

Figure 7: This Þgure illustrates three different recombination processes. The carrier life
times ! n, ! p, the reference carrier densities nT , pT and the coefÞcients r spont , Cn, Cp are
material dependent parameters.

3.2 Non-Boltzmann statistics and generalized Einstein relation

Now, we address the statistical distribution function F which appears in both equations
in (27). It describes the relationship between the density of the free carriers as well as
the electrostatic potential and the quasi Fermi potentials [2].

Assuming that the electrons in the conduction band are in quasi equilibrium, i. e. they
are described by the quasi Fermi level E Fn , the electron density can be introduced as a
convolution integral of the density of states DOS( E) with the Fermi-Dirac distribution
function

n =
! !

"!
DOS(E)

1

exp
"

E" E Fn
kB T

#
+ 1

dE . (33)

It is possible to express this convolution as a product of the effective density of states N c

and a nondimensionalized statistical distribution function F , i. e.

n(" ) = N cF (" ). (34)

We consider organic and inorganic semiconductors. For inorganic, 3D bulk semicon-
ductors with parabolic bands the statistical distribution function is given by the Fermi-
Dirac integral of order 1/2 [2], which can be approximated by Blakemore [24] or Boltz-
mann distribution in the low density limit. For organic semiconductors it is given by
the Gauss-Fermi integral [10], which reduces to a Boltzmann type of distribution func-
tion (up to some normalizing factor) in the low density limit or a Blakemore distribution
function for vanishing variance # . The latter corresponds to a $-shaped density of states
[10, 25], describing a single transport level. See Figure 8 for deÞnitions and a relationship
between these functions and Figure 9 for a graphical representation.

For inorganic, 3D bulk semiconductors assuming parabolic bands with effective mass
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Boltzmann approximation 

Fermi-Dirac integral of order 1/2 

Blakemore approximation 

Gauss-Fermi integral   

Boltzmann approximation Blakemore approximation 

three dimensional 
bulk semiconductor 
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semiconductor 

F (! ) := F1/ 2(! ) =
2

!
"

! !

0

#1/ 2

exp (# " ! ) + 1
d#

F (! ) !
1

exp(" ! ) + 0 .27
, ! # 1.3 F (! ) ! exp(! ), ! " # 2

F (! ) := G(! ; " ) =
1
"

1
!

2#

! !

"!
exp

"
"

$2

2" 2

# 1
exp($ " ! ) + 1

d$

F (! ) !
1

exp(" ! ) + 1
, " # 0 F (! ) ! exp

!
" 2

2

"
exp! , ! " # " 2 # 4

Figure 8: This Þgure shows two important choices of the statistical distribution function:
for three dimensional bulk semiconductors and for organic semiconductors [10] described
by a Gaussian density of states with variance ! . Both can be approximated using the
Blakemore or Boltzmann distribution function.
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Figure 9: (a) Some frequently considered distribution functions for the density of free
carriers. For the Blakemore and the Gau§-Fermi functions one obtains a saturation of
the carrier density at high values of ¥. (b) Illustration of the diffusion enhancement
factors for the distribution functions shown in (a). In the case of the Blakemore and
the Gau§-Fermi functions the saturation values of the carrier density directly lead to a
divergent behaviour of the nonlinear diffusion factor.

m§
e the band-edge density of states is given by

N c = 2
µ

m§
ekB T

2º~2

∂3/2

,

where T is the temperature and ~ is the Planck constant. For organic semiconductors,
the effective density of states N c is given by the density of transport states N t .

Introducing a general relationship between carrier density as well as quasi Fermi and
electrostatic potential via (34) or rather (27), has quite a few implications. The nonlinear
Poisson equation (32) becomes more complicated. In Section 2.4, we have studied how to
design useful starting guesses for the Boltzmann approximation. For general distribution
functions F , it is no longer possible to obtain an explicit expression for √0, like we have
achieved in (8). One rather needs to solve a nonlinear equation, for example, via NewtonÕs
methods at a given point x. For highly doped regions, the Boltzmann approximation
strongly overestimates the carrier densities if ¥ > 0, see Figure 9. This implies that the
more realistic Fermi-Dirac distribution leads to a higher built-in voltage. Moreover, from
a numerical point of view the Scharfetter-Gummel method needs to be adjusted. We
discuss this in Section 4.2.

Finally, the distribution function F inßuences the ratio between diffusion and drift.
To see this, we write the currents in drift-diffusion form. Using the relations for the
carrier densities (27), we obtain

jn =°qµn nr√+ qD nrn, jp =°qµp pr√° qD prp.

The diffusion coefÞcients D n and D p are connected to the carrier mobilities by a general-
ized Einstein relation

D n

µn
= kB T

q
g

µ

n

N c

∂

,
D p

µp
= kB T

q
g

µ

p

Nv

∂

(35)
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with a density dependent nonlinear factor

g(! ) = !
!
F ! 1"" (! ),

leading in general to a nonlinear diffusion coefficient. For the Boltzmann approxi-
mation, we immediately see that g(! ) = 1, which gives the classical Einstein relation
Dn = qµn/(kBT). For non-exponential distribution function and ! # 1, however, we note
g(! ) # 1, see [26]. For this reason, we call this factor diffusion enhancement as proposed
in [27]. The dependence of the diffusion enhancement g on the density is depicted in
Figure 9 for various distribution functions.

3.3 Free energy and dissipation rate

We consider consistency with fundamental principles of thermodynamics to be a qual-
ity measure for models describing natural processes. So it is of significant interest to
study the consistency for both continuous and discretized models. Due to our simplifying
assumption of constant temperature we cannot have energy conservation in the proper
sense. The second law of thermodynamics for nonequilibrium processes [16, 28] requires
non-negativity of the local entropy production which, multiplied by the temperature T,
gives the dissipation rate.

For the sake of readability, we discuss these concepts for Boltzmann statistics [29]
here. See [30] and [31] for more general statistics. For a triple (" ,n, p) and a thermo-
dynamic equilibrium solution (" eq,neq, peq) := (" eq,n(" eq), p(" eq)) of the full van Roos-
broeck system the free energy is defined as

F(" ,n, p) = kBT
#

!

$
n log

n
neq

! n + neq + p log
p

peq
! p + peq

%
dx

+
#

!

#s

2
&
&$

!
" ! " eq

"&&2 dx +
1
2

#

" G

#ox

dox

!
" ! " eq

"2 ds.
(36)

For a transient solution (" (t),n(t), p(t)) of (26), the function L(t) = F(" (t),n(t), p(t)) decays
exponentially as t tends to infinity and one has

L(t) = L(0) !
# t

0
D($)d$,

where D(t) is the nonnegative dissipation rate [29]

D(t) = !
d
dt

L =
#

!

'
qµnn|$ %n|2 + qµ p p|$ %p|2 + kBTR log

$
n

neq

p
peq

%(
dx # 0 (37)

depending on t via the time evolution of n, p. This result confirms the consistency with
the second law of thermodynamics. Incidentally, the function L is a Lyapunov function,
allowing in certain situations to prove the global stability of the thermodynamical equi-
librium. Furthermore, it can be used as a tool to prove uniqueness of solutions to the
system (26). This leads us naturally to the following subsection.

3.4 Existence and uniqueness results

When modeling complex physical phenomena, it is often necessary to simplify the un-
derlying physical model. Therefore, a sound mathematical investigation is necessary to
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assess the implications of such simplifications. Take, for example, the electrostatic poten-
tial of a device. Physically, we know that such a potential exists. Hence, a sound model
should guarantee its existence – also from a mathematical point of view. If the exis-
tence cannot be shown, then the model does not represent the physical world accurately.
Apart from existence, uniqueness of the solution is often desirable as well as continuous
dependence on the initial data.

The mathematical technique used to prove existence and uniqueness depends on the
device geometry and the model. The first existence result of the van Roosbroeck system
was shown by Mock [32]. Since then several results have been obtained by Gajewski
and Gröger, we refer the interested reader to [33, 34]. In [34], the key tool to show the
existence and uniqueness of the time dependent system is based on finding a Lyapunov
function. Moreover, Gajewski and Gröger presented the first result which considered
Fermi-Dirac statistics instead of Boltzmann statistics. There are other important exis-
tence results. We would like to mention explicitly the results studied by Markowich see
for example [35], Jüngel [36], and Jerome [37].

We would like to show the reader that these results are not of purely analytical in-
terest but can also be used to design numerical methods. Gummel’s method [38], for
example, (see Section 5) is based on the same fixed point iteration technique used to ob-
tain the existence result which we discuss next. The connection to numerics can be found
in [37]. We would like to give the reader an idea regarding the proof of a standard result
without going into the tricky details. We follow ideas from Markowich’s textbook [39].

We consider the stationary van Roosbroeck system with Boltzmann statistics. Using
a scaling that can be found in [39, Section 2.4] and making a change of variables, we can
rewrite the steady-state van Roosbroeck system in the following way

°! 2! " = #2e°" v°#2e" u +C, (38a)
r · (µn e" ru)= R̃, (38b)
r · (µ p e°" rv)= R̃. (38c)

The densities n and p are related to the so-called Slotboom variables u and v via n =
#2e" u and p = #2e°" v. In (38), the parameter ! denotes the normed characteristic Debye
length of the device, #2 indicates the scaled intrinsic carrier density and R̃ is the scaled
recombination term. It is of the form R̃ = c(" ,u,v)(uv °1) with c(" ,u,v) > 0. The chosen
scaling and change of variables make it possible to rewrite the boundary conditions. We
consider only Ohmic contacts and homogeneous Neumann boundaries.

In order to prove the existence of solutions for the system (38) equipped with suitable
boundary conditions, we need to make several technical assumptions. We refer the in-
terested reader to [39] where these assumptions are well explained as well as physically
and mathematically justified. Here, we would rather like to focus on the key idea of the
proof which is exploited numerically, omitting mathematical detail. The existence proof
is based on an iteration scheme which considers the Poisson equation (38a) decoupled
from the continuity equations (38b) and (38c). The proof consists of the following steps:

1. We fix some u0,v0 > 0, and consider the semilinear elliptic problem

°! 2! " = #2e°" v0 °#2e" u0 +C, in " , (plus BC for " on $" ). (39)

Using standard analytical results for semilinear elliptic equations (namely the
Leray-Schauder’s fixed point theorem and the maximum principle [40]) we prove
that there exists a unique solution of the problem (39) that we denote with " 1.
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2. We insert the solution √1 of (39) into the decoupled linear elliptic equations

r · (µne√1ru)= c(√1,u0,v0)(uv0 °1), in ≠, (plus BC for u on @≠), (40)

r · (µpe°√1rv)= c(√1,u0,v0)(u0v°1), in ≠, (plus BC for v on @≠). (41)

We point out that in the right-hand side of (40) the rate c depends only on √1 de-
termined from the previous step and on the fixed u0,v0. The other term, uv0 °1,
depends linearly on the unknown u. Analogous considerations are valid for (41).
Physically, this means that in the factor describing relaxation to equilibrium, uv°1,
we freeze the hole density, more precisely the Slotboom variable v0, in the conti-
nuity equation for the electrons and vice versa. Thanks to the non-negativity of
c(√1,u,v) there exist unique solutions u1 and v1 to (40) and (41). This is ensured
by standard results on linear elliptic equations (see for example [40]).

3. Based on the first two steps, we can now define a map H which maps (u0,v0) onto
(u1,v1). This map is known as Gummel map. It is possible to prove that this map
has a fixed point (u§,v§) which determines a (weak) solution (√§,u§,v§) of the cou-
pled system (38). The electrostatic potential √§ which solves Poisson’s equation
(38a) can be determined using the first step by substituting (u0,v0) with (u§,v§).

Finally, we discuss the uniqueness of solutions to the van Roosbroeck system. It is well
known that for the steady-state system the uniqueness of the solution cannot be shown
without additional assumptions, for example, on the applied voltage. This is no surprise,
as in fact, some semiconductor devices (e.g. thyristors [41]) are designed to have multiple
steady states. However, for a device in thermal equilibrium (see Section 3.1), we have
u = v = 1. In this case, there is a unique function which satisfies the Poisson equation
(38a). Hence, the solution (√e,1,1) is the unique equilibrium solution of the system (38),
see [32]. For sufficiently small bias voltages the uniqueness of the solution is shown
in [39] under some specific assumptions on the recombination rates. All recombination
mechanisms appearing in Figurefulfill these assumptions. However, impact ionization
rates for example are excluded.

3.5 Maximum principle

An important mathematical tool, often used for proofs similar to the ones in the previous
section, is the maximum principle. Intuitively, the maximum principle states that if the
domain is bounded and the right-hand side of the elliptic equation is positive, then the
maximum of the solution is attained on the boundary of the domain [40].

4 Discretizing the van Roosbroeck system

In this section, we introduce a method for discretizing the van Roosbroeck system which
is close to the physicist’s approach to derive partial differential equations based on a
subdivision of the computational domain into representative elementary volumes or con-
trol volumes . The two-point flux finite volume method described here can be seen
as a straightforward generalization, preserving the properties of the one-dimensional
Scharfetter-Gummel scheme in higher dimensions. Figure 10 shows a 2D simulation.
The 2D variant of this approach was introduced as box method in [12]. Historically,
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Figure 10: Exemplary results of a 2D simulation. The example is inspired by a ridge-
waveguide laser with Ohmic contacts on the top of a mesa and at the side. For simplicity
we restrict to a homogeneous material which is here GaAs with the parameters as given
in Figure 2. Within the mesa an intrinsic domain is enclosed by a p-doped top-layer
(N A = 2 ! 1018 cm" 3) and the n-doped substrate ( ND = 2 ! 1018 cm" 3). The boundaries of
the doped domains are shown in the pictures as dashed lines. (a) At an applied voltage
of 1.5 V (ßat band conditions) a signiÞcant electron current ßow can be observed. The
absolute value of the current density is shown by the gray scale, the arrows indicate the
direction of particle ßow (in the case of electrons the current density vector points in the
opposite direction). (b) Plot of the total recombination rate at the same bias. The maximal
recombination rate is observed in the vicinity of the intrinsic domain.
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Figure 11: Two adjacent control volumes ! k and ! " with corresponding data.

it goes back to [42]. The 3D variant of this method was probably Þrst investigated in
[43, 29].

The method has two main ingredients: a geometry based approach to obtain a system
describing communicating control volumes and a consistent description of the ßuxes be-
tween two adjacent control volumes. These will be discussed in the following two subsec-
tions. We Þnish this section by describing various properties of the Þnite volume scheme.

4.1 Finite volume method in higher dimensions

We partition the domain into N non-intersecting, convex polyhedral control volumes ! k

such that ! =
! N

k=1 ! k . We associate with each control volume a node x k # ! k . If the
control volume intersects with the boundary of our domain, we demand that the node
lies on the boundary x k # #! $ ! k . We assume that the partition is admissible [44], that
is the edgex kx " with length hk" is orthogonal to #! k $ #! " . Thus, the normal vectors to
#! k can be calculated by ! k" = (x " " x k)/%x" " x k%. See Figure 11 for details.
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The set of all nodes and control volumes is called the mesh of the domain ! . For a
discussion of constructive ways to obtain such mesh partitions, see Section 6. In order to
keep the equations simple, we introduce two abbreviations,

! n
!
" ,# n

"
=

q
!
" ! # n

"
! E c

kB T
and ! p

!
" ,# p

"
=

E v ! q
!
" ! # n

"

kB T
,

and assume that we have only a single gate contact with gate voltage UG. We integrate
system (26) over $ k and apply GaussÕs divergence theorem, resulting in the integral equa-
tions

!
#
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""
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j p á! ds = ! q
#
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Rdx,

for k = 1, . . . , N . Here, ! is outward-pointing unit normal to the control volume $ k, see
Figure 11. These equations represent an integral form of the van Roosbroeck system on
every control volume. In particular, the Þrst equation is GaussÕ law of electrodynamics.
The other two equations are balance laws for the carrier densities. The densities in each
control volume change only due to in and outßow through the boundary or recombinative
processes.

Next, the surface integrals are split into the sum of integrals over the planar inter-
faces between the control volume $ k and its neighbors. Employing one point quadrature
rules for the surface and volume integrals, we deduce the Þnite volume scheme

$

$ ' $N ($ k )
|%$k # %$' |D k,' = q|$ k |
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|%$k # %$' | j n;k,' = q|$ k |Rk, (42b)
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F

!
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""
+

$

$ ' $N ($ k )
|%$k # %$' | j p;k,' = ! q|$ k |Rk. (42c)

In the above formulas, N ($ k) denotes the set of all control volumes neigboring $ k. In
2D, the measure |%$k # %$' | corresponds to the length of the boundary line segment and
in 3D to the area of the intersection of the boundary surfaces. The measure |$ k | is in
2D given by the area and in 3D by the volume of the control volume $ k. The unknowns
" k, # n;k and # p;k are approximations of the electric potential as well as the quasi Fermi
potentials for electrons and holes evaluated at node x k like already introduced for the
one-dimensional case in Section 2. Accordingly, Rk is deÞned as

Rk = R
!
N cF

!
! n

!
" k ,# n;k

""
, NvF

!
! p

!
" k ,# p;k

"""
.

The doping is deÞned by the integral average

Ck =
1

$ k

#

$ k

C(x)dx
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which can be estimated by its nodal value C(x k). The numerical ßuxes D k,! , j n;k,! and
j p;k,! approximate ! " " # á! k! , j n á! k! and j p á! k! , respectively, on the interfaces between
two adjacent control volumes $ k and $ ! , see Figure 11. As in the 1D case, we as-
sume that these ßuxes can be expressed as nonlinear functions depending on the values
# k,%n;k ,%p;k and # ! ,%n;! ,%p;! .

The electric displacement ßux is approximated by

D k,! = ! " s
# ! ! # k

hk,!
,

where
hk,! = #x ! ! x k#

is the edge length, compare with (11).
For the Boltzmann approximation, the numerical charge carrier ßuxes can be approx-

imated via the Scharfetter-Gummel expression (17). In theory, any classical technique
such as central differences or upwinding could be used to discretize the numerical ßuxes.
However, the former suffers from instability issues (as previously seen in Section 2.7) and
neither scheme is consistent with the thermodynamic equilibrium. We will explain what
this means in Section 4.3. In the next section we discuss thermodynamically consistent
schemes for non-Boltzmann statistics.

The Þnite volume scheme (42) yields a nonlinear system of 3 N equations depending
on 3N variables. We can directly substitute Dirichlet boundary values in the equations.
In practice, however, this way of handling Dirichlet values is very technical to imple-
ment. Exploiting ßoating point arithmetic, the Dirichlet penalty method [45] provides a
reasonable alternative. Physically, it replaces the Dirichlet boundary conditions by gate
boundary conditions with very high oxide permittivity.

4.2 Scharfetter-Gummel ßuxes and their non-Boltzmann gener-
alizations

In 1D, we have already discussed the highly effective ßux discretization scheme proposed
by Scharfetter and Gummel for Boltzmann statistics [11]. They derive the numerical ßux
by locally solving a linear two-point boundary value problem. The one-dimensional idea
immediately carries over to higher dimensions if we insert the Scharfetter-Gummel ßux
(17) into the discrete system (42). However, if the Boltzmann approximation is not valid
anymore, we can no longer derive the ßux like Scharfetter and Gummel suggested.

This motivated the work in [46] where the Scharfetter-Gummel idea was general-
ized to a large class of nonlinear convection-diffusion problems, allowing to deÞne consis-
tent numerical ßuxes from nonlinear two-point boundary value problems. Unfortunately,
these generalized Scharfetter-Gummel schemes cannot be expressed by closed formulas.
Sometimes, however, the local ßuxes can be obtained iteratively [26]. It is also possible
to approximate the two-point boundary value problems by simpler ones (for example by
freezing some coefÞcients). This leads to modiÞed Scharfetter-Gummel schemes . We will
adress some of these schemes now.

For the sake of readability, we provide the formulas for electrons only. The formulas
for holes follow similarly.
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Generalized Scharfetter-Gummel schemes

By the construction of our mesh, it sufÞces to study the one-dimensional ßux j n along the
edge x kx ! . For general distribution functions F , we want to solve the ordinary differen-
tial equation

d

dx
j n =

d

dx

!
! qµn N cF

"
" n

"
# ,$ n

##
" $ n

$
= 0

on the interval [0 , hk,! ] with boundary conditions

$ n (0) = $ n;k and $ n
"
hk,!

#
= $ n;!

where $ n;k and $ n,! is the value of the quasi Fermi potential at the nodes x k and x ! ,
respectively, see Figure 11. We assume now that the ßux is constant between both nodes
and denote it with j n;k,! . Integrating twice leads to an integral equation [26] for the
unknown current, namely

" n;!%

" n;k

&
j n;k,l / j 0

F (" )
+

# ! ! # k

UT

' ! 1

d" = 1, (43)

where j 0 = qµn N c
UT

hk,!
and the limits are given by " n;k = " n

"
# k,$ n;k

#
and " n;! =

" n
"
# ! ,$ n;!

#
. For strictly monotonously increasing F (" ) this equation has always a

unique solution [47].
For the Boltzmann approximation F (" ) = exp(" ) this integral equation can be solved

analytically and yields the classical Scharfetter-Gummel expression for the ßux (17). In
[26] it was shown that for the Blakemore distribution function F

"
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#
= 1

exp(! " )+%
, the in-

tegral equation yields a Þxed point equation
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%(j n;k,! +

# ! ! # k

UT
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e" n;k (44)

for the non-dimensionalized edge current (j n;k,! = j n;k,l / j 0. The right-hand side is a
Scharfetter-Gummel expression where the argument of the Bernoulli function is shifted
by %(j n;k,! . Hence, this reduces to the classical Scharfetter-Gummel scheme for %= 0.

Since the Bernoulli function is strictly decreasing, this Þxed point equation possesses
a unique solution (j n;k,! . If we want to use the ßux given by (44) in the discrete system
(42), we need to solve for the ßux (j n;k,! twice (once for electrons and once for holes) on
each discretization edge x kx ! . A few Newton steps are sufÞcient to solve this equation
iteratively.

Even though (44) is restricted to the Blakemore approximation, it provides a useful
scheme in the context of organic semiconductors. There it arises naturally as a model for
materials with &-shaped density of states [10, 25], describing a single transport level, see
Figures 8 and 9. This has been described in Section 3.2.

Unfortunately, for a general statistical distribution function, no corresponding equa-
tion has been derived so far. Therefore, in [47] it was proposed to use piecewise approx-
imations of F by Blakemore type or rational approximations of PadŽ type in order to
obtain piecewise integrable expression from the local boundary value problem.
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ModiÞed Scharfetter-Gummel schemes

Bessemoulin-Chatard [48] derived a Þnite volume scheme for convection-diffusion prob-
lems by averaging the nonlinear diffusion term appropriately. This idea was generalized
to more general distribution functions in [49], introducing a logarithmic average of the
nonlinear diffusion enhancement

gn;k,! =
" n;k ! " n;!

logF
!
" n;k

"
! logF

!
" n;!

"

along the discretization edge. Using the generalized Einstein relation (35), one imme-
diately observes that the diffusion enhancement g can be seen as a modiÞcation factor
of the thermal voltage UT . Replacing UT in the Scharfetter-Gummel expression (17) by
U "

T = UT gn;k,! , we deduce the following modiÞed Scharfetter-Gummel scheme
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qµnUT
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UT gn;k,!

$$
, (45)

approximating the current along the edge.
Previously, we have replaced the thermal voltage by a suitable average along the

edge. Now, we want to approximate F (" ) along the edge by an exponential (Boltzmann
approximation) by modifying the density of states N c accordingly, that is

N cF (" ) # N "
c;k,! exp(" ).

This choice makes it possible to use the original Scharfetter-Gummel ßux (17) by replac-
ing N c with N "

c;k,! . One choice for the modiÞed density of states is

N "
c;k,! (" " ) = N c

F (" " )

exp(" " )
,

where " " $ [" k , " ! ], assuming " k %" ! . In practice, we might consider taking the geo-
metric average between N c(" k) and N c(" ! ), which leads to another modiÞed Scharfetter-
Gummel scheme:
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The idea behind this scheme was introduced in [50] for the numerical solution of the
generalized Nernst-Planck system which is similar to the van Roosbroeck system (26). A
variant of this scheme for Fermi-Dirac statistics is described in [14, 51] and numerically
implemented in the semiconductor device simulation package WIAS-TeSCA [52].

4.3 Flux expressions consistent with thermodynamic equilib-
rium

As introduced in Section 3.1, the currents of holes and electrons vanish in thermodynamic
equilibrium when no bias is applied. If a numerical scheme for zero bias boundary con-
ditions results into vanishing numerical ßuxes, we call it consistent with the thermody-
namical equilibrium . In practice, one can examine this consistency by checking whether
j n;k,! = j p;k,! = 0 if $ n;k = $ n;! and $ p;k = $ p;! . Violating this property causes unphysical
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dissipation (spurious Joule heating) in the steady state attained for zero bias boundary
conditions, which by deÞnition is supposed to be the thermodynamic equilibrium [48].

All schemes introduced in Section 4.2 are consistent with the thermodynamical equi-
librium. Indeed, let us assume that the quasi Fermi potentials ! n and ! p between two ad-
jacent control volumes " k and " # are equal. The consistency of the classical Scharfetter-
Gummel (17) and the scheme using a modiÞed density of states (46) are obvious since the
Bernoulli function satisÞes B (! x) = exp(x)B (x).

Due to the deÞnition from the solution of the two-point boundary value problem, the
generalized Scharfetter-Gummel scheme deÞned in (43) and its specialization for the
Blakemore approximation (44) are consistent with the thermodynamic equilibrium. And
Þnally, the logarithmic average of the diffusion enhancement is the only possible aver-
age wich guarantees consistency with thermodynamic in the scheme (45). For details see
[26, 47, 49].

4.4 Free energy and dissipation rate

For Boltzmann statistics it is rather straightforward to deÞne discrete analoga of the free
energy (36) and the dissipation rate (37). The positivity of the disrete dissipation rate was
shown in [29], and the exponential decay of the free energy to its equilibrium value was
proven in [53]. An overview of the entropy method for Þnite volume schemes has been
given in [54]. First results on more general statistics functions in this respect have been
obtained in [55].

These pioneering works strongly indicate that the choosen discretization approach re-
sults in discrete models which are consistent with the structural assumptions of nonequi-
librium thermodynamics. A full account of these issues in the context of general statistics
functions remains an open research topic.

4.5 Existence, uniqueness and convergence

There are very few existence proofs for the solutions of the discretized system (42). For
the Boltzmann approximation, GŠrtner [56] proved that the discretized steady state sys-
tem has a solution which becomes unique if a small bias is applied. A similar result for
Fermi statistics has been obtained in [57].

A convergence theory for the Þnite volume scheme for the full discrete system (42)
and general ßux functions is still missing. However, practical experience and a number
of results make its convergence plausible.

For example, in one space dimension, second order convergence in the discrete max-
imum norm for the Scharfetter-Gummel scheme has been shown in [19]. Under the
assumption that second derivatives of the continuous solution exist, in [58] for moder-
ately sized drift terms and two-dimensional, square grids, Þrst order convergence for
the simple upwind scheme (see e.g. [21]), and second order convergence for the expo-
nential Þtting scheme in the L 2-norm has been shown. Re-interpretations of the Þnite
volume Scharfetter-Gummel scheme as a nonstandard Þnite element method allowed to
obtain convergence estimates for Scharfetter-Gummel schemes on Delaunay grids (see
Section 6) [59, 60]. For a general approach to the convergence theory of Þnite volume
schemes, see [44]. In [46], weak convergence (no order estimate) for a generalization
of the Scharfetter-Gummel scheme to nonlinear convection-diffusion problems has been
shown. A convergence proof for a variant of the van Roosbroeck system discretized with
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the simple upwind scheme was given in [61].

4.6 Maximum principle

When applied to the drift-diffusion formulation, compared to various variants of the sta-
bilized Þnite element method, the two-point ßux Þnite volume scheme is outstanding in
the sense that it guarantees positivity of densities and absense of unphysical oscillations
[62, 63]. It allows to carry over the discussions of Section 2.7 to the higher dimensional
case.

5 Nonlinear solvers

In Section 2, we have already brießy mentioned that we need to solve a nonlinear discrete
system of the form

0 = F(! , " n, " p) :=
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#
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F3(! , " n, " p)

$

%
&.

Here, we discuss two ways to do this: NewtonÕs method and GummelÕs iteration method
[38], which is different from the previously discussed Scharfetter-Gummel scheme.

5.1 NewtonÕs method

Assuming that a good starting guess has been provided for example by following the ideas
in Section 2.6, NewtonÕs method constructs a new ( k + 1)th iterate from the kth by solving
the linear system
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for the update vector !
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Then the new iterate is obtained by adding the previous vector to the update. The
advantage of NewtonÕs method is that it converges quadratically if the starting guess
is sufÞciently close to the solution [17]. This allows to obtain highly accurate discrete
solutions at low additional cost. The major drawback is that it might converge very
slowly or even fail to converge if the starting guess is too far from the actual solution.
Damping Ð multiplying the update with a factor less than 1 Ð is known to increase the
convergence region. Another remedy is parameter embedding where one slowly changes
a parameter, always using the old solution as a new starting guess. We have already
employed this embedding technique in Section 2.6 when gradually increasing the bias
voltage in the solution procedure.

An important advantage of Þnite element and Þnite volume discretizations is the fact
that they create only next-neighbor couplings in the discretized systems. The resulting
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linearized systems are therefore sparse, i. e. the maximum number of nonzero elements
in a matrix row is bounded by a constant independent of the number of discretization
cells, making it possible to use highly economic storage schemes. For 2D applications,
one can usually solve the resulting sparse linear system (47) via sparse direct solvers
such as PARDISO [64, 65, 66, 67] or UMFPACK [68, 69]. Direct solvers calculate a repre-
sentation of the system matrix as a product of easily solvable lower and upper triangular
matrices, which unfortunately are not anymore sparse, increasing memory consumption
and computational time especially in large 3D applications. This Þll-in phenomenon is
avoided by preconditioned Krylov subspace methods [70], which compared to the direct
solvers need signiÞcant effort in tuning and adaptation to the problem at hand.

5.2 GummelÕs method

Gummel [38, 13] suggested decoupling the three equations in the van Roosbroeck system.
He devised an iterative method at the continuous level, which for Boltzmann statistics
and drift-diffusion form leads to alternating between solving linear differential equations
for the electric potential as well as the charge carrier densities. Suppose one already
knows the iterate ( ! k , nk , pk). In order to obtain the electric potential at the new level,
! k+1, one solves

0 = !
1

q
"á

!
" s" ! k+1

"
+

!
nk + pk

" #
! k+1 ! ! k

UT

$
+ nk ! pk ! C.

This formulation is motivated by linearizing a Þxed point problem which one obtains from
the Poisson equation [13]. Once one has solved for the electrostatic potential at the new
level, one can successively solve the continuity equations from

0 = "á j n(! k+1, nk+1) ! qR(! k+1, nk+1, pk)

0 = "á j p(! k+1, pk+1)+ qR(! k+1, nk+1, pk+1).

GummelÕs method is known to have a larger convergence region and a slower asymptotic
convergence rate compared to NewtonsÕs method. Depending on the software environ-
ment chosen, it also may be easier to implement. Note that standard existence and
uniqueness proofs for the van Roosbroeck system rely on a similar decoupling strategy,
see Section 3.4.

6 Mesh generation for the Þnite volume method

While appearing to be just a technical footnote compared to the questions of modeling,
analysis and discretization, mesh generation in reality is a hard problem which deserves
special attention. We focus on methods to construct admissible subdivisions of the com-
putational domain ! as used in Section 4.

6.1 Boundary conforming Delaunay meshes on polyhedral do-
mains

Assume a partition (triangulation in 2D, tetrahedralization in 3D) of the polyhedral do-
main ! =

%N"
k=1 " k into non-overlapping simplices " k as it is commonly used for Þnite
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element methods [71]. We require that this simplicial partition of ! has the boundary
conforming Delaunay property [72]. For a triangulation of a two dimensional domain this
property is equivalent to:

(i) For any two triangles with a common edge, the sum of their respective angles op-
posite to that edge is less or equal to 180 ! .

(ii) For any triangle sharing an edge with ! ! , its angle opposite to that edge is less or
equal to 90 ! .

Figure 12: Left: Piecewise linear description of computational domain with given point
cloud. Mid: Delaunay triangulation of domain and triangle circumcenters. As some
boundary triangles have larger than 90 ! angles opposite to the boundary, their circum-
centers (blue) are outside of the domain. Right: Boundary conforming Delaunay triangu-
lation with automatically inserted additional points at the boundary (green), and Voronoi
and restricted Voronoi cells (red). Created using triangle [73].

For a given vertex x i " X , the Voronoi cell around X is the set

Vi =
!
x " Rd : #x $ x i # < #x $ x j # for all x j " X with x j %=x i

"
.

The Voronoi diagram Ð the set of Voronoi cells for all vertices in X Ð is dual to the Delau-
nay triangulation of the point set X in the sense that for each edge x i x j in the Delaunay
triangulation, ! Vi & ! Vj %= '. If the simplicial partition is boundary conforming Delaunay,
the restricted Voronoi cells " i = ! & Vi are well deÞned and can be obtained by joining
the circumcenters of the simplices adjacent to the vertex x i . These restricted Voronoi
cells provide an admissible control volume partition as required in Section 4. We note
that in order to implement the Þnite volume method as described in Section 4, there is no
need for an explicit construction of the control volumina " i as geometrical objects. Given
the simplical partition, it is sufÞcient to base the calculations on the simplicial contribu-
tions sk

i j = | !" i & !" j & " k | and |" i & " K |, and to use a simplex based assembly loop like
often done for Þnite elements [29]. Figure 12 shows (boundary conforming) Delaunay
triangulations.

There are several efÞcient algorithms to construct Delaunay triangulations for a given
point set X [74, 75]. These are good starting points of devising meshing algorithms in
general. Many different problems complicate the generation of a mesh. For example, the
boundary conforming Delaunay property is rather difÞcult to achieve, in particular it re-
quires the careful insertion of additional points on the boundary. In 3D slivers (very ßat
tetrahedra) must be avoided. And lastly, it may be very complicated to fulÞll additional
requirements like constraints on the minimum angle or the local element size. Though
there are still unsolved problems, the triangle ([73], 2D, free for non-commercial use)
and TetGen ([76], 3D, open source) mesh generators help to create boundary conforming
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Delaunay meshes based on algorithms which are proven to deliver meshes with the de-
sired properties in Þnite time for a broad class of geometries given by a piecewise linear
description of the boundary.

Other mesh generation approaches, in particular the advancing front [77] and the
octree method [78], are similarly widespread. However, while popular in Þnite element
community, their design makes it much harder to use them as a starting point for gener-
ating boundary conforming Delaunay meshes.

6.2 Tensor product approaches

In simpliÞed geometrical situations, rectangular and cuboid mesh structures are a
straightforward way to generate admissible Þnite volume partitions of the computational
domain [12]. Extrusion of a 2D boundary conforming Delaunay base mesh into a 3D mesh
consisting of prisms (and optional subsequent subdivision of these prisms into tetrahe-
dra) provides another method to create admissible Þnite volume partitions [79].

6.3 Open problems

Charge densities and potentials in semiconductors exhibit interior and boundary layers,
i. e. thin regions charaterized by rapid gradients in one direction and slow gradients
in the orthogonal direction. This may happen in space charge regions in the vicinity of
gate contacts and at p-n junctions. These layers and other possible ÒhotspotsÓ due to
recombination for example call for local mesh adaptation. Element size control via the
mesh generators using a priori knowledge is often used in this situation [73, 76]. The
development of reliable a posteriori mesh reÞnenment criteria is an open problem in the
context of the strongly coupled van Roosbroeck system. A physically motivated heuristic
approach based on the equidistribution of the dissipation rate was suggested in [29] and
investigated in [80].

Mesh generation tools mostly fail to create boundary conforming Delaunay meshes
which use thin, anisotropic simplices to resolve interior and boundary layers with an
optimal number of points. A partial remedy in some situations can be provided by node
offsetting [81], a technique still under development. In certain cases, tensor product
approaches [79] give reasonable results.

7 Time discretization

In order to discretize the time derivative in the van Roosbroeck system (26), we deÞne a
series of discrete time values 0 = t0, t1, . . . , t M = T with step lengths ! m = tm+1 ! tm. We
describe the temporal semi-discretization of the (spatially) continuous problem. For prac-
tical purposes it needs to be combined with the space discretization approach described
in the previous sections. The implict Euler time discretization scheme assumes given val-
ues " m,# m

n ,# m
p ,nm, pm of the variables at time tm. Values at the subsequent time tm+1
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are calculated by solving the nonlinear system of equations

!"á (! s" " m+1) = q(C ! nm+1 + pm+1) (48a)

! q
nm+1 ! nm

#m ! q"á µn nm+1" $ m+1
n = qR(nm+1, pm+1), (48b)

q
pm+1 ! pm

#m ! q"á µ p pm+1" $ m+1
p = ! qR(nm+1, pm+1) (48c)

where

nm+1 = N cF (%n(" m+1,$ m+1
n ))

pm+1 = NvF (%p(" m+1,$ m+1
p ))

As a consequence, the nonlinear system (48), which is structurally similar to (42), has
to be solved for each time step by iterative methods described in Section 5. An initial
guess for these methods can be obtained from the old time step tm or a linear extrapola-
tion involving data from several previous time steps [82].

It is advisable to choose the size of the time steps #m according to multiple criteria,
including the convergence radius of NewtonÕs method, the free energy and local changes
of the potentials.

At Þrst glance, the computational cost of having to solve a nonlinear system for each
time step appears to be rather high. However, this scheme is stable, independent of
the the time step size and allows to carry over all advantages of the Þnite volume scheme
from the stationary to the transient case. The transient discrete solution converges to the
stationary one, in particular, for the corresponding boundary condition to the thermody-
namic equilibrium solution. The free energy of the system decays during this approach
to the equilibrium. In several cases, it has been proven that this decay is exponential
[83, 55]. By preserving the physics, the implicit Euler scheme Þts well to the thermody-
namically motivated discretization schemes. The use of other schemes implies giving up
some of these physical properties. If the resulting deviations from thermodynamic prop-
erties can be kept under control, higher order schemes (e.g. BDF methods [84]) might
help to reduce computational costs due to a higher temporal convergence order.

Due to the perceived complexity and high computational costs of solving coupled non-
linear PDE systems, linear implicit methods, mixing linearization and time discretiza-
tions are considered as alternatives. Most prominent is the scheme devised in [85].

8 Contact terminal currents

In simulations one is usually interested in IV-curves, i. e. the dependency of terminal
currents on applied voltages. Therefore, calculating terminal currents accurately is cru-
cial to a successful postprocessing of the simulated Þeld data. The total current density is
given by

j = j d + j n + j p

where j d = ! ! s" (&t " ) = &tD is the displacement current density . Taking the time deriva-
tive of the Poisson equation (26a) yields

!"á ! s" (&t " ) = q(&t n ! &t p) = !"á j n ! qR ! "á j p + qR

"á &tD = !"á j n ! "á j p
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resulting in !á j = 0, which physically implies charge conservation.
Given a set of contacts ! ! " " " for ! = 1, . . . , NC, the terminal current through contact

! is deÞned as

I ! =
!

! !

j á# ds.

The correct calculation of this integral presupposes a regularity of the solution and its
derivative which is not supported by analytical theory. Therefore, in [51, 52] a test func-
tion based technique was proposed which uses the weak formulation of the problem. For
a physical motivation of this approach and an interpretation as a generalized Shockley-
Ramo theorem we refer to [86]. For any ! , let the function T! : " # R solve the boundary
value problem

$! 2T! = 0 in " , (49)

! T! án = 0 on " " \
NC"

$=1
! $ , (50)

T! = %!$ on ! $ (for $ = 1, . . . , NC with $ %=! ), (51)

where %!$ denotes the Kronecker delta. As a consequence,

I ! =
!

! !

j á# ds =
!

" "
T! j á# ds =

!

"
! á (T! j ) dx

=
!

"
! T! áj dx +

!

"
T! ! á j dx

=
!

"
! T! á(j n + j p) dx + " t

!

"
! T! áD dx

Given the semi-discretization in time from Section 7, one arrives at

I m+1
! =

!

"
! T! á(j m+1

n + j m+1
p ) dx +

1

&m

!

"
! T! á

#
D m+1 $ D m$

dx.

Like in Section 4, we approximate equations (49)Ð(51) by a Þnite volume discretiza-
tion. Using partial integration and the discretized terms derived in the previous sections
we come up with an expression for the total current through the ! -th contact

I m+1
! &

%

' ( ' N (' k )
k< (

|"' k ( "' ( |

&

j m+1
n;k,( + j m+1

p;k,( +
D m+1

k,( $ D m
k,(

&m

'

(T! ;k $ T! ;( ). (52)

9 An alternative: the Þnite element method

We have put special emphasis on the Þnite volume method. However, it is worth pointing
out that there are other approaches. The Þnite difference method which has been used
to solve the van Roosbroeck system [13] on tensor product meshes is equivalent to the
previously introduced Þnite volume method.

The most popular ansatz to deal with unstructured meshes is the Þnite element
method [71]. It starts with a weak formulation of the steady-state van Roosbroeck prob-
lem (26). Each equation of the system is multiplied with a so-called test function and
integrate in space. Integrating by parts, each equation of the steady-state system can be
restated as the following problem:
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Þnd u ! U such that a(u,v) = f (v) for all v ! V ,

where U is a function space containing the ansatz functions u and V a function space
containing the test functions v. The map a : U " V # R has the structure

a(u,v) =
!

!
! (u)$ u á$v dx %

!

" !
$ u án v ds (53)

and the functional f : V # R is continuous. The idea of a Þnite element method is to ap-
proximate this continuous problem with a discrete version. We approximate the inÞnite
dimensional spaces U and V with Þnite dimensional subspaces Uh and Vh spanned by
basis functions with localized support. Then we obtain a Þnite dimensional version of
(53), namely

Þnd uh ! Uh such that ah(uh,vh) = f (vh) for all vh ! Vh.

As it is sufÞcient to fulÞll this condition for Þnitely many localized basis functions in
Vh, we obtain a sparse (containing many zeros) nonlinear system of equations for the
basis coefÞcients of uh, assuming we are able to calculate the integrals. One usually
approximates these integrals by quadrature rules.

Auf der Maur [87] suggested to write the van Roosbroeck system in this framework,
using the quasi Fermi potential formulation of the ßux. In this case one has

a# (# ,v) =
!

!
$s$ # á$v dx +

!

" G

$ox

dox
(# %UG)v ds, f # (v) = q

!

!
(p %n + C)v dx, (54a)

a%n (%n,v) =
!

!
µn n$ %n á$v dx, f %n (v) =

!

!
Rv dx, (54b)

a%p (%p,v) =
!

!
µ p p$ %p á$v dx, f %p (v) =

!

!
Rv dx. (54c)

At the Dirichlet parts of the boundary, namely at the Ohmic contacts " O,! introduced
in Section 3, we assume that test functions v vanish and the ansatz functions denoted
by # , %n and %p fulÞll the the Dirchlet boundary conditions (28). Note, that the gate
boundary conditions (29) have been incorparated into the boundary part of the quadratic
form (54a).

We point out that for PoissonÕs equation ! # (# ) = $s and for the continuity equations we
have ! %n (%n) = µn n and ! %p (%p) = µ p p, respectively. Due to the formulation of problem
with quasi Fermi potentials as unknowns, this means that ! %n (%n) and ! %p (%p) intro-
duce nonlinearities in a%n and a%p . The integrals on the left-hand side of (54) have no
analytical expressions and are approximated using quadrature rules [71].

Essential for this Þnite element scheme is the underlying potential-based formulation
of the ßux in terms of %n and %p. If one attempts to apply the Þnite element method using
the density-based, drift-diffusion formulation of the ßux, one encounters a lot of technical
difÞculties and one has to stabilize the Þnite element method [62, 88]. A convergence
proof of the Þnite element method for a similar system in a somewhat different context
(and without recombination) is available in [89].

10 Extensions and outlook

In this chapter, we discussed the most important numerical solution techniques of the van
Roosbroeck system, describing the transport of electrons and holes in semiconductors in



10. Extensions and outlook 36

a self-consistent electric Þeld. This approach provides the core functionalities for a solver
which can be enhanced by models describing additional physical phenomena and more
complex device structures including for example heterostructures. We mention a number
of additional extensions and point to the corresponding literature.

Additional physical models

Many devices require a more accurate description of the carrier mobilities. For example,
models of ionized impurity scattering, high-Þeld drift velocity saturation and similar ef-
fects [13, 90] introduce dependencies of the mobilties on carrier densities and the electric
Þeld strength, resulting in even more nonlinear couplings in the system.

The carrier transport in organic semiconductors is governed by hopping transport
between the energy states of neighboring molecules. The van Roosbroeck system can
be used to describe this effectively [8, 27]. This may require the use of statistical dis-
tribution functions which reßect the distribution of the energy transport levels such as
Blakemore for ! -shaped densities of states or Gau§-Fermi [10]. In this context, the cor-
rect treatmeant of the diffusion enhancement is vital. One also has to account for the
nonlinear mobilities [8, 91] related to the energetic disorder characteristic for organic
semiconductors.

Spin-polarized drift diffusion models have been proposed in [92] for the description of
spintronic devices. They generalize the van Roosbroeck system, introducing spin-resolved
densities for electron and holes and additional mechanisms describing the spin relax-
ation. They have been recently studied also from a numerical point of view in [93, 94, 95].

Coupling the van Roosbroeck system to other models

When modeling lasers one has to couple the van Roosbroeck system to equations for
the optical modes. This introduces additional recombination processes, describing the
stimulated emission. Additionally, one has to consider balance equations for the photon
number. A comprehensive model (also including heating effects) along with a numerical
solution strategy is given in [14].

In semiconductor devices with embedded nanostructures (such as quantum dots and
quantum wells), one has to couple the drift diffusion equations to equations describing
the dynamics of the carriers localized in the nanostructures [4, 5, 7]. A multiscale ap-
proach for coupling atomistic with continuum drift-diffusion models is presented in [96].

If heating effects become important, the van Roosbroeck system needs to be extended
by an energy transport model for the heat ßow in the device. For a thermodynamically
consistent extension of the van Roosbroeck system to account for this effect we refer to
[14, 31].

Methods for doping optimization

An important task when designing semiconductor devices is Þnding a suitable doping
proÞle. This is an analytical and numerical challenge. Electric properties of the device
can be improved by optimizing the doping proÞles using suitable objective functionals [97,
98, 99]. Recently, the approach introduced in [97] has been extented for the optimization
of doping proÞles in lasers [100].
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Alternative modeling approaches for carrier transport

The van Roosbroeck uses implicitly the assumption that the carrier ensemble is locally
in quasi equilibrium. When this assumption is not met, for example, for hot electrons,
one has to consider alternative approaches. The most common ones are: hydrodynamic
models [101] and approximations of the Boltzmann equation which are derived from a
spherical harmonics expansion [102]. The book [103] gives a mathematically oriented
overview of these topics.
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