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1. INTRODUCTION

Goal of this paper is to collect into a homogeneous and original presentation a series of results about
the fractional Allen-Cahn (or scalar Ginzburg-Landau) equation.

The classical model for this equation arises in the study of phase coexistence and it has several
applications in material sciences. In its basic version, the model aims to describe the phase separation
occurring in some media. The two phases can be described by a state parameter function u : Rn →
[−1, 1]. In this setting, n ∈ N is the dimension of the ambient space and the values −1 and 1 for u
represent the “pure phases” of the system.

The total energy of the system is supposed to be made of two terms: a “potential” termW(u), which
forces minimizers to stay “as close as possible to the pure phases”, and an “elastic” (or, with a slight
abuse of a terminology borrowed from similal setting in Hamiltonian dynamics, “kinetic”) term K(u),
which “prevents the formation of unnecessary interfaces”.

More precisely, given a (bounded, smooth) set Ω ⊂ Rn (the “container”), and a smooth function W :
R → [0,+∞] (the “potential”) which has nondegenerate minima at ±1 (i.e., say, W (±1) = 0 <
W (r) for any r ∈ R \ (−1, 1), with W ′′(±1) > 0), we set

W(u) :=

∫
Ω

W (u(x)) dx.

In the classical case, the formation of interfaces is penalized by a local elastic term of the form

(1.1) K(u) :=
1

2

∫
Ω

|∇u(x)|2 dx,

which leads to the total energy functional

(1.2) E(u) := K(u) +W(u) =

∫
Ω

|∇u(x)|2

2
+W (u(x)) dx,

whose critical points are solutions of the partial differential equation

(1.3) −∆u(x) +W ′(u(x)) = 0, for any x ∈ Ω.

Recently, some attention has been devoted to nonlocal phase transition models, in order to capture the
long term interactions between particles and to describe the boundary effects, see e.g. [AB98,Gon09,
SV12b]. Here, we consider a phase transition model driven by a nonlocal energy of fractional type,
which can be described as follows. Particles are supposed to interact according to a kernel, which
we take invariant under translations and rotations, scale invariant and with polynomial decay. More
concretely, we set

(1.4) K(y) :=
1

|y|n+2s
,

with s ∈ (0, 1) and consider, as elastic energy, the quantity

(1.5) K(u) :=
1

2

∫
QΩ

|u(x)− u(y)|2 K(x− y) dx dy,

where
QΩ := R2n \ (Ωc)2 = (Ω× Ω) ∪ (Ω× Ωc) ∪ (Ωc × Ω).

Here above, Ωc := Rn \ Ω denotes the complementary set.
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By comparing (1.1) with (1.5), we see that we have replaced the classical seminorm in the Sobolev
space H1 with a seminorm in the fractional Sobolev space Hs, with s ∈ (0, 1). As for the domain
of integration, the idea, both in (1.1) and in (1.5), is that the values of the state parameter u are fixed
outside the container Ω, so they should not really contribute to an effective energy and the energy
should only take into account contributions which “see the container Ω”. In this sense, the integral
in (1.1) takes into account the whole of the space Rn, with the exception of the contributions that lie
outside the container Ω (that is, the integral in (1.1) ranges in Rn \ (Ωc) = Ω). In the same spirit, the
energy in (1.5), which is a double integral, takes into account all the interactions in the whole of the
space Rn×Rn, with the exception of the ones which only involve points outside the container Ω (that
is, the integral in (1.5) ranges in (Rn × Rn) \ (Ωc × Ωc), which indeed coincides with QΩ).

With these observations, when the elastic energy in (1.1) is replaced by the nonlocal one in (1.5), the
total energy in (1.2) is replaced by its fractional analogue

(1.6) E(u) := K(u) +W(u) =
1

2

∫
QΩ

|u(x)− u(y)|2 K(x− y) dx dy +

∫
Ω

W (u(x)) dx,

whose critical points are solutions of the partial differential equation

(1.7) (−∆)su(x) +W ′(u(x)) = 0, for any x ∈ Ω,

which can be seen as a nonlocal counterpart of (1.3). Here, as customary in the literature involv-
ing fractional operators, we are using the notation (−∆)s to denote the fractional Laplacian, i.e. the
integrodifferential operator given (up to multiplicative dimensional constants that we neglect here) by∫

Rn

(
2u(x)− u(x+ z)− u(x− z)

)
K(z) dz.

We refer to [Lan72,Ste70,Sil05,DNPV12] for an introduction to the fractional Laplacian.

Here, we aim to discuss the theory of nonlocal phase transitions, as described by the energy functional
in (1.6) and by the pseudodifferential equation in (1.7), basically discussing the similarities and the
important differences with respect to the classical theory, especially in the light of Γ-convergence,
density estimates, rigidity and flatness results and periodic and quasiperiodic structures arising in
periodic media.

2. Γ-CONVERGENCE AND DENSITY ESTIMATES

To study the asymptotics of the solutions of (1.7), it is convenient to look at the spacial scaling x→ x
ε
.

Correspondingly, one can appropriately rescale the energy functional as

Eε(u) :=


K(u) + ε−2sW(u) if s ∈ (0, 1/2),

| log ε|−1K(u) + |ε log ε|−1W(u) if s = 1/2,

ε2s−1K(u) + ε−1W(u) if s ∈ (1/2, 1).

When we want to emphasize the dependence of the energy functional (or of the energy contributions)
on the container Ω, we will write, respectively,W(u; Ω), K(u; Ω), E(u; Ω) and Eε(u; Ω).

In this notation, if uε(x) := u(x/ε) and Ωε := εΩ, we have that

W(uε; Ωε) = εnW(u; Ω)

and K(uε; Ωε) = εn−2sK(u; Ω)

and so

Eε(uε; Ωε) = εn−min{2s,1}E(u; Ω)
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if s ∈ (0, 1) \ {1/2}, and

Eε(uε; Ωε) =
εn−1

| log ε|
E(u; Ω)

if s = 1/2 (this additional logaritmic factor is indeed very typical for fractional problems related to the
square root of the Laplacian).

The scale of this functional is chosen in such a way that the following Γ-convergence result holds
(see [SV12a]):

Theorem 2.1. As ε↘ 0, the functional Eε Γ-converges to

E0(u) :=


K(u; Ω) if s ∈ (0, 1/2) and u = χE − χEc a.e. in Ω for some E ⊆ Ω,

c? Per (E,Ω) if s ∈ [1/2, 1) and u = χE − χEc a.e. in Ω for some E ⊆ Ω,

+∞ otherwise.

It is worth to point out that Theorem 2.1 may be rephrased by saying that when s ∈ [1/2, 1) the
fractional phase transition energy Γ-converges to the classical perimeter functional – as it happens
indeed in the classical case s = 1. The classical counterpart when s = 1 of Theorem 2.1 was indeed
one of the founding results of Γ-convergence, see [MM77].

On the other hand, when s ∈ (0, 1/2), the fractional phase transition energy converges to the frac-
tional perimeter functional that was introduced in [CRS10]. This suggests that the fractional param-
eter s = 1/2 provides a threshold for the asymptotic behavior of nonlocal phase transitions: above
such threshold, the behavior of the interfaces at a large scale somehow “localizes”, since such behav-
ior is dictated by the classical, and thus local, perimeter minimization; but below such threshold the
behavior of the interfaces at a large scale fully mantains its nonlocal properties, since it is driven by a
nonlocal perimeter functional.

Of course, Γ-convergence is a very elegant and effective method to deal with the asymptotics of
functionals and it fits well with the calculus of variations and with the problems of minimization. On
the other hand, it gives little information on the geometric properties of the solutions of the equation.
In the classical case, to overcome this difficulty, a theory of “density estimates” has been developed
in [CC95]. Namely, the goal of this theory is to establish energy bounds and bounds in measure
theoretic sense for the level sets of minimizers, with the goal of showing that minimizers behave “like
one-dimensional solutions” at least in terms of energy and in terms of measure occupied by their
interface.

In the fractional framework, we have that the energy of minimizers of Eε is locally uniformly bounded,
according to the following result:

Theorem 2.2. Let ϑ1 ∈ (0, 1). If uε minimizes Eε in B1+ε and |uε(0)| < ϑ1, then

(2.1) c 6 Eε(uε, B1) 6 C,

with C > c > 0 only depending on n, s and W .

The upper energy bound in (2.1) was proved in [SV14] and the lower bound in [CV16].

A counterpart of the energy bounds in Theorem 2.2 is a density estimate, which says, roughly speak-
ing, that the measure of the interface of minimizers of Eε is locally of size comparable to ε. The precise
result goes as follows:
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Theorem 2.3. Let ϑ1, ϑ2 ∈ (0, 1). If uε minimizes Eε in B1 and |uε(0)| < ϑ1, then

(2.2) cε 6
∣∣{|uε| < ϑ2} ∩B1

∣∣ 6 Cε,

with C > c > 0 only depending on n, s and W .

The upper density estimate in (2.2) was proved in [SV14] and the lower bound in [CV16]. We remark
that the connection between the energy bound in (2.1) and the measure theoretic bound in (2.2)
is particularly close in the local case (i.e. for s = 1) and also in the weakly nonlocal case (i.e.
when s ∈ (1/2, 1)), since, roughly speaking, the potential energy is capable of measuring the
size of the interface in a sufficiently sharp way. On the other hand, in the strongly nonlocal case
(i.e. when s ∈ (0, 1/2)), the potential energy does not suffice for this scope and one has to carefully
take into account the interaction in the elastic energy, possibly at any scale, to detect the dominant
contributions. In particular, the case s = 1/2 for these estimates turns out to be the most delicate
one, since the precise bounds involve a logaritmic correction.

We stress that the optimal bounds obtained in (2.1) and (2.2) not only provide the uniform convergence
of the level sets of the minimizers to their limit interface (see [CC95]), but also provide the cornerstone
for the construction of planelike solutions in periodic media for which the oscillation from the reference
plane is of the same order of the size of periodicity of the media (this feature will be more throughly
detailed in Section 4). For this, we also remark that both Theorems 2.2 and 2.3 hold for more general
kernels K and potentials W (see [CV16]).

3. RIGIDITY AND FLATNESS RESULTS

A byproduct of the optimal bounds in (2.1) and (2.2) is that minimizers behave as if they were one-
dimensional functions (that is, for functions of only one Euclidean variable, with sufficient decay at
infinity, one can check “by hands” that formulas (2.1) and (2.2) hold true).

A natural question in this setting is whether global one dimensional solutions of (1.7) indeed exist.
That is, up to normalization, if there exists a function u0 : R→ (−1, 1) that satisfies

(−∆)su0(x) +W ′(u0(x)) = 0, for any x ∈ R,
lim

x→±∞
u0(x) = ±1.

(3.1)

We stress that when s = 1, the existence of such “transition layer” u0 is obvious, since the problem
boils down to an ordinary differential equation, which can be integrated explicitly (by multiplying the
equation by u′0(x) and taking the antiderivative – or equivalently by using the Law of Conservation of
Energy).

On the other hand, differently from the classical case, when s ∈ (0, 1) the existence of such so-
lution u0 is a rather delicate business, and it has been established, using variational and energy
methods, in [PSV13], [CS15] and, in further generality, in [CP16].

Of course, given the estimates in (2.1) and (2.2), one may wonder under which additional conditions
(if any) we can say that solutions of (1.7) are indeed one-dimensional, i.e., up to normalizations, are of
the form u(x) = u0(xn), or, say, the level sets of u are hyperplanes. In the classical case s = 1 this
was in fact the content of a beautiful conjecture by Ennio De Giorgi in [DG79], which can be stated as
follows:

Conjecture 3.1. Let u ∈ C2(Rn, [1, 1]) satisfy

(3.2) −∆u = u− u3
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and
∂xnu > 0

in the whole of Rn. Is it true that all the level sets of u are hyperplanes, at least if n 6 8?

We refer to [FV09] for a detailed account of the available results related to Conjecture 3.1; here, we
would like to discuss the fractional analogue of Conjecture 3.1 when equation (3.2) is replaced by its
nonlocal counterpart

(−∆)su = u− u3

with s ∈ (0, 1). In this case, a positive answer to this problem was given in [CSM05] when n = 2
and s = 1/2, in [SV09,CS15] when n = 2 and s ∈ (0, 1), in [CC10] when n = 3 and s = 1/2 and
in [CC14] when n = 3 and s ∈ (1/2, 1) (see also [SV13] and [BV16] for different proofs, also related
to nonlocal minimal surfaces).

Hence, all in all, at the moment, to the best of our knowledge, the state of the art on the nonlocal
analogue of Conjecture 3.1 can be summarized by the following result:

Theorem 3.2. Let u ∈ C2(Rn, [1, 1]) satisfy

(−∆)su = u− u3

and ∂xnu > 0

in the whole of Rn. Assume also that
either n = 2 and s ∈ (0, 1),

or n = 3 and s ∈ [1/2, 1).
(3.3)

Then all the level sets of u are hyperplanes.

As a matter of fact, Theorem 3.2 holds true for a very general class of equations under condition (3.3),
see [CSM05, SV09, CS15, CC10, CC14, SV13, BV16]. Of course, it would be very desirable to go be-
yond condition (3.3), or to provide counterexamples.

It is also suggestive to compare the threshold s = 1/2 in (3.3) with the different behavior of the Γ-limit
described by Theorem 2.1. In any case, it is not clear whether or not condition (3.3) reflects somehow
the different behavior of local and nonlocal minimal surfaces. See also [BV16] for further discussions
on this point.

4. PLANELIKE MINIMIZERS IN PERIODIC MEDIA

A classical topic in differential geometry (resp., dynamical systems) is to look for periodic and quasiperi-
odic solutions of problems set in periodic media which lie at a bounded distance from any fixed hyper-
plane (resp. which possess a rotation number in average). For instance, in [Mor24, Hed32] the case
of the plane with a Riemannian metric was taken into account, establishing the existence of minimal
geodesics which stay at a bounded distance from any prescribed straight line (depending on the arith-
metic properties of the slope of this line, the geodesics turn out to be either periodic or quasiperiodic).

A similar problem in higher codimension turns out to be, in general, ill-posed, since [Hed32] provided
an example of a metric in R3 which does not have geodesics at bounded distance from a particular
direction. Nevertheless, a similar problem can be efficiently set in higher dimension, provided that one
takes into consideration objects of codimension 1, such as minimal hypersurfaces (namely, hyper-
surfaces which minimize a periodic perimeter functional) that lie at bounded distance from any fixed
hyperplane. We refer to [Ban90,CdlL01,AB01] and references therein for these types of problems and,
for instance, to [Mat93] for related problems in the setting of dynamical systems.



6

The construction of periodic and quasiperiodic objects in periodic media has also a long and important
tradition in partial differential equations, see [Mos86, RS11] and the references therein. For instance,
in [Val04] the classical Ginzburg-Landau-Allen-Cahn equation (3.2) is set in a periodic medium, and
one constructs global solutions which are minimal, and either periodic or quasiperiodic, and whose
level sets stay at a bounded distance from a prescribed hyperplane. Roughly speaking, from a physical
point of view, one obtains in this way some phase coexistence in an infinite periodic medium whose
interface is a flat hyperplane, up to a uniformly bounded error.

Goal of this section is to describe in detail some of the results concerning periodic and quasiperiodic
minimizers for the nonlocal phase transition equation in a periodic medium. For this, we take into
consideration the following heterogeneous variant of the total energy (1.6):

(4.1) E(u) = E(u; Ω) :=
1

2

∫
QΩ

|u(x)− u(y)|2 K(x− y) dx dy +

∫
Ω

Q(x)W (u(x)) dx,

with K as in (1.4), and the corresponding Euler-Lagrange equation

(−∆)su(x) +Q(x)W ′(u(x)) = 0, for any x ∈ Rn.

In order to model a non-homogeneous periodic environment, the potentialW appears now modulated
by a measurable function Q : Rn → [Q∗, Q

∗], with Q∗ > Q∗ > 0, which is periodic with respect to
a discrete lattice of step τ > 1, that is

Q(x+ k) = Q(x), for a.e. x ∈ Rn and any k ∈ τZn.

As we just said, the energy E embodies the presence of an underlying heterogeneous medium by
means of the multiplicative correction Q in the potential term. Note that the model is sensitive to the
periodicity scale of the medium through the factor τ .

Of course, a broader setting can be taken into account, for instance by considering a more general
periodic potential or by letting the kernel K be space-dependent as well. This latter generalization is
particularly interesting as it encompasses models in which the interaction between two particles of the
system does not depend only on their distance, but may vary (albeit in a periodic way) as the particles
occupy different places in the space.

Here, we choose to favor a not too involved exposition and thus to stick to the simpler model provided
by (4.1). For a presentation of our contributions in a wider generality, we refer the interested reader
to [CV15,CV16].

The result that we shortly discuss addresses the existence of a planelike minimizer for E in the whole
space Rn. That is, a function u : Rn → [−1, 1] that minimizes E in Ω for any bounded set Ω ⊂ Rn

(a so-called class A minimizer ) and whose intermediate level set {|u| < 9/10} lies at a bounded
distance from any fixed hyperplane of Rn. By construction, the minimizer enjoys a suitable periodicity
or quasi-periodicity property, depending on whether the slope of the associated hyperplane is rational
or not.

WhenQ is constant, the energy is translation-invariant and, as a result, planar minimizers exist (recall
the discussion at the beginning of Section 3). Under the presence of a non-trivial modulation Q, such
construction cannot be carried out and, in general, one-dimensional minimizers do not exist. However,
the following fact holds true.

Theorem 4.1. There exists a universal constant M0 > 0, such that, given any ω ∈ Rn \ {0}, we can
construct a class A minimizer u for E satisfying{

x ∈ Rn : |u(x)| < 9

10

}
⊂
{
x ∈ Rn :

ω

|ω|
· x ∈ [0, τM0]

}
.
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FIGURE 1. A planelike minimizer as given in Theorem 4.1.

Furthermore, u enjoys the following quasi-periodicity properties:

• if ω ∈ τQn \ {0}, then u is∼-periodic, i.e. it respects the equivalence relation∼ defined in Rn by

(4.2) x ∼ y if and only if y − x ∈ τZn and ω · (y − x) = 0;

• if ω ∈ Rn \ τQn, then u is the locally uniform limit of a sequence of periodic class A minimizers.

Theorem 4.1 provides the aforementioned existence of planelike minimizers for the nonlocal en-
ergy (4.1), see Figure 1.

We stress that the size of the strip where the (essential) transition of a minimizer occurs is proportional
to the periodicity scale τ of the medium. The proportionality constant M0 is universal, in the sense
that it depends only on the structural constants involved in the model, i.e. n, s, Q∗ and Q∗.

Besides being interesting in itself, this fact plays a crucial role in deducing from Theorem 4.1 a similar
construction of planelike minimal surfaces for a periodic nonlocal perimeter (see [CV16] for more
details).

Also, the value 9/10, that has been used to identify an interface region for the minimizer, obviously
plays no particular role and may be indeed replaced by any ϑ ∈ (0, 1). However, the constant M0

would then depend on ϑ as well.

The rest of this section contains a sketch of the proof of Theorem 4.1. The general strategy adopted
is shaped on the one designed in [CdlL01] for a model described by a periodic surface energy, and
developed in [Val04], where the argument is used to deal with a local, non-homogeneous Allen-Cahn-
Ginzburg-Landau functional similar to (1.2).

We begin by addressing the case of a direction ω ∈ τQn \ {0}. We denote by R̃n any fundamental
domain of the quotient space Rn/ ∼, where the relation ∼ is given in (4.2), and consider the class of
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admissible functions

Aω :=

{
u ∈ L2

loc(Rn) : u is ∼-periodic, u(x) >
9

10
if
ω

|ω|
· x 6 0 and u(x) 6 − 9

10
if
ω

|ω|
· x > M

}
,

for any large M > 0. A straightforward application of the Direct Method of the Calculus of Variations
gives the existence of global minimizers of the auxiliary functional

F(u) :=
1

2

∫
eRn

∫
Rn

|u(x)− u(y)|2 K(x− y) dx dy +

∫
eRn

Q(x)W (u(x)) dx,

within the setAω, at least1 if s ∈ (1/2, 1). So we denote byMω the set of such minimizers.

Observe thatF differs from the energy E(·, R̃n), given in (4.1), for the sole fact that the latter contains

the term integrated over R̃n × (R̃n)
c

counted twice, namely

QeRn =
(
R̃n × R̃n

)
∪
(
R̃n × (R̃n)c

)
∪
(
(R̃n)c × R̃n

)
while R̃n × Rn =

(
R̃n × R̃n

)
∪
(
R̃n × (R̃n)c

)
.

(4.3)

The necessity of considering the auxiliary functional F is peculiar to the nonlocal setting considered
here and is mostly due to the fact that the functional E does not behave well with respect to the periodic
structure induced by ∼.

In more concrete terms, given a function u, one can consider its ∼-periodic extension ũ, defined for
a.e. x ∈ Rn as

ũ(x) := u(x̃), where x̃ is the only element of R̃n such that x ∼ x̃.

Then, it holds in general that

(4.4) E(u; R̃n) 6= E(ũ; R̃n).

However, from (4.3), noticing that the potential term has a local character, we obtain that

E(u; R̃n)−F(ũ)

=
1

2

∫
QeRn

|u(x)− u(y)|2 K(x− y) dx dy − 1

2

∫
eRn

∫
Rn

|ũ(x)− ũ(y)|2 K(x− y) dx dy

=

∫
(eRn)c

∫
eRn

|u(x)− u(y)|2 K(x− y) dx dy − 1

2

∫
(eRn)c

∫
eRn

|ũ(x)− ũ(y)|2 K(x− y) dx dy.

(4.5)

In particular, if u is ∼-periodic (hence u = ũ),

(4.6) E(u; R̃n)−F(ũ) =
1

2

∫
(eRn)c

∫
eRn

|u(x)− u(y)|2 K(x− y) dx dy.

In addition, we have that

any minimizer u of F in the classAω (i.e. any u ∈Mω)

is a minimizer of the energy E with respect to perturbations

supported inside the quotiented strip

S̃ω := R̃n ∩ Sω, with Sω :=

{
x ∈ Rn :

ω

|ω|
· x ∈ [0,M ]

}
.

(4.7)

This fact, which is of key importance and ultimately motivates the introduction of the functional F , is
based on the following computation: let φ be a smooth function supported inside S̃ω and let v := u+φ,

1We stress that the case in which s ∈ (0, 1/2] can be treated afterwards via a limiting argument, approximating K
with kernels truncated at infinity. The difficulties arise essentially for the fact that, when s ∈ (0, 1/2], the functional F is
identically equal to +∞ onAω , due to the “fat” tails of the kernel.
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with u ∈ Aω. Then, φ vanishes outside R̃n and ṽ = ũ + φ̃ = u + φ̃. Consequently, if x ∈ (R̃n)c

and y ∈ R̃n, we have that

|v(x)− v(y)|2 − |ṽ(x)− ṽ(y)|2

= |u(x)− u(y)− φ(y)|2 − |u(x) + φ̃(x)− u(y)− φ(y)|2

= |u(x)− u(y)|2 + φ2(y)− 2(u(x)− u(y))φ(y)

−|u(x) + φ̃(x)− u(y)|2 − φ2(y) + 2(u(x) + φ̃(x)− u(y))φ(y)

= |u(x)− u(y)|2 − |u(x) + φ̃(x)− u(y)|2 + 2φ̃(x)φ(y).

Hence, recalling (4.5) and (4.6),

(
E(v; R̃n)−F(ṽ)

)
−
(
E(u; R̃n)−F(u)

)
=

∫
(eRn)c

∫
eRn

(
|v(x)− v(y)|2 − 1

2
|ṽ(x)− ṽ(y)|2 − 1

2
|u(x)− u(y)|2

)
K(x− y) dx dy

=

∫
(eRn)c

∫
eRn

(
1

2
|v(x)− v(y)|2 − 1

2
|u(x) + φ̃(x)− u(y)|2 + φ̃(x)φ(y)

)
K(x− y) dx dy.

(4.8)

Also, using the ∼-periodicity and changing variables x 7−→ x− k, y 7−→ y + k,∫
(eRn)c

∫
eRn

|u(x) + φ̃(x)− u(y)|2 K(x− y) dx dy

=
∑

k∈Zn\{0}
ω·k=0

∫
eRn+k

∫
eRn

|u(x) + φ̃(x)− u(y)|2 K(x− y) dx dy

=
∑

k∈Zn\{0}
ω·k=0

∫
eRn

∫
eRn−k

|u(x) + φ̃(x)− u(y)|2 K(x− y) dx dy

=

∫
eRn

∫
(eRn)c

|u(x) + φ̃(x)− u(y)|2 K(x− y) dx dy

=

∫
eRn

∫
(eRn)c

|u(x) + φ(x)− u(y)|2 K(x− y) dx dy

=

∫
eRn

∫
(eRn)c

|v(x)− v(y)|2 K(x− y) dx dy.

So we insert this information into (4.8), exchanging the roles of x and y, thanks to the even symmetry
of K , and we find that one term symplifies, yielding to the identity

(4.9)
(
E(v; R̃n)−F(ṽ)

)
−
(
E(u; R̃n)−F(u)

)
=

∫
(eRn)c

∫
eRn

φ̃(x)φ(y) K(x− y) dx dy.

Now, we take a competitor w for u and we define φ1 := (w − u)+ > 0 (resp. φ2 := (w − u)− > 0)
and v1 := u− φ1 (resp. v2 := u− φ2). In this way, we deduce from (4.9) that
(4.10)(
E(vi; R̃n)−F(ṽi)

)
−
(
E(u; R̃n)−F(u)

)
=

∫
(eRn)c

∫
eRn

φ̃i(x)φi(y) K(x− y) dx dy > 0,

for i ∈ {1, 2}.
Notice also that max{u,w} = v1 and min{u,w} = v2. Therefore, after a simple computation we
get that

E(v1; R̃n) + E(v2; R̃n) 6 E(u; R̃n) + E(w; R̃n).
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This and (4.10) give that

(4.11) E(u; R̃n) + E(w; R̃n) > 2
(
E(u; R̃n)−F(u)

)
+ F(ṽ1) + F(ṽ2).

Now, if u is a minimizer of F in the class Aω, we have that F(u) 6 F(ṽi), for i ∈ {1, 2}, and this
information, combined with (4.11), gives that E(w; R̃n) > E(u; R̃n). This establishes (4.7).

Now, while the functions in Mω are indeed minimizers of E inside S̃ω thanks to (4.7), there is still
no evidence of why they should extend their minimizing properties beyond such domain, and in fact
in general they do not. In addition, the set of minimizersMω is typically made up of more than just
one element. This lack of uniqueness may lead to a corresponding lack of symmetry and rigidity in the
elements ofMω, and prevent them from being class A minimizers.

For these reasons, we direct our attention to a specific element of the setMω, namely the minimal
minimizer.

The minimal minimizer uω of the classMω is defined as

uω(x) := inf
u∈Mω

u(x), for a.e. x ∈ Rn.

It is not hard to prove that uω is unique and belongs toMω. Therefore, by considering uω we select
the element of Aω with the lowest energy F and, at the same time, having an interface with the
tightest possible oscillation. As a matter of fact, this double optimality translates into the following two
nice features that are enjoyed by the minimal minimizer:

(i) the doubling or no-symmetry-breaking property, i.e. uω is a minimizer also within functions which
exhibit a periodicity of multiple period;

(ii) the Birkhoff property, i.e. the level sets of uω and its translations along vectors k ∈ τZn are
well-ordered and have no non-trivial intersections.

The consequences entailed by these facts are twofold. On the one hand, the doubling property implies
that uω is a minimizer for E with respect to all compact perturbations occurring inside the strip Sω. On
the other hand, the Birkhoff property extends such minimizing character to the whole space Rn, if the
width M of the strip is sufficiently large.

More precisely, by combining the energy and density estimates of Theorems 2.2 and 2.3, we obtain
the existence of a “clean” ball B inside Sω over which uω is, say, smaller than −9/10. The scale
invariance of such estimates ensures that the radius of this ball is a universal fraction of M . Then, the
Birkhoff property allows us to translate B around Sω (in a discrete way) and clean out a full substrip
of width comparable to τ , provided that M > M0τ , for some large universal constant M0 > 0. This
says that the minimal minimizer uω starts attaining values below−9/10 well before meeting the upper
constraint {ω · x = M |ω|}. Such unconstrainedness is the key observation that leads to deducing
that uω is a class A minimizer for E , which thereafter follows almost immediately.

The proof of Theorem 4.1 is essentially complete for the case of a direction ω ∈ τQn \ {0}. When
instead ω ∈ Rn \Qn, we consider a sequence {uk} of periodic planelike minimizers, corresponding
to rational approximating directions {ωk} ⊂ τQn \ {0} of ω. Uniform Hölder estimates combined
with the fact that the value M0 does not depend on the chosen direction then allow us to take the limit
in k and obtain a planelike class A minimizer with interface confined in a strip orthogonal to ω.

In conclusion, with Theorem 4.1 we are able to prove the existence of planelike minimizers for the
energy E , even if its nonlocal nature prevents it from matching the underlying periodic medium (re-
call (4.4)) as well as in the classical, local case treated in [Val04].
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On top of that, the techniques described in this section are flexible enough to be adapted to other
nonlocal periodic models, which arise, for instance, in connection with fractional perimeter functionals
and long-range Ising models (see [CV16,CDV16]).

5. MULTIWELL POTENTIALS AND CHAOTIC ORBITS

Among the many others, one of the main achievements of Paul Rabinowitz consists in providing a clear
and elegant framework in which the chaotic behavior of many equations of great physical importance
can be rigorously detected and deeply understood. We would like to point out one application of the
theory that he developed in the framework of Hamiltonian dynamics to nonlocal equations. For this,
we consider an equation of the tipe

(5.1) (−∆)su(x) + a(x)V ′(u(x)) = 0, for any x ∈ R.

Here, V is a smooth multiwell potential with a discrete set of nondegenerate minima and a is a smooth
function (indeed, a more general setting, also comprising systems of equations, may be taken into
account). The reader may compare equations (1.7) and (5.1): in some sense, equation (5.1) is taking
into account the possibility of drifting from one minimum of V to another one (as well as the layer
solution u0 in (3.1) connects the minima of the two-well potential W ). In this sense, the modulation
function a provides the possibility of favoring this kind of multiple jumps.

Equation (5.1) also arises naturally in the study of crystal dislocation dynamics: in this framework, the
function u can be interpreted as the discrepancy between the rest position of an atom and its actual
position, see e.g. Section 2 of [DPV15b] for simple physical motivations.

The result that we present here has been obtained in [DPV15a] and can be interpreted as a fractional
counterpart of the classical results in [RCZ00].

Roughly speaking, these results aim to provide a symbolic dynamics for the solutions of equation (5.1)
(under suitable “nondegeneracy assumptions” on a). That is, one considers the discrete space con-
sisting of the equilibria of V and finds a solution of (5.1) which induces a shift operator on such space.
Namely, given a sequence of minima of V in a prescribed order, one finds a solution of (5.1) which
gets close to each of these minima of V , in the required order.

More precisely, we have the following result:

Theorem 5.1. Assume that V ∈ C2(R, [0,+∞)) is even, with V (r + k) = V (r), for any r ∈ R
and k ∈ Z. Assume also that V (k) = 0 for any k ∈ Z, that V (r) > 0 and V ′′(0) > 0.

Let a(x) := a1 + a2 cos(εx), with a1 > a2 > 0 and ε > 0 small enough.

Let ζ1, . . . , ζN ∈ Z. Then, there exist b1 < . . . < b2N−2 ∈ R and a solution u of (5.1) such that

lim
x→−∞

u(x) = ζ1,∣∣u(x)− ζ1

∣∣ < 1

10
for any x ∈ (−∞, b1],∣∣u(x)− ζi+1

∣∣ < 1

10
for any x ∈ [b2i, b2i+1] for any i ∈ {1, . . . , N − 2},∣∣u(x)− ζN

∣∣ < 1

10
for any x ∈ [b2N−2,+∞)

and lim
x→+∞

u(x) = ζN .
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FIGURE 2. The multibump solution constructed in Theorem 5.1.

The situation stated in Theorem 5.1 is described in Figure 2.

Here is a sketch on how Theorem 5.1 can be deduced from the results in [DPV15a]. First of all, we
may suppose that

(5.2) |ζi+1 − ζi| = 1 for all i ∈ {1, . . . , N − 1}.
Indeed, this may be obtained just by adding the intermediate integers in the original sequence ζ1, . . . , ζN .

Now we claim that

(5.3) ζi+1 ∈ A(ζi),

for any i ∈ {1, . . . , N − 1}, where the admissible class A(ζi) is defined in Section 8 of [DPV15a]
(roughly speaking, A(ζi) contains all the integers ζ which can be connected to ζi by a constrained
orbit from a neighborhood of ζi to a neighborhood of ζ with minimal possible action).

To prove (5.3), we suppose that ζi+1 = ζi + 1 (recall (5.2); the case ζi+1 = ζi − 1 is analogous).
Let ζ ∈ A(ζi). Since, by Lemma 8.1 in [DPV15a], we have that 2ζi − ζ also belongs to A(ζi), by
possibly replacing ζ with 2ζi − ζ we may and do suppose that ζ > ζi. That is, ζ > ζi + 1. Now,
if ζ = ζi + 1, we have that

A(ζi) 3 ζ = ζi + 1 = ζi+1,

and so (5.3) is proved.

Hence we may focus on the case in which ζ > ζi + 2. In this case, given r ∈ (0, 1/4], if we have an
orbit ui such that |ui(x)− ζi| 6 r for any x 6 b1 and |ui(x)− ζ| 6 r for any x > b2, we can define

u∗i (x) := min{ui(x), ζi + 1} = min{ui(x), ζi+1}.
Then, if x 6 b1, we have that

ui(x) 6 ζi + r < ζi + 1,

hence u∗i (x) = ui(x) ∈ [ζi − r, ζi + r]. In addition, if x > b2, then

ui(x) > ζ − r > ζi + 2− r > ζi + 1,

thus u∗i (x) = ζi + 1 ∈ [ζi+1− r, ζi+1 + r]. This gives that u∗i is a constrained orbit from a neighbor-
hood of ζi to a neighborhood of ζi+1.

What is more, V (u∗i (x)) 6 V (ui(x)) for any x ∈ R; also, for any x, y ∈ R,

|u∗i (x)− u∗i (y)| 6 |ui(x)− ui(y)|.
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As a consequence, the action of u∗i is less than or equal to the action of ui, hence ζi+1 is admissible,
thus proving (5.3).

Now, from (5.3) and Theorem 9.3 in [DPV15a] we obtain Theorem 5.1 here.

We underline that an important difference between the result in Theorem 5.1 and the classical ones
for Hamiltonian systems lies in the glueing methods. Indeed, in the classical case, the technique of
cutting-and-pasting different trajectories is abundantly used (tipically, to construct suitable competitors
for lowering the action functional). In the nonlocal case, this method may lead to additional difficulties,
since the action of the new orbit obtained by a cut-and-paste of two trajectories is not simply the sum
of the two actions of the original trajectories, since nonlocal interactions take place in the elastic part
of the functional, which may be in fact the dominant contribution when the fractional parameter s is
small (think once more to the asymptotics in Theorem 2.1).

To overcome such a difficulty, in [DPV15a] we introduced a “clean interval” method. Namely, one has
to perform the cut-and-paste techniques always at points in which the trajectories meet in a “very flat”
way (that is the oscillations of the two trajectories need to be appropriately small in a sufficiently large
interval). This fact, combined with suitable “elliptic estimates”, allows us to estimate the remainder
terms and to efficiently adapt the dynamical systems methods also to nonlocal cases.
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