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Abstract

A hierarchy of 1 (time) + 1 (space) dimensional first-order partial differential equation
(traveling wave) models is used for a description of dynamics in individual semiconductor
lasers, various multisection semiconductor lasers, and coupled laser systems. Consequent
modifications of the basic traveling wave model allow for taking into account different phys-
ical effects such as the gain dispersion, the thermal detuning, the spatial hole burning of
carriers, the nonlinear gain saturation, or various carrier exchange processes in quantum
dot lasers. For illustration, the model was applied for simulations of dynamics in complex
ring laser with four branches of filtered feedback. Finally, several advanced techniques
for model analysis such as calculation of instantaneous optical modes, finding of steady
states, and numerical continuation and bifurcation analysis of the model equations were
discussed and illustrated by example simulations.

1 Introduction

Narrow waveguide edge-emitting semiconductor lasers are attractive devices for different appli-
cations. Among others, these are high-speed all-optical signal processing, optical data storage,
thermal and xerographic printing, scanning, directional lighting, secure communications, random
number generation, frequency conversion, or various interferometric, spectroscopic, instrumen-
tation and other quantum-optical experiments.

A typical solitary narrow-waveguide (single transversal mode) semiconductor laser exhibits a
single-wavelength emission required in different applications. In many cases, however, small
fluctuations of the operation conditions impose a significant phase noise which, in turn, causes
an unwanted broadening of the emission linewidth. Moreover, the stable performance of the
laser can be easily violated by optically reinjected light, and there is a huge number of studies
devoted to the analysis of the nonlinear dynamics in lasers with a delayed optical feedback.

A properly designed optical feedback, however, can also play a constructive role when seeking
to improve an operation of the solitary laser, or create a new dynamical regime. For example, an
external cavity with a diffractive grating can be used for emission linewidth reduction or tuning of
the lasing wavelength [1]. Or, on the contrary, specially designed external cavities allow realizing
a chaotic emission usable for cryptography [2] or random number generation [3].

Multisection semiconductor lasers (MSLs) in linear or ring configurations and coupled laser
devices provide even more possibilities to tailor laser dynamics for certain applications. For
example, a variety of important functionalities of the optical data communications [4] such as
pulse generation, clock recovery, and fast switching can be realized by specially designed and
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differently interconnected MSLs. Several examples of theoretically investigated and experimen-
tally verified dynamic performance of MSLs considered in our previous papers are excitability
[5], high-frequency mode-beating pulsations [6], and modulation band enhancement [7] in dis-
tributed feedback (DFB) lasers with an integrated passive phase tuning section (passive feed-
back lasers); passive [8] or hybrid [9] harmonic and sub-harmonic mode-locking in lasers with
saturable absorber, and pulse broadening in quantum-dot (QD) mode-locked lasers [10]; tun-
able high-frequency pulsations in the detuned grating DFB lasers with an integrated phase tun-
ing section (phase controlled mode beating lasers) [11, 12]; stationary, pulsating and irregular
regimes and their bifurcations in DFB lasers with integrated phase tuning and amplifying sec-
tions (active feedback laser) [6, 13]; Joule heating induced transitions between steady states in
distributed Bragg reflector (DBR) lasers [14] or external cavity diode lasers (ECDLs) [15].

All these examples confirm the practical importance of modeling, simulations and analysis of
MSLs for designing new devices with a particular dynamical behavior. The most precise models
usually are given by 2+1 or 3+1 dimensional systems of partial differential equations (PDEs)
[16, 17]. The numerical simulations in this case, however, are time-consuming, whereas appli-
cation of analytic methods for the analysis of the nonlinear dynamics is very limited. Unfortu-
nately, numerical simulations of such models are time-consuming, whereas an application of
analytic methods for the model analysis is very limited. For this reason, we prefer to use simpler
approaches which, may be, fail to reproduce a quantitative-, but still allow to get a qualitative
agreement between theory and experiments.

For some MSLs, already simple ordinary differential equation (ODE) or delay differential equa-
tion (DDE) systems [rate equations] admit a reasonable description of the laser dynamics. An
advantage of these models is their simplicity allowing fast numerical simulations and applica-
tion of advanced analytic methods, such as asymptotic analysis, stability analysis, or numerical
continuation and bifurcation analysis. These models, however, usually are based on mean-field
approximations, i.e., neglect inhomogeneity of laser parameters and dynamical variables along
the laser cavity, take into account only a few fundamental characteristics of the considered
lasers, or are suited to describe particular MSL configurations [18, 19, 20].

The 1+1-dimensional traveling wave (TW) model considered in this work is a compromise be-
tween simplicity and precision. It is a first-order PDE system having a single spatial dimension
corresponding to the longitudinal (z-) direction along the laser cavity and describing dynamics of
the slowly varying optical field amplitudes, polarization functions, and carrier density [21, 22, 23].
Comparing to ODE and DDE models mentioned above, the TW model is computationally more
demanding but still enables an advanced analysis, which is hardly possible in the case of the
multidimensional PDE models.

By taking into account or neglecting different physical effects, one can derive a whole hierarchy
of TW models of different complexity. The standard part of all such models is a pair of TW equa-
tions governing the evolution of the complex forward- and back- propagating field amplitudes,
E+(z, t) and E−(z, t). These equations originate from the decomposition of the dominant
fundamental transverse electric (TE) component of the electromagnetic wave,

E(r, t) = Φ(x, y)
[
E+(z, t)e−ik0z + E−(z, t)eik0z

]
eiω0t.

Here, ω0 is the central reference frequency and k0 is the corresponding wave vector. Whereas
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the transversal waveguide mode profile, Φ(x, y), is an eigensolution of the waveguide equation,
the related complex eigenvalue of the same problem defines the propagation factor β [24],
which determines the evolution of the field amplitudes E±. In general, the propagation factor
depends on the complex interaction of carriers and photons. In our modeling approach, we
apply a phenomenological dependence of this factor on the real carrier density function N ,
which can represent dynamics of the spatially distributed carrier density,N(z, t), or the section-
wise averaged density, N(t). The evolution of N itself is governed by a single or several rate
equations.
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Figure 1: Schematic representation of five semiconductor laser devices which can be considered
by our modeling approach. (a): Three-section laser. (b): Laser with a trivial external cavity. (c):
Laser with a dual external cavity. (d): Master-slave laser system. (e): Optically injected ring laser
with an outcoupling waveguide. Pink and light blue frames represent active and passive sections
(S∗) of the MSL. Thick black segments and thick green arrows indicate junctions (interfaces
of these sections, J∗) and optical injections (o∗), respectively. Thin arrows show optical field
transmissions and reflections at the interfaces of the laser sections.

One can use the TW modeling approach for consideration of various differently interconnected
linear and curved, active and passive semiconductor waveguiding parts, taking into account
optical injections, field reflections and transmissions at the interfaces of different laser parts,
as well as delayed feedback of the optical fields from the external cavities. For simulation and
analysis of the MSLs, we apply our software LDSL-tool [25], which is suited to investigate the
(L)ongitudinal (D)ynamics of multisection (S)emiconductor (L)asers. This software allows con-
sidering a large variety of MSL devices or coupled laser systems which can be represented by a
set of mutually interconnected sections and junctions, see schematic representations of several
laser devices in Fig. 1. Besides of numerical integration, LDSL-tool can find longitudinal opti-
cal modes and analyze their dynamics [26, 23]. In some cases, it locates stable and unstable
stationary states of the system [27, 15], constructs the reduced ODE models based on a finite
number of the optical modes [28], and, together with the software package AUTO [29], performs
numerical continuation and bifurcation analysis of these reduced models [7].

3



In following, we shall introduce a basic TW model for the solitary laser, and present several
model extensions allowing to take into account initially neglected physical effects. Next, we shall
discuss a possibility to join several laser sections into a single multisection laser or a coupled
laser device. For an illustration of the available device complexity, we shall present simulations
of a ring laser with four branches of filtered feedback. At the last part of this work, we shall
briefly introduce the concept of the instantaneous optical modes, discuss the mode analysis,
the location and semi-analytic continuation of the stationary states, the model reduction, and
the numerical bifurcation analysis.

2 Basic TW model in the solitary laser

Below in this section, we formulate the simplest TW model suitable for simulations of a solitary
semiconductor laser. Let us consider an edge-emitting narrow-waveguide semiconductor laser
[see Fig. 2(a)]. According to our notations, the “interior” part of this laser is referred as section
S1. The longitudinal coordinates of the section edges and the length of this section are z = a1,
z = b1, and |S1| = b1 − a1, respectively. The front and the rear laser facets (junctions J1 and
J2), in this case, correspond to the left and the right edges a1 and b1 of S1.
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Figure 2: Schematic representation of the single section lasers in linear (a) and ring (b) con-
figurations. Thin arrows indicate directions of the counter-propagating fields and their reflec-
tions/transmissions at the laser facets (J1 and J2, panel (a)) or point outcoupling interface (J1,
panel (b)). Thick green arrows represent optically injected fields.

The backbone of the TW model of this laser is the linear system of partial differential (traveling
wave) equations describing an evolution of the slowly varying complex amplitudesE+(z, t) and
E−(z, t) of the counter-propagating optical fields:{

ng
c0
∂tE

+ + ∂zE
+ = −iβE+ − iκE− + F+

sp
ng
c0
∂tE

− − ∂zE− = −iβE− − iκE+ + F−sp
, z ∈ S1. (1)

Here, c0 is the speed of light in vacuum, F±sp are the Langevin noise source contributions to the
optical fields, and ng is the group velocity index. The real and the imaginary parts of the complex
coefficient κ represent the distributed index and gain/loss coupling of the counter-propagating
fields, respectively. κ is non-vanishing in the laser sections containing Bragg grating and is set
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to zero in the straight sections without the grating. Without an additional scaling of the field
functions E±, |E(z, t)|2 = (E,E) = |E+|2 + |E−|2 represents the photon density and is
proportional to the local field power,

P(z, t) = σc0
ng

hc0
λ0
|E(z, t)|2.

Here, σ is the cross-section area of the active zone, λ0 is the central wavelength, and h is the
Planck constant.

Active sections. The propagation factor β in the TW equations above can be defined as

β = δ0 + ñ(N) + i(g(N)−α)
2

, (2)

where the peak gain and refractive index change functions g(N) and ñ(N) are given by the
simple linear relations,

g(N) = Γg′ (N −Ntr) , ñ(N) = αHg(N)
2

. (3)

Here, N is the carrier density. Parameters δ0, α, Γ, g′, and αH are the internal field loss, the
initial fixed detuning from the central frequency, the confinement factor, the differential gain, and
the linewidth enhancement (Henry) factor evaluated at the transparency carrier density Ntr.

To define the evolution of the spatially averaged carrier density N(t), we use a single rate
equation

d
dt
N = I

qσ|S1| −R(N)− S(N,E±). (4)

Here, q is the electron charge, I is the injected current into the active zone of the section,
whereas R and S are spontaneous and stimulated recombination functions, respectively. We
use a cubic spontaneous recombination function,

R(N) = AN +BN2 + CN3, (5)

which can be simplified by assuming vanishing recombination parametersB andC and defining
A = τ−1

N , where τN denotes the carrier lifetime. Function S in the carrier rate equation (4)
represents the spatially averaged stimulated recombination:

S(N,E±) = c0
ng
g(N)‖E‖2

1. (6)

Here, ‖E‖2
1 is the spatial average of the local photon density along the section S1,

‖E‖2
1 = 〈(E,E)〉1, 〈η〉1 = 1

|S1|

∫
S1
η(z)dz, (ζ, ξ) = ζ+∗ξ+ + ζ−∗ξ−,

and ∗ denotes the complex conjugate.

To complete the system, we still need to define the incident forward- and backward- propagating
fields at the section edges z = a1 and z = b1, respectively. For the solitary laser, these incident
fields can be defined by the following reflection/transmission conditions:

E+(a1, t) = −r∗1E−(a1, t) + o1(t), E−(b1, t) = r2E
+(b1, t) + o2(t). (7)
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Here, r1 and r2 are the complex field amplitude reflectivity coefficients at the laser facets (junc-
tions J1 and J2), whereas complex functions o1,2(t) represent optical injections at these junc-
tions.

One can also use the model equations (1), (2), (3), (4), (5), (6) for simulations of narrow-
waveguide semiconductor ring lasers with the field in- and out- coupling concentrated in the
single point of this laser. Fig. 2(b) shows a schematic representation of such single-section ring
laser device. According to this scheme, we assume that both, “left” and “right” edges a1 and b1

of the section S1, are connected at the single junction J1. The boundary conditions (7), in this
case, should be replaced by the following field transmission-reflection conditions at J1:

E+(a1, t) = t1E
+(b1, t)− r∗1E−(a1, t), E

−(b1, t) = t1E
−(a1, t) + r1E

+(b1, t). (8)

Here, t1 is the real field amplitude transmission factor back into the ring section S1 at the out-
coupling point J1, whereas the complex factor r1 represents the localized field backscattering
at J1.

To perform simulations of the basic TW model equations, (1), (2), (3), (4), (5), (6), (7) or (8), one
still needs to choose some initial conditionsE±(z, 0) andN(0). For the first run of simulations,
one can use any small distribution of the optical fields E±(z, 0) and a small positive value of
N(0). After some transient, the computed trajectory will be attracted by one of the few regular
or irregular attractors of the considered dissipative system. To keep tracing the same attrac-
tor during the following parameter continuation calculations, one should better use previously
obtained carrier density and field distributions.

Passive sections. It is noteworthy that one can also use the TW equations (1) for a descrip-
tion of the field propagation in the passive sections, such as gratings, free space between the
laser and the external mirror, etc.. Here, carriers are absent, do not couple to the emission
wavelength (the material gain band of these sections does not support the lasing frequencies),
or are just kept at transparency level by an appropriately adjusted bias current. In all such cases,
g(N) = ñ(N) = 0, the carrier rate equations (4) are decoupled from the field equations (1)
and, therefore, are irrelevant.

In the case of the passive section Sk containing no grating (κ = 0), simple analytic relations of
the field function values on the both sides of Sk,

E+(bk, t) = ηeiϕ/2E+(ak, t− τk), E−(ak, t) = ηeiϕ/2E−(bk, t− τk), where

τk = |Sk|ng
c0

, η = e−α|Sk|/2, ϕ = −2δ0|Sk|,
(9)

can replace the field equations (1).

In the case of the passive grating (κ 6= 0), the analytic solution of the field equations (1) in the
frequency domain is given by the 2× 2 dimensional transfer matrix M [26, 28, 23],

Ê(z, ω) = M(β, κ, ω; z, ak)Ê(ak, ω). (10)

Here, β = δ0 − iα/2, ω is the relative frequency, Ê(z, ω) =
(
Ê+, Ê−

)T
, T denotes the

transpose vector, whereas Ê± are the frequency domain representations of the fieldsE±(z, t).
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Within any interval [z′, z] where parameters β and κ are constant, the matrix M is defined by

M(β, κ, ω; z, z′) =

(
cos η(z−z′)− iB

η
sin η(z−z′) − iκ

η
sin η(z−z′)

iκ
η

sin η(z−z′) cos η(z−z′) + iB
η

sin η(z−z′)

)
,

B(ω) = β + ωng
c0
, η =

√
B2 − κ2.

(11)
Once the parameters β or κ are peace-wise constants, i.e., constant within each small subin-
terval [zs, zs−1], z′ = z0 < z1 < · · · < zn = z, the transfer matrix M is the superposition of
corresponding transfer matrices over these small subintervals:

M(β, κ, ω; z, z′) = Mn × · · · ×M1, Ms = M(β(zs−1/2), κ(zs−1/2), ω; zs, zs−1).
(12)

3 Model of material gain dispersion

The relations (3) introduced in Section 2 are simple linear approximations of the gain and re-
fractive index functions G and Ñ . In general, these functions depend not only on the carrier
density N , but also on the optical frequency ω, field intensities |E+|2 and |E−|2, and some
other physical effects, such as temperature, not considered in our modeling approach. In this
section, we introduce the model of the gain dispersion of the semiconductor material, which
restricts the gain band in the frequency domain and is the primary optical frequency selection
mechanism in Fabry-Perot (FP) lasers.

Before switching to the modeling of the gain dispersion, let us find out the expression of the
laser response Fl(b1, ω) to the incident plane wave eiωt applied to the right edge of the device
[see Fig. 3(a)]. For this reason, we freeze the propagation factor β and substitute the ansatz
E±(z, t) = Ê±(z, ω)eiωt into the field equations (1). The solution of the resulting system of
ODEs within S1 can be represented by Eq. (10), where the transfer matrix M is defined in
(11). The ratio of the outgoing and incident waves at z = b1 together with the (non-injective)
boundary condition (7) at z = a1 define the function Fl(b1, ω) which shows the laser response
in dependence on the optical frequency of the injected field1. In two simple cases of FP lasers
and DFB lasers with vanishing facet reflectivity, the response function is given by

Fl(b1, ω) = Ê+(b1,ω)

Ê−(b1,ω)
=

{
−r∗1e−2iβ|S1|e−i2ωng |S1|/c0 , κ = 0, r1 6= 0 (FP laser)

κ
iη(ω) cot[|S1|η(ω)]−B(ω)

, κ 6= 0, r1 = 0 (DFB laser)
.

(13)
Figs. 3(b) and (c) show the intensities of these response functions in FP and DFB lasers calcu-
lated for different values of carrier densitiesN . Note also, that the abscissa axis in these figures

represents relative wavelengths λ related to the relative frequencies ω by formula λ ≈ − λ20
2πc0

ω.

The flat laser response curves in Fig. 3(b) indicate an absence of frequency selection mecha-
nisms for FP lasers in our fundamental TW model. Thus, this simple model is not suitable for

1In the same way, one can also define the response function Fr(a1, ω) at the left side of the laser
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Figure 3: Laser response to the incident plane wave eiωt. (a): Schematic representation. Thin
and thick arrows show field propagation directions and incident/emitted optical fields. (b): Re-
sponse intensity of the solitary FP laser. Parameters λ0 = 1.57µm, |S1| = 0.25 mm,
ng = 3.6, δ0 = 0, α = 20 cm−1, αH = −4, Γ = 0.15, g′ = 4 · 10−16 cm2, Ntr = 1018 cm−3,
r1 = r2 =

√
0.3, κ = 0. (c): Response intensity of the solitary DFB laser. Parameters are the

same as in (b), only κ = 130 cm−1 and r1 = r2 = 0. Dashed and solid curves in panels (b)
and (c) represent models with (ḡ = 100 cm−1, λ̄ = 0, γ̄λ = 40 nm) and without (ḡ = 0) gain
dispersion.

simulations of FP lasers. In contrast, the wavelength selection in DFB lasers is mainly deter-
mined by the Bragg grating, and numerical integration of the TW model can provide reliable
information. One should note, however, that the index-coupled DFB laser (characterized by a
real coupling factor κ) can emit at one of two resonance wavelengths located at the both sides
of the stop-band, see a solid blue curve in Fig. 3(c), and the parameter tuning implied jump-
ing between these two resonances can be expected in simulations. The gain dispersion, in this
case, can be exploited for the suppression of one of the resonances [21, 12].

Lorentzian approximation of the material gain function. There are several methods for in-
troduction of the frequency-selective gain dispersion into the time-domain TW model. Many of
these approaches use an additional digital filtering of the numerically calculated optical field
time series [30, 31, 32, 33, 34]. In some cases, these digital filters are equivalent to the nu-
merical schemes obtained by discretization of some additional integrodifferential operators or
differential equations. For the purpose of the analysis of the model equations, it is preferable to
introduce the frequency band limiting elements directly into the model equations. For example,
the TW model extensions admitting Lorentzian approximation of the material gain dispersion
curves can be given by convolution integrals [34] or by an equivalent set of the linear first-order
ODEs [35, 21]. Another approach to model more sophisticated gain function profiles within the
TW modeling frame by including nonlinear polarization equations was used, for example, in
Refs. [36, 22, 37].

In this work, we follow the strategy proposed in Refs. [21, 12]. For this reason, we approximate
the gain profile in the frequency domain by a Lorentzian with the amplitude ḡ, the full width at
the half maximum γ̄ = 2πc0

λ20
γ̄λ, and the detuning of the peak frequency ω̄ = −2πc0

λ20
λ̄. Here, γ̄λ

and λ̄ are the wavelength representations of the Lorentzian width and its peak position. In the
time domain, this approximation is represented by the additional linear operator D in the TW
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field equations, and a pair of linear differential equations for polarization functions P±(z, t):

ng
c0
∂tE

± = ∓∂zE± − i (β − iD)E± − iκE∓ + F±sp, z ∈ S1,

DE± = ḡ
2

(E± − P±) , ∂tP
± = γ̄

2
(E± − P±) + iω̄P±, z ∈ S1.

(14)

The introduction of operator D also implies the following modification of the stimulated recom-
bination function S entering the carrier rate equations (4):

S(N,E±) = c0
ng
<〈(E, [g(N)− 2D]E)〉1. (15)

To understand the impact of the operator D, we consider the laser response function Fl(b1, ω)
again according to the modified TW model (14). When repeating the procedure described at the
beginning of this section, the factor B entering Eq. (11) takes the form

B(ω) = β + ωng
c0

+ χ(ω), where χ(ω) = ḡ
2

(ω−ω̄)
γ̄/2+i(ω−ω̄)

, −iDÊ(z, ω) = χ(ω)Ê(z, ω).
(16)

Thus, an introduction of the linear dispersion operatorD implies modifications of both, gain and
refractive index change functions. The total gain (twice the imaginary part of β− (δ0− iα/2)+
χ(ω)) and the refractive index change function (real part of the same factor), in this case, are
given by the expressions

G(N,ω) = g(N)− ḡ(ω−ω̄)2

(γ̄/2)2+(ω−ω̄)2
, Ñ(N,ω) = ñ(N) + ḡ

4
γ̄(ω−ω̄)

(γ̄/2)2+(ω−ω̄)2
. (17)

Dashed curves in Figs. 3(b) and (c) illustrate the impact of the introduced gain dispersion.
Whereas these corrections in the case of DFB lasers [panel (c)] are small, for the FP lasers
they provide an efficient wavelength selection mechanism.

It is noteworthy that vanishing factor κ in the field equations (14), (2) implies the following simple
expression of the monochromatic field transmission through the laser section:

Ê+(b1, ω) = e−iB(ω)|S1|Ê+(a1, ω), Ê−(a1, ω) = e−iB(ω)|S1|Ê−(b1, ω),

where B(ω) is defined in (16). Thus, the TW equations (14), (2) with vanishing functions g(N)
and ñ(N), large Lorentzian amplitude ḡ, and small Lorentzian width γ̄ can be effectively used
for modeling of the optical filters, i.e., for extracting field frequency components located close to
the relative frequency ω̄.

Further modifications of the model for material gain dispersion. The gain peak g(N) and
the simple Lorentzian dependence on the optical frequency determined by three fixed param-
eters ḡ, γ̄ and ω̄ define the material gain profile G(N,ω) in Eq. 17. To improve fitting of the
gain profiles obtained by calculations of microscopic models for various values of N , one can
replace these three factors by appropriately selected carrier dependent functions ḡ(N), γ̄(N),
and ω̄(N). In the cases, when the gain spectrum has two and more peaks or the asymmetry of
the single peak is important, one can also introduce an additional set or several sets of polar-
ization functions P j±(z, t). The gain dispersion operator D and corresponding total gain and
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refractive index functions, in this case, read as

D(s)E± =
s∑
j=1

ḡj
2

(E± − P j±) , ∂tP
j± =

γ̄j
2

(E± − P j±) + iω̄jP
j±, z ∈ S1,

G(N,ω) = g(N) + 2=χ(s)(ω), Ñ(N,ω) = ñ(N) + <χ(s)(ω), χ(s)(ω) =
s∑
j=1

ḡj
2

(ω−ω̄j)
γ̄j/2+i(ω−ω̄j) ,

where s is the number of polarization function sets. Since the maximal value of 2=χ(ω) is, in
general, smaller than zero, one should also correct the function g(N).

Concluding the discussion of this section, we note that a proper numerical resolution of the
gain and refractive index functions (17) for the broad frequency band when simulating the time-
domain TW mode requires a careful selection of the numerical algorithm and temporal dis-
cretization steps. The size of the frequency band that can be represented by calculated discrete
time series is inversely proportional to the time step, whereas the precision of the numerical
simulations when approaching borders of this band are rapidly degrading. Thus, a suitable time
discretization step should ensure that all important frequency regions (Bragg resonances, sur-
rounding of a gain peak frequency, a frequency of optically injected beams, if present) are within
the central part of the allowed frequency band.

4 Thermal detuning

Let us switch now to the consideration of the thermal effects. An increase of the bias current
implies changes of the device temperature and, consequently, changes in the refractive index
and the lasing wavelength. To model these thermal tuning effects in our device, we supplement
the propagation factor β from (2) with an additional thermal detuning term ñT [38, 14]:

β = δ0 + ñ(N) + ñT (I) + i(g(N)−α)
2

, ñT = 2πng
λ20
ν1

1I. (18)

The linear thermal detuning function ñT (I) determines the impact of the injection current I to
the refractive index change. The factor ν1

1 in solitary lasers determines an approximate red shift
of the lasing wavelength due to increased bias current:

ν1
1 ≈ ∆λ

∆I
,

Here, ∆I is the bias current tuning interval, whereas ∆λ is the (continuous) lasing wavelength
change during this current tuning.

Figs. 4(a) and (c) show the simulated wavelength change with the increased bias current in the
solitary FP and DFB lasers, respectively. Here, besides of the dominant optical modes shown
in white, one can see other slightly excited optical modes which are (almost) equidistant in the
FP case (a) or indicate the DFB laser resonance located on the other side of the stopband.
The estimated wavelength shift ∆λ

∆I
≈ 3.14 nm/A obtained for the FP laser and 3.09 nm/A

for the DFB laser slightly differs from the factor ν1
1 = 3.2 nm/A used in our simulations. We

attribute this slight discrepancy to the additional contribution of the full refractive index change
function Ñ(N,ω) defined in Eq. (17). Namely, the dependence of the carrier density N and
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Figure 4: Mapping of the optical spectra (a), (c) and mean emitted power and carrier density
(b), (d) as functions of the increased injected current I in solitary FP (a), (b) and DFB (c), (d)
lasers. σ = 2 · 10−13 m2, A = 2 · 108/s, B = 1 · 10−16 m3/s, C = 1.3 · 10−41 m6/s,
ν1

1 = 3.2 · 10−9 m/A, whereas other parameters are the same as in Figs. 3(b) and (c) in the
case of non-vanishing gain dispersion. White lines and light shading in (a) and (c) represent
main and side peaks of the calculated optical spectra. Solid black and red curves in (b) and (d)
show time-averaged emission intensity and carrier density, respectively. Dashed black: minima
and maxima of the emission intensity.

the relative lasing wavelength λ on the bias current I (see red curves in Figs. 4 (b), (d) and
wavelength shifts in Figs. 4 (a), (c), respectively) implies non-vanishing changes of the function
Ñ(N,ω) = Ñ(N,−λc0/λ

2
0) which counteracts the thermal detuning term ñT (I) and slightly

reduces the red shift of the lasing wavelength.

It is noteworthy that an introduction of the thermal detuning term ñT in our still simple TW model
of the solitary laser implies, in general, only a continuous tuning of the lasing frequency. Once
achieving threshold, the carrier density changes only slightly (red curves in panels (b) and (d)
of Fig. 4), whereas emitted field intensity increases linearly without a visible saturation (black
curves in the same panels), which is still not taken into account in our model. This linear growth
of the lasing wavelength can be correctly understood when analyzing TW field equations (1)
with the propagation factor β defined by (18) and neglected gain dispersion. Due to the transfer
matrix formalism (10), (11) and the expression of B in (11), the extension of β by the non-
vanishing real term ñT is equivalent to the change of the relative frequency ω by −ñT c0/ng,

or, alternatively, the change of λ by −λ
2
0

2πc0

−ñT c0
ng

= ν1
1I .

The unique more complicated feature in Fig. 4 is the transition between two states in the FP
laser at I ≈ 40 mA, see panels (a) and (b). Fig. 4 (a) shows that in the vicinity of the transition,

11



these two states are determined by two optical modes belonging to the opposite slopes of the
wavelength-dependent gain profile with the peak wavelength at λ̄ = 0. Due to the red shift, all
optical modes located on the falling [increasing] slope of this gain profile undergo an increase
[decrease] of the detuning from the gain peak wavelength and, consequently, a slight rise [fall]
in the mode threshold N , see the red curves in panel (b) for I < 40 mA [I > 40 mA]. A similar
increase of the dominant falling-gain-slope mode threshold can also be seen in Fig. 4 (d). At the
position of the state transition, the wavelengths of two involved modes are symmetric with re-
spect to the gain peak wavelength and, what is more important, their thresholds become equal.
Due to a further tuning of the bias current, the previously suppressed mode at the increasing
gain profile slope becomes the minimal threshold mode, is amplified and, finally, turns to be
the dominant one. See Refs. [26, 14, 15] for more details on similar and more complex mode
transitions.

Modeling of crosstalk heating effects in multisection devices. In MSLs devices, one can
also use a more advanced model for thermal detuning function ñT which takes into account
local and nonlocal cross-talk heating effects [38]:

ñT |z∈Sk = ñT,k =
2πng,k
λ20

∑m
r=1 ν

r
kIr. (19)

Here, m is a number of sections in the considered MSL. The coefficients νrk of the linear ther-
mal detuning function ñT (I) determine the impact of the injection currents Ir attributed to the
sections Sr on the refractive index change within each laser section Sk.

The effect of the thermal detuning in MSLs is much more complicated than that one of the
solitary laser. Besides of the red shift of the lasing wavelength, the MSLs can also exhibit peri-
odically or almost periodically reappearing transitions between different states. The change of
mean carrier density in various sections during each such period between state changes can
be significant and can not be explained by simple gain saturation or detuning from the gain
peak effects. In some cases, a measured variation of the lasing wavelength with an increase or
decrease of the injection current in different laser sections, together with the analysis of the field
equations provide good estimates of thermal detuning coefficients including cross-talk effects
[38, 14, 15].

Another well-known effect occurring with the heating of the semiconductor laser is the red shift
of the gain peak wavelength [39]. If required, these changes can be accounted by the relation
[38]

λ̄|z∈Sk = λ̄k = λ̄0
k +

∑m
r=1 ν̄

r
kIr, (20)

which is quite similar to the thermal detuning relation (19). Here, λ̄0
k denotes an injection-

independent part of the gain peak wavelength in the section Sk, and ν̄rk are linear thermal
gain peak detuning coefficients. When applying these expressions, one should be aware that a
proper numerical time-domain resolution of a significant (tens or even hundreds of nanometers)
gain peak shift requires very small time and, consequently, space discretization steps.
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5 Spatially inhomogeneous carrier density

Another important extension of the basic TW model takes into account sectionally inhomoge-
neous distributions of carrier density N . Namely, in this case, the sectionally averaged carrier
density function N(t) is replaced by the spatially distributed function N(z, t), z ∈ S1. This
model extension can be especially important in the situations admitting localization of the high-
intensity fields within the laser cavity, which takes place, for example, during propagation of ul-
trashort optical pulses in mode-locked lasers, or DBR lasers with a high coupling factor κ. Due
to stimulated recombination, the high-intensity fields at these localized regions can significantly
deplete the carrier distribution causing a spatial hole burning (SHB) of the carriers [40, 12].

To achieve a quantitative description of spatial hole burning, we replace simple carrier rate
equation (4) by the following equation for spatially distributed carrier density:

∂tN(z, t) = J (I,N)−R(N)− S(N,E±), z ∈ S1,

J (I,N(z, t)) = 1
qσ|S1|

[
I +

U ′F
rS

(〈N〉1 −N(z, t))
]
.

(21)

Here, J is the inhomogeneous injection current density [41, 42, 12], N and 〈N〉1 are spatially
distributed and sectionally averaged carrier densities, U ′F and rs denote the derivative of the
Fermi level separation with respect to N and the series resistivity, whereas S is the spatially
distributed stimulated recombination function,

S(N,E±) = c0
ng
< (E, [g(N)− 2D]E) . (22)

In the case of the limit rs → 0, the spatially distributed carrier density, N(z, t), at each position
z converges to the sectional average,N(t) = 〈N〉1. Since the sectional averaging of Eqs. (21),
(22) yields the equations (4), (15), the TW models with and without spatial distribution of carriers
in this limit case are equivalent.

Fig. 5 shows some effects occurring due to the SHB of carriers in solitary DFB lasers. The impact
of the SHB depends on the injection level. Just above the lasing threshold, the field intensity is
small, and the carrier density remains nearly homogeneous, having only a small dip in the
center of the laser. With raising injection, this dip increases, but, due to a simultaneous increase
of the carrier density at the facets, the mean density remains nearly constant: see only slightly
increasing 〈N〉1 for I ≤ 90 mA in panel (b) of the same figure. At these small-to-moderate bias
current levels, the carrier density remains symmetric with respect to the laser centrum (dashed
curve in panel (c)), and emission at the both facets is the same (see coinciding red and blue
curves in panel (a) for I ≤ 90 mA and panel (f) at I = 70 mA). The inhomogeneous carrier
density (dashed curve in Fig. 4(d)) causes a corresponding longitudinal variation of the index of
refraction. The Bragg resonance of the grating thus has not the identical spectral position along
the section but varies over a considerable portion of the stop band [12]. As a consequence, the
symmetry of the stop band is lost, and the laser preferably operates on the short wavelength
side of its stop band [see Figs. 4(f)]. The preference of the short-wavelength mode is also shown
by the laser response functions Fl(b1, ω) and Fr(a1, ω) [see Figs. 4(e)] calculated for spatially
distributed carrier density profile (dashed curve in Fig. 4(d)) at I = 70 mA according to the
formulas (10), (11), (12), and the algorithm explained in Section 3.
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Figure 5: Spatial hole burning in solitary DFB laser. Minimal and maximal output power at both
facets (a) and sectionally averaged carrier density 〈N〉1 (b) as functions of increased bias cur-
rent. (c): Time trace of the emitted field intensity at both facets for fixed I = 100 mA. (d):
Time-averaged carrier densities for I = 70 mA and I = 100 mA. DFB reflectivity spectra (e),
(g) and calculated optical spectra (f), (h) for I = 70 mA (e), (f) and I = 100 mA (g), (h). Red
and blue curves in panels (a), (c), (e)-(h) represent optical fields at the front (J1) and rear (J2)
facets of the laser. U ′F = 10−25 Vm3, rS = 5 Ω, whereas other parameters are the same as in
Figs. 4 (c) and (d) except ν1

1 = 0.

At I ≈ 90 mA, the symmetric solution loses its stability in symmetry breaking pitchfork bi-
furcation [43]. According to Refs. [43, 12], the supercritical pitchfork bifurcation of the stable
symmetric steady state in DFB lasers generates a pair of new stable steady states with asym-
metric density profiles (each one the mirror of the other). In our case, the pitchfork bifurcation
seems to be of the subcritical type. Instead of finding two asymmetric stable steady states, we
immediately jump to the pulsating state with different emission at both laser facets and larger
mean carrier density (see panels (a) and (b) for I > 90 mA, respectively). The spatial distribu-
tion of the carrier density, in this case, is strongly asymmetric, see a solid curve in panel (d). This
asymmetry together with non-commuting intermediate transfer matrices Ms from (12) implies
differences in DFB laser response functions estimated at the front (Fr) and the rear (Fl) sides
of the laser, see Fig. 5 (g). The optical spectra of the emission at the both sides of the laser
[Fig. 5 (h)] also reveal these differences. Like the response functions of the panel (g), the left
(red curves) and the right (blue curves) facet emissions have more pronounced contributions at
the shorter and longer wavelength sides of the stop band, respectively.

6 Nonlinear gain saturation

Until now, our phenomenological models for peak gain and refractive index change (3) were
taking into account their dependence on the sectionally averaged or local carrier densityN . It is
known, however, that the high-intensity optical fields saturate the gain function. To account for
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such saturation, one can introduce the following modifications of the gain and refractive index
functions which should be used for the definition of the propagation factor β in (2) or (18) and
stimulated recombination function S in (6), (15), or (22):

g(N,E±) = g(N)ρG(E±), ñ(N,E±) = ñ(N)ρI(E
±),

where ρj =

{
(1 + εj|E|2)

−1
, if N = N(z, t)

(1 + εj‖E‖2)
−1
, if N = N(t)

, j = G, I.

Two different parameters, εG and εI , separately define the nonlinear gain and refractive in-
dex dependence on the local or spatially averaged optical field intensity. A typical assumption
εG = εI relates the gain and refractive index functions by the linewidth enhancement factor
αH . Another reasonable assumption εI = 0, εG > 0 [44] used for modeling of high power
amplifiers considers the nonlinear compression of the gain function alone.

The importance of the nonlinear gain compression is best visible in high-power lasers and opti-
cal amplifiers showing several Watt emission intensity [44]. Some impact of the gain compres-
sion in small-to-moderate (≤ 100 mW) intensity regimes can also be observed when operating
in the vicinity of various bifurcations, where a small change of parameters implies qualitative
changes of the operating states. We should note, however, that the gain compression, in this
case, implies only small shifts of the bifurcation positions, but has no significant impact on the
qualitative description of laser dynamics in a large parameter domain. An analysis of simple
TW model equations (1), (4) can explain the little influence of the gain compression in these
regimes. A non-vanishing gain compression depletes the gain function g(N) what implies a
growth of the carrier density needed to reach threshold gain condition gth. In solitary lasers, this
growth is given by factor gthεG|E|2/(g′Γ), which for typical gain compression coefficients and
small-to-moderate field intensities is not exceeding a few percents of threshold carrier density.
Consequently, a similar (up to a few percent) decay of the emission intensity can be observed.

A somehow different situation occurs in semiconductor ring lasers [19, 22, 45, 23], where a
proper introduction of nonlinear gain compression is crucial when deciding the type of operation
states. In this case, one should distinguish the gain compression implied by co- and counter-
propagating fields:

g±(N,E±) = g(N)ρ±G(E±), ñ±(N,E±) = ñ(N)ρ±I (E±),

where ρ±j =

{
(1 + εjs|E±|2 + εjc|E∓|2)

−1
, if N = N(z, t)

(1 + εjs〈|E±|2〉+ εjc〈|E∓|2〉)−1
, if N = N(t)

, j ∈ {G, I},

(23)
whereas parameters εjs and εjc, j = G, I , determine self- and cross- saturation of the gain and
refractive index functions. In the ring lasers, usually is assumed that εGc > εGs and εIc > εIs.
A detailed analysis based on the Maxwell-Bloch equations showed that the cross-saturation
factor for two resonant modes in the ring cavity is twice larger than the self-saturation one [46].

The generalized functions g± and ñ± enter the definition of the propagation factor β = β± and
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the stimulated recombination function S :

β± = δ0 + ñ±(N,E±) + ñT (I) + i(g±(N,E±)−α)
2

,

S(N,E±) =

{
c0
ng
<
∑

ν=±E
ν∗[gν(N,E±)− 2D]Eν , if N = N(z, t)

c0
ng
<
∑

ν=±〈Eν∗[gν(N,E±)− 2D]Eν〉1, if N = N(t)
.

(24)

It is noteworthy that differences in parameters εjs and εjc, j = G, I , imply differences in the
propagation factors β+ and β− determining the evolution of the fieldsE+ andE−, respectively.
These differences are crucial when determining type and stability of operating states in the ring
laser, see Refs. [19, 45, 23] for more details.
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Figure 6: Dynamic regimes for different contributions of the cross- and self- gain saturations. (a):
Maximal and minimal intensities of the optical fields at J1 for changing values of εGc − εGs but
fixed εGs + εGc = 20 · 10−24 m3. (b)-(e): Typical representatives of the observed regimes. Red
and blue: clockwise and counter-clockwise propagating fields. Parameters are similar to those
of Figs. 4(a) and (b), only |S1| = 1000µm, αH = −2, α = 2 cm−1, ν1

1 = εIs = εIc = 0,
I = 100 mA. U ′F and rS are the same as in Fig. 5, whereas the field transmission and localized
backscattering parameters at J1 are t1 =

√
0.7 and r1 = 0.007, respectively.

To illustrate how an asymmetry of the self- and cross- gain saturation implies different operation
states in the ring laser [see Fig. 2 (b)], we have simulated the TW model equations (14), (21),
(8), (5), (22), (23), (3) for vanishing εIs and εIc, fixed non-vanishing sum εGc + εGs = C > 0
and tuned difference εGc − εGs. Fig. 6 shows the results of these simulations. Solid red and
dashed blue curves in all panels of this figure represent clock-wise (CW) and counter-clockwise
(CCW) propagating field functions E−(b1, t) and E+(a1, t) at the point scattering source J1,
respectively [see Fig. 2 (b)]. Panel (a) of this figure gives an overview of all obtained states when
tuning εGc−εGs from−C (full self-saturation with vanishing εGc) up to +C (full cross-saturation
with vanishing εGs). Panels (b)-(e) of the same figure represent four different observed dynamic
regimes. The first three regimes occurring with a consequent increase of the cross-gain satura-
tion are the bidirectional stable stationary state (b), the alternate oscillations (c), and the unidi-
rectional bistable state (d). These three regimes can be observed experimentally and recovered
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theoretically using a simple two-mode ODE model [19]. An analysis of the TW model performed
in Ref. [23] has explained the relation between the asymmetry of the gain compression factors,
εGc and εGs, and stability of the bidirectional steady state (regime b) or unidirectional bistable
states (regime d). It was also shown, how the difference β+ − β− and localized backscattering
r1 determine the frequency of alternating oscillations (regime c).

The last simulated regime (e) was observed for the dominant cross-gain saturation. Like usual
mode-locking pulsations, this regime is characterized by large short pulses occurring with the
round-trip period. However, in contrast to the mode-locking observed in multisection ring lasers
[47], this state is unidirectional and does not require any fast saturable absorption. Similar
mode-locked pulsations in a single-section ring laser were found and discussed theoretically
in Ref. [45].

7 Further modifications of the TW model

There exist a vast number of further possible modifications of the TW model for MSLs. Each of
these modifications, however, requires a few new not very well known parameters and, there-
fore, should be used with great care. On the other hand, some of these modifications being
crucial when analyzing a particular group of MSLs can be irrelevant for simulations and anal-
ysis of different type MSLs. Below we present several modifications of the TW model used for
investigation of specific types of MSLs.

Multiple carrier rate equations in quantum-dot lasers. Once modeling QD lasers, one
should take into account carrier exchange processes between a carrier reservoir (CR) and dis-
crete levels in quantum dots.

One of the simplest ways to account for all these transitions within the TW modeling frame is
provided by the rate equations for the normalized carrier density N cr(z, t) (scaled by the factor
ΘN) within the CR, and occupation probabilities N gs(z, t), N es(z, t) of the ground state (GS)
and the first excited state (ES) of QDs, respectively [48, 10, 49].

To keep the structure of the TW field equations (14) unchanged, we neglect the inhomogeneous
spectral broadening effect due to QD non-uniformity and consider a simple single-Lorentzian
gain spectrum profile, which limits the material gain bandwidth. Besides, we assume that the
laser operates at the GS transition only. In this case, the propagation factor β depends on the
ground state occupation probability N gs(z, t) only. The expression of β(N gs) is equivalent to
that one given by Eqs. (2) and (3) with spatially distributed occupation probability N gs(z) ∈
[0, 1] and factor 1/2 instead of the carrier density N(z, t) and transparency carrier density Ntr,
respectively.

To describe carrier exchange processes between the CR, GS, and ES of the QDs in the active
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section [see Fig. 7(a)], we use the following set of rate equations:

d
dt
N gs(z, t) = −Ngs

τgs
+ 2

(
Nes(1−Ngs)
τes→gs

− Ngs(1−Nes)
2τgs→es

)
− 1

θE
S(N gs, E±),

d
dt
N es(z, t) = −Nes

τes
−
(
Nes(1−Ngs)
τes→gs

− Ngs(1−Nes)
2τgs→es

)
+
(
Ncr(1−Nes)

4τcr→es
− Nes

τes→cr

)
,

d
dt
N cr(z, t) = I

q|S1|θI
− Ncr

τcr
− 4

(
Ncr(1−Nes)

4τcr→es
− Nes

τes→cr

)
.

(25)

Here, S(N gs, E±) is defined by (22), whereas τ−1
a and τ−1

a→b, a, b ∈ {gs, es, cr}, denote
spontaneous relaxation and transition rates between GS, ES, and CR, respectively. Factors
(1 − N gs) and (1 − N es) represent the Pauli blocking, factors 2 and 4 account for the spin
degeneracy in the QD energy levels. Note, that here we neglect direct transitions between CR
and GS. θI and θE = 2hc0θI

λ0
are scaling factors relating the injection current I , the field intensity

|E|2, the CR scaling factor θN , the differential gain g′, and the QD density in the active zone.

In the saturable absorption sections [see Fig. 7(b)], there is no pumping, I = 0, so that the
transitions from CR to ES can be neglected, τcr→es → ∞, and the CR equation in (25) can
be ignored. The carrier transition from ES to CR can be added to similar spontaneous recombi-
nation term: τ̄−1

es = τ−1
es + τ−1

es→cr. Following Ref. [48], one can model the carrier transitions in
the negatively driven saturable absorber by assuming an exponential decay of τ̄es with growing
negative voltage U , whereas all other relaxation rates remain unchanged.

Figs. 7(c) and (d) present an example of simulated mode-locked quantum dot laser containing
an amplifying and a saturable absorber sections S1 and S2. Panel (c) of this figure gives an evi-
dence of strongly asymmetric pulses with a broad trailing edge plateau. Our theoretical analysis
has shown that such pulses arise mainly due to non-instant carrier transitions between the CR,
ES, and GS of the QD laser shown in panel (d) of the same figure. The presence of these tran-
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sitions exert a smoothening effect on all spatial/temporal carrier and field intensity distributions
and, in turn, imply a broadening of the trailing edge of the pulse. We have also found that an
increase of the intra-dot transition rates leads to a reduction of the filtering effect and, hence,
to a growth of the pulse peak intensity and narrowing of the pulse and its trailing edge. More
details on our analysis as well as experimental demonstration of such asymmetric pulses can
be found in Refs. [10, 49].

Further modifications of the TW model can be used for more precise simulations of QD lasers.
For example, one can improve the model of carrier transitions (25) by separate consideration
of electrons and hole densities [50]. To allow a simultaneous radiation on the spectrally well
separated ground and excited states, one can introduce another pair of TW equations for optical
fields [51]. An inhomogeneous spectral broadening and an accompanying description of the
radiation at GS and ES can also be modeled by an introduction of multiple sets of carrier rate
and polarization equations representing carrier transitions within the QDs of different size and
their impact on the laser emission at different wavelengths [52].

Nonlinear gain and refractive index functions. In the discussion above, the gain and the
refractive index dependence on the carrier density N was modeled by linear functions related
to each other by the linewidth enhancement factor αH . This modeling approach is reasonable
for small and slow variation of carrier density N , but can fail once N exhibits some significant
changes, see, e.g., Fig. 5(d), where a variation of the spatially distributed N(z, t) was of the
order of the mean value of the carrier density. In such situations, one should better use nonlinear
peak gain functions, g(N), which can better represent measured or pre-calculated gain spectra
profiles. For this reason, the following logarithmic gain peak function dependence on the carrier
density is frequently used:

g(N) = Γg′Ntr ln
(

max{N,N∗}
Ntr

)
, ñ(N) = αHg(N)

2
. (26)

Here,N∗ indicates a cutoff carrier density value which prevents the convergence g(N)→ −∞
with carriers N → 0. These expressions for the gain and index change functions replace the
relations (3) in the TW models discussed above.

Another issue is related to the linewidth enhancement factor αH . Initially, this factor was used to
relate gain and refractive index functions at a fixed value of N . Such approach implies a rather
simple model for propagation factor, β, and can be quite useful when performing an advanced
analysis of model equations. In reality, however, the ratio between the gain and refractive index is
not a constant, but a function depending on carrier density, temperature and several other factors
not discussed in this paper. Thus, an experimental estimation of this factor in the semiconductor
laser operating at different conditions or using different methods can lead to rather different
values of αH . For this reason, it can be preferable to use separately defined nonlinear peak
gain and index change functions g(N) and ñ(N). These functions depend on the properties
of the semiconductor material and the design of the device, and, therefore, should be adjusted
individually for each considered laser.

A satisfactory description of these functions for a broad class of semiconductor lasers is given
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by the logarithmic, and the square root like expressions [38],

g(N) = Γg′Ntr ln
(

max{N,N∗}
Ntr

)
, ñ(N) = ñ+ αH Γg′

√
N ·Ntr. (27)

Here, ñ represents the offset of the refractive index change function, Γg′ = ∂Ng(Ntr), and
αH = 2∂N ñ(Ntr)

/
∂Ng(Ntr) is the linewidth enhancement factor evaluated at the transparency

carrier density Ntr.

We should admit, however, that linear formulas (3) with slightly corrected factors g′, αH ,Ntr, and
a proper selection of δ0 can be used for approximation of nonlinear functions (27) not only in the
vicinity of Ntr but also over a larger range of densities N including the threshold density Nth. In
many cases, the simplifications of the gain and refractive index functions still imply qualitatively
the same results when performing simulations of MSLs with varying parameters [53].

8 Multisection lasers and coupled laser systems

A vast variety of MSLs and coupled laser systems can be represented as a set of differently
interconnected laser sections, each characterized by its material and geometry parameters. To
distinguish these parameters or functions attributed to different laser sections we shall use the
lower indices. For example, αk, gk(N), and ak denote the field losses, the gain function and
the left edge coordinate of the section Sk. Note also, that for unique identification of longitudinal
coordinate z within all laser sections, different sections of our device are represented by non-
overlapping intervals [ak, bk].
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Figure 8: Schematic representation of different interfaces between the sections at the junction
Jl. (a): general configuration. (b) and (c): field reflection and optical injection at laser facets. (d)
and (e): reflecting (transmission and reflection) and trivial (transmission only) interface of two
section edges. (f) and (g): directionally absorbing interfaces of two section edges for modeling
of a master-slave laser system. (h): transmitting/reflecting interface of four section edges for
modeling ring lasers with an outcoupling waveguide. Black segments and pink frames represent
junction Jl and all section edges connected to this junction, respectively. Blue and red arrows
in all diagrams represent all components of the vector fields E il and Eol , respectively. Optical
injections ol and emitted fields Eout

l are shown by green and violet arrows. Crossed arrows in
panels (f) and (g) represent a full absorption of the corresponding fields.

According to our laser device construction, for any edge of all sections Sk, we can attribute a
unique junction Jl. On the other hand, each junction has, at least, one section joining it from
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one or another side, see, e.g., Fig. 1, where MSLs are represented as sets of laser sections
mutually interconnected through different junctions. To explain the relations between section
edges, corresponding junctions and applied optical injections, we use the following notations in
the formulas below. By l we denote the index of the junction Jl, as well as optical fields and the
section edges attributed to this junction. l′ (l′′) is the vector of length |l′| (|l′′|) containing indices
of the sections connected to Jl by their left (right) edge al′j (bl′′j ), see Fig. 8(a). le = |l′|+ |l′′| ≥
1 is a total number of such section edges connected to Jl. By ol(t) and Eout

l (t) we denote
the applied optical injection and the recorded emission at the same junction, see thick green
and violet arrows in Fig. 8(a). When the injection or emission at Jl is absent, the corresponding
function is simply set to zero.

General field scattering conditions at the arbitrary junction Jl are defined by the le × le dimen-
sional complex field scattering matrix Tl, le×1 dimensional injection distribution matrix T il , and
1× le + 1 outcoupling matrix T ol :

Eol = TlE il + T il ol, Eout
l = T ol

(
E il
ol

)
, where

Eol =

(
E+
l′1

(al′1 , t), . . . , E
+
l′|l′|

(al′|l′| , t), E
−
l′′1

(bl′′1 , t), . . . , E
−
l′′|l′′|

(bl′′|l′′| , t)

)T
,

E il =

(
E+
l′′1

(bl′′1 , t), . . . , E
+
l′′|l′′|

(bl′′|l′′| , t), E
−
l′1

(al′1 , t), . . . , E
−
l′|l′|

(al′|l′| , t)

)T
.

(28)

The vector functions E i and Eo (see blue and red arrows in Fig. 8(a)) denote the internal optical
fields which are incident into the junction from all adjacent sections and are scattered from the
junction back into these sections, respectively.

In most cases, the interfaces between the sections are much simpler. For example, the scatter-
ing matrices at the facets of the solitary laser [panels (b) and (c) of Fig. 8 as well as junctions
J1 and J2 in Fig. 2(a)] are determined by the boundary conditions (7), i.e.,{
Tl = −r∗l , T il = 1, T ol = (tl, 0), single ”left” edge al′ , |l′| = 1, |l′′| = 0

Tl = rl, T il = 1, T ol = (tl, 0), single ”right” edge bl′′ , |l′′| = 1, |l′| = 0
, (29)

were rl and tl are field reflection and transmission coefficients,

|rl| ≤ 1, tl ≤
√

1− |rl|2. (30)

Another frequently used case in MSLs is the interface of two adjacent sections [panels (d) to (g)
of Fig. 8]. At such interfaces, we have no optical injections and field emission, so that we can
set T il = (0, 0)T and T ol = (0, 0, 0). The scattering of the field at Jl, in this case, is entirely
defined by the 2× 2 dimensional matrix

Tl =

(
tl −r∗l
rl tl

)
, (31)

where tl and rl satisfy the conditions (30) [see Fig. 8(d) and, e.g, J3 in Fig. 1(a)]. Here, the
non-vanishing reflections rl can appear, e.g., due to different heterostructure of the adjacent
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sections. In the simplest case of rl = 0 and tl = 1, Tl is an identity matrix, and the interface
admits a full transmission of the optical fields (see Fig. 8(e) and J2 in Fig. 1(a)).

When modeling the master-slave laser system [S1 and S2 in Fig. 1(d)], only one-directional field
propagation should be allowed in the air gap between two lasers (section S3 in the same figure).
This effect can be achieved by modification of otherwise standard scattering matrices Tl (31) at
one of the gap section edges. One can model a full absorption of the backward incident beam at
the interface of the master laser and the gap section [see Fig. 8(f) and J2 of Fig. 1(d)], or prohibit
the field backscattering into the air gap at the interface of the slave laser and the gap section
[Fig. 8(g) and J3 of Fig. 1(d)]. Formally, both these situations can be defined by the scattering
matrices

Tj =

(
tj 0
rj 0

)
(master-gap interface), Tj =

(
tj −r∗j
0 0

)
(gap-slave interface).

More complicated situations occur at the junctions connecting more than two section edges of
the MSL. For example, Fig. 8(h) and J1 of Fig. 1(e) represent an interface connecting two “left”
and two “right” section edges. This situation is used for modeling of a localized coupling of the
ring laser [section S1 in Fig. 1(e)] and the outcoupling waveguide (S2 and S3 in the same figure).

Similarly to the previously discussed case, the optical injection- and field emission- relevant
matrices can be defined by T il = (0, 0, 0, 0)T and T ol = (0, 0, 0, 0, 0). By assuming a non-
vanishing field reflection rl at the ring laser part of this junction [section edges bl′′1 , al′1 in Fig. 8(h)
or b1, a1 in Fig. 1(e)], we model a localized linear backscattering of the fields [37, 23]. The 4×4
dimensional scattering matrix Tl, in this case, can be defined as

Tl =


tl it̃l −r∗l 0
it̃l tl 0 0
rl 0 tl it̃l
0 0 it̃l tl

 , t2l + t̃2l + |rl|2 ≤ 1. (32)

Here, tl is a real field amplitude transmission factor within the same (ring or outcoupling) waveg-
uide and it̃l is an imaginary coefficient representing part of the field amplitude which is outcou-
pled from the ring or transmitted into the ring from the external waveguide. It is noteworthy, that
a proper estimation of the transmission - reflection - outcoupling matrix Tl in the ring laser case
requires some appropriate measurements or an advanced modeling. Such modeling should
take into account the curvature of the ring cavity, the length of the coupling regions, the field
diffraction, and the overlapping of the lateral modes in the coupling region [54]. Moreover, the
coefficients of the scattering matrix are, in general, frequency-dependent. In our TW model-
ing approach, we use constant coefficients describing field scattering at the central reference
frequency.

9 Simulations of a complex MSL device

The concept of differently interconnected sections and junctions allows modeling rather compli-
cated MSLs. One of such nontrivial configurations is a semiconductor ring laser with four sepa-
rate branches of the filtered optical feedback, see Fig. 9(a). The multi-channel feedback scheme
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of this laser admits a fast switching between steady states determined by the resonances of the
ring laser and the wavelengths of the activated filtering channels [55].

Colored frames in Fig. 9(a) represent device sections of different types. Namely, we distinguish
here the amplifying sections SA·, where the field and carrier dynamics is governed by the full
TW model (14), (21), (23), (5), (24), (26), and two kinds of passive sections, SP · and SF ·, where
gain and refractive index functions are set to zero, allowing to ignore the carrier rate equations
at all. The notations of all sections in the section indexes are made according to the cardinal
directions “n”, “e”, “s”, and “w”.
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Figure 9: (a): Scheme of the semiconductor ring laser with four branches of filtered and ampli-
fied unidirectional optical feedback. Black segments and colored frames indicate junctions and
different sections of the MSL. Red and blue arrows show propagation directions and the emis-
sion of the fields E+ and E−, respectively. (b): Transmission spectra of four filtering branches.
Maximal transmission at IAsj = 10mA, j = 1, . . . , 4 is approximately 1.4. (c): Stabiliza-
tion of the multi-mode behavior of the ring laser (black) by the single-branch filtered feedback
(colored). (d): Dependence of the lasing wavelength on the feedback phase once the second
filtering branch is activated.

Almost all parameters of the TW model in all sections of our MSL are the same as in Fig. 6. A few
exceptions are parameters αH = −4 and γ̄λ = 100 nm. In the passive waveguiding sections,
SP · (light blue), we assume |SPe| = |SPw| = 330µm, |SPne| = |SPnw| = 50µm, |SPse| =
|SPsw| = 2500µm, and neglect the gain dispersion, ḡ = 0. In the passive filtering sections,
SF · (yellow), we assume |SF ·| = 530µm and significantly modify the profile of Lorentzian
gain dispersion by setting ḡ = 5 · 104 m−1 and γ̄λ = 4 nm. The relative peak wavelengths of
four filtering branches (sections SFwj and SFej , j = 1, . . . , 4) are λ̄ = −2 nm, −0.67 nm,
0.67 nm, and 2 nm, respectively. Finally, in the amplifying sections (pink) within the primary ring
laser, SAjk, j = n, s and k = e, w, we use |SA·| = 380µm, εGs = 6 ·10−24 m3, εGc = 2εGs,
and the bias currents I = 26 mA, which is 1.5 times higher than the lasing threshold in the
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laser without feedback. In the amplifying sections belonging to the four filtering branches, SAsj ,
j = 1, . . . , 4, we assume |SA·| = 190µm and εGc = εGs = 9 · 10−24 m3. Once the bias
current in these sections is zero, I = 0 mA, the feedback branches are efficiently absorbing
the optical fields. To activate one of the feedback branches, we set the corresponding injection
I = 10 mA.

The field transmission and reflection conditions at Jn and Js are given by (32) with r = 0,
t =
√

0.8, and t̃ =
√

0.2. At Jse and Jsw, we neglect all possible reflectivity, admit full field
transmission from filtering branches to the passive waveguide sections SPsw or SPse, equally
distribute the intensity of the optical field E+ propagating from SPse to the filtering branches,
and fully absorb E− at Jsw:

E−(bPse, t) =
∑4

j=1E
−(aFej, t), E+(aFej, t) =

√
1
4
E+(bPse, t), j = 1, . . . , 4;

E+(aPsw, t) =
∑4

j=1 E
+(bFwj, t), E−(bFwj, t) = 0, j = 1, . . . , 4.

At Jw and Je, the fields E+ and E− are emitted from our MSL. Here, the field reflection-
transmission conditions are given by (29) with the reflectivity factors rw = re = 0.1. All other
junctions of this MSL are trivial, i.e., the optical fields cross the interfaces according to the
relations (31) with rl = 0 and tl = 1.

A series of simulations represented in the remaining panels of Fig. (9) are in good agreement
with the experimental results reported in Ref. [55]. First of all, panel (b) shows the transmission
spectra (modulus of the wavelength dependent complex transmission function) of the optical
fields E+ propagating through each of four optical feedback branches activated by the injected
current into the corresponding amplifying section. For 10 mA injections used in these simula-
tions, the peak amplitude transmission is around 1.6.

Panels (c) and (d) of Fig. (9) show simulated optical spectra of the emitted field at the “west”
facet Jw of the MSL for different operation conditions. The upper black curve in panel (c) rep-
resents the optical spectrum in the case of deactivated feedback branches. Multiple significant
spectral peaks with the mode separation corresponding to the field round-trip time in the ring
laser indicate a multi-mode lasing of the laser. An optical field E+ propagating along the filter-
ing branches, however, is not entirely absorbed. For higher ring laser injections we observed
the steady states determined by a single ring resonance mode. In these cases, the amplifier
within corresponding filtering branch was optically pumped, and the related peak amplitude
transmission was around 0.2. The competition between nominally equivalent unpumped filter-
ing branches, however, does not allow predicting the lasing wavelength of such a steady state.

Four lower spectra in Fig. (9)(c) represent switching between different optical modes by acti-
vation of the corresponding filter and deactivation of the remaining ones. A close inspection of
these spectra shows, that whereas the first and the fourth filters select the resonance modes
which are closest to the filter peak position, the third, and, especially, the second filter prefers
modes admitting smaller optical feedback. We have found, that this mode selection is related
to the phase of the optical field within the filtering branch. Fig. (9)(d) demonstrates, how tuning
of the feedback phase within the second filtering branch (realized by variation of the detuning
factor δ0,Fw2) implies changes between the resonant modes located within the filtering band.

In conclusion, we have simulated the MSL consisting of 22 sections interconnected at 18 junc-
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tions. Our theoretical findings were in a good qualitative agreement with experimental observa-
tions of similar ring laser device reported in Ref. [55].

10 Beyond numerical simulations of the TW model

In the previous sections, we have introduced different modifications of 1+1 dimensional TW
model suited for simulations of various MSL devices and coupled laser systems. In the remaining
part of this work, we introduce the concept of instantaneous optical modes and present several
applications of these modes for an advanced analysis of MSLs. In all these cases, we consider
MSLs without optical injection and neglect a contribution of Langevin noise term F±sp, which is
of minor importance in the lasers operating well above threshold.

Instantaneous optical modes. The concept of optical modes plays a significant role in un-
derstanding laser dynamics in general. They represent the natural oscillations of the electro-
magnetic field and determine the optical frequency and the lifetime of the photons contained in
the given laser cavity. The instantaneous optical modes correspond to a fixed instant distribution
of the propagation factor β [26].

In general, comparing to a variation of the optical fields, the changes of the carrier density N
are slow. The change of N is mainly determined by the carrier relaxation time τN (5) which,
typically, is measured in nanoseconds (or tens of picoseconds when considering saturable ab-
sorbers). On the other hand, picosecond or sub-picosecond time windows are sufficient for
significant changes of the photon densities. Since the gain compression for small and moder-
ate field intensities is also small, the propagation factor β experiences only minor modifications
in the picosecond range. For this reason, below we analyze the field equations for the frozen
distribution of the propagation factor β(z, t0) at the time instant t0.

The instantaneous optical modes of MSLs are pairs (Ω(β),Θ(β, z)) of complex frequencies
Ω and vector-functions Θ = (Θ+

E,Θ
−
E,Θ

+
P ,Θ

−
P )T , where imaginary and real parts of Ω(β)

are mainly defining the angular frequency and the damping of the mode, whereas Θ(β, z)
determines the spatial distribution of the mode.

Complex frequencies Ω and vector-functions Θ(β, z) solve the linear system of algebro-differential
equations

d
dz

Θ+
E = −iB(Ω)Θ+

E − iκΘ−E
d
dz

Θ−E = iB(Ω)Θ−E + iκΘ+
E

Θ±P (β, z) = γ̄/2
γ̄/2+i(Ω−ω̄)

Θ±E(β, z)

, z ∈ Sk|nk=1, θol (β) = Tlθil(β)
∣∣∣m
l=1
, (33)

obtained by assuming a stationary propagation factor, ∂tβ = 0, and substituting the expres-
sions

E±(z, t) = Θ±E(β; z)eiΩ(β), P±(z, t) = Θ±P (β; z)eiΩ(β)

into the field equations (14) within each of n sections Sk, and boundary conditions (28) at each
ofm junctions Jl. Similarly to the vector functions Eol and E il in (28), complex vectors θil(β) and
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θol (β) in (33) represent functions Θ±E(β, z) at the section edges z = al′j or z = bl′′j connected
by the junction Jl. The function B(Ω) entering (33) is defined in (16).

Each pair of linear ODEs in (33) can be solved by the transfer matrix2 (11) with the coefficients
nonlinearly depending on still unknown complex frequency Ω. These matrices define 2n homo-
geneous linear equations relating 4n components of the complex vector S = (s1, . . . , s4n)T

representing field functions Θ±E(β, z) at both edges of all sections Sk. Another 2n homoge-
neous linear equations relating the same complex numbers are given by the field scattering
matrices Tl at all junctions Jl. In such a manner we build a linear 4n dimensional algebraic
system

M(β, κ; Ω)S = 0,

determined by a sparse 4n × 4n dimensional matrixM. Nontrivial solutions S (i.e., nontrivial
functions Θ of the problem (33)) are available only for those Ω which are the complex roots of
the complex characteristic equation

detM(β, κ; Ω) = 0. (34)

The finite number of these roots can be found using Newton iterations and the homotopy
method, see Ref. [26] for more details.

It is noteworthy that linear configurations of MSLs admit rather simple expressions of charac-
teristic equation (34) involving the response functions Fl(z,Ω) and Fr(z,Ω) defined at some
longitudinal position z of the MSL:

detM(β, κ; Ω) = 0 ⇔ F−1
l (z,Ω) = Fr(z,Ω). (35)

For example, for solitary lasers considered in Figs. 3(b) and (c), Fl(b1,Ω) is defined in (13),
whereas Fr(b1,Ω) = r2. In the general case, functions Fl and Fr are defined by a consequent
superposition of the sectional transfer matrices M(β, κ,Ω) and the left-to-right or right-to-left
junction-transfer matrices

T −1
j,22

(
det Tj Tj,12

−Tj,21 1

)
or T −1

j,11

(
1 −Tj,12

Tj,21 det Tj

)
,

see Refs. [26, 28, 23] for more details.

The calculated optical field function Ψ(z, t) = (E+, E−, P+, P−)T can be represented as
a superposition of the suitably normalized vector functions Θ(β, z) which are slowly changing
with a variation of the propagation factor β(z, t):

Ψ(z, t) =
∞∑
j=1

fj(t)Ψj(β(z, t), z). (36)

Here, fj(t) is the complex amplitude of the mode, which can denote the mode contribution
to the field emission at the laser facet ak once normalization of mode functions assumes

2In the case of non-vanishing ∆β = β+−β−

2 , the transfer matrix in each section Sk should be constructed for

β̄ = β++β−

2 and later multiplied by the factor e−i〈∆β〉k|Sk| [23]
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Θ−E(β, ak) = 1. According to our notations, index 1 denotes the most significant mode hav-
ing a largest (instant) amplitude |f | or a lowest damping =Ω. An increasing index means a
decreasing importance of the mode. This numbering does allow us to achieve good approx-
imations of the field function Ψ(z, t) already by low-dimensional truncated mode expansions
(36).

Calculation of optical modes and expansion of the field function into the modal components
can give a broad understanding of different operating regimes in MSLs and explain parameter
change induced transitions between these states observed in simulations and experiments.
We have applied our mode analysis for interpretation of experimental observations in different
MSLs. Namely, we have explained a stable operation of ring lasers at alternating oscillation or bi-
and uni- directional steady state regimes [23]; almost periodically reappearing state transitions
and estimation of thermal tuning parameters in master-oscillator power-amplifier device [56, 38],
DBR laser [14], or external cavity diode laser [15]; and strongly asymmetric pulse shapes in
quantum-dot mode-locked laser [49]. More theoretical examples of our mode analysis can be
found in [26].

Steady states Any stationary (rotational wave) state of the MSL is determined by an optical
mode with a real mode frequency ω̂:

(Ψ(z, t), N(z, t)) =
(
f̂ Θ(β̂, z)eiω̂t, N̂(z)

)
, where Ω(β̂) = ω̂ ∈ R,

and β̂(z) is constant in time spatially distributed propagation factor. Let us consider the TW
model with sectionally averaged carrier density and neglected nonlinear gain compression, (14),
(18), (4), (5), (15), (28). In this case, all steady states are fully defined by a set of na + 2 real

numbers
(
ω̂, |f̂ |2, N̂1, . . . , N̂na

)
, which are a mode frequency, a mode intensity, and section-

ally averaged carrier densities within all na “active” sections having non-vanishing functions g
and ñ. The rotational invariance of the TW model implies freedom in selection of the phase of
the complex mode amplitude f̂ . The set of these real numbers is a root of a nonlinear algebraic
system of one complex characteristic equation and na real steady-state carrier rate equations:

detM
(
β(N̂), κ; ω̂

)
= 0,

Ir
qσr|Sr| −R(N̂r)− |f̂ |2 c0ngG(N̂r, ω̂)〈(ΘE,ΘE)〉r = 0, r = 1, . . . , na.

(37)

Here, the frequency dependent gain functionG is defined in (17), whereas the sectional average
〈(ΘE,ΘE)〉r can be expressed as a function of ω̂ and N̂ [28].

In the case of a single active section, na = 1, the steady state frequency ω̂ and threshold
carrier density N̂1 can be directly found from the characteristic equation, whereas the remaining
equation determines the value of |f̂ |2. Assume, that the single active section S1 of linear MSL
is located on the left side of the device (see Fig. 1(b), for example), and the optical fields within
the adjacent passive section S2 are governed by the simple relations (9). For an illustration of
this situation, we have considered a three section passive dispersive reflector laser consisting
of the active DFB, passive DBR, and another passive phase tuning section in between. Due
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to relation (35), we can replace the complex characteristic equation by a couple of real-valued
equations,

F−1
l (a2, ω̂) = Fr(a2, ω̂) = e−α2|S2|ei(ϕ−2ω̂τ2)Fr(b2, ω̂) ⇔{

M̃α(N̂1, ω̂) = eα2|S2|

2ω̂τ2 − M̃ϕ(N̂1, ω̂) = ϕ
,

where M̃α =
∣∣M̃∣∣, M̃ϕ = argM̃, M̃(N̂1, ω̂) = Fl(a2, ω̂)Fr(b2, ω̂).

(38)

A couple of real-valued equations (38) suggest a simple way to the location of the steady
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Figure 10: Stationary states (frequencies and threshold carrier densities) of a three section DFB
laser. Panels (a) and (b) show a global overview and a zoomed-in region close to the minimal
threshold mode with ω̂ ≈ 0. Solid black: steady states for all possible ϕ but only few fixed α2.
Red dashed: states for all α2 for fixedϕ=0. Dotted: states where saddle-node bifurcation holds.
Hollow bullets: steady states for α2=20/cm and ϕ = 0. Dash-dotted line: maximal N1 which
can be achieved for considered bias current I . Gray shading: unphysical states. Small arrows
in panel (b) indicate directions of the steady state shift along the fixed loss lines for growing ϕ.
All parameters as in Ref. [26].

states. Namely, each of these equations for fixed parameters α2 and ϕ defines one or several
curves in frequency ω – carrier threshold N1 domain, see black solid and red dashed curves in
Fig. 10. The intersections of these lines determine the steady state pairs ω̂, N̂1 (hollow bullets
in the same figures). It is noteworthy, that to any point in the λ − N1 domain one can attribute
a unique triple of loss, phase and mode power parameters α2, ϕ and |f̂ |2. ω and N1 within
the gray shading regions of Fig. 10 represent the unphysical steady states corresponding to
negative damping in the passive section (α2 < 0) and negative mode intensity (|f̂ |2 < 0) due
to insufficient pumping of the active section.

The fixed level lines of M̃α determined by larger losses α2 = 30 and 40/cm (thin solid black
ellipses located inside of thick solid black curves in Fig. 10) are shrinking towards central points,
which are resonances of the solitary DFB laser. Accordingly, the (odd) number of steady states
on each ellipse is also reduced. The saddle-node bifurcation, which is responsible for creation
or annihilation of the steady state pair, occurs at those ϕ and α2, where corresponding fixed
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level lines of M̃ϕ and M̃α become tangent to each other. The last condition, formally given by

MSN(ω̂, N̂1)
def
= ∂ωM̃α∂N1M̃ϕ − ∂ωM̃ϕ∂N1M̃α = 0,

is satisfied on the dotted lines of Fig. 10.

In general, the interpretation of the steady states for large α2 (small feedback) is in good agree-
ment with the analysis of the external cavity modes in the Lang-Kobayashi (LK) model of lasers
with delayed feedback [18, 27]. A decrease of α2 leads to blowing up and collision of different
ellipses. This scenario involves multiple modes of the solitary DFB laser and can be no more
explained by the LK model.

Mode approximation systems. For some MSL devices, the TW model (14), (2), (3), (4), (5),
(15), (28) with sectionally averaged carrier densities, linear gain and index change functions
and neglected gain compression terms can be reduced to a finite-dimensional system of ODEs
describing an evolution of q complex mode amplitudes f and real sectionally averaged carrier
densities N within na active sections of MSL:

ḟk = iΩk(N)fk +
q∑
l=1

(
na∑
r=1

Kr
k,l(N)Ṅr

)
fl, k = 1, . . . , q;

Ṅr = Ir
q|Sr|σr −R(Nr)−<

q∑
k,l=1

Lrk,l(N)f ∗kfl, r = 1, . . . , na.

(39)

This mode approximation (MA) system follows from the substitution of the truncated field ex-
pansion (36) into the TW model equations and projection of the resulting field equations onto
the linear subspace defined by each of q modes. The non-adjoint nature of the field evolution
operator and small but non-vanishing time derivatives of propagation factor β(N) imply the
appearance of the mode coupling terms Kr

k,lṄr. For the derivation of the MA equations and
analytic expressions for carrier and mode frequency Ω dependent mode coupling functions,
Kr
k,l and Lrk,l, see Ref. [28].

To check the precision of our MA system, we have performed simulations of the TW model and
two related MA systems describing the evolution of a mode-locked laser consisting of a saturable
absorber and an amplifying section (case of na = 2). Solid black curve and hollow bullets in
Figs. 11(b) and (c) show typical optical spectrum and time trace of the mode-locking pulsations
obtained by numerical integrations of the TW model. To determine the most relevant complex
mode frequencies Ω(N) [panel (a) of the same figure] and field expansion coefficients f from
(36) [bullets in panel (b)], we have used the carrier densities N = (N1, N2), optical fields E,
and polarization functions P obtained as a result of the numerical integration of the TW model.
For the construction of 40MA and 50MA systems, we have used the modes indicated by full
red and hatched blue bullets in Figs. 11(a) and (b). Red and blue curves in Fig. 11(c) represent
the numerical integration of these MA systems. One can see, that whereas 40MA system fails
to reproduce the stable periodic regime, the 50MA system provides a perfect approximation
of the TW model. We note that a significant number of excited optical modes in the example
considered above does not allow achieving a low dimensional approximation of the TW model.
The number of active modes usually is much smaller in MSLs containing one or more DFB
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Figure 11: Calculated complex frequencies Ω (a), simulated optical spectra as a Fourier-
transformed field E−(a1, t) [black solid curve] and as a discrete set of mode intensities |f |2
from Eq. (36) vs. <Ω [bullets] (b), and a comparison of the calculated transients of the TW
model [bullets] and the reduced ODE systems determined by 40 [red] or 50 [blue] optical modes
(c) in a two-section mode-locked laser. Full red and hatched blue bullets in panels (a) and (b)
indicate the modes used for the construction of 40MA and 50MA systems. (d): Numerical path
following of the stable periodic solution of the TW model (bullets) and periodic orbits of 3MA (red)
and 4MA (blue) systems in a three-section phase-controlled mode-beating DFB laser [12, 28].
Solid and dashed curves indicate stable and unstable orbits. Hollow boxes and triangles denote
torus and fold bifurcations, respectively.

sections. In this case, already three or four appropriately selected optical modes are sufficient
for a good approximation of the TW model [28, 7].

An integration of the MA system (39) remains a nontrivial task, because for each actual set
of carrier densities N = (N1, . . . , Nr), one should find the corresponding mode frequencies
Ωk(N), k = 1 . . . , q by solving the characteristic equation (34) numerically. Since the required
computation time of the MA systems grows quadratically with the increasing number of modes,
one can integrate the TW model faster than the above-discussed 50MA system. The usefulness
of the MA approach starts to be visible when combining our model reduction technique with
the numerical continuation and bifurcation analysis tools [29] suited for investigation of nearly
arbitrary systems of ODEs. Fig. 11(d) presents an example of numerical bifurcation analysis of
3MA (red) and 4MA (blue) systems describing dynamics of the three-section laser consisting of
two active DFB sections and a passive phase tuning section in between (n = 3 and na = 2
in this case). Here, solid and dashed curves represent stable and unstable branches of the
periodic orbit implied by beating of two closely located resonances, supported by each DFB
section. Hollow bullets in the same figure represent the continuation of the stable periodic state
by direct integration of the TW model. By comparing the bullets and curves, one can see, that
both MA systems were able to reproduce the stable branch of the periodic orbit, and identify
torus and saddle-node bifurcations where this state has lost its stability. The deviation of the
solid red curve from the bullet positions in Fig. 11(d), however, indicates the insufficiency of
the 3MA system to reproduce the orbit shape. More detailed analysis of this laser including a
continuation of bifurcations in two parameter domain can be found in Ref. [28].
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11 Conclusions

In this work, we introduce a hierarchy of traveling wave models describing nonlinear dynamics
in individual semiconductor lasers, various MSLs, and coupled laser systems. To simulate these
laser devices, we use our software package LDSL-tool, which treats MSLs as a set of differently
interconnected laser sections. At the end of the work, we introduce several advanced techniques
allowing detailed analysis of the model equations. These methods include computation of optical
modes, a study of the mode spectra, expansion of electric fields into modal components, a
semi-analytic location of all steady states of the MSLs, model reduction, numerical continuation
and bifurcation analysis of the reduced system. Altogether, these advanced possibilities of our
software tool allow to achieve a thorough understanding of the processes observed both, in the
direct integration of model equations and experiments.
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