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Abstract

This note is devoted to the derivation of quantitative estimates for linear elliptic
equations with coefficients that are not exactly ε-periodic and the ellipticity constant
may degenerate with order O(ε2γ). Here ε > 0 denotes the ratio between the
microscopic and the macroscopic length scale. It is shown that for γ = 0 and γ = 1
the error between the original solution and the effective solution is of order O(ε1/2).
Therefore suitable test functions are constructed via the periodic unfolding method
and a gradient folding operator making only minimal additional assumptions on the
given data and the effective solution with respect to the macroscopic scale.

1 Introduction

Periodic homogenization is a very powerful tool to derive effective equations for e.g. biolog-
ical cells [NeJ07, GPS14], binary mixtures [Eck05], modeling of concrete [PeB08, FA∗11],
and other processes in porous media [HJM94, PtR10, Muv11, Muv13]. All these articles
deal with systems of coupled reaction-diffusion equations which contain linear, elliptic
equations of the form

− div
(
ε2γA

(
x, x

ε

)
∇uε

)
+ B

(
x, x

ε

)
uε = Fε(x) in Ω. (1.1)

In this text we study equation (1.1) for γ = 0 and γ = 1 on a bounded domain Ω ⊂ Rd

supplemented with homogeneous boundary conditions. Within the framework of reaction-
diffusion systems γ = 1 models the slow diffusion of order O(ε) for some species, whereas
for γ = 0 other species diffuse with order O(1). The aim is to quantify the error between
the original solution uε of (1.1) and the effective solution, which is for γ = 0 a one-
scale function u(x) and for γ = 1 a two-scale function U(x, y) solving the equations
(2.8) and (4.2). The weak and strong two-scale convergence of solutions uε to (1.1) is
studied in [PeB08] and [Han11] for all γ ∈ [0,∞). Here we derive quantitative estimates
in the two-scale space Ω × Y , where Y = [0, 1)d, using the periodic unfolding operator
Tε : L2(Ω)→ L2(Ω× Y ), cf. [CDG02] or (2.1),

γ = 0 : ‖uε − u‖L2(Ω) + ‖ Tε(∇uε)− [∇u+∇yU ]‖L2(Ω×Y ) ≤ ε1/2C, (1.2)

γ = 1 : ‖ Tε uε − U‖L2(Ω;H1(Y )) ≤ ε1/2C. (1.3)

The constant C depends on the given data as well as on the norms of the effective solution
u and U in the space H2(Ω) and H1(Ω; H1(Y )), respectively. In the case γ = 0 the corrector
U is given by the well-known unit-cell problem (4.3). For the coefficients A, B, and F
we assume Y -periodcity with respect to the microscopic scale y = x/ε and minimal extra
regularity with respect to the macroscopic scale x ∈ Ω, cf. assumption (2.7). Then the
right-hand side of (1.1) is defined via the folding or averaging operator, cf. (2.2),

Fε(x) = F̂ε(x, x/ε) where F̂ε(x, y) = −
∫
ε([x/ε]+Y )

F(z, y) dz, (1.4)

for two-scale functions F ∈ H1(Ω; L2(Y )) which are in general not continuous - neither
with respect to x ∈ Ω nor y ∈ Y . This becomes relevant for systems of parabolic equations
which are coupled via Lipschitz-terms Fε(uε, vε), where uε and vε only belong to the space
H1(Ω). For such systems the rigorous derivation of effective two-scale equations was proved
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in [MRT14] using the notion of strong two-scale convergence via periodic unfolding. In the
proceeding article [Rei14] convergence rate of order O(ε1/4) is shown. For elliptic equations
with exactly periodic coefficients and γ = 0 we refer to [Gri04, Gri05, OnV07, Gri14] for
unfolding based error estimates of order O(ε1/2) and higher. For coupled reaction-diffusion
equations with γ = 0 only the gradient estimate is of lower order O(ε1/4) in [FMP12].
Estimates of order O(ε1/2) based on asymptotic expansion are derived in [Eck05, Muv13]
containing the cases γ = 0 and γ = 1. Therein continuity is assumed for the given data
and effective solutions, whereas our approach requires no higher regularity with respect
to the microscopic scale.

Our main result (Theorem 2.1) is novel for γ = 1 and for γ = 0 (Theorem 4.1) it is
a slight generalization of the estimates obtained in [Gri04]. There arise two difficulties
deriving the quantitative estimates (1.2)–(1.3) which we briefly outline for γ = 1. The
periodicity defect of Tε uε ∈ L2(Ω; H1(Y )) versus U ∈ L2(Ω; H1

per(Y )) is treated as in
[Gri05]. Secondly one has to identify a suitable “folding” or “approximating sequence”
for the limit U(x, y) since the naive composition U(x, x/ε) is only well-defined in H1(Ω)
for functions U ∈ C1(Ω; H1

per(Y )), see [LNW02] for admissible test functions in two-
scale convergence. Also Uε as in (1.4) is not suitable due to insufficient H1(Ω)-regularity.
Therefore we employ the gradient folding operator Gε : H1(Ω; H1

per(Y )) → H1(Ω) as in
[Han11, MRT14, Rei14] which is defined by solving the degenerating elliptic problem
(3.3). In Theorem 3.4 we control the folding mismatch of Uε and Gε U with respect to the
H1(Ω)-norm as it is indicated in [Rei14].

This text is structured as follows. In Subsection 2.1 we introduce basic definitions and
notations and in Subsection 2.2 our assumptions and Theorem 2.1 for γ = 1 are stated.
The derivation of quantitative estimates is done in Section 3, whereby Subsection 3.1 and
3.2 contain estimates for the approximation errors and the folding mismatch, respectively.
The proof of Theorem 2.1 is given in Subsection 3.3. Finally we show in Section 4 how
our approach applies to the case γ = 0 (Subsection 4.1) as well as to parabolic equations
(Subsection 4.3). In Subsection 4.2 we compare our estimates with [Gri04].

2 Notations and definitions

2.1 Periodic unfolding

Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary ∂Ω. Following [CDG02], we
denote with Y := [0, 1)d the unit cube and Y := Rd/Zd is the torus which we obtain by
identifying opposite faces of Y . Using the mappings [ · ] : Rd → Zd and { · } : Rd → Y , any
point x ∈ Rd admits the additive decomposition x = [x]+{x}. Here [x] :=

(
bx1c, . . . , bxdc)

is the componentwise Gauss bracket and {x} := x−[x] is the remainder. With this we
define for ε > 0 the cells Cε(x) := ε

(
[x/ε] + Y

)
where the macroscopic part ε[x/ε] ∈ εZd

denotes the node associated to Cε(x) and y ∈ Y respective y ∈ Y is the microscopic part.
Since the domain Ω ⊂ Rd is bounded, not all cells Cε(x) are fully contained in Ω. To
handle cells intersecting the boundary ∂Ω we define the following sets

Ω−ε := int
(
{x ∈ Ω | Cε(x) ⊂ Ω}

)
and Ω+

ε := int
(
{x ∈ Ω | Cε(x) ∩ Ω}

)
so that Ω−ε ⊂ Ω ⊂ Ω+

ε as depicted in Figure 2.1. The Lipschitz property of Ω guarantees
vol(Ω+

ε \Ω−ε ) ≤ ε2
√
dmeas(∂Ω) with finite surface measure meas(∂Ω).
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Figure 1: Covering of the domain Ω with microscopic cells.

The periodic unfolding operator Tε : L2(Ω)→ L2(Ω× Y) is defined as in [CDG02] via

(Tε u)(x, y) := u
(
ε[x
ε
] + εy) (2.1)

if x ∈ Ω−ε and (Tε u)(x, y) := 0 otherwise. Accordingly we define the folding operator (also
averaging operator) Fε : L2(Ω× Y)→ L2(Ω) via

(Fε U)(x) := −
∫
Cε(x)

U
(
z, {x

ε
}
)

dz (2.2)

if (x, y) ∈ Ω−ε × Y and (Fε U)(x) := 0 otherwise, where −
∫
A
u(z) dz := vol(A)−1

∫
A
u(z) dz

denotes the average. Both operators are linear and bounded, i.e.

‖ Tε u‖L2(Ω×Y) ≤ ‖u‖L2(Ω) and ‖Fε U‖L2(Ω) ≤ ‖U‖L2(Ω×Y) (2.3)

by Jensen’s inequality. We emphasize that the periodic unfolding operator Tε in (2.1)
does not satisfy the integral identity

∫
Ω×Y Tε u dx dy =

∫
Ω
u dx and we refer to [MiT07]

for a unfolding definition which does do so. However we only use the duality Fε = Tε∗,
cf. [CDG08, Sect. 2.2], meaning for all u ∈ L2(Ω) and V ∈ L2(Ω× Y)∫

Ω×Y
(Tε u)V dx dy =

∫
Ω

u (Fε V ) .

Furthermore the unfolding operator satisfies Tε u ∈ L2(Ω; H1(Y )) for all u ∈ H1(Ω) and it
is Tε(ε∇u) = ∇y(Tε u), cf. [CDG08, Eq. (3.1)]. We point out that the spaces L2(Ω×Y) and
L2(Ω × Y ) can be identified, whereas L2(Ω; H1(Y)) is a closed subspace of L2(Ω; H1(Y ))
with H1(Y) = H1

per(Y ) $ H1(Y).
Using periodic unfolding via Tε, weak (respective strong) two-scale convergence of

bounded sequences (uε)ε ⊂ L2(Ω), as introduced in [Ngu89], is equivalent to weak (re-
spective strong) convergence of the unfolded sequence (Tε uε)ε in the two-scale space
L2(Ω×Y). It was first proved in [All92, Prop. 1.14] that sequences (uε)ε ⊂ H1(Ω) satisfy-
ing supε>0{‖uε‖L2(Ω) + ‖ε∇uε‖L2(Ω)} <∞ weakly two-scale converge (up to subsequence)
to a function U ∈ L2(Ω; H1(Y)), i.e. Tε uε⇀U and Tε(ε∇uε)⇀∇yU in L2(Ω × Y). We
emphasize that the unfolded function Tε uε is in general not Y -periodic, while its two-scale
limit U indeed is, and we call this observation periodicity defect as in [Gri04].

3



2.2 Assumptions and statement of the main result for γ = 1

We study the following elliptic equation, which is degenerating as ε→ 0,

− div(ε2Aε∇uε) +Bεuε = Fε in Ω (2.4)

supplemented with homogeneous Neumann boundary conditions, i.e. (ε2Aε∇uε) · ν = 0
on ∂Ω. Here ν denotes the unit outer normal vector of Ω. The coefficients depend on
x ∈ Ω and ε > 0 via

Aε(x) := A
(
x, x

ε

)
, Bε(x) := B

(
x, x

ε

)
, and Fε(x) := (Fε F)(x). (2.5)

Throughout this text we impose the following assumptions on the given data. Let
A(x, y) ∈ Rd×d

sym be a symmetric matrix and let A and B be positive definite, i.e. there
exist constants 0 < α ≤ β <∞ such that we have uniformly for all (x, y) ∈ Ω× Y and

α|ξ|2 ≤ A(x, y)ξ · ξ ≤ β|ξ|2 and α ≤ B(x, y) ≤ β ∀ ξ ∈ Rd. (2.6)

For the derivation of quantitative estimates we need additional regularity with respect to
the macroscopic scale x ∈ Ω, namely let

A ∈W1,∞(Ω; L∞(Y)), B ∈W1,∞(Ω; L∞(Y)), and F ∈ H1(Ω; L2(Y)). (2.7)

Thanks to the continuity of A and B with respect to x ∈ Ω, the definitions of Aε and Bε

in (2.5) are indeed well-defined. Passing to the limit ε → 0 in (2.4) gives the two-scale
convergence of uε to a limit function U ∈ L2(Ω; H1(Y)) solving the effective equation (cf.
[PeB08, Han11, MRT14])

− divy(A∇yU) + BU = F in Ω× Y (2.8)

with periodic boundary conditions on the torus Y and no boundary conditions on Ω.
By the Lax–Milgram Theorem and the regularity (2.7) of the given data, the solution
U of (2.8) even belongs to the better space H1(Ω; H1(Y)). In particular all solutions are
uniformly bounded in the sense

sup
ε>0

{
‖uε‖L2(Ω) + ‖ε∇uε‖L2(Ω)

}
+ ‖U‖H1(Ω;H1(Y)) ≤ Const.(A,B,F). (2.9)

Our main result is in the case γ = 1 as follows.

Theorem 2.1. Let the given data satisfy the assumptions (2.5)–(2.7) and let uε and U
solve the elliptic equation (2.4) and (2.8), respectively. Then there exists a constant C > 0
depending on the norm in (2.9) such that

‖ Tε uε − U‖L2(Ω;H1(Y )) ≤ ε1/2C.

The proof (see Subsection 3.3) combines ideas of [Rei14, Thm. 3.2] and [Gri04, Prop. 4.3],
and it is shown that Gε U is an approximate solution of the original equation (2.4). There-
fore we proceed in three steps:

1. The choice of an admissible test function for the effective equation (2.8) leads to the
periodicity defect.

2. We reformulate by using the duality Fε = Tε∗ and control the approximation errors.
3. Choosing a suitable test function for the original equation is equivalent to finding

the correct “recovery sequence” (in terms of Γ-convergence) which is Gε U here.
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3 Error estimates

3.1 Estimating the periodicity defect and approximation errors

In this subsection we provide preparatory estimates to control the approximation error for
the folding operator and the periodicity defect. To handle the error for microscopic cells Cε
which are not fully contained in the domain Ω, we exploit for functions U ∈ H1(Ω; L2(Y))
the boundary estimate

‖U‖L2((Ω\Ω−ε )×Y) ≤ ε1/2C‖U‖H1(Ω;L2(Y)), (3.1)

where the constant C > 0 only depends on the Lipschitz property of Ω. For one-scale
functions, estimate (3.1) can be found in e.g. [Gri04, Eq. (4.6)] or [Gri05, Eq. (2.4)] and
for a full proof we refer to [Rei15, Lem. 2.3.5].

Lemma 3.1. For every U ∈ H1(Ω; L2(Y)) it holds

‖U − TεFε U‖L2(Ω×Y) ≤ (ε+ ε1/2)C‖U‖H1(Ω;L2(Y)),

where the constant C > 0 only depends on the domains Ω and Y .

Proof. Using the paving property Ω−ε = ∪λi
Cε(x), where λi = [x/ε] ∈ Zd for x ∈ Ω−ε ,

and applying the Poincaré–Wirtinger inequality yields

‖U − TεFε U‖2
L2(Ω−ε ×Y)

=
∑
λi

∫
ε(λi+Y )

∫
Y

∣∣∣∣U(x, y)−−
∫
Cε(x)

U(z, y) dz

∣∣∣∣2 dx dy

≤
∑
λi

(diam(Cε(x))2 ‖∇xU‖2
L2(ε(λi+Y ) ≤ ε2C‖∇xU‖2

L2(Ω×Y).

Here we used that the Poincaré–Wirtinger constant is bounded by the diameter of the
convex set Cε(x). Since ‖U − TεFε U‖L2(Ω×Y) = ‖U − TεFε U‖L2(Ω−ε ×Y) + ‖U‖L2((Ω\Ω−ε )×Y)

the boundary estimate (3.1) gives the desired result.

Introducing for ε > 0 and ϕ ∈ H1(Ω) the norm

‖ϕ‖ε := ‖ϕ‖L2(Ω) + ‖ε∇ϕ‖L2(Ω) (3.2)

we can control the periodicity defect as follows.

Theorem 3.2 ([Gri05, Thm. 2.2]). For every ϕ ∈ H1(Ω), there exists a Y-periodic func-
tion Φε ∈ L2(Ω; H1(Y)) such that

‖Φε‖H1(Y ;L2(Ω)) ≤ C‖ϕ‖ε and ‖ Tε ϕ− Φε‖H1(Y ;H1(Ω)∗) ≤ (ε+ ε1/2)C‖ϕ‖ε,

where the constant C > 0 only depends in the domains Ω and Y .
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3.2 Gradient folding operator and folding mismatch

By the Sobolev extension Theorem, there exists a linear and continuous operator, cf.
e.g. [Neč67, Thm. 3.9], E : H1(Ω; L2(Y)) → H1(Rd; L2(Y)) such that (EU)|Ω×Y = U and
‖EU‖H1(Rd;L2(Y)) ≤ C‖U‖H1(Ω;L2(Y)). Moreover, let E be such that its restriction to one-
scale functions u ∈ H1(Ω) satisfies (Eu)|Ω = u and ‖Eu‖H1(Rd) ≤ C‖u‖H1(Ω). Taking
care of cells Cε intersecting the boundary of Ω, we define the extended folding operator
F+
ε : H1(Ω; L2(Y))→ L2(Rd) via

(F+
ε U)(x, y) := −

∫
Cε(x)

(EU)
(
z, {x

ε
}
)

dz.

The gradient folding operator Gε : H1(Ω; H1(Y)) → H1(Ω+
ε ) is defined as in [MRT14]

following [MiT07, Han11]: for U ∈ H1(Ω; H1(Y)) given, Gε U := ûε ∈ H1(Ω+
ε ) is the

unique solution of the elliptic problem∫
Ω+

ε

(ûε −F+
ε U)ϕ+ (ε∇ûε −F+

ε (∇yU)) · ε∇ϕ dx = 0 for all ϕ ∈ H1(Ω+
ε ). (3.3)

The Lax–Milgram Theorem implies that Gε U is well-defined and bounded in the sense
‖ Gε U‖ε ≤ ‖EU‖H1(Rd;H1(Y)). Throughout the following calculations the operator E is
omitted in notation, however all generic constants C will also depend on its norm.

Having defined two different folding operators Fε and Gε, we want to control their
difference which we call folding mismatch. Therefore we introduce the so-called scale-
splitting operator Qε : H1(Ω)→W1,∞(Rd) following [CDG08, Def. 4.1]: for x ∈ Cε(x) and
every κ = (κ1, . . . , κd) ∈ {0, 1}d, we set

x̄
(κl)
l :=

{
xl−ε[x/ε]l

ε
if κl = 1

1− xl−ε[x/ε]l
ε

if κl = 0

and

(Qεw)(x) :=
∑

κ∈{0,1}d
(F+

ε w)
(
ε[x
ε
] + εκ

)
· x̄(κ1)

1 · · · x̄(κd)
d . (3.4)

The function Qεw interpolates the values of F+
ε w at the nodes ε[x/ε] via Q1-Lagrange

elements as customary in the finite elements methods. Indeed it is F+
ε w ∈ L∞(Ω+

ε ) such
that for z ∈ L2(Y) the products

x 7→
(
F+
ε w

)
(x)z

(
x
ε

)
and x 7→

(
Qεw

)
(x)z

(
x
ε

)
(3.5)

belong to the space L2(Ω+
ε ), see e.g. [LNW02, Thm.4]. According to [CDG08, Prop. 4.5],

there exists a constant C > 0 only depending on Ω and Y such that

‖Qεw‖H1(Ω) ≤ C‖w‖H1(Ω) for all w ∈ H1(Ω). (3.6)

The following auxiliary estimate is proved in [Rei15, Lem. 3.6] or [Rei14, Lem. 2.3.9] based
on ideas from [Gri04, Prop. 3.2].

Lemma 3.3. For w ∈ H1(Ω) and z ∈ L2(Y), it holds

‖(F+
ε w −Qεw)z( ·

ε
)‖L2(Ω+

ε ) ≤ εC‖w‖H1(Ω)‖z‖L2(Y),

where the constant C > 0 only depends on the dimension d.
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Finally we have collected all ingredients to control the folding mismatch.

Theorem 3.4. For every U ∈ H1(Ω; H1(Y)), the folding mismatch is

‖ Gε U −Fε U‖L2(Ω) + ‖ε∇(Gε U)−Fε(∇yU)‖L2(Ω) ≤ ε1/2C‖U‖H1(Ω;H1(Y)), (3.7)

‖ Gε U −F+
ε U‖L2(Ω+

ε ) + ‖ε∇(Gε U)−F+
ε (∇yU)‖L2(Ω+

ε ) ≤ εC‖U‖H1(Ω;H1(Y)), (3.8)

where the constant C > 0 only depends on the domains Ω and Y .

Proof. For brevity we set L2
ε := L2(Ω+

ε ) troughout this proof.
Step 1: Treatment of the boundary. The triangle inequality, the identity (Fε U)|Ω−ε =

(F+
ε U)|Ω−ε , Jensen’s inequality, and the boundary estimate (3.1) imply

‖ Gε U −Fε U‖L2(Ω) ≤ ‖Gε U −F+
ε U‖L2(Ω) + ‖F+

ε U‖L2(Ω\Ω−ε )

≤ ‖Gε U −F+
ε U‖L2

ε
+ (ε+ ε1/2)C‖U‖H1(Ω;L2(Y)).

An analog estimate holds for the gradient term so that it remains to prove (3.8) and (3.7)
follows immediately.

Step 2: Proof of estimate (3.8) for products U(x, y) = w(x)z(y). Let U satisfy the
decomposition U(x, y) = w(x)z(y) with w ∈ H1(Ω) and z ∈ H1(Y). We introduce the
function ϑε(x) := (Qεw)(x)z(x/ε) which belongs to the space H1(Ω+

ε ) by construction.
The definition of Gε U in (3.3) is equivalent to∫

Ω+
ε

(Gε U − ϑε)ϕ+ ε∇(Gε U − ϑε) · ε∇ϕ dx

=

∫
Ω+

ε

(F+
ε U − ϑε)ϕ+ (F+

ε (∇yU)− ε∇ϑε) · ε∇ϕ dx for all ϕ ∈ H1(Ω+
ε ).

Choosing ϕ = Gε U − ϑε as well as applying Hölder’s inequality, Lemma 3.3, and the
boundedness of Qε in (3.6) gives

‖ Gε U − ϑε‖ε ≤ ‖Fε U − ϑε‖L2
ε

+ ‖Fε(∇yU)− ε∇ϑε‖L2
ε

= ‖(F+
ε w −Qεw)z( ·

ε
)‖L2

ε
+ ‖(F+

ε w −Qεw)∇yz( ·
ε
)‖L2

ε
+ ‖ε∇x(Qεw)z( ·

ε
)‖L2

ε

≤ εC‖w‖H1(Ω)‖z‖H1(Y).

Finally the triangle inequality yields

‖ Gε U −Fε U‖L2
ε

+ ‖ε∇(Gε U)−Fε(∇yU)‖L2
ε

≤ ‖Gε U − ϑε‖ε + ‖Fε U − ϑε‖L2
ε

+ ‖Fε(∇yU)− ε∇ϑε‖L2
ε

≤ 2εC‖w‖H1(Ω)‖z‖H1(Y) (3.9)

and the desired estimate (3.8) follows for functions U of product form.
Step 3: Proof of estimate (3.8) for general functions U(x, y). Let {Φi}∞i=1 be an

orthonormal basis in H1(Y) which is also orthogonal in L2(Y). Then we can express
U ∈ H1(Ω+

ε ; H1(Y)) (extended by E) via the linear combination

U(x, y) =
∞∑
i=1

ui(x)Φi(y) where ui(x) :=

∫
Y
U(x, y)Φi(y) dy. (3.10)
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By construction it is ui ∈ H1(Ω+
ε ) and we set Ui(x, y) := ui(x)Φi(y).

The assumptions on Φi imply Φi(·/ε) ⊥ Φj(·/ε) and ∇yΦi(·/ε) ⊥ ∇yΦj(·/ε) in L2
ε for

all i 6= j, i.e. {Φi(·/ε)}i is an orthogonal system in H1(Ω+
ε ) for each ε > 0. Indeed using

the paving property Ω+
ε = ∪λi

Cε(x), where λi = [x/ε] ∈ Zd for x ∈ Ω+
ε , a substitution of

variables yields ∫
Ω+

ε

Φi(
x
ε
)Φj(

x
ε
) dx =

∑
λi

∫
Cε(x)

Φi(
x
ε
)Φj(

x
ε
) dx

=
∑
λi

1

εd

∫
[
x
ε

]+Y

Φi(y)Φj(y) dy = 0 (3.11)

and analogously for ∇yΦi. Applying the folding operator F+
ε to Ui gives

(F+
ε Ui)(x) = (F+

ε ui)(x)Φi(
x
ε
) and (F+

ε [∇yUi])(x) = (F+
ε ui)(x)∇yΦi(

x
ε
).

Since (F+
ε ui)(x) = −

∫
Cε(x)

ui(z) dz is constant on each cell Cε(x), we have as well F+
ε Ui ⊥

F+
ε Uj and F+

ε (∇yUi) ⊥ F+
ε (∇yUj) in L2

ε for all i 6= j. Therefore it suffices to consider
the basis functions Φi. By the definition of Gε we have for vεi := Gε Φi∫

Ω+
ε

(
vεi − Φi(

·
ε
)
)
ϕ+

(
ε∇vεi −∇yΦi(

·
ε
)
)
· ε∇ϕ dx = 0 for all ϕ ∈ H1(Ω+

ε ). (3.12)

Inserting the test function ϕ(x) = Φj(x/ε) in (3.12) yields with (3.11) for all i 6= j∫
Ω+

ε

vεiΦj(
·
ε
) + ε∇vεi · ∇yΦj(

·
ε
) dx = 0.

Furthermore choosing ϕ(x) = vεj (x) in (3.12) yields with the latter equality∫
Ω+

ε

vεi v
ε
j + ε∇vεi · ε∇vεj dx = 0.

Hence it is vεi ⊥ vεj in H1(Ω+
ε ) for all i 6= j. We continue to estimate the folding mismatch

of F+
ε and Gε and set uεi := Gε Ui. Replacing F+

ε Φi and F+
ε (∇yΦi) with F+

ε Ui and
F+
ε (∇yUi) in (3.12), respectively, and exploiting that F+

ε ui is constant on each cell Cε(x)
implies uεi ⊥ uεj in H1(Ω+

ε ) for all i 6= j.
Finally we apply the result of Step 2 with w = ui and z = Φi. Since F+

ε and Gε are
linear and continuous operators, we have in particular uε =

∑∞
i=1 u

ε
i . Therefore we square

estimate (3.9) so that the mixed product terms vanish for i 6= j, namely

‖uε −F+
ε U‖2

L2
ε

+ ‖ε∇uε −F+
ε (∇yU)‖2

L2
ε

= ‖∑∞i=1(uεi −F+
ε Ui)‖2

L2
ε

+ ‖∑∞i=1(ε∇uεi −F+
ε (∇yUi))‖2

L2
ε

=
∑∞

i=1 ‖uεi −F+
ε Ui‖2

L2
ε

+
∑∞

i=1 ‖ε∇uεi −Fε(∇yUi)‖2
H

≤∑∞i=1 ε
2C‖ui‖2

H1(Ω)‖z‖2
H1(Y) = ε2C‖U‖2

H1(Ω;H1(Y)).

The last equality follows by Parseval’s identity ‖U‖2
H1(Ω+

ε ;H1(Y))
=
∑∞

i=1 ‖ui‖2
H1(Ω+

ε )
.
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3.3 Proof of Theorem 2.1

Proof of Theorem 2.1. Step 1: Periodicity defect. The weak formulation of the effec-
tive equation (2.8) reads∫

Ω×Y
A∇yU · ∇yΦ + BUΦ− FΦ dx dy = 0 for all Φ ∈ L2(Ω; H1(Y)). (3.13)

Thanks to Theorem 3.2 we can choose Φε ∈ L2(Ω; H1(Y)) to estimate the periodicity
defect of Tε ϕ ∈ L2(Ω; H1(Y )). Indeed exploiting the higher x-regularity (2.7) of the given
data and the limit U ∈ H1(Ω; H1(Y)) yields∣∣∣∣∫

Ω×Y
A∇yU · [∇y(Tε ϕ)−∇yΦε] +

(
BU − F

)
[Tε ϕ− Φε] dx dy

∣∣∣∣
≤ ‖A∇yU‖L2(Y;H1(Ω))‖∇y(Tε ϕ)−∇yΦε‖L2(Y;H1(Ω)∗)

+
(
‖|BU |+ |F|‖L2(Y;H1(Ω))

)
‖ Tε ϕ− Φε‖L2(Y;H1(Ω)∗)

≤ Const.(A,B,F, U)(ε+ ε1/2)C‖ϕ‖ε.

Note that the identification of the spaces
(
L2(Y ; H1(Ω))

)∗
and L2(Y ; H1(Ω)∗) as well as

L2(Y ; H1(Ω)) and H1(Ω; L2(Y)) holds due to the underlying tensor product structure of
the two-scale space L2(Y ; H1(Ω)). Overall testing (3.13) with Φε gives∣∣∣∣∫

Ω×Y
A∇yU · ∇y(Tε ϕ) + BU Tε ϕ− F Tε ϕ dx dy

∣∣∣∣ ≤ ε1/2C‖ϕ‖ε.

Step 2: Approximation errors. Using Fε = Tε∗ and ∇y(Tε ϕ) = Tε(ε∇ϕ) gives∣∣∣∣∫
Ω

Fε (A∇yU) · ε∇ϕ+ Fε(BU)ϕ− Fεϕ dx

∣∣∣∣ ≤ ε1/2C‖ϕ‖ε. (3.14)

Thanks to the Lipschitz continuity of A and B with respect to x ∈ Ω and the boundedness
(2.3) of Fε, we obtain

‖Fε (A∇yU)− AεFε(∇yU)‖2
L2(Ω)

=

∫
Ω−ε

∣∣∣∣−∫
Cε(x)

(
A
(
z, x

ε

)
− A

(
x, x

ε

) )
∇yU

(
z, x

ε

)
dz

∣∣∣∣2 dx

≤ ε2‖∇xA‖L∞(Ω×Y)‖∇yU‖L2(Ω×Y)

and analogously ‖Fε(BU) − BεFε(U)‖2
L2(Ω) ≤ ε2‖∇xB‖L∞(Ω×Y)‖U‖L2(Ω×Y). Inserting

these two estimates into (3.14) yields∣∣∣∣∫
Ω

AεFε(∇yU) · ε∇ϕ+BεFε Uϕ− Fεϕ dx

∣∣∣∣ ≤ ε1/2C‖ϕ‖ε.

Step 3: Folding mismatch. Thanks to Theorem 3.4 we can replace the folded functions
Fε U and Fε(∇yU) with the gradient folding Gε U and ε∇(Gε U), respectively, such that∣∣∣∣∫

Ω

Aεε∇(Gε U) · ε∇ϕ+Bε(Gε U)ϕ− Fεϕ dx

∣∣∣∣ ≤ ε1/2C‖ϕ‖ε. (3.15)
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The choice ϕε = uε − Gε U ∈ H1(Ω) is indeed admissible in (3.15) and ϕε is also a test
function for the original equation (2.4), i.e.∫

Ω

Aεε∇uε · ε∇ϕε +Bεuεϕε − Fεϕε dx = 0. (3.16)

Subtracting (3.15) from (3.16) and exploiting the positive definiteness (2.6) gives

α‖uε − Gε U‖2
ε ≤ ε1/2C‖uε − Gε U‖ε. (3.17)

Finally applying the triangle inequality, the boundedness (2.3) of Tε, estimate (3.7) for
the folding mismatch, and the approximation error yields

‖ Tε uε − U‖L2(Ω;H1(Y ))

≤ ‖uε − Gε U‖ε + ‖ Gε U −Fε U‖L2(Ω) + ‖ε∇(Gε U)−Fε(∇yU)‖L2(Ω)

+ ‖ TεFε U − U‖L2(Ω×Y) + ‖ TεFε(∇yU)−∇yU‖L2(Ω×Y) ≤ ε1/2C

which finishes the proof.

4 Further error estimates and discussion

4.1 The non-degenerating case for γ = 0

We consider the non-degenerating elliptic equation

− div(Aε∇uε) +Bεu = Fε in Ω (4.1)

with homogeneous Neumann boundary conditions and given data as in (2.5)–(2.7). It is
well-known that uε⇀u weakly in H1(Ω) and u solves the effective equation

− div(Aeff∇u) +Beffu = Feff in Ω (4.2)

with the same boundary conditions. The effective matrix Aeff is given via the standard
unit-cell problem (for arbitrary vectors ξ ∈ Rd)

ξ · Aeff(x)ξ = min
Φ∈H1

av(Y)

∫
Y

(ξ +∇yΦ) · A(x, y)(ξ +∇yΦ) dy, (4.3)

where H1
av(Y) = {Φ ∈ H1(Y) |

∫
Y Φ dy = 0}. The effective data Beff and Feff are the usual

averages

Beff(x) =

∫
Y

B(x, y) dy and Feff(x) =

∫
Y

F(x, y) dy. (4.4)

The regularity of A in (2.7) implies Aeff ∈W1,∞(Ω; Rd×d
sym). If the domain Ω is additionally

convex or of class C2, we obtain higher regularity of u, namely u ∈ H2(Ω), see e.g. [Gri85,
Lóp13]. This higher regularity of the limit solution u is needed to derive quantitative
estimates and it is not nearly as trivial as in the degenerating case γ = 1. The corrector
U is the unique minimizer in (4.3) corresponding to ξ = ∇u(x) and it satisfies U ∈
H1(Ω; H1(Y)) thanks to the higher regularity of A and u with respect to x ∈ Ω. Hence
we can state our main result for γ = 0.
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Theorem 4.1. Let the assumptions (2.5)–(2.7) hold and let uε and u solves the elliptic
equation (4.1) and (4.2), respectively. If u belongs to H2(Ω), then there exists a constant
C > 0 such that

‖uε − u‖L2(Ω) + ‖ Tε(∇uε)− [∇u+∇yU ]‖L2(Ω×Y) ≤ ε1/2C.

Proof. The proof is analog to the one of Theorem 2.1 for γ = 1 and one shows that
u + εGε U is an approximate solution of the original equation (4.1). To control the
periodicity defect in Step 1 we apply [Gri05, Thm. 2.3], i.e. for every ϕ ∈ H1(Ω), there
exists a function Φε ∈ L2(Ω; H1(Y)) and a constant C > 0 such that ‖Φε‖H1(Y ;L2(Ω)) ≤
C‖ϕ‖H1(Ω) and ‖ Tε(∇ϕ)− [∇ϕ+∇yΦε]‖L2(Y;H1(Ω)∗) ≤ (ε+ ε1/2)C‖ϕ‖H1(Ω).

Remark 4.2. For different boundary conditions the error estimates are functioning as
before, however one has to modify the approximating (resp. recovery) sequence so that the
new boundary conditions are satisfied. In the case of homogeneous Dirichlet boundary
conditions, a suitable candidate is u + εGε(ρεU), where ρε denotes a cut-off function to
guarantee the nullity at the boundary ∂Ω.

4.2 Comparison with [Gri04]

The corrector U admits the decomposition (see e.g. [LNW02, Sec. 4])

U(x, y) =
d∑
i=1

∂u

∂xi
(x)zi(x, y), (4.5)

where zi ∈W1,∞(Ω; H1
av(Y)) is the unique minimizer corresponding to the standard basis

vector ei in Rd. If Aε is exactly periodic as in [Gri04], i.e. Aε(x) = A(x/ε), then zi ∈
H1

av(Y) is it as well. In this case we have the following error estimates for solutions uε
and u of (4.1) and (4.2), respectively, with B ≡ 0 and either homogeneous Neumann or
Dirichlet boundary conditions.

Theorem 4.3 ([Gri04, Prop. 4.3]). If u ∈ H2(Ω), then there exists C > 0 such that

‖uε − u‖L2(Ω) +
∥∥∇uε − [∇u+

∑d
i=1Qε

(
∂u
∂xi

)
zi(
·
ε
)]
∥∥

L2(Ω)
≤ ε1/2C.

In any case – exactly periodic or not – the question is how to “fold” U(x, y)? We remark
that x 7→ U(x, x/ε) ∈ L2(Ω) is in general not satisfied for U ∈ L∞(Ω; L2(Ω)), whereas for
products x 7→ w(x)z(x/ε) ∈ L2(Ω) holds true for w ∈ L∞(Ω) and z ∈ L2(Y) according
to [LNW02, Thm.4]. Hence the construction

∑d
i=1Qε

(
∂u
∂xi

)
(x)zi(x/ε) is admissible in

H1(Ω) for exactly periodic coefficients. However in the non-periodic situation, the choice
Qε
(
∂u
∂xi

)
(x)zi(x, x/ε) is not admissible. This technicality is circumvented in our approach

by using the gradient folding operator and choosing the recovery sequence u + εGε U
respective u + εGε(ρεU). Nevertheless for more regular data such as A ∈ C1(Ω; L∞(Y))
and hence zi ∈ C1(Ω; H1

av(Y)), the naive folding zi(x, x/ε) is again well-defined in H1(Ω)
and the proof of [Gri04, Prop. 4.3] seems to be valid, too.

The approach of [Gri04] applies as well to systems of reaction-diffusion equations, cf.
[FMP12]. And our approach is also generalizable to semilinear parabolic equations with
globally Lipschitz continuous right-hand sides, see Subsection 4.3.
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4.3 Error estimates for parabolic equations

Our approach can be generalized to semilinear parabolic equations. Following e.g. [Eck05,
FMP12, Muv13, Rei15] one aims to apply Gronwall’s Lemma and therefore estimates

1

2

d

dt
‖uε −Fε U‖2

L2(Ω) =

∫
Ω

(u̇ε −Fε U̇)(uε −Fε U) dx

=

∫
Ω

(u̇ε −Fε U̇)ϕε
Term 1

dx+

∫
Ω

(u̇ε −Fε U̇)(Gε U −Fε U)
Term 2

dx.

Choosing the test function ϕε = uε − Gε U and inserting the reformulated equations,
Term 1 can be treated as in the elliptic case. To control Term 2, in particular to obtain
the convergence rate ε1/2, we need the uniform boundedness supε>0 ‖u̇ε‖L2(Ω) < ∞ and
estimate (3.8) of order O(ε) for the folding mismatch, i.e. |Term 2| ≤ εC. This can be
achieved by assuming either Ω is polyhedral or by extending all solutions, given data, and
operators from Ω to Ω+

ε such that the duality F+
ε = (T +

ε )∗ is applicable.
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