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Abstract. A stochastic weighted particle method is ap-
plied to a model nonlinear kinetic equation. A detailed 
study of various numerical approximations is presented. 
The main effect achieved by the new method is an arti-
ficial increase of the relative number of simulation par-
ticles with prescribed velocities. 
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1. Introduction 

In this paper we continue the study of a new particle method for nonlinear 
kinetic equations introduced in [8]. This method is based on a generalized pro-
cedure of modelling collisions between particles providing some freedom in the 
random choice of the collision partners and in the weight transfer mechanism 
( cf. [5], [ 4]' [9]). 

We consider the equation 

a r1 [ . . ] at f(t,u) =lo f(t,u-v)f(t,v)-f(t,u)f(t,v) dv, (1.1) 

where t > 0, 0 ::; u < 1, with the initial condition 

f(O, u) = fo(u). (1.2). 

The solution f(t,u) is assumed to be 1-periodic in u, i.e. 

f(t,u)=f(t,l+u), t~O, uElR. 

Eq. (1.1) is a model kinetic equation, which is nonlinear, but has a very simple 
collision mechanism. The simplicity of this equation allows us to check all steps 
of the numerical algorithm very carefully in order to give recommendations for 
more complicated kinetic equations, like the Boltzmann equation ( cf. [3]). 
In [9], where also the convergence of the method was investigated, we used 
Eq. (1.1) to illustrate the reduction of the statistical fluctuations. 

A challenging problem related to the Boltzmann equation is the accurate 
calculation of macroscopic quantities, like mean velocity or temperatur;e, in· 
regions with a small particle density. This problem can hardly be solved effi-
ciently by direct simulation. methods in such cases, where the changes of the 
particle density are of several orders of magnitude. We refer to [1], [3, Oh. 10], 
[6], [7] concerning particle schemes for the Boltzmann equation. 

In simulation procedures for the spatially inhomogeneous Boltzmann equa-
tion ( cf., e.g., [8]), a time discretization 

tk = k /:)..t' k = 0, 1, ... ' /:)..t > 0' 

is used in order to split the simulation of the free flow of the particles and 
the simulation of their collisions. This means that on a small time interval of 
length /:)..t, at a first step, the free flow is simulated disregarding the possible 
collisions. Then, at a second step, the collisions are simulated neglecting the 
free flow. Now, if one wishes to increase artificially the number of simulation 
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particles in a certain region of the physical space, then it will be necessary to 
generate particles with velocities from a prescribed subset of the velocity space 
during the collision simulation step. 

The main objective of this paper is to show that this goal, i.e. an artificial 
increase of the number of particles with prescribed velocities, can be achieved 
by the new method. We also study the related effect of variance reduction, the 
influence of various approximation procedures for the initial distribution, and 
the effect of different time counting mechanisms on the simulation results. 

The paper is organized as follows. In Section 2, we summarize the main 
analytical properties of the model equation, and give an appropriate exact so-
lution for the numerical tests. In Section 3, we describe the stochastic weighted 
particle method. In Section 4, we illustrate the various numerical effects men-
tioned above. Finally, we draw some conclusions. 

2. Analytical properties of the equation 

The model kinetic equation (1.1) was introduce.cl in [2], where the existence 
of the solution as well as its stability and the convergence of a class of difference 
schemes was studied. In particular, it was proved that the solution of the initial 
value problem (1.1), (1.2) exists in L2 ([0, 1)) fort 2:'.: 0 and any initial function 
fa E L2([0, 1)). 

The solution can be represented in terms of Fourier series 

where 

(2.1) 

are the Fourier functions and i denotes the imaginary unit, i.e. i 2 = -1. The 
symbols ck(O) are the corresponding Fourier coefficients of the initial function 
fa, i.e. 

. fa(u) = L ck(O)vk(u). 
kEZ 

The value e is equal to the "mass" of the system and remains conserved by 
the equation (1.1): 

{! = [ f(t,u)du = [ fo(u)du. (2.2) 
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The L 2-norm of the solution f(t, u) is estimated as 

II f(t,u) llLuo,1))= L lck(t)l 2 ~ L lck(O)l 2 =II fo(u) llLuo,1)) · 
kEZ kEZ 

For some special Jo, it is possible to give the analytical solutions of the 
problem (1.1) in terms of elementary functions. One of these solutions is 
obtained for the initial function 

fo(u) = 2 + sin(27ru), (2.3) 
which can be written as 

1 . 1 
fo(u) = ----:v-1(u) + 2vo(u) + ---:v1(u), 

2i 2i 
where vk(u) are defined in (2.1). The corresponding analytical solution is 

f( ) 
4(1 - e2t) cos(27ru) + 16e2t sin(27ru) 

t u = 2 + (2 4) 
' 1 - 2e2t + 17 e4t · 

The moments of the solution (2.4) 

Mk(t) = 11 

uk f(t, u)du, k = 0, 1, ... , 

can be computed explicitly. One obtains 

M ( ) 
4(1 - e2t)ck + 16e2t sk 

k t = 2 + 2t 4t ' 1 - 2e + l 7e 
k = 0, 1, ... ' 

where 

Ck= 11 

uk cos(27ru)du, Sk = 11 

uk sin(27ru)du. 

The numbers ck and sk are computed via the recursive formulae 

co= so= 0, 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

k 1 k 
Ck = - 27r Sk-1, Sk = - 27r + 27r Ck-1, k = 1, 2,... . (2.9) 

Furthermore, we introduce the function 

F,(t) = LJ(t,_u)du, e> 0, (2.10) 

which takes the explicit form 

2 ( (1 - e2t) sin(27rc) - 4e2t (1 - cos(27rc))) 
Fe: ( t) = 2c: + ( ) 

7r 1 - 2e2t + 17 e4t . 
(2.11) 
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3. The method 

The method consists in modelling trajectories of a stochastic particle sys-
tem of the form 

Z(t) = {(wi(t), 9i(t)), i = 1, ... ,m(t)}, t 2:: 0. (3.1) 

Each particle has a state ("velocity") wi(t) from the interval [O, 1), and a 
weight 9i(t) E [O, 1]. The var.iable m(t) denotes the number of particles in the 
system, and 

m(O) = n .. (3.2) 

The justification of the method is given in [9] by showing convergence (as 
n-+ oo) of the corresponding empirical measures 

m(t) 

µ(t, dw) = Lgi(t) tSwi(t)(dw), (3.3) 
i=l 

where 6 denotes the Dirac measure, to the measures f(t, w) dw, where f is the 
solution of Eq. (1.1 ). 

3.1. Approximation of the initial value 

The first step in the construction of the particle system (3.1) is the approxi-
mation of the initial function fa given in (2.3) by a system of particles 

Z ( 0) = { ( Wi, 9i) , i = 1, ... , n} . 

A natural choice of the weights at the beginning is 
e · 9i = - , i · = 1, ... , n , 
n 

where e is defined in (2.2). 

(3.4) 

The problem of generating velocities Wi reduces to the numerical solution 
of the equations 

11Wi . - fa(u)du=Ti, 
e a 

i=l, ... ,n, (3.5) 

where Ti are pseudo-random numbers. One can also choose the elements of a 
low discrepancy sequences for Ti ( cf. [7]). According to (2.3), Eq. (3.5) takes 
the form 

1 1 Wi - 47f cos27rWi =Ti - 47r, i = 1, ... ,n, 
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and can be solved by the Newton method 

k+i 27r sin(27rwf) + cos(27rwf) + 47rri - 1 
wi ==· 27r(2 + sin(27rwf) ' k == O, l, · · · · 

A more general approach is first to divi~e the interval [O, 1) into n1 parts 
using the nodes Vj, j == 1, ... , n1+1 defined from the equations 

l v;+1 {! 
fo(u)du == - , 

~ n1 
j==l, ... ,n1, 

In each subinterval [vj, Vj+i], j == 1, ... , n1 we put n/n1 particles according to 
the formulas 

lw·· n1 J,i 

- fo(u) du== Tj,i, 
{! Vj 

i==l, ... ,n/n1, (3.6) 

where Tj,i are pseudo-random numbers. As in (3.5) it is also possible to use a 
low discreparicy sequence instead of pseudo-random numbers. 

Another idea, which was used in [9], is to introduce particles having differ-
ent weights already for the approximation of f 0 . 

3.2. Time evolution 

The evolution of the system (3.1) on a time interval [O, ~t] is determined by 
discrete events, in each of which two particles are involved. Let 

(3.7) 

Then the principal steps of the procedure of modelling a transition 

Z(t)-+ Z(t + r) 

are: 

1. Increase the time counter t :== t + r; 
2. Choose the indices i and j of the collision partners; 

3. Decide whether the collision is fictitious, i.e. 

Z(t + r) == Z(t); 
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4. If the collision is real, then perform the transformation 

Z(t+ T)k = 

(wk,9k) , if k::; m, k-/= i,j, 
( wi, G) , if k = i , 
( wi, G) , if k = j , 
( Wi, 9i - G) , if k = m + 1 , 
(wj,9j - G), if k = m + 2; 

(3.8) 

5. Decide whether some particles should be removed from the system be-
cause of their zero weights, and define herewith the new number of par-
ticles m(t + T). 

The values Wi and Wj of the post-collision velocities are defined by the 
following collision transformation of velocities 

(3.9) 

where [x] denotes the integer part of the value x. 
The main parameter of the method is the weight transfer function G. 

This function should satisfy the inequality 

in order to keep the weights non-negative. 

We now describe a special choice of G, which is designed to increase the 
relative amount of particles in a special (small) region A& of the velocity space. 
This method is also capable to handle the problem of computing small proba-
bilities, i.e. of evaluating the function F&(t) defined in (2.10). In this case, an 
appropriate choice is 

A& = [ 1 - c:, 1) , c: E [ 0, 1] . , (3.10) 

The basic ideas are the following. First, if a particle reaches the interesting 
region A& then a part of it will always remain there, because in this case we 
will choose the weight transfer function 

Second, with the help of another parameter K,2 we will prefer collisions with 
post-collision velocities from the region A& in order to "encourage" the particles 
to enter this· region. 
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Rigorously, the weight transfer function is defined as 

G = -
1 

1 
min(gi,gj), + ')' 

where (cf. (3.7), (3.10), (3.9)) 

. { "'1 ' if Wi E Ae or Wj E Ae ' 
')' = "'2, if Wi, Wj ~ Ae and Wi, Wj E Ae, 

0 , otherwise. 

(3.11) 

(3.12) 

We consider two variants of defining the time step T. On the one hand, the 
tir:ne step is determined by the deterministic term 

0- = [1 + max(x:1, x:2)] (~ - 1) (21? - mgmin) · (3·13) 

The value 9min denotes the minimal weight of all particles in the system Z(t) 
and should be controlled and if necessary adapted after each collision. The 
value 2 is defined in (2.2). 

Alternatively, the time step is computed as a random variable O' having an 
exponential distribution with the parameter &-1 , i.e. 

O'=-&log(r), (3.14) 
where r is a pseudo-random number. Note that the mathematical expectation 
of the random variable O' is just & . In the limit of large m, both alternatives 
are equivalent. 

The indices i and j are generated as follows. First, the index i is chosen 
according to the probabilities 

(m-'- 2)gi + 2 - (m - l)gmin 
Pi= · (m - 1)(22 - mgmin) 

(3.15) 

Then, given the value of i, the index j is chosen according to the probabilities 
· 9i + 9j - 9min (3 fi) 

Pi= (m - 2)gi + 2 - (m - l)gmin. .l 

The choice of .the indices i and j can be performed by von Neumann's accep-
tance-rejection method. 

The. collision is fictitious with probability 
__ 1 1 + ')' max(gi, gj) 
p- - ' 1 + max("'1, "'2) (gi + 9j - 9min) 

(3.17) 

where ')' is defined in ( 3 .12). 

Th~ number of particles increases by two in the case ')' > 0 . In the case 
')' = 0, it does not change, if the weights 9i and 9i are equal, or increases by 
one, otherwise. 
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3.3. Comme.nts 

The simplest variant of the method is obtained in the case x:;1 = K.2 = O, where 
we have ( cf. (3.12), (3.11), (3.4), (3.13), (3.15), (3.16)) 

G = e/n, 2 1 
r= Pi=-, e(n - 1)' n 

1 
Pi= --1 , n- p = 0. (3.18) 

This is, in fact, the adaptation of Bird's direct simulation Monte Carlo (DSMC) 
method [1] to Eq. (1.1). 

There are two main effects of a non-zero function I . 

First the- collision partners Wi and Wj remain in the system, since only a 
part of their weights is transferred (cf. (3.8), (3.11)). If, in particular, x:;1 > O, 
then all particles with velocities from At: will remain in the system loosing a 
part of their weights during each collision ( cf. (3.12)). 

The second effect is on the distribution of the collision partners. Note that 
the probabilities (3.15), (3.16) do not depend on I· Thus, the distribution of 
the partners in real collisions is determined by (3.17). If I is large, i.e. close 
to its maximum value max(K.1 , K.2), then the collision is fictitious with small 
probability. Thus, a real collision between partners with large I does occur 

, more likely. If, in particular, K.2 > x:;1 , then collision partners Wi , Wj ~ At: 
with Wi, Wj E At: will be favoured in performing real collisions ( cf. (3.12) ). 

The new parameters x:;1 and x:;2 allow to modify the evolution of the particle 
system according to special numerical purposes. Thus, the method does not 
simply try to mimic the physical process. In this sense, it is a "non-DSMC" 
method. 

4. Numerical experiments 

In this section we present the results of numerical simulations according 
to .the method described in the previous section. 'The method depends on the 
parameters x:;1 , K.2 , e via the function I ( cf. ( 3 .12)), and on the parameter n 
( cf. (3.2)). We choose e = 0.01 so that the specified region takes the form ( cf. 
(3.10)) 

At: = Ao.01 = [0.99, 1.). ( 4.1) 

We study the influence of the remaining parameters on the behaviour of the 
-particle system on the time interval [O, 1]. 

The main effect to be studied is the artificial increase of the number of 
particles in the r.egion At: caused·by the control parameters x:;1 and K.2 . However, 
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it is important to clarify how this effect is related to other statistical properties 
of the system. To this end, we calculate the first moment of the solution of 
Eq. (1.1) (cf. (2.5)-(2'.9)) 

M1(t) = [ uf(t,u) du 

and the functional (d. (2.10), (2.11)) 

Fe:(t)= [1 f(t,u)du. 
Jo.99 

4.1. Some statistical notions 

(4.2) 

(4.3) 

First we introduce some definitions and notations that are important for the 
understanding of stochastic numerical schemes for kinetic equations. 

The functionals to be calculated ( 4.2), (4.3) are of the form 

F(t) = [ cp(w) f(t, w) dw. ( 4.4) 

According to (3.3), a functional ( 4.4) is approximated by the random variable 

1 m(n) (t) 

e(nl(t) = l cp(w) µ(nl(t, dw) = 8 g}n\t) cp(wtl(t)). (4.5) 

. In order to estimate and to reduce the random fluctuations of the estimator 
( 4.5), a number N of independent ensembles of particles is generated. The 
corresponding values of the random variable are denoted by 

The empirical mean value of the random variable ( 4.5) 

N 

11ln,N)(t) = ~ L e)n) (t) 
j=l 

(4.6) 

is then used as an approximation to the functional ( 4.4). The error of this 
approximation is 

(4.7) 

containing the following two components. 
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The systematic error is the difference between the mathematical expec-
tation of the random variable ( 4.5) and the exact value of the functional, i.e. 

( 4.8) 

The statistical error is the difference between the empirical mean value 
and the expected value of the random variable, i.e. 

A confidence interval for the expectation of the random variable e(n)(t) 
is obtained as 

( 4.9) 

where 

is the variance of the random variable (4.5), and p E (0, 1) is the confidence 
level. It means that 

Thus, the value 

Var e(n) ( t) 
N 

is a probabilistic upper bound for the statistical error. 

(4.11) 

In the calculations, we use a confidence level of p = 0.999 and Ap = 3.2. The 
variance is approximated by the corresponding empirical value ( cf. ( 4.10)), i.e. 

where 

is the empirical second moment of the random variable ( 4.5). 
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4.2. Influence of the control parameters 

We perform the calculations for different combinations of the parameters K,1 

and /'i, 2 • The initial distribution Jo( v) is approximated according to (3.5), and 
the random time counter (3.14) is used. A rather complete set of numerical 
results is given in Tables 1-3, where the following notations are used. 

The supremum over the time interval [O, 1] of the error ( 4. 7) is denoted 
by em1 and ee for the functionals ( 4.2) and ( 4.3), respectively. The statistical 
error bound ( 4.11) is displayed. both at the beginning and the end of the time 
interval [O, 1 J , and is denoted by Cm1 and Ce for the functionals ( 4.2) and ( 4.3), 
respectively .. 

Finally, the increase factor for the number of particles in the system 

. ( ) _ rri(t) _ m(t) mmet - -m(O) n 
( 4.12) 

and the percentage of particles in the region Ae 

( 4.13) 

at t == 1 are denoted by mine and mrel , respectively. 

Table 1: /'i,1 == 1, /'i,2 == 1 

n N ee * 106 
Ce * 106 em1 * 106 

Cml * 106 
mine mrel 

16 640000 794 197/146 4040 555/652 1.7 3.63 
32 320000 450 196/141 2137 554/630 1.8 3.52 
64 160000 187 197 /137 941 555/611 2.0 3.43 

. 128 80000 107 197/134 493 553/595 2.1 3~36 

256 40000 87 197/133 482 555/583 2.2 3.32 
512 20000 145 197/131 443 558/579 . 2.2 3.31 
1024 10000 130 195/131 217 553/578 2.2 3.28 

10240 1000 55 198/130 410 547/580 2.2 3.28 
102400 100 105 201/145 496 561/624 2.2 3.28 
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Table 2 : ~1 = 1 , ~2 = 5 

n N ee * 106 
Ce * 106 

eml * 106 
Cml * 106 

mine mrel 
16 640000 1177 196/97 3974 555/635 2.9 7.79 
32 320000 604 197/91 1993 555/610 3.2 7.58 
54. 160000 249 197/87 1235 554/591 3.4 7.47 
128 80000 178 197/84 428 553/580 3.6 7.41 
256 40000 76 197/83 598 552/574 3.7 7.39 
512 20000 81 196/83 299 550/565 3.7 7.37 
1024 10000 44 197/82 338 553/562 3.7 7.38 

10240 1000 76 197/82 449 560/573 3.7 7.36 
102400 100 162 230/91 307 605/590 3.7 7.36 

Table 3 : ~1 = 1 , ~2 = 10 

n N ee * 106 
Ce * 106 

eml * 106 Cml * 106 mine mrel 

16 640000 1272 196/84 4585 555/629 4.9 11.9 
32 320000 586 197/77 2060 556/607 5.3 11.5 
64 1.60000 298. 197/72 961 553/590 5.6 11.4 
128 80000 167 197/69 816 556/579 5.8 11.4 
256 4000_0 95 196/68 311 554/571 5.9 11.4 
512 20000 82 197/67 289 553/566 5.9 11.4 

1024 10000 51 196/68 571 561/571 5.9 11.4 
10240 . 1000 38 199/67 473 554/540 6.0 11.4 
102400 100 57 196/59 155 545/519 6.0 11.4 

The numerical material contained in Tables 1-3 allows us to study the 
influence of the parameters ~1 , ~2 and n on three characteristic properties 
of the method - the number of particles in the prescribed region Ae , the 
systematic error (4.8), and the bound for the statistical error (4.11). 

The inc~ease factor for the mimber of particles in the system ( 4.12) as 
well as the percentage of particles in the region Ae ( 4.13) become independent 
of n for sufficiently large n . Figures 1 and 2 show the time dependent be-
haviour of m(t) and mrez(t) for n = 1024 and N = 10000. The different lines 
correspond to ~1 = 1 , ~2 = 1 (dashed), ~1 = 1 , ~2 = 5 (dashed-dotted), and 
~1 = 1, ~2 = 10 (dotted). For comparison, the corresponding values for the 
-standard method (·~i = 0, ~2 = 0) are displayed _by a solid line. 
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From the knowledge of the behaviour of the error ( 4. 7), it is possible to draw 
some conclusions about the behaviour of the systematic error (4.8), while 
the error (4.7) is large compared with the statistical error bound (4.11). Thus, 
it can be seen from the numerical results in Tables 1-3 that the systematic 
error behaves roughly like O(n-1). 

Figure 3 shows the time dependent behaviour of certain relevant quanti-
ties for the method with K,1 = 1 , K,2 = 10 . The left-hand side of the figure 
corresponds to the first moment ( 4.2), while the right-hand side corresponds to 
the functional ( 4.3). The exact values of the functionals as functions of time 
are represented by the dashed lines. The computed empirical mean values 
(4.6) are displayed by solid lines, and the corresponding confidence intervals 
( cf. ( 4.9)) by dotted lines. 

Note that the exact values to be approximated are Fc(l) = 0.019680 and 
M 1 (1) = 0.979422. Consequently, an error 0.000197 is of the order 13 for the 
functional Fe, and an error 0.000555 is of the order 0.053 for the first moment. 

The behaviour· of the statistical error bound ( 4.11) is determined by 
the variance ( 4.10) of the random variable ( 4.5). Concerning the behaviour of 
the variance there are two main observations based on the numerical data of 
Tables 1-3. 

First, the statistical error bound c remains constant when the product n N 
is fixed. According to (4.11), one obtains 

Vare(n)(t) 
N :::::: const. 

This indicates .a behaviour like 

Second, there is a reduction in the variance of the estimator for the func-
tional Fe, for appropriate parameters K,1 and K,2 • The statistical error bound 
cc decreases from about 134 for K,2 = 1 to about 67 for K,2 = 10, i.e. by a factor 
2 . This effect is only partly caused by the increase in the number of particles in 
the system, which gives a factor of about .J3. Another reason is the increased 
relative number of particles in the region Ac . A more significant variance re-
duction (especially compared with the standard method) is achieved when c 
is smaller ( cf. [9] concerning the case c = 0.0001). 
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Figure 3: Method with ~1 = 1, ~2 = 10 and n = 16, 64, 256, 1024 (from above) 
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4.3. Time counter 

Here we study the influence of the choice of the time counter on the behaviour 
of the system. To this end, we calculate the first moment ( 4.2) with the 
standard method ( K,1 = 0 , K,2 = 0) and both the deterministic time counter 
(3.13) and the stochastic time counter (3.14). The initial distribution Jo( v) is 
approximated according to (3.5). 

The numerical results are given in Table 4. The supremum over the time 
interval [O, 1] of the error ( 4. 7) is denoted by edet and esto for the time counters 
(3.13) and (3.14), respectively. The statistical error bound (4.11) at the end 
of the time interval is denoted by Cdet and Csto , respectively. 

Table 4 

n N edet * 106 
Cdet * 106 

esto * 106 
Csto * 106 

4 2560000 72878 ' 714 17003 718 
8 1280000 28754 712 7873 710 
16 640000 15298 706 3902 705 
32 320000 5256 702 2269 703 
64 160000 2354 702 498 701 
128 80000 1692 700 1085 703 
256 40000 755 702 337 702 
512 20000 505 700 359 696 
1024 10000 347 711 308 706 

The systematic error behaves roughly like O(n-1 ) ( cf. the corresponding 
comments in the previous subsection). The errors for both time counters are 
displayed in Figure 4 in a logarithmic scale dependent on n. 

Note that the random deviations from a linear behaviour are within the 
confidence inte~vals, as Figure 5 shows. 
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Figure 4: Dependence on n of the error for different time counters 
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Figure 5: Error for the stochastic time counter with confidence intervals 
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4.4. Initial approximation 

Here we study the influence of the approximation of the initial value on the 
behaviour of the system. The stochastic time counter (3.14) is used. The initial 
number of particles is n = 1024 and the number of repetitions is N = 10000. 
The behaviour of the statistical error bound ( 4.11) is studied for different 
values of n1 ( cf. (3.6)). 

First we calculate the first moment (4.2) with the standard method (~1 = 
~2 = 0). The numerical results are given in Table 5. Here ebeg denotes the 
error ( 4. 7) at t = 0 , esup is the supremum of the error over the time interval 
[O, 1] , while Cbeg and Cend denote tp.e statistical error bound at t = 0 and 
t = 1 , respectively. Either pseudo-random numbers (i-method=l) or a low 
discrepancy sequence (i-method=2) were used in (3.6). 

Table 5 

i-method n1 ebeg * 106 
esup * 106 

Cbeg * 106 
Cend * 106 

1 1 140 308 554 706 
1 2 97 224 317 697 
1 4 52 361 156 701 
1 8 27 313 78 699 
1 16 14 248 38 699 
1 32 7 243 19 694 
1 1024 0 261 0 695 
2 1 0 572 0 698 

. The time dependent behaviour of the statistical error bound is shown in 
Figure 6. The solid line in this figure represents the values for n1 = 1. The 
dashed line represents the results for n1 = 2 and the dotted line for the low 
discrepancy sequence. The lines for nr = 4, 8, ... are between the dashed and 
the dotted lines and we ·decided not to plot them in order not to overload the 
figure. The line for nr' = 1024 coincides with the line for the low discrepancy 
sequence. 

Figure 6 shows that the reduction of the statistical error bound, and corre-
spondingly of the variance, which can be achieved by a better approximation 
of the initialfunction f 0 (u) remains remarkable for some time after the start 
of the computations. But if we are interested in computing the steady-state 
solution of ~he problem then we will obtain nearly the same quality of the 
stochastic solution even if we do not care so much about the approximation of 
the initial function. · 

Next we calculate the functional ( 4.3) using the method with the parame-
ters ~1 = ~2 = 0 and K,1 = 1 , · ~2 = 5. The results are contained in Table 6. 
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Figure 6: Statistical error bounds for the first moment ( 4.2) 

As before, ebeg, esup denote the systematic error at t = 0 and the supremum 
of the systematic error over the time interval [O, 1 J , and Cbeg , Cend denote the 
statistical error bound ( 4.11) at t = 0 and t = 1 , respectively. 

Table 6 

Kl K2 nr ebeg * 106 
esup * 106 

Cbeg * 106 
Cend * 106 

0. 0. 1 83 129 196 240 
0. 0. 2 117 157 193 239 
0. 0. 4 21 143 193 239 
0. 0. 8 8 113 189 239 
0. 0. 16 45 81 181 241 
0. 0. 32 40 119 162 237 
0. 0. 1024 13 131 16 236 
1. 5. 1 25· 44 197 82 
1. 5. 1024 1 27 16 77 

Figure 7 shows the time dependent behaviour of the statistical error bound 
for both methods. The solid lines represent the results for K 1 = 0, K 2 = 0, 
while the dashed Enes correspond to K 1 = 1, K 2 = 5. 

The approximation of the initial function corresponding to nr = 1024 is 
much better if we compute the solution for only short time. However, again the 
asymptotic behaviour of both methods does not depend on the approximation 
of the initial distribution. 
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Figure 7: Statistical error bounds for the functional ( 4.3) 

5. Conclusions 

We studied a stochastic weighted particle method based on a generalized mech-
anism of modelling collisions between particles. 

The main feature of the new method is the presence of certain control 
parameters giving the opportunity to adapt the behaviour of the particle sys-
tem to specific numerical purposes. It was shown that the relative number of 
particles with prescribed velocities may be artificially increased, while other 
macroscopic quantities like moments are still computed correctly. 

The computations were performed for a m.odel kinetic equation, for which 
the exact solution is known, since in this case it was possible to separate various 
numerical effects. However, the results indicate how to proceed in the case of 
more realistic kinetic equations, like the spatially inhomogeneous Boltzmann 
equation-. 

In some cells of the physical space, one may define appropriate sets of 
velocities directed into regions, where macroscopic quantities cannot be c~m­
puted suffi.ciently accurately due to a low particle density. During the collision 
simulation step the control parameters of the method are used to increase the 
number of particles with prescribed velocities. These particles will finally reach 
-the desired region creating there a better statistics than the direct simulation 
method. 
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