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Abstract

In this study we present a phase-field model that describes the process of intercalation
of Li ions into a layer of an amorphous solid such as a-Si. The governing equations couple
a viscous Cahn-Hilliard-Reaction model with elasticity in the framework of the Cahn-Larché
system. We discuss the parameter settings and flux conditions at the free boundary that
lead to the formation of phase boundaries having a sharp gradient in ion concentration
between the initial state of the solid layer and the intercalated region. We carry out a
matched asymptotic analysis to derive the corresponding sharp-interface model that also
takes into account the dynamics of triple points where the sharp interface in the bulk of the
layer intersects the free boundary. We numerically compare the interface motion predicted
by the sharp-interface model with the long-time dynamics of the phase-field model.

1 Introduction

Silicon electrodes for lithium-ion batteries are currently the subject of very intense research to
make silicon a practical alternative to graphite. Silicon can store a large amount of lithium, but
the large stresses that these electrodes undergo tend to cause their fracture and pulverization
after a few cycles. Various investigations to circumvent these problems have led to designs of
nanostructured electrodes such as arrays of pillars or nanowires.

However, in order to carry out systematic and knowledge-based optimizations a fundamental un-
derstanding of the mechanisms involved in the intercalation process of silicon itself is needed.
This has lead to a number of experimental and theoretical investigations, partly with, seem-
ingly, contradictory results. In particular, the experiments of Sethuraman et al. [28] on the stress
evolution of a silicon electrode during intercalation have had a great impact on the modeling of
silicon electrodes, as they have been taken as a proof of the surprising result that lithiated amor-
phous silicon behaves plastically, see for example the analysis in Bower et al. [2]. Their analysis
is based on the assumption that the film of amorphous silicon is thin enough with respect to
the substrate to which it is attached, so that the stress can be assumed uniform in the whole
amorphous silicon film. However, while the thickness of the film can be controlled, the uniformity
of the stress is an unknown In fact, it has been shown recently in Huang et al. [14] and Ngo
et al.[24]that this assumption uniformity of stress can indeed obscure the interpretation of the
results.

In addition, as has been shown more recently in Levitas et al. [18], the theoretical yield stress
is never reached which has lead to some phenomenological modeling to explain yielding [33],
sometimes also discarding plasticity [18]. On the other hand, the models used to take into ac-
count plasticity have problems in the determination of the parameters, sometimes suggesting a
power law with exponent as high as 50 for the constitutive law [4], which can be taken as a hint
that the model may not be complete. Further analysis for different electrode geometries involv-
ing cylindrical and spherical silicon particles as well as annular structures have been carried out
to investigate stress evolution and deformation of lithiated silicon, see [6, 7, 9].
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On the other hand, regarding the stuctural properties of silicon, it is known that after the first
intercalation cycle, the original crystalline silicon becomes amorphous, see the review by Mc-
Dowell et al. [21] and references therein. Moreover, as it has been shown in McDowell et al.[20]
and Wang et al.[30], the first intercalation of crystalline as well as amorphous silicon occurs
through a two-phase mechanism. The question whether this two-phase process also occurs
in amorphous silicon in subsequent intercalation cycles has been raised in [19, 20] and a re-
cent study by Cubuk et al. [8] based on molecular dynamics simultations relates the two-phase
lithiation of amorphous silicon with a sharp structural transition in amorphous LixSi for x ≈ 2
between a phase in which the Li atoms are embedded in a covalent silicon matrix to a phase in
which Si atoms are packed in small clusters with few covalent bonds between them, surrounded
by a dense, amorphous structure of Li atoms, suggesting a transition from a mechanically Si-
like phase to a softer Li-like phase. Moreover, experiments show that this two-phase lithiation is
self-limiting in nanowires [19], presumedbly due to the high stresses generated.

In Meca et al. [22] a phase-field model that couples a viscous Cahn-Hilliard-Reaction model
with elasticity has been derived to describe the process of intercalation of Li-ions into a layer of
an amorphous silicon and investigate conditions leading in the long-time limit to the formation of
sharp phase boundaries between the original silicon phase and the lithiated phase. The analysis
of the long time dynamics of the emerging sharp phase boundaries is the subject of the present
study.

After presenting the phase-field formulation in Section 2, we show in the remainder of this paper
how an intercalation process is nucleated, for example due to some defect on the free absorbing
boundary of a layer (or nanowire), and upon reaching a critical lithium concentration, a phase
transition sets in, which in turn leads to a sharp phase boundary that then moves into the bulk
of the layer and along its free boundary.

In Section 3 we derive for this regime a sharp-interface model using matched asymptotic expan-
sions, whereby the analysis is divided into three regions, the sharp interface analysis in the bulk
of the layer, the analysis close to the free boundary and the analysis of the triple points, where
the sharp interface in the bulk of the layer intersects the free boundary. All three regions have
to be matched and finally yield the sharp-interface model. Finally, we investigate in Section 4
numerically the dynamics of the long-time limit of the phase-field model and compare evolu-
tion of the emerging phase boundaries with expression for the velocities found from matched
asymptotic analysis.

2 Formulation of the phase-field model

The system we consider consists of a thin layer of amorphous silicon resting on an undeformable
substrate. Lithium enters in the layer as a consequence of the difference of electrochemical po-
tential with the electrolyte. As the lithium concentration is increased, the layer experiences a
phase transformation from a poorly lithiated phase (a-Si) to a heavily lithiated one (LixSi with
x> 2). Lithium insertion causes a stress-free strain. For a discussion of the role of phase trans-
formation on stress for this process we have formulated a mathematical model in Meca et al. [22]
and we will briefly introduce the complete phase-field model here.

To facilitate the discussion of the results we confine our description of elasticity to linear elasticity
and follow the standard approach to the coupling of phase transitions with linear elasticity, see
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e.g. [10] for details. From Hooke’s law the elastic energy is given by

W =
1

2
Cijkl

Ä
εij − ε0ij

ä Ä
εkl − ε0kl

ä
(2.1)

where the fourth order tensor Cijkl is defined as the elasticity tensor or as the stiffness tensor,
εij denotes the strain tensor

εij =
1

2
(∂jui + ∂iuj) (2.2)

defined by the displacement field u, as the difference between the actual position of a material
point and the position in the undeformed material x (reference configuration). The stress-free
strain tensor, that is, the strain due e.g. to composition changes in the absence of stress, is
assumed to grow linearly with the concentration:

ε0ij = α (c− c̄) δij (2.3)

where α and c̄ are constants, possibly depending on the phase. Note that this choice implies an
isotropic strain change with concentration, but this needs not to be the case and more general
relations are possible.

Using the symmetries of Cijkl the choice of elastic energy implies for the stress tensor

σij = Cijkl
Ä
εkl − ε0kl

ä
, (2.4)

and assuming that the timescale of the elastic relaxation is much faster than that of diffusion or
the phase transformation, elastic equilibrium implies that the divergence of the stress tensor is
zero:

∂jσij = 0. (2.5)

Equation (2.5) will have to be fulfilled separately at each phase in the layer and it can be written
explicitly in terms of the displacement field using

σij =
E

1 + ν

Å
εMij +

ν

1− 2ν
εMkkδij

ã
, (2.6)

where E is Young’s modulus, ν is Poisson’s ratio and εMij = εij − ε0ij is the mechanical strain,
the difference between the strain tensor and the stress-free strain tensor.

For the present problem the elastic properties of both phases are assumed different. We limit
this difference to Young’s modulus, since according to Shenoy et al. [29] there is no clear ten-
dency in the variation of ν and obtain the equation:

1

2

E ′

E
∇c
Ä
∇u +∇uT

ä
− E ′

E

1 + ν

1− 2ν
α(c− c̄)∇c+

E ′

E

ν

1− 2ν
(∇ · u)∇c

+
1

2
∇2u+

1

2(1− 2ν)
∇ (∇ · u)− α 1 + ν

1− 2ν
∇c = 0

(2.7)

where E ′ is the derivative of Young’s modulus with respect to concentration c.

For the transport of concentration c we use the viscous Cahn-Hilliard model

∂tc = ∇ · (M(c)∇ (µ+ χ ε ∂tc)) , (2.8)
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where M(c) is the mobility function, which, in the present study, is taken to be a constant. The
last term is the viscous term, see [25] and χ corresponds to a parameter with dimensions of
viscosity. The chemical potential

µ =
1

NΩ

δF
δc

= − γε∇2c+
γ

ε

1

2
c(1− c)(1− 2c) + ∂cW (εij, c), (2.9)

is the variational derivative of the free energy

F = NΩ

∫
Ω

1

2
γε |∇c|2 +

γ

ε
f(c) +W (εij, c) (2.10)

where f(c) is the usual double-well potential (free energy per particle) and W (εij, c) is the
elastic energy as defined in Eq. (2.1) for an isotropic elasticity tensor. The constant γ carries the
dimensions of energy times length, and NΩ is the (global) number of particles per surface. The
parameter ε is related with the interface width and the interfacial energy between the lithiated
and the unlithiated phases.

We nondimensionalize eqs. (2.7) and (2.8) via

µ = µ∗γH−1
0 , x = x∗H0, y = y∗H0, t = t∗H3

0M
−1γ−1, ε = ε∗H0,

denoting with ∗ the nondimensionalized variables. The characteristic length scale H0 corre-
sponds to the height of the layer and M is the constant mobility. For the elastic variables, we
apply the scalings

Cijkl = C∗ijkl
ESi

2(1 + ν)
, ui = u∗iαH0, εij = ε∗ijα, σij = σ∗ij

αESi

2(1 + ν)
.

After dropping the ∗, the nondimensionalized problem can be written as

∂tc = ∇2 (µ+ εβ ∂tc) , (2.11a)

µ = −ε∇2c+
1

ε
f ′(c) + δ ∂cW (εij, c) , (2.11b)

∂jσij = 0, (2.11c)

σij = 2G
Ä
εij − ε0ij

ä
+

2ν

1− 2ν
G
Ä
εkk − ε0kk

ä
δij, (2.11d)

where the constitutive laws for the nondimensional shear modulus G = E(c)/ESi and stress-
free strain ε0ij are specified as

G = 1 + g(c)

Ç
ELixSi

ESi

− 1

å
, ε0ij = h(c),

and the derivative of the nondimensional elastic energy takes the form

∂cW (εij, c) =
(1− ν)G′

1− 2ν

Ä
∂1u

2
1 + ∂2u

2
2

ä
+

1

2
G′ (∂1u2 + ∂2u1)2

+
2νG′

1− 2ν
∂1u1∂2u2 −

2(1 + ν)

1− 2ν
(h(c)G)′∇ · u

+
3(1 + ν)

1− 2ν

Ä
h(c)2G

ä′
. (2.11e)
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Here, h(c) and g(c) are interpolating functions such that g(0) = h(0) = 0 and g(1) = h(1) =
1. Note that we have slightly generalized our previous choice (2.3) for ε0ij , while letting c̄ = 0.
Also, note that we have not defined a scaling for c, but this should define 0 and 1 to be the
two equilibrium concentrations. For the boundaries in contact with the substrate, we will take a
no-flux/no-deformation boundary condition:

u = 0, n · ∇c = 0, n · ∇µ = 0, (2.11f)

where n is the normal vector to the surface. In the case of the boundaries in contact with the
electrolyte, we take a no-traction boundary condition and, following [5], assume a consistent no-
flux condition for c (also known as variational boundary condition), together with a Butler-Volmer
type absorption condition for the chemical potential[32]

σ · n = 0, n · ∇c = 0, n · ∇µ = K(µ) = k
Ä
1− eQ(µ−µext)

ä
, (2.11g)

where, µext is scaled like µ. Apart from this Butler-Volmer-type absorbtion condition we will also
consider the constant flux boundary conditions n · ∇µ = k.

The problem thus depends on the following non-dimensional groups:

β =
χM

H0

, k =
krH

2
0

Mγ
, δ =

H0ESiα
2

2(1 + ν)γ
, Q =

γH−1
0

kBT
. (2.12)

with the elastic ratio ELixSi/ESi and ν, together with the parameter µext and ε. Note that Q
and k play a similar role in the vicinity of equilibrium, and δ is the ratio of elastic to interfacial
energies.

For the numerical simulations we have used ELixSi/ESi = 4/9 and ν = 0.25, in accordance
with the calculations form Shenoy et al. [29]. We also use ε = 0.005 and k = 4.0 except where
indicated.

3 Sharp-interface asymptotics

For a typical scenario, where small defects on the free interface lead to preferred absorption
sites of the incoming ions, the critical concentration that initiates the phase transition is reached
there first and leads to the local formation of sharp phase boundaries and the growth of lithiated
regions. In Fig. 1 we show snapshots of such an event (see Section 4 below and Ref. [22] for
more information on the numerics). It shows the concentration and σxx before and after the
formation of the sharp interface in the presence of a non-uniform flux. In this case, we have
taken the flux in a small region near x = 0 to be approximately two times the value outside of
it.

On top of Fig. 1 there is a characteristic concentration pattern just before phase separation.
Near x = 0 the concentration is higher than elsewhere, but this is not so clearly reflected in
the stress field, which is more compressive near the top, where the concentration is the highest.
After phase separation takes place and the sharp interface is created we show near the bottom
of Fig. 1 the corresponding cross-sections. Now the deformation is much more visible, as we
have two distinct phases with concentrations near c = 1 and c = 0. We see how σxx is more
negative in the transformed phase, indicating a strong compression and this compression is
highest near the triple junctions. In this example we have prescribed a constant flux as in [22],
and taken lateral periodic boundary conditions for simplicity.
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xx
c σ

Figure 1: Top: Concentration and σxx at t = 0.027. Bottom: Concentration and σxx at t =
0.037. We use the constant flux boundary condition and the parameters are: β = 0.5 and δ =
0.1. (nondimensional units, the deformation has been scaled to obtain a better visualization)

It will be difficult to analyse systematically these nucleation and growth processes, where dif-
fusion, elasticity and interfacial effects are present and hard to disentangle using the present
model. However, in the past it has been shown to be instructive to derive reduced sharp-interface
models describing the dynamics asymptotically.

To our knowledge, the first development of this kind for a similar problem (an Allen-Cahn equa-
tion coupled with nonlinear elasticity) was made by [11]. They did a comprehensive study and
developed a Gibbs-Thomson equation that incorporates the right Eshelby Traction.

The original reference for the analysis of our problem (i.e. the Larché-Cahn system, understood
as a Cahn-Hilliard equation coupled with linear elasticity) is [16]. The authors compare the re-
sults with a boundary integral approach and write explicitly the correspondence between the
sharp and the diffuse interface models. According to their result, the elastic term in the chemical
potential has to have a particular scaling with the interface width in order to recover instanta-
neous diffusion away from the interface. Also, they find out that for that purpose, the interpolating
functions of c that define E and ε0ij must fulfill some conditions.

Further analysis has been performed since then. For instance, [12] proved some existence
and uniqueness results for the diffuse interface model, followed by an asymptotic analysis [13],
finding the corresponding sharp-interface model. More recently, [1] has proven rigorously these
asymptotic results. However, none of these studies consider realistic boundary conditions.

3.1 Sharp-interface in the bulk

3.1.1 Outer Expansion

c(x, y, t) = c0 + εc1 + ε2c2 + ..., (3.1a)

µ(x, y, t) = ε−1µ−1 + µ0 + εµ1 + ..., (3.1b)

ui(x, y, t) = ui,0 + εui,1 + ε2ui,2 + ..., (3.1c)

σij(x, y, t) = ε−1σij,−1 + σij,0 + εσij,1 + ε2σij,2 + ..., (3.1d)

For the Cahn-Hilliard equation we obtain, matching powers of ε
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Boundary  Layer0(t)

y=0

Sharp Interface

Substrate

Electroyte

y=1

Inner   Region

x

Figure 2: Sketch of the layer. We show in pink the lithiated region and we mark the different
regions that require a separate treatment: The inner region, the boundary layer and the triple
junction point at x0(t).

∇2µ−1 = 0, (3.2)

∂tc0 −∇2µ0 = 0. (3.3)

No additional equations are necessary. The values of the chemical potential are:

µ−1 = f ′(c0), (3.4)

µ0 = f ′′(c0)c1 + δ ∂cW (ui,0, c0). (3.5)

Note the dependence of µ0 on the elastic energy. Interpolating functions h(c) and g(c) can be
chosen to avoid these terms. This implies

h′(c±0 ) = G′(c±0 ) = 0, (3.6)

where c±0 are the values of c0 on either side of the interface. We will see below that these are
constant, and correspond to minima of F . Hence, together with the requirement that the value
of F is at a minimum far from the interface, we obtain that c0 is a constant and µ−1 = 0

The elastic equilibrium equation has the same form to all orders:

∇ · σm = 0, (3.7)

where the index m refers to the order of the expansion. A brief inspection of this equation for
m = −1 (and anticipation of continuity of σ−1 across the interface) leads to the conclusion that
σ−1 = 0, hence we restrict our attention in the outer solution to m = 0, 1, . . ..

Finally, the constitutive relation for stress should be written here, the equivalent of Eq. (2.11d).
Nevertheless, there is not a simple or expression valid for every order. Below we give the formula
for the zero order case in the summary of the sharp interface limit.

3.1.2 Inner Expansion

For the inner variables near the interface we introduce curvilinear coordinates r and s via the
transformations

x = X(s, t) + rY ′(s, t), y = Y (s, t)− rX ′(s, t), (3.8a)
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with X ′2 +Y ′2 = 1, (primes denote differentiation with respect to s) and scale r the coordinate
normal to the evolving interface as r = ε ρ. In terms of these inner coordinates (ρ, s), the
operators can be written in the following form

∇2 → ε−2∂2
ρ + ε−1K∂ρ − ρK2∂ρ + ∂2

s + ..., (3.8b)

∂t → −
vn
ε
∂η − vt ∂s + ∂t + ..., (3.8c)

whereK is the curvature of the interface and vn = Y ′Ẋ−X ′Ẏ and vt = X ′Ẋ+Y ′Ẏ are the
normal and tangential interface velocities We denote the inner variables with tilde and introduce
asymptotic expansions similarly as for the outer problem

c̃(ρ, s, t) = c̃0 + εc̃1 + ε2c̃2 + ..., (3.9a)

µ̃(ρ, s, t) = ε−1µ̃−1 + µ̃0 + εµ̃1 + ..., (3.9b)

ũi(ρ, s, t) = ũi,0 + εũi,1 + ε2ũi,2 + ..., (3.9c)

σ̃ij(ρ, s, t) = ε−1σ̃ij,−1 + σ̃ij,0 + εσ̃ij,1 + ε2σ̃ij,2 + ..., (3.9d)

We start with the first order of the elastic equilibrium equation, Eq. (2.11c). From the formulas
of the appendix we obtain, to order ε−2:

(∇ · σ)r = ∂ρσ̃rr,−1 = 0, (3.10a)

(∇ · σ)s = ∂ρσ̃rs,−1 = 0, (3.10b)

from which follows that

G(c̃0)∂ρũr,0 = Ar, (3.11a)

G(c̃0)∂ρũs,0 = As, (3.11b)

And hence

ũr,0 = Ar

∫ ρ

0

1

G(c̃0)
dρ′ +Br, (3.12a)

ũs,0 = As

∫ ρ

0

1

G(c̃0)
dρ′ +Bs. (3.12b)

We will see below that c̃0 will correspond to a kink-like solution with a bounded range, and
G(c̃0) is also bounded by construction, as it is constructed as a polynomial function of c̃0. This
implies that both integrals will in general diverge as ρ→∞, which means in turn that it will be
impossible to match to the outer solution unless Ar = As = 0. This will also make sure that
the displacement field is continuous. The previous result implies that

∂ρũs,0 = ∂ρũr,0 = 0, (3.13)

and therefore
σ̃rr,−1 = σ̃rs,−1 = σ̃sr,−1 = 0.

The other component of the stress tensor is also zero to this order (σ̃ss,−1 = 0). Similarly, the
strain tensor to this order is also zero.
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In the next order, the elastic equations read as follows:

∂ρσ̃rr,0 = 0, ∂ρσ̃rs,0 = 0, (3.14)

since the lower order term does not contribute. These equations imply that σ̃rr,0 and σ̃rs,0 do
not depend on ρ. Then, the matching condition

lim
ρ→±∞

Ä
σ̃ij,0 − σ±ij,0

ä
= 0, (3.15)

implies that σ̃rr,0 and σ̃rs,0 are continuous. This means that, to zero order, the condition of
continuous tractions along the discontinuity is fulfilled. This equation together with the continuity
of the displacements ensures a coherent interface.

Note that equations (3.14), while giving continuity of the tractions σ · n through the interface,
they also imply a jump condition on the derivatives of the displacement field. In terms of the
displacement field the equations read as follows:

∂ρ [G(c̃0) ((1− ν)∂ρũr,1 + ν (∂sũs,0 + ũr,0K)− (1 + ν)h(c̃0))] = 0, (3.16a)

∂ρ [G(c̃0) (∂sũr,0 + ∂ρũs,1 −Kũs,0)] = 0. (3.16b)

These equations can be integrated once and then matched term by term to the outer solution,
here given in terms of curvilinear coordinates

G(c±0 )
Ä
(1− ν)∂ru

±
r,0 + ν (∂sus,0 + ur,0K)− (1 + ν)h(c±0 )

ä
= K1(s), (3.17a)

G(c±0 )
Ä
∂sur,0 + ∂ru

±
s,0 −Kus,0

ä
= K2(s). (3.17b)

By subtracting the negative limit from the positive limit we obtain a closed jump condition for
the normal derivatives of the displacement field. Once we have found the continuity of ui,0
and the continuity of tractions for σij,0, we move on to the Cahn-Hilliard equation. We start by
writing down explicitly the form of the chemical potential, by including also the terms coming
from Eq. (A.20) of the Appendix:

µ̃−1 = −∂2
ρ c̃0 + f ′(c̃0), (3.18a)

µ̃0 = −K∂ρc̃0 + f ′′(c̃0)c̃1 − ∂2
ρ c̃1 (3.18b)

+
δ

2

ñ
−2h′(c̃0)δijσ̃ij,0 +

G′(c̃0)

G(c̃0)
(ε̃ij,0 − h(c̃0)δij) σ̃ij,0

ô
,

µ̃1 = ρK2∂ρc̃0 − ∂2
s c̃0 −K∂ρc̃1 +

1

2
f ′′′(c̃0)c̃2

1 + f ′′(c̃0)c2 − ∂2
ρc2 (3.18c)

+
δ

2

ñ
−2 (h′(c̃0)δijσij,1 + h′′(c̃0)c̃1δijσ̃ij,0) +

G′(c̃0)

G(c̃0)
(ε̃ij,1 − h′(c̃0)c̃1δij) σ̃ij,0

+
G′(c̃0)

G(c̃0)
(ε̃ij,0 − h(c̃0)δij)σij,1 +

G′′(c̃0)G(c̃0)−G′(c̃0)2

G(c̃0)2
c̃1 (εij,0 − h(c̃0)δij) σ̃ij,0

ô
,

note that for µ̃0 and µ̃1 we only write the non-zero elastic terms. Also notice that the derivative of
the elastic energy does not bring terms of order ε−2 to the chemical potential. We now proceed
order by order with the Cahn-Hilliard equation:
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Order ε−3 To this order, the Cahn-Hilliard equation reads

∂2
ρµ̃−1 = 0. (3.19)

This means that from Eq. (3.18a) we have:

∂2
ρ

Ä
−∂2

ρ c̃0 + f ′(c̃0)
ä

= 0. (3.20)

Following the usual assumptions [27] and making µ̃−1 a constant, we take a traveling-wave
solution of the problem c̃0(ρ) such that

lim
η→±∞

c̃0(ρ) = c±0 , (3.21)

i.e. it has two constant limits that match the outer solution, implying that the latter is constant.
If we assume that far from the interface the system is in one of the homogeneous equilibria,
then µ−1 = 0 will be the outer solution with the right boundary conditions. This also implies
µ̃−1 = 0.

Order ε−2 To this order the Cahn-Hilliard equation reads

K∂ρµ̃−1 − βvn∂3
ρ c̃0 + ∂2

ρµ̃0 = 0. (3.22)

The first term is zero and the last term can be expanded following Eq. (3.18b):

−βvn∂3
ρ c̃0 + ∂2

ρ

Ä
−K∂ρc̃0 + f ′′(c̃0)c̃1 − ∂2

ρ c̃1 + δ ∂c̃W̃ (ε̃, c̃)0

ä
= 0, (3.23)

with the obvious shorthand

∂c̃W̃ (ε̃, c̃)0 =
1

2

ñ
−2h′(c̃0)δijσ̃ij,0 +

G′(c̃0)

G(c̃0)
(ε̃ij,0 − h(c̃0)δij) σ̃ij,0

ô
. (3.24)

Eq. (3.23) can be integrated twice to yield:

−βvn∂ρc̃0 −K∂ρc̃0 + f ′′(c̃0)c̃1 − ∂2
ρ c̃1 + δ ∂c̃W̃ (ε̃, c̃)0 = Aρ+B, (3.25)

with A and B being constants. By matching with the outer solution:

lim
ρ→±∞

(c̃1 − c1 − ρ∂rc0) = 0, (3.26)

and since in curvilinear coordinates, ∂rc0 = 0, it follows that c̃1 is bounded if c1 is bounded as
ρ→ ±∞, and hence A = 0 since all the other elements on the LHS of (3.25) are bounded as
ρ → ±∞ (we have used implicitly Eq. (3.6) to show that the elastic terms do not contribute).
Alternatively, one can deduce the previous result by matching µ̃0−β∂ρc̃0 to their outer counter-
parts. Since ∂ρc

±
0 = ∂rµ

±
−1 = 0 we obtain the desired result. To obtain the constant B, equal

to µ̃0 − βvn∂ρc̃0, we notice the following. Eq. (3.25) has the form

f ′′(c̃0)c̃1 − ∂2
ρ c̃1 = G. (3.27)

It is easy to prove that ∂ρc̃0 is a solution of the homogeneous problem. Since the operator is
self-adjoint, because of the Fredholm alternative we obtain the following solvability condition:∫ ∞

−∞
∂ρc̃0 G dρ = 0 (3.28)

10



This means that

(β vn +K)
∫ +∞

−∞
(∂ρc̃0)2 dρ− δ

∫ +∞

−∞
∂ρc̃0∂c̃W̃ (ε̃, c̃)0 dρ+B(c+

0 − c−0 ) = 0. (3.29)

Since ∂ρc̃0 goes to zero as ρ → ±∞, B matches µ0. The first integral can be readily per-
formed, but the second one requires a more careful analysis. First, we observe that

W+ −W− =
∫ +∞

−∞
∂ρc̃0 ∂c̃0W̃ (ε̃0, c̃0) dρ+

∫ +∞

−∞
dρ∂ρε̃ij,0∂ε̃ij,0W̃ (ε̃0, c̃0), (3.30)

which can be obtained from the total derivative of W̃ with respect to ρ (note that ∂c̃W̃ (ε̃, c̃)0 =
∂c̃0W̃ (ε̃0, c̃0)). We observe that the first integral is the one that we are interested in, and the
second once can be readily computed. First we notice that∫ +∞

−∞
∂ρε̃ij,0 ∂ε̃ij,0W̃ (ε̃0, c0) dρ =

∫ +∞

−∞
∂ρε̃ij,0 σ̃ij,0 dρ. (3.31)

The sum runs over all indices except ss, since this component does not depend on ρ, see
Appendix B. By integrating by parts we have that∫ +∞

−∞
∂ρε̃ij,0 σ̃ij,0 dρ = [εij,0σij,0]± −

∫ +∞

−∞
ε̃ij,0 ∂ρσ̃ij,0 dρ, (3.32)

but the last integral is zero because of Eqs. (3.14) (note again that the sum excludes i = s and
j = s). By using the continuity of all σij,0 except σss,0 and because of the continuity of εss,0 we
can write more compactly:∫ +∞

−∞
∂ρc̃0 ∂c̃0W̃ (ε̃0, c̃0) dρ = W+ −W− − σ+

ij,0

Ä
ε+ij,0 − ε−ij,0

ä
, (3.33)

where the sum runs over all indices.

Hence, we obtain the following boundary condition:

µ±0 (c+
0 − c−0 ) = − (β vn +K) I +

δ

2

î
σ+
ij,0

Ä
ε+ij,0 − δijh(c+

0 )
ä
− σ−ij,0

Ä
ε−ij,0 − δijh(c−0 )

äó
− δσ+

ij,0

Ä
ε+ij,0 − ε−ij,0

ä
, (3.34)

where I is the integral in (3.29). This same formula without the kinetic term is found in [16].
The last term corresponds to the elastic energy required to maintain coherence at the interface
[15, 17].

Order ε−1 To this order the Cahn-Hilliard equation reads as follows:

−vn∂ρc̃0 = K∂ρµ̃0 − β vn∂3
ρ c̃1 + ∂2

ρµ̃1 − β ∂2
ρ (vt∂sc̃0 − ∂tc̃0)− β vnK∂2

ρ c̃0, (3.35)

where we have used explicitly µ̃−1 = 0. We can integrate the previous equation once:

−vnc̃0 = Kµ̃0 − β vn∂2
ρ c̃1 + ∂ρµ̃1 − β ∂ρ (vt∂sc̃0 − ∂tc̃0)− β vnK∂ρc̃0 + C, (3.36)

where C is and integration constant, possibly dependent on s. We can take the limit and match
the previous equation term by term to the outer solution in the usual way. We obtain, after taking
the limit:

−vnc±0 = ∂rµ
±
0 + C, (3.37)

where all the terms match to zero or to constants independent of the side of the interface, hence
the redefinition of C . From here it is immediate to obtain the conservation condition:Ä

c+
0 − c−0

ä
vn = −

Ä
∂rµ

+
0 − ∂rµ−0

ä
. (3.38)
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3.2 Asymptotic analysis near the absorption boundary

In the following we will assume that the boundary is at y = 1 and we define an inner coordinate
next to the boundary as

η =
y − 1

ε
, (3.39)

and expand

ĉ(x, η, t) = ĉ0 + εĉ1 + ε2ĉ2 + ..., (3.40a)

µ̂(x, η, t) = ε−1µ̂−1 + µ̂0 + εµ̂1 + ..., (3.40b)

ûi(x, η, t) = ûi,0 + εûi,1 + ε2ûi,2 + ..., (3.40c)

σ̂ij(x, η, t) = σ̂ij,0 + εσ̂ij,1 + ε2σ̂ij,2 + ... (3.40d)

The first two orders for (2.11a) in inner coordinates at the boundary are

∂2
η µ̂−1 = 0, (3.41a)

∂2
η µ̂0 = 0, (3.41b)

Remarkably, the third condition (2.11g) brings in terms to all negative orders when µ̂−1 is not
zero at the boundary. These would be impossible to match unless µ̃−1 is zero at the boundary.
Hence we have this boundary condition, together with the matching to the outer solution:

lim
η→−∞

µ̂−1 = µ−1 = 0.

Together with (3.41a), this implies that

µ̂−1 = 0. (3.42)

The boundary condition for (3.41b) then is

∂ηµ̂0 = 0, (3.43)

as once µ̂−1 = 0 there are no O(ε−1) terms in the right hand side of (2.11g). It follows that the
solution of Eq. (3.41b) is a constant with respect to η, µ̂0 = µ̂0(x), Thus µ̂0(x) is determined
by the outer solution via matching, µy=1 = µ̂0(x), rather than vice-versa.

Notice that rescaling (2.11d) to inner coordinates introduces terms of order ε−1. However, if we
include terms to this order in the expansion (3.40d) for σ̂ij , they lead to homogeneous problems
for the components of σ both for the PDE and the boundary value problems, leading to a trivial
solution. Hence, the terms of order ε−1 in the expansion of (2.11d) have to vanish as well, which
implies that

∂ηû1,0 = 0, ∂ηû2,0 = 0. (3.44)

Order ε−1. To this order, (2.11) becomes

∂2
η µ̂1 + ∂2

xµ̂−1 = 0, (3.45a)

µ̂−1 = −∂2
η ĉ0 + f ′(ĉ0), (3.45b)

∂ησ̂iy,0 = 0, i = x, y. (3.45c)
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Figure 3: Sketch of coordinate system around a triple point

where µ̂−1 = 0. The first of these implies that ∂ηµ̂1 does not depend on η. The boundary
condition for µ̂1 gives

∂ηµ̂1 = k
Ä
1− eQ(µ0−µext)

ä
. (3.46)

Using the matching condition

lim
η→−∞

(∂ηµ̂1 − ∂yµ0|y=1) = 0, (3.47)

leads to
∂yµ0|y=1 = k

Ä
1− eQ(µ0−µext)

ä
, (3.48)

that is, µ̃0 inherits the boundary condition from the full problem.

Regarding the concentration, (3.45b) has to be fulfilled. Notice that no contribution of ∂cW
appears in this equation, as the possible O(ε−1) (and, as matter of fact, O(ε−2)) contributions
vanish due to (3.44). For (3.45b), we have on the one hand that

lim
η→−∞

ĉ0 = c±,

and on the other ∂η ĉ0|η=0 = 0, which rules out kink-like solutions. This implies that

ĉ0 = c±. (3.49)

Integrating (3.45c), and using the O(1) approximation of the boundary condition for σ̂ from
(2.11g) in inner coordinates, we obtain σ̂iy,0 = 0 for i = x, y. Matching then gives the boundary
condition

σiy,0|y=1 = 0, i = x, y, (3.50)

for the outer problem for σ0.

3.3 Conditions at triple points

We now consider a point where the interface between the two phases meets the boundary of
the Silicon domain with the electrolyte following the approach used by [26]. For the boundary
located at y = 1 so that the layer lies in the region y < 1, the triple point is assumed to have the
coordinates x = x0 and y = 1. We thus rescale according to inner scalings in both Cartesian
coordinate directions

ξ =
x− x0(t)

ε
, η =

y − 1

ε
. (3.51)
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Rescaling (2.11) gives

ε2∂tč− εẋ0∂ξ č = ∇2
ξ,ηµ̌, (3.52a)

εµ̌ = −∇2
ξ,η č+ f ′(č), (3.52b)

where∇2
ξ,η = ∂2

ξ + ∂2
η . Th leading order problem is:

∇2
ξ,ηµ̌0 = 0, (3.53a)

−∇2
ξ,η č0 + f ′(č0) = 0. (3.53b)

The rescaled boundary conditions at η = 1 are

∂η č = 0, ∂ηµ̌ = εk
Ä
1− eQ(µ̌−µext)

ä
, (3.54)

thus, to leading order
∂η č0 = 0, ∂ηµ̌0 = 0, (3.55)

at η = 1. Notice that the flux from the Butler-Vollmer condition has dropped out and the problem
(3.52), (3.55) is the same problem that has been considered for the triple point at a solid wall
elsewhere in the literature, e.g. [3]. We summarise the key arguments in the following to recover
that the interface between the phases meets the boundary with the electrolyte orthogonally

Multiply (3.53b) with ∂ξ č0 and integrate over the box R ≡ [−R1/2, R1/2]× [−R2, 0], to get∫∫
R
f ′(č0) ∂ξ č0 dηdρ =

∫∫
R
∂ξ č0∇2

ξ,η č0 dηdρ, (3.56)

or∫∫
R
f ′(č0)∂ξ č0 − ∂ξ č0∂

2
ξ č0 + ∂η č0∂ξη č0 dηdρ =

∫∫
R
∂ξ č0∂

2
η č0 + ∂η č0∂ξη č0 dηdρ. (3.57)

We know investigate the left hand side (LHS) and right hand side (RHS) of the last equation
separately,

LHS =
∫ 0

−R2

ñ
f(č0)− 1

2
(∂ξ č0)2 +

1

2
(∂η č0)2

ôR1/2

ξ=−R1/2

dη. (3.58)

Taking R1 and R2 →∞ and using that ∂ξ č0 → 0 for R1 → ±∞, we obtain

lim
R1,R2→∞

LHS =
∫ 0

−∞
lim

R1→∞

ñ
f(č0) +

1

2
(∂η č0)2

ôR1/2

ξ=−R1/2

dη. (3.59)

As ξ → ±∞, the solution č0 has to converge to the boundary layer solution at the boundary
with the electrolyte, which are the same for both limits except for a change in sign. This, however,
does not affect the value of the expression in the square brackets, so in the limit R1 → ∞ the
contributions at ξ = R1/2 and ξ = −R1/2 cancel out, and

lim
R1,R2→∞

LHS = 0. (3.60)

For the right hand side, we have

RHS =
∫ R1/2

−R1/2

ï
∂ξ č0 ∂η č0

ò0
η=−R2

dξ =
∫ R1/2

−R1/2
∂ξ č0 ∂η č0

∣∣∣∣
η=−R2

dξ, (3.61)
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where we have used (3.55) at η = 1. We now introduce a rotated coordinate system that is
aligned with the interface between the phases, and denote the angle at which this interface
meets the boundary with the electrolyte by α. The aim is of course to determine α through the
matching. The new coordinates are

ρ = −ξ sinα− η cosα

ς = ξ cosα− η sinα,

and this gives

RHS = −
∫ −R1

2
sinα+R2 cosα

R1
2

sinα+R2 cosα
Sdρ (3.62)

with

S = cosα
Ä
(∂ρč0)2 − (∂ς č0)2

ä
+

(
sin2 α− cos2 α

sinα

)
∂ρč0 ∂ς č0. (3.63)

Now, ∂ς č0 → 0 as ς →∞, and thus

lim
R1,R2→∞

RHS = lim
a→∞

∗
lim

R1,R2→∞

∫ −R1
2

sinα+R2 cosα

R1
2

sinα+R2 cosα
−S dρ, (3.64)

where lim∗ is taken under the condition that |R1 cosα +R2 sinα| < a,

lim
R1,R2→∞

RHS = − cosα
∫ ∞
−∞

∂ρč
2
0 dρ. (3.65)

Equating the limits (3.60) and (3.65) and using that the integral in (3.65) is positive, we obtain
cosα = 0 i. e. α = π/2, as expected.

3.4 Sharp-interface model

In summary the complete sharp-interface model can be written as follows:

∇2µ0 = 0, (3.66a)

∇ · σ0 = 0, (3.66b)

together with the constitutive relation for stress:

σij,0 = 2G±
Ä
εij,0 − ε0,±ij

ä
+

2ν

1− 2ν
G±
Ä
εkk,0 − ε0,±kk

ä
δij, (3.66c)

whereG± = G(c±0 ) and ε0,±ij = h(c±0 ) are constants. The boundary conditions for the elasticity
equation correspond to continuity for the elastic field and for the tractions:

u+
0 = u−0 , (3.66d)

n · σ+
0 = n · σ−0 . (3.66e)
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For the chemical potential equation we have at the interface away from the boundary:

µ±0 (c+
0 − c−0 ) =− (β vn +K) I +

δ

2

î
σ+
ij,0

Ä
ε+ij,0 − δijh(c+

0 )
ä
− σ−ij,0

Ä
ε−ij,0 − δijh(c−0 )

äó
− δ σ+

ij,0

Ä
ε+ij,0 − ε−ij,0

ä
, (3.66f)Ä

c+
0 − c−0

ä
vn =−

Ä
∂rµ

+
0 − ∂rµ−0

ä
, (3.66g)

where I =
∫+∞
−∞ (∂ρc̃0)2 dρ. For the conditions at the absorbtion boundary we have:

∂yµ0|y=1 = k
Ä
1− eQ(µ0−µext)

ä
, (3.66h)

σiy,0|y=1 = 0, i = x, y, (3.66i)

and at the triple points the angle is α = π/2.

Note that in the case of constant flux boundary conditions we would obtain the same results,
except for the exponential in Eq. (3.66h), that would not be present.

4 Comparisons to phase-field simulations

We now compare the longtime behaviour of the phase-field model (2.11) with the predictions
of the sharp-interface model (3.66). In particular, we are interested in the convergence of the
sharp-interface solution to the profile of the chemical potential as a function of the interface
thickness ε. For that purpose we have computed numerically the solution of the phase-field
model in the one-dimensional case. We have used the constant flux boundary condition and
linear interpolating functions h and G for simplicity. This choice does not change the equations
for µ0 in the sharp interface limit. The simulations are performed using a nonlinear adaptive
multigrid algorithm [31]. For details on the simulations see [22].

Fig. 4 summarizes the effect of parameters β and δ on the convergence. The solutions of the
sharp interface model to leading order in µ are straight lines in one dimension, meeting at the
interface. Dashed lines in this figure fit µ far enough from the inner region, at a distance of 15ε
from the point where c0 = 1/2, and over an interval of width 0.05. These lines provide an
approximation to the sharp interface limit solution. On top, we see that the value of ε and the
value of δ have a strong effect on the quality of the fit. On the one hand, for the smaller value of
δ we obtain the expected result, i.e. the inner region becomes narrower with smaller values of
ε and the convergence improves, this improvement of the convergence is also reflected in the
value of µ at y = 1. On the other hand, for δ = 10.0 we see how, while there appears to be
some convergence, the solution curves are far from being straight lines. This of course indicates
that the sharp interface model is far from valid for such high values of the parameter δ, and a
much smaller ε is needed to observe convergence.

On Fig. 4 bottom we see the effect of β. For the higher value of β we have a good convergence,
and the inner region becomes narrower as ε decreases. Nevertheless, the effect of β is clear, in
that there is a depression near the point where both dashed lines meet. This is well represented
by the expansion in the inner region. Indeed, in the inner expansion, the Cahn-Hilliard equation
contains at order ε−2 a source term proportional to β (see Eq. 3.22), and hence this result is to
be expected. For β = 0.05, the smallest value, we see how this depression in the inner region
has disappeared and the agreement with the linear fits is extremely good.
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Figure 4: Convergence to the sharp interface limit. Solid lines correspond to the chemical po-
tential µ on the layer, dashed lines correspond to a linear fit near the interface to compute the
derivatives. Top: Results for two values of δ. With fixed flux boundary conditions, β = 0.5
(nondimensional units). Bottom: Results for two values of the kinetic parameter β. With fixed
flux boundary conditions, δ = 0.1 (nondimensional units).
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In Fig. 5 we quantify how good is the agreement between the sharp interface and the phase field
model by using a sharp interface relation, Eq. (3.66g), and computing how well it is approximated
by the quantities extracted from the phase field. We compute the gradients of the chemical
potential from the fitting lines in Fig. 4 and compute the velocity of the advancing front also
numerically. The ratio of the jump in the derivative and the velocity should be equal to one. We
represent the results for β = 0.05 and β = 0.5 and the agreement is very good. The parabola
that fits the β = 0.05 case also gives a very good approximation to the β = 0.5 case, except
for the highest value of ε, and has a crossing point with the vertical axis at ε = 0 with a value
of 1.00028.

This very good agreement and the quadratic convergence seem to indicate, in accordance with
similar results in other systems, e.g. Ref. [23], that the smallest order of the finite ε corrections
to Eq. (3.66g) will be O(ε2).

5 Conclusion

Understanding the conditions that cause the deformation and eventual destruction of silicon
electrode particles during intercalation is a prerequisite to optimizing design and loading con-
ditions. In this regard it is interesting to be able to follow the structure formation and thus the
nonuniform stress evolution of a silicon electrode particle in detail and on long time scales as a
function of the control parameters, such as the ion flux rate or the ratio of elastic to interfacial
energies. In particular, the sharp-interface model we have derived in this study allows for more
analytical insight into the complex intercalation process and except for extreemly low lithiation
rates, the time scale on which the sharp-interface dynamics takes place is the relevant time
scale for comparison with experimental results on the lithiation process.

Results of the comparison of the long-time dynamics of the phase-field model and the velocity
deduced from the sharp interface model show a good quadratic convergence, in particular for
moderate values of the ratio of elastic to interfacial energies. These are encouraging results,
and provide a means to validate the range of parameters in which the phase-field model gives
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physically robust results.

Natural extensions of this work will include the stabilty of the moving lithiation front and the
coarsening mechanisms of the evolving structures. Regarding a more realistic model we note
that effects of charge and electrical potential will have to be included in our model, as at this
stage our aim was first to understand the role of non-homogeneous elasticity in the stress-
lithiation curve, see [22]. In addition, we note that one should be aware of the fact that the
underlying phase-field model is only applicable for regimes that depart little from equilibrium,
and we are actually considering non-equilibrium phase transitions between what can be at best
characterized as metastable states.

As of now, comparisons to experiments can only be qualitative since, as we have mentioned
before, we have made the simplified assumption of linear elasticity. However, it will be straight-
forward but rather elaborate to include finite strain effects and this is planned for our upcoming
research.

A Curvilinear Coordinates

Change of coordinates:

x = X(s, t) + rY ′(s, t), (A.1)

y = Y (s, t)− rX ′(s, t), (A.2)

where the prime denotes differentiation with respect to the arclength parameter s andX ′(s, t)2+
Y ′(s, t)2 = 1.

Natural Basis:

g1 =

Ç
Y ′(s)
−X ′(s)

å
, g2 =

Ç
X ′(s) + rY ′′(s)
Y ′(s)− rX ′′(s)

å
. (A.3)

Physical Basis:

r̂ ≡ er = g1, ŝ ≡ es =
g2

‖g2‖
=

1

h
g2, (A.4)

where h = 1 + rK.

Dual Basis:
g1 = g1, g2 =

g2

h2
. (A.5)

A.1 Gradient of a Scalar

∇f = ∂kfg
k = ∂rf r̂ +

1

h
∂sf ŝ (A.6)

A.2 Gradient of a Vector

∇v =
Ä
∂kv

i + vjΓijk
ä
gi ⊗ gk (A.7)
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All of the Γijk are zero except for:

Γ2
12 = Γ2

21 =
K
h
,

Γ1
22 = −Kh,

Γ2
22 =

rK′

h
.

Therefore, it follows that the components of∇v in the natural basis are:

(∇v)ik =

Ö
∂rv

1 ∂sv
1 − v2Kh

∂rv
2 + v2K

h
∂sv

2 + v1K
h

+ v2 rK′

h

è
(A.8)

In the physical basis, these elements can be readily computed:á
∂rv

r 1

h
(∂sv

r − vsK)

h∂r

Ç
vs

h

å
+ vs
K
h

1

h
(∂sv

s + vrK)

ë
. (A.9)

Note that the physical components are related to the natural components as follows: vr = v1,
vs = hv2.

A.3 Divergence of a Second-Order Tensor Field

∇ · S =
Ä
∂iS

i
j + SljΓ

i
il − SilΓ

l
ij

ä
gj (A.10)

(∇ · S)1 = ∂1S1
1 + ∂2S2

1 + S1
1

K
h

+ S2
1

rK′

h
− S2

2

K
h
, (A.11)

(∇ · S)2 = ∂1S1
2 + ∂2S2

2 + hS2
1K. (A.12)

In terms of the physical components, we have:

(∇ · S)r = ∂rS
r
r +

1

h
∂sS

s
r + Srr

K
h
− Sss

K
h
, (A.13)

(∇ · S)s = h∂r (hSrs) + h∂sS
s
s + hSsrK. (A.14)

A.4 Tensors from the Theory of Elasticity

From Eq. (A.9) we can compute the strain tensor in these coordinates:

ε =
1

2

Ä
∇u +∇uT

ä
=

á
∂ru

r 1

2

Ç
1

h
∂su

r + h∂r

Ç
us
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åå
1

2

Ç
1

h
∂su

r + h∂r

Ç
us

h

åå
1

h
(∂su

s + urK)

ë
.

(A.15)
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Since the new coordinates are orthogonal and are related with the old ones through a rotation
(locally) and the elasticity tensor Cijkl is invariant with respect to rotations, Eq. (2.11d) is still
valid. We can write the elements of the stress tensor explicitly:

σrr =
2G

1− 2ν
((1− ν)εrr + νεss − (1 + ν)h(c)) (A.16)

=
2G

1− 2ν

Ç
(1− ν)∂ru

r +
ν

h
(∂su

s + urK)− (1 + ν)h(c)

å
σrs = σsr = 2Gεrs = G

Ç
1

h
∂su

r + h∂r

Ç
us

h

åå
(A.17)

σss =
2G

1− 2ν
((1− ν)εss + νεrr − (1 + ν)h(c)) (A.18)

=
2G

1− 2ν

Ç
ν∂ru

r +
1− ν
h

(∂su
s + urK)− (1 + ν)h(c)

å
In order to write the equations, it is important to obtain the value of the derivative of the elastic
energy (Eq. (2.1)). It can be written as follows:

∂cW (ε, c) =
1

2

ñ
−2h′(c)δijσij +

G′(c)

G(c)
(εij − h(c)δij)σij

ô
(A.19)

where the indices run over r, s and z.

We can compute the derivative explicitly in terms of the displacement field:

∂cW (ε, c) = (1 + ν)
3(h(c)2G(c))′

1− 2ν

+
(1− ν)G′(c)

1− 2ν

ñ
(∂ru
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h2
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ô
+

1

h

2νG′(c)

1− 2ν
∂ru

r (∂su
s + urK) (A.20)

− 2(1 + ν)(h(c)G(c))′
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ô
+

1

2
G′(c)
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∂su

r + h∂r

Ç
us

h

åå2

B Elasticity on the boundary

In this appendix we discuss the continuity of the different elements of the stress and strain
tensor. We begin by writing explicitly their form for the order zero, in the inner and in the outer
case:

ε0 =

Ü
∂ηur,1

1

2
(∂sur,0 + ∂ηus,1 −Kus,0)

1

2
(∂sur,0 + ∂ηus,1 −Kus,0) ∂sus,0 + ur,0K

ê
(B.1)

σ0 =
2G(c0)

1− 2ν

Ç
(1− ν)εrr,0 + νεss,0 − (1 + ν)h(c0) (1− 2ν)εrs,0

(1− 2ν)εrs,0 (1− ν)εss,0 + νεrr0 − (1 + ν)h(c0)

å
(B.2)
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We know from Eqs. (3.11) that the displacement fields (and therefore all their s derivatives) are
continuous at the interface.

ε̃±0 =

Ü
∂rũ

±
r,0

1

2

Ä
∂sũr,0 + ∂rũ

±
s,0 −Kũs,0

ä
1

2

Ä
∂sũr,0 + ∂rũ

±
s,0 −Kũs,0

ä
∂sũs,0 + ũr,0K

ê
. (B.3)

Hence it follows that ε̃ss,0 is continuous at the interface. Since components rr, rs and sr of
the stress tensor are continuous at the interface we obtain two different jump conditions for the
strain tensor from the components of the stress tensor at the interface:

σ̃±0 =
2G(c±0 )

1− 2ν

Ç
(1− ν)ε̃±rr,0 + νε̃ss,0 − (1 + ν)h(c̃±0 ) (1− 2ν)ε̃±rs,0

(1− 2ν)ε̃±rs,0 (1− ν)ε̃ss,0 + νε̃±rr,0 − (1 + ν)h(c̃±0 )

å
(B.4)

From the different jump conditions, we extract the following conditions (no summation):Ä
σ̃+
ij,0 − σ̃−ij,0

ä Ä
ε̃+ij,0 − ε̃−ij,0

ä
= 0 (B.5)
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