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ABSTRACT. We consider a nonlocal equation set in an unbounded domain with the epigraph property.
We prove symmetry, monotonicity and rigidity results. In particular, we deal with halfspaces, coercive
epigraphs and epigraphs that are flat at infinity.

These results can be seen as the nonlocal counterpart of the celebrated article [4].

1. INTRODUCTION

The study of monotonicity and rigidity of solutions to semilinear elliptic equations of fractional order
in the whole space RN or in smooth bounded sets Ω has attracted considerable attention in the last
years, see e.g. [2, 7, 8, 9, 10, 14, 18,19, 26, 27,40]. In striking contrast, if Ω is unbounded, but different
from the whole space, very few results are available, all concerning the particular case of the half-
space Ω = RN

+ , see [22, 33], or the one of exterior sets, see [32, 31, 41]. The main purpose of this
paper is the study of the qualitative properties of bounded solutions to

(1.1)


(−∆)su = f(u) in Ω,

u > 0 in Ω,

u = 0 in RN \ Ω,

where Ω is assumed to be the epigraph of a continuous function ϕ : RN−1 → R, i.e. we suppose
that

(1.2) Ω :=
{
x ∈ RN : xN > ϕ(x′)

}
, with x′ = (x1, . . . , xN−1) ∈ RN−1.

Notice that the half-space RN
+ falls within this definition with ϕ ≡ 0.

In (1.1), (−∆)s with s ∈ (0, 1) denotes the fractional Laplacian, which can be defined as the operator
acting on sufficiently smooth functions as

(−∆)su(x) := cN,s PV

∫
RN

u(x)− u(y)

|x− y|N+2s
dy

= cN,s lim
ε→0+

∫
RN\Bε(x)

u(x)− u(y)

|x− y|N+2s
dy,

where cN,s > 0 is a normalizing constant (which plays no major role in the present paper and which
will be often omitted for simplicity), and PV stays for “principal value".

We will consider different assumptions on ϕ, obtaining different monotonicity and rigidity properties
accordingly.

The nonlinearity f in (1.1) belongs to a reasonably wide class of functions, including for instance those
of bistable-type (a precise definition will follow shortly). Under these assumptions, the main results of
this paper are:

� boundary regularity, monotonicity and further qualitative properties for solutions to (1.1) in glob-
ally Lipschitz epigraphs;

� monotonicity for solutions to (1.1) in coercive epigraphs;
� 1-dimensional symmetry in the half-space;
� rigidity for overdetermined problems in epigraphs that are sufficiently “flat at infinity".

Similar results in the classical case s = 1 were obtained in the seminal paper [4]. Here, dealing with a
nonlocal framework, a careful analysis is needed to overcome the lack of explicit barriers and several
ad-hoc arguments will be exploited to replace the study of the point-wise behavior of the solution with
a global study of the geometry of the problem.



2

As additional statements, we also derive a very general maximum principle (tailor-made for non-
decaying solutions in possibly unbounded domains), a general version of the sliding method for the
fractional Laplacian, and a boundary regularity result for solutions of fractional boundary value prob-
lems in sets satisfying an exterior cone condition.

Before proceeding with the statement of our results, we clarify that with the terminology solution in this
paper we always mean classical solution.

As a matter of fact, without extra effort, the same results would apply to bounded viscosity solutions
of (1.1): indeed, since we will assume that the nonlinearity f is locally Lipschitz continuous, the regu-
larity theory for viscosity solutions (developed in [12,13]) implies that viscosity and classical solutions
coincide in our setting (see [33, Remark 2.3] for a detailed explanation).

In addition, we mention that distributional (i.e. very weak) solutions or weak solutions (as defined e.g.
in [22,41]) could be considered as well with minor changes.

For the reader’s convenience, we will recall the definition of classical and viscosity solution at the end
of the introduction.

In the next subsections, we describe in details the results obtained. In all the forthcoming statements,
the fractional parameter s will always be a fixed value in the interval (0, 1).

1.1. Boundary value problems in globally Lipschitz epigraphs. In this subsection we consider
the case in which the domain Ω of (1.1) is a globally Lipschitz epigraph. Namely, we suppose that the
function ϕ in (1.2) is globally Lipschitz continuous, with Lipschitz constant K .

On the nonlinearity f , we suppose that:

(f1) f is locally Lipschitz continuous in R, and there exists µ > 0 such that f(t) > 0 for any t ∈
(0, µ), and f(t) 6 0 for any t > µ;

(f2) there exist t0 ∈ (0, µ), and δ0 > 0 such that f(t) > δ0 t for any t ∈ [0, t0];
(f3) there exists t1 ∈ (t0, µ) such that f is non-increasing in (t1, µ).

As prototype example, we may think at f(t) = t− t3, which yields the fractional Allen-Cahn equation,
that is a widely studied model in phase transitions in media with long-range particle interactions, see
e.g. [36].

The first of our main results is the natural counterpart of Theorems 1.1 and 1.2 in [4].

Theorem 1.1. Let Ω be a globally Lipschitz epigraph. Let f satisfy assumptions (f1)-(f3), and let u
be a bounded solution to (1.1). Then:

(i) u < µ in Ω.
(ii) As dist(x, ∂Ω)→ +∞, we have that u(x)→ µ uniformly in Ω.

(iii) There exist C, ρ, h1 > 0 such that

u(x′, xN) > C(xN − ϕ(x′))ρ if xN − ϕ(x′) < h1.

(iv) u is globally α-Hölder continuous in RN , for some α ∈ (0, s).
(v) u is the unique bounded solution to (1.1).

(vi) If (a1, . . . , aN−1) is such that ∑
i

a2
i < K−2,

then
∂xNu+

∑
i

ai∂xiu > 0 in Ω.
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In particular, u is monotone increasing in xN .

We stress that, since Ω is merely a Lipschitz set and the exterior sphere condition is not satisfied along
∂Ω, the Hölder continuity of the solution does not follow by previous contributions (see Subsection 1.4
for more details).

We also observe that in the particular case ϕ ≡ 0, i.e. when Ω = RN
+ is a half-space, by point (vi)

we deduce monotonicity and 1-dimensional symmetry of the solutions.

Corollary 1.2. Let Ω = RN
+ , and let f satisfy (f1)-(f3), and let u be a bounded solution to (1.1).

Then u depends only on xN , and

∂xNu > 0 in Ω.

Previous results regarding monotonicity of solutions to nonlocal equations in half-spaces can be found
in [23, 33] (see also [37] for results in the whole of RN ). We observe that in the articles [23, 33]
the monotonicity is used to derive non-existence results, and the nonlinearities f considered are
non-increasing, which is a complementary situation with respect to the one considered here. The
1-dimensional symmetry in the half-space, as addressed in Corollary 1.2, was, up to now, open.

Moreover, we notice that, both in [23,33] and in Corollary 1.2 here, it is supposed that f(0) > 0. The
case f(0) < 0 is then still open. As a matter of fact, even in the local setting s = 1, this case is more
involved (we refer the interested reader to [3, 15, 17, 24, 25] for rigidity results regarding local elliptic
equations in half-spaces with nonlinearities satisfying f(0) < 0).

The proof of Theorem 1.1 is given in Section 4, and relies on some classical ideas of [4] – nevertheless,
all the intermediate steps present several substantial difficulties of purely nonlocal nature. As a matter
of fact, in [4] the authors often construct more or less explicit local barriers, and exploit local properties
of functions whose Laplacian has a strict sign. On the other hand, the construction of a barrier function
is much harder when dealing with integro-differential operators, since such barrier has to be defined in
the all space RN , and has to satisfy a boundary condition on the complement of a certain set D (and
not only on ∂D). Moreover, local properties of functions cannot be inferred by the only knowledge of
the fractional Laplacian in some neighbourhood and any modification of the function “far away” affects
the values of its fractional Laplacian at a point. These are just two sources of new obstructions which
we shall overcome; we refer to the comments and the remarks written throughtout the paper for further
details.

1.2. Monotonicity of solutions in coercive epigraphs. In this subsection, we deal with the case in
which the domain Ω of (1.1) is a coercive epigraph, namely, we suppose that the functionϕ : RN−1 →
R in (1.2) is continuous and satisfies

lim
|x|′→+∞

ϕ(x′) = +∞.

In this setting, we have the following result:

Theorem 1.3. Let Ω be a coercive epigraph, and let u be a solution (not necessarily bounded) to
(−∆)su = f(x, u) in Ω,

u > 0 in Ω,

u = 0 in RN \ Ω,

with f(x, t) continuous in Ω× R, non-decreasing in xN , and locally Lipschitz continuous in t, locally
uniformly in x, in the following sense: for any M > 0 and any compact set K ⊂ Ω, there exists
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C > 0 such that

sup
x∈K

|f(x, t)− f(x, τ)|
|t− τ |

6 C for any t, τ ∈ [−M,M ].

Then u is monotone increasing in xN .

This result is the natural counterpart of [4, Theorem 1.3], which in turn is a refinement of [21, Proposi-
tion II.1]. Its proof rests on the moving planes method for the fractional Laplacian.

1.3. Overdetermined problems for the fractional Laplacian in epigraphs. In this subsection, we
consider the overdetermined setting in which both Dirichlet and Neumann conditions are prescribed
in problem (1.1). Differently from the classical case, the Dirichlet condition needs to be set in the
complement of the domain (and not along its boundary) and the Neumann assumptions takes into
account (in a suitable sense) normal derivatives of fractional order.

For this, given an open set Ω with C2 boundary, we denote by ν(x0) the inner unit normal vector
at x0 ∈ ∂Ω. For any u ∈ C0,s(RN) and x0 ∈ ∂Ω, we consider the outer normal s-derivative of u in
x0, defined as

(1.3) (∂ν)su(x0) := − lim
t→0+

u(x0 + tν(x0))− u(x0)

ts
.

The boundary regularity theory for fractional Laplacian, developed in [30, 29,35,34], ensures that, for
a solution u to (1.1) with Ω of class C2, the quantity (∂ν)su is well defined. Natural Hopf’s Lemmas
were then proved in [22, Proposition 3.3] and [28, Lemma 1.2], and constituted the base point in the
study of overdetermined problems for the fractional Laplacian, see [16,22,28,41,32].

In this paper we consider overdetermined problems of the type

(1.4)


(−∆)su = f(u) in Ω,

u > 0 in Ω,

u = 0 in RN \ Ω,

(∂ν)su = const. on ∂Ω.

We will suppose that Ω is the epigraph of a C2 and globally Lipschitz function ϕ : RN−1 → R,
satisfying the following additional assumption:

(1.5) for any τ ∈ RN−1, uniformly in x′, lim
|x′|→+∞

(ϕ(x′ + τ)− ϕ(x′)) = 0.

This condition, firstly proposed in [4], can be seen as a flatness condition of ∂Ω at infinity.

We can extend [4, Theorem 7.1] in the nonlocal setting.

Theorem 1.4. Let Ω be the epigraph of a C2 and globally Lipschitz function ϕ : RN−1 → R, satisfying
(1.5). Let f satisfy (f1)-(f3), and let us suppose that (1.4) has a bounded solution u. Then Ω is a
half-space {xN > const.}, and u depends only on xN and is monotone increasing in xN .

Theorem 1.4 is proved in Section 6.

1.4. Boundary regularity in domains satisfying an exterior cone condition. In this subsection,
we obtain general boundary regularity results for solutions to

(1.6)

{
(−∆)su = g(x) in Ω,

u = 0 in RN \ Ω.
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In this setting, we will not restrict to the case in which Ω is an epigraph, but we will assume instead
that Ω satisfies an exterior cone condition with some uniform opening θ ∈ (0, π). More precisely, for
a given direction e ∈ SN−1 and a given angle θ ∈ (0, π), we denote by Σe,θ the open, rotationally
symmetric cone of axis e and opening θ (that is the set of all vectors v ∈ Rn that form with e an
angle less than θ). We suppose that there exists θ ∈ (0, π) such that: if x ∈ ∂Ω, then for a direction
e ∈ SN−1 the cone x+ Σe,θ is exterior to Ω and tangent to Ω in x.

We point out that in this definition the opening θ is the same for all the points of ∂Ω, while the direction
e can change. We also observe that globally Lipschitz epigraphs {xN > ϕ(x′)} enjoy the uniform
exterior cone condition, with θ depending only on the Lipschitz constant of ϕ.

The boundary regularity of solutions to boundary value problems driven by integro-differential opera-
tors has been object of several contributions [6, 30, 29, 35, 34]. As far as we know, for boundary value
problems of type (1.6) the minimal assumption on Ω was considered in [35, Proposition 1.1], where
the authors supposed that Ω is a bounded Lipschitz domain satisfying a uniform exterior ball condition.
The following theorem weaken this assumption, establishing the global Hölder continuity of bounded
solutions to (1.6) when Ω satisfies a uniform exterior cone condition.

Theorem 1.5. Let Ω be a possibly unbounded open set of RN , satisfying the uniform exterior cone
condition with opening θ ∈ (0, π/2). Let u ∈ L∞(RN) be a solution to (1.6), with g ∈ L∞(Ω).

Then, there exist α ∈ (0, s) andC > 0, both depending only on θ, s andN , such that u ∈ C0,α(RN),
and

(1.7) ‖u‖C0,α(RN ) 6 C
[(

1 + ‖u‖L∞(RN )

) (
1 + ‖g‖

α
2s−2α

L∞(Ω)

)
+ ‖g‖L∞(Ω)

]
.

Also, for any s ∈ (0, 1), the map θ 7→ α(θ, s) is monotone non-decreasing.

Remark 1.6. We stress that it is not even necessary to suppose the Lipschitz regularity of Ω.

If θ > π/2, then the uniform exterior cone condition yields a uniform exterior sphere condition, and
hence by [35, Proposition 1.1] solutions to fractional boundary value problems in Ω are already known
to be of class C0,s(RN). This is why we only consider θ ∈ (0, π/2) in Theorem 1.5.

For our purposes, the importance of (1.7) is to provide uniform convergence of sequences of solutions
under very reasonable assumptions. Namely, let us consider a sequence {un} of solutions to{

(−∆)sun = gn in Ωn,

un = 0 in RN \ Ωn,

with {un} and {gn} uniformly bounded in L∞(RN) and L∞(Ωn), respectively. Then Theorem 1.5
implies that un → u∞ locally uniformly in RN , up to a subsequence.

The proof of Theorem 1.5 is the object of Section 3.

1.5. Some useful results of independent interest. We conclude the introduction stating some gen-
eral results that are auxiliary to the proof of the main theorems and which we think are also of inde-
pendent interest.

In proving Theorem 1.1, a crucial tool will be a maximum principle in unbounded domain for the
fractional Laplacian. This is the fractional counterpart of [4, Theorem 2.1], and we stress that while
in the local case the domain D is supposed to be connected, this is not necessary in the nonlocal
setting.
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Theorem 1.7. Let D be an open set in RN , possibly unbounded and disconnected. Suppose that D
is disjoint from the closure of an infinite open connected cone. Let z ∈ C(RN) bounded above, and
satisfying in viscosity sense

(1.8)

{
(−∆)sz − c(x)z 6 0 in D,

z 6 0 in RN \D,

for some c ∈ L∞(D), c 6 0 a.e. in D, with cz ∈ C(D). Then z 6 0 in D.

We observe that Theorem 1.7 here improves [20, Theorem 2.4], where a similar result was proved
when D was a half-space.

We shall also need the following version of the sliding method for the fractional Laplacian.

Theorem 1.8. Let Ω be a bounded open subset of RN , convex in the direction eN = (0′, 1). Let w
be a solution of {

(−∆)sw = g(x,w) in Ω,

w = ϕ in RN \ Ω,

with g(x, t) continuous in Ω×R, non-decreasing in xN , and locally Lipschitz continuous in t, uniformly
in x, in the following sense: for any M > 0, there exists C > 0 such that

sup
x∈Ω

|g(x, t)− g(x, τ)|
|t− τ |

6 C for any t, τ ∈ [−M,M ].

On the boundary term ϕ, we suppose that for every x = (x′, xN), y = (y′, yN), z = (z′, zN) with
xN < yN < zN , it holds

ϕ(x) < w(y) < ϕ(z) if y ∈ Ω,

ϕ(x) 6 ϕ(y) 6 ϕ(z) if y ∈ RN \ Ω.
(1.9)

Then w is monotone increasing with respect to xN .

Thanks to the maximum principle in sets of small measure [27, Proposition 2.2], the proof of Theorem
1.8 is a straightforward adaptation of the local one, given in [5], and hence is omitted.

Basic definitions and notations: we start recalling the definition of classical solution.

Definition 1.9. A continuous function u : RN → R is a classical solution to

(1.10) (−∆)su = h in Ω̃, u = g in RN \ Ω̃

if (−∆)su(x) is well defined and equal to h(x) for every x ∈ Ω̃, and u = g a.e. in RN \ Ω̃.

Notice that, beyond the continuity, no boundary regularity is required on u. It is well known that a
sufficient condition to ensure that (−∆)su is well defined (and actually continuous) in an open set
U ⊂ RN is that u ∈ C2s+ε(U) for some ε > 0 (i.e. u ∈ C0,2s+ε(U) if s < 1/2, or u ∈ C1,2s+ε−1(U)
if s > 1/2), see [39, Proposition 2.4].

For future convenience, we recall here also the definition of viscosity solution (see [12, Definition 2.2].

Definition 1.10. A function u : RN → R, upper (resp. lower) semicontinuous is said to be a viscosity
sub-solution (resp. viscosity super-solution) to (1.10), if u 6 g (resp u > g) a.e. in RN \ Ω̃, and if
every time all the following happen:

� x0 ∈ Ω̃;
� N is a neighbourhood of x0 ∈ Ω̃;
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� φ is some C2 function in N ;
� φ(x0) = u(x0);
� u(x) < φ(x) (resp. u(x) > φ(x)) for every x ∈ N \ {x0};

then if we let

v :=

{
φ in N

u in RN \N,
we have (−∆)sv(x0) 6 h(x0) (resp. (−∆)sv(x0) > h(x0)). A function is a viscosity solution if it
both a viscosity sub- and super-solution.

We adopt in the rest of the paper a mainly standard notation. The ball of center x and radius r is
denoted by Br(x), and in the frequent case x = 0 we simply write Br. The letter C always denotes
a positive constant, whose precise value is allowed to change from line to line.

Organization of the paper: Section 2 deals with the maximum principle in unbounded domains,
providing the proof of Theorem 1.7.

Then, Section 3 is devoted to the boundary regularity in sets satisfying an exterior cone condition, and
contains the proof of Theorem 1.5.

The monotonicity in globally Lipschitz epigraphs and the proof of Theorem 1.1 are dealt with in Sec-
tion 4, while the monotonicity of solutions in coercive epigraphs, with the proof of Theorem 1.3, is the
subject of Section 5.

Finally, in Section 6, we consider overdetermined problems and we prove Theorem 1.4.

2. MAXIMUM PRINCIPLE IN UNBOUNDED DOMAINS

We devote this section to the proof of Theorem 1.7. To this aim, we start with some preliminary re-
sults. First of all, we notice that balls centered at boundaries of cones intersect the cones with mass
proportional to that of the ball, namely:

Lemma 2.1. Let α ∈
(
0, π

4

]
and C = {x = (x′, xN) ∈ RN s.t. xN > |x| cosα}. Let p ∈ ∂C.

Then, for any r > 0,

(2.1) |Br(p) ∩ C| > δrN ,

for some δ > 0, depending on N and α.

Proof. We observe that any point of (∂C) ∩ (∂B1) is touched by a ball of diameter cα > 0 which lies
in C. Without loss of generality, we may suppose that cα 6 1.

We let d := |p|. By the definition of cα and a scaling argument, we have that there exists a ball B of
diameter cαd which lies in C and such that p lies on the boundary of B, see Figure 1.

We distinguish three cases. Either r > 2d, or r ∈ (0, cαd) or r ∈ [cαd, 2d).

Let us first suppose that r > 2d. Then,

(2.2) Br/2 ⊆ Br(p).

Indeed, if x ∈ Br/2 then

|x− p| 6 |x|+ |p| < r

2
+ d 6 r.

From (2.2) we obtain that
|Br(p) ∩ C| > |Br/2 ∩ C|,
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FIGURE 1. The geometry involved in the proof of Lemma 2.1.

from which we obtain (2.1) in this case.

Now we suppose that r ∈ (0, cαd). We denote byB∗ the ball tangent in p with diameter r. Since r <
cαd, we have that B∗ ⊆ B and therefore B∗ ⊆ C. As a consequence,

(2.3) |B∗ ∩ C| = |B∗| = crN ,

for some c > 0.

Also,

(2.4) B∗ ⊆ Br(p).

Indeed, if x ∈ B∗, then, since p ∈ ∂B∗, we have that |x− p| is less than the diameter of B∗, which
is r.

From (2.4), we obtain that

|Br(p) ∩ C| > |B∗ ∩ C|.
This and (2.3) imply (2.1) in this case.

Hence, we now focus on the case in which r ∈ [cαd, 2d). In this case, we have that

(2.5) B ⊆ Br(p).

Indeed, if x ∈ B, the fact that p ∈ ∂B gives that |x − p| is bounded by the diameter of B, which
is cαd, which in turn is less than r.

Using (2.5), we find that

|Br(p) ∩ C| > |B ∩ C|.



9

Since B ⊆ C, we thus conclude that

|Br(p) ∩ C| > |B| = c(cαd)N > c
(cα r

2

)N
,

which concludes the proof. �

Here is another auxiliary results concerning the geometry of cones:

Lemma 2.2. Let α ∈
(
0, π

4

]
and C as in Lemma 2.1.

Let q ∈ RN \ C. Let r := 2 dist (q, C). Then,

|Br(q) ∩ C| > δrN ,

for some δ > 0, depending on N and α.

Proof. Let p ∈ ∂C be such that

|p− q| = dist (q, C) =
r

2
.

We claim that

(2.6) Br/2(p) ⊆ Br(q).

Indeed, if x ∈ Br/2(p) then

|x− q| 6 |x− p|+ |p− q| < r

2
+
r

2
= r.

Then, (2.6) and Lemma 2.1 imply the desired result. �

We are now in position to complete the proof of Theorem 1.7.

Completion of the proof of Theorem 1.7. We consider z+ := max{z, 0}. We claim that

(2.7) (−∆)sz+ − c(x)z+ 6 0 in RN ,

in the viscosity sense.

To prove this, let φ be a smooth function touching z+ from above at some point x0. We have two
cases: either z(x0) > 0 or z(x0) 6 0.

Suppose first that z(x0) > 0. Then x0 ∈ D and z(x0) = z+(x0). Accordingly,

φ(x) > z+(x) > z(x) and φ(x0) = z+(x0) = z(x0),

that is, φ touches z from above at x0 ∈ D. Thus, by (1.8), we have that (−∆)sφ(x0)−c(x0)φ(x0) 6
0.

Now we consider the case in which z(x0) 6 0. Then

φ(x) > z+(x) > 0 and φ(x0) = z+(x0) = 0.

As a consequence, φ has a minimum at x0 and therefore (−∆)sφ(x0) 6 0. Accordingly, we have
that

(−∆)sφ(x0)− c(x0)φ(x0) 6 0 + 0 = 0.

This completes the proof of (2.7).

From (2.7) and the fact that c 6 0 we conclude that

(2.8) (−∆)sz+ 6 0 in RN ,

in the viscosity sense.
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Now, in order to complete the proof of Theorem 1.7, we want to show that z+ vanishes identically.
Suppose not: then there exists qo ∈ RN such that z+(qo) > 0. Then, recalling that z is bounded from
above, we set

A := sup
RN

z+ > z+(qo) > 0,

and we take a maximizing sequence qj ∈ RN such that

(2.9) lim
j→+∞

z+(qj) = A.

Of course, up to neglecting a finite number of indices, we may suppose that z+(qj) > A/2 > 0.
Hence, since, by (1.8), we know that z 6 0 outside D, we have that qj ∈ D. We denote by C a cone
that lies outside D (whose existence is warranted by assumption). Then we have that qj ∈ RN \ C,
and we set

rj := 2 dist (qj, C) > 0.

Notice also that C ⊆ RN \D ⊆ {z+ = 0}. So, by Lemma 2.2, we know that

δrNj 6 |Brj(qj) ∩ C| 6 |Brj(qj) ∩ {z+ = 0}|,

for some δ > 0.

Thus, we are in the position of applying [38, Corollary 4.5] and we obtain that z+ 6 (1 − γ)A
in Brj/2(qj), for some γ ∈ (0, 1). But this says that

z+(qj) 6 (1− γ)A

and so, taking the limit and recalling (2.9), we obtain A 6 (1− γ)A, which is a contradiction. �

We conclude this section recalling the strong maximum principle for the fractional Laplacian, whose
simple proof is omitted for the sake of brevity.

Proposition 2.3 (Strong maximum principle). Let Ω ⊂ RN be an open set, neither necessarily un-
bounded, nor connected. Let w be a classical solution to{

(−∆)sw + c(x)w > 0 in Ω,

w > 0 in RN ,

with c ∈ L∞(Ω) and cw ∈ C(Ω). Then either w > 0, or w ≡ 0 in RN .

3. BOUNDARY REGULARITY FOR THE FRACTIONAL LAPLACIAN IN SETS SATISFYING AN EXTERIOR

CONE CONDITION

In this section we analyze the global regularity of solutions to the boundary value problem (1.6) and
we prove Theorem 1.5. Here we will assume that g ∈ L∞(Ω) and Ω is a set satisfying the uniform
exterior cone condition with opening θ, as defined in Subsection 1.4.

We recall that, for e ∈ SN−1 and θ ∈ [0, π], we denote by Σe,θ the open cone of rotation axis Re and
opening θ. In particular, if e = eN , then

ΣeN ,θ =


{x ∈ RN : |x′| < (tan θ)xN} if θ ∈

[
0, π

2

)
,

{x ∈ RN : xN > 0} if θ = π
2
,

{x ∈ RN : |x′| > (tan θ)xN} if θ ∈
(
π
2
, π
]
.

In this framework, Theorem 1.5 follows as a corollary of the next intermediate statement:
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Proposition 3.1. Let u ∈ L∞(RN) be a solution of (1.6). Then, there exist α ∈ (0, s) and C > 0
depending only on θ such that

(3.1) |u(x)| 6 C
(
1 + ‖u‖L∞(RN )

) (
1 + ‖g‖

α
2s−2α

L∞(Ω)

)
dist(x, ∂Ω)α

for all x ∈ Ω.

The proof of Proposition 3.1 is divided into several lemmas. We produce a wall of upper barriers for
u, whose construction is inspired by [4, Lemma 4.1]. Major difficulties arise in our setting in order to
compute the fractional Laplacian of the barriers.

In the next lemma we establish an estimate for α-homogeneous functions, which can be seen as a
one-side counterpart of the classical Euler formula.

Lemma 3.2. Let α > 0, 0 < θ1 < θ2 < π, and let v ∈ C2(ΣeN ,θ2) be a positive α-homogeneous
function in ΣeN ;θ2 , non-negative in the whole space RN . Then, there exists C > 0 depending on θ1,
θ2 and v such that

(3.2)

∫
RN

(v(x)− v(y))2

|x− y|N+2s
dy > C|x|2α−2s for every x ∈ ΣeN ,θ1 .

Proof. We introduce first some notation. For x ∈ RN \ {0}, let x̂ := x/|x|. Since θ1 < θ2, there
exists β̄ ∈

(
0, π

2

)
such that for every 0 < r < R

(3.3)

 ⋃
x∈ΣeN ,θ1

Σx̂,β̄

 ∩ A(0, r, R) b ΣeN ,θ2 ,

where A(0, r, R) denotes the annulus with center 0 and radii r, R, that is

A(0, r, R) := BR \Br.

In the rest of the proof, we denote by

Θ :=
⋃

x∈ΣeN ,θ1

Σx̂,β̄.

We point out that

(3.4) Θ ∩ SN−1 b ΣeN ,θ2 .

Now, let x ∈ ΣeN ,θ1 , and for β ∈ (0, β̄) to be determined, let us consider

(3.5) Dx,β := Σx̂,β ∩ A
(

0,
|x|
4
,
|x|
2

)
.

Notice that Dx,β b Θ for every x ∈ ΣeN ,θ1 , see Figure 2.

In order to prove (3.2), we suppose for the sake of simplicity that x0 = (0′, x0,N) (notice that then
x0,N > 0). This is not restrictive since the problem is invariant under rotations and, as we will see,
we obtain a constant C in (3.2) depending on θ1, θ2 and on upper and lower bounds of v and of its
derivatives in Θ ∩ SN−1. In particular, these bounds are independent of x0 ∈ ΣeN ,θ1 .



12

FIGURE 2. The cones ΣeN ,θ1 ⊆ ΣeN ,θ2 . Notice that Σx̂1,β , Σx̂2,β ⊆ ΣeN ,θ2 and
so Dx2,β b Σx̂2,β̄ ⊂ Θ.

To accomplish our goals, for z ∈ Dx0,β , we define z∗ := (0′, zN). We write

v(x0 + z)− v(x0) =

∫ 1

0

∇v(x0 + tz) · z dt =

∫ 1

0

∇v(x0 + tz∗) · z∗ dt︸ ︷︷ ︸
=:(I)

+

∫ 1

0

∇v(x0 + tz) · (z − z∗) dt︸ ︷︷ ︸
=:(II)

+

∫ 1

0

(∇v(x0 + tz)−∇v(x0 + tz∗)) · z∗ dt︸ ︷︷ ︸
=:(III)

.

(3.6)

We estimate first (II). By (3.3) and the fact that v ∈ C2(ΣeN ,θ2), we have that there exists C > 0
such that

(3.7) |∇v (ŷ)| 6 C for every y ∈ Θ.

Moreover, by homogeneity,

∇v(tŷ) = tα−1∇v(ŷ) for every t > 0 and every y ∈ ΣeN ,θ2 .

Therefore, using this and (3.7),

(3.8) |∇v(y)| = |∇v(|y|ŷ)| = |y|α−1 |∇v (ŷ)| 6 C|y|α−1 for every y ∈ Θ.

Also, if z ∈ Dx0,β and t ∈ (0, 1), then

(3.9) x0 + tz ∈ Σx̂,β.

Indeed,

|x′0 + tz′| = |tz′| 6 tan βtzN 6 tan β(x0,N + tzN),
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which proves (3.9). Moreover, if z ∈ Dx0,β , then

(3.10) |z − z∗| = |z′| 6 tan βzN 6 tan β|z| 6 tan β
|x0|
2
,

thanks to (3.5). Finally, for any z ∈ Dx0,β and any t ∈ (0, 1),

(3.11)
|x0|
2
6 |x0 + tz| 6 3|x0|

2
.

Indeed, recalling (3.5), we see that

|x0 + tz| 6 |x0|+ |z| 6 |x0|+
|x0|
2

=
3|x0|

2
,

which gives the second inequality in (3.11). On the other hand,

|x0 + tz| > |x0| − t|z| > |x0| − |z| > |x0| −
|x0|
2

=
|x0|
2
,

which completes the proof of (3.11).

As a consequence, by (3.8), (3.9), (3.10) and (3.9), we have

(3.12) |(II)| 6
∫ 1

0

|∇v(x0 + tz)||z − z∗| dt 6 C sup
t∈[0,1]

|x0 + tz|α−1|z − z∗| 6 C1 tan β|x0|α

for any z ∈ Dx0,β , where C1 is a positive constant depending only on θ1, θ2 and on the upper bound
(3.7).

Now we estimate (III) in (3.6). Similarly to (3.8), one can check that

(3.13) |∇2v(y)| 6 C|y|α−2 for every y ∈ Θ,

where∇2 denotes the Hessian matrix. Furthemore, notice that any point on the segment joining x0 +
tz and x0 + tz∗ is of type x0 + tz∗ + tτ(z′, 0) for some τ ∈ (0, 1). It is clear that any such point
stays in Dx0,β ⊂ Σx̂0,β . We also note that if z ∈ Dx0,β , then (3.5) implies that

|z∗| 6 |z| 6 |x0|
2
,

|z − z∗| 6 tan β
|x0|
2
,

|x0 + tz∗ + τt(z′, 0)| 6 |x0|+ |z∗|+ |z′| 6 |x0|+ 2|z| 6 |x0|+ |x0| = 2|x0|, and

|x0 + tz∗ + τt(z′, 0)| > |x0| − |z∗| − |z′| = |x0| − |z∗| − |z − z∗| > |x0| −
|x0|
2
− tan β

|x0|
2
>
|x0|
4
,

if β is taken sufficiently small. Therefore, using this, the Lagrange Theorem and (3.13), we conclude
that ∣∣(III)

∣∣ 6 ∫ 1

0

|∇v(x0 + tz)−∇v(x0 + tz∗)||z∗| dt

=

∫ 1

0

|∇2v(x0 + tz∗ + tτt(z
′, 0))|t|z − z∗||z∗| dt

6 C sup
τ,t∈[0,1]

|x0 + tz∗ + τt(z′, 0)|α−2|z − z∗||z∗|

6 C2 tan β |x0|α

(3.14)

for any z ∈ Dx0,β , where C2 > 0 depends only on θ1 and θ2, and on v through the upper
bound (3.13).
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Finally, recalling the classical Euler formula for homogeneous functions, and that x0 = (0′, x0,N), we
can estimate (I) in (3.6):∫ 1

0

∇v(x0 + tz∗) · z∗ dt =

∫ 1

0

∇v(0′, |x0|+ tzN) · (0′, zN) dt

=

∫ 1

0

∇v(0′, |x0|+ tzN) · (0′, |x0|+ tzN)
zN

|x0|+ tzN
dt

=

∫ 1

0

αv(0′, |x0|+ tzN)
zN

|x0|+ tzN
dt.

(3.15)

By (3.4) and the homogeneity and the positivity of v in ΣeN ,θ2 , we know that

(3.16) v(y) > C|y|α for every y ∈ Θ.

Now we observe that, for any z ∈ Dx0,β ,

||x0|+ tzN | > |x0|/2,
zN

|x0|+ tzN
>

1
6
|x0|

3
2
|x0|

=
1

9
,

and (0′, |x0|+ tzN) ∈ Σx̂0,β . Hence, we obtain from (3.16) that

(3.17)

∫ 1

0

∇v(x0 + tz∗) · z∗ dt =

∫ 1

0

αv(0′, |x0|+ tzN)
zN

|x0|+ tzN
dt > C3|x0|α,

where again C3 depends only on θ1 and θ2, and on v through the lower bound (3.16).

Plugging (3.12), (3.14) and (3.17) into (3.6), we deduce that

(3.18) v(x0 + z)− v(x0) >
(
C3 − (C1 + C2) tan β

)
|x|α > C |x|α

for a positive constant C , provided that we chose β < β̄ sufficiently small. The values of C and of
β depend only on θ1, θ2, and on v through the estimates (3.7), (3.13), (3.16). Therefore (3.18) holds
with the same constant for every x0 ∈ ΣeN ,θ1 and z ∈ Dx0,β .

Now, in view of (3.18), we conclude as follows:∫
RN

(v(x)− v(y))2

|x− y|N+2s
dy >

∫
Dx,β

(v(x+ z)− v(x))2

|z|N+2s
dz

> C

∫
Dx,β

|x|2α

|z|N+2s
dz > C|x|2α−N−2s|Dx,β| > C|x|2α−2s

for every x ∈ ΣeN ,θ1 , as desired. �

Now, for the sake of simplicity, we suppose that

(3.19) 0 ∈ ∂Ω,

that θ ∈
(
0, π

2

)
and that the cone Σ−eN ,θ is exterior to Ω. Then we take 0 < θ̄2 < θ̄1 := θ < π/2,

so that
Σ−eN ,θ̄2 ⊂ Σ−eN ,θ̄1 ⊂ (RN \ Ω).

Notice that the admissible range of θ̄2 depends only on the opening θ. Setting θi := π − θ̄i, the
complement of Σ−eN ,θ̄i is ΣeN ,θi , with π > θ2 > θ1 > π/2. Let us consider the solution to

(3.20)


(−∆)sv = 0 in ΣeN ,θ2 ,

v > 0 in ΣeN ,θ2 ,

v = 0 in RN \ ΣeN ,θ2 .
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Existence and uniqueness of v, up to a multiplicative constant, are proved in [1, Theorem 3.2]. More-
over, it is also proved that v is α-homogeneous for some α > 0 depending on θ2 and on s. Since
θ2 > π/2, the cone ΣeN ,θ2 contains RN

+ , and by Lemma 3.3 and Example 3.2 in [1] we deduce that
α < s. Interior regularity theory ensures that v ∈ C∞(ΣeN ,θ2). Thus, as θ2 > θ1 and v is positive,
the restriction of v on ΣeN ,θ1 ∩ SN−1 is bounded from below and from above by positive constants.
By homogeneity, and recalling that v is uniquely determined up to a multiplicative constant, we can
suppose that there exists C0 > 1 such that

v(x) > |x|α for every x ∈ ΣeN ,θ1

and v(x) 6 C0|x|α for every x ∈ RN .
(3.21)

Notice that in this way the choice of v depends only on θ (recall that θ1 = π − θ̄1 = π − θ). With this
notation, we can now prove the following result:

Lemma 3.3. For R > 0, let us define

(3.22) zR := 2R−αv − v2.

Then, there exists C > 0 depending only on θ such that

(−∆)szR > C|x|2α−2s in ΣeN ,θ1 .

Proof. In light of Lemma 3.2, we can compute (notice that we omit the constant cN,s and the principal
value sense to simplify the notation)

−(−∆)szR(x) = −2R−α (−∆)sv(x)︸ ︷︷ ︸
=0

+(−∆)s(v2)(x)

=

∫
RN

v2(x)− v2(y)

|x− y|N+2s
dy

= v(x)

∫
RN

v(x)− v(y)

|x− y|N+2s
dy︸ ︷︷ ︸

=(−∆)sv(x)=0

+

∫
RN
v(y)

v(x)− v(y)

|x− y|N+2s
dy

=

∫
RN
v(y)

v(x)− v(y)

|x− y|N+2s
dy − v(x)

∫
RN

v(x)− v(y)

|x− y|N+2s
dy︸ ︷︷ ︸

=(−∆)sv(x)=0

= −
∫

RN

(v(x)− v(y))2

|x− y|N+2s
dy 6 −C|x|2α−2s

(3.23)

for any x ∈ ΣeN ,θ1 , with C > 0 depending only on θ and v. This gives the desired result. �

Since α < s, Lemma 3.3 suggests that zR can be used to construct a wall of upper barriers for u
in Ω ∩ BR. This is indeed exactly what happens in the classical case, but a similar statement does
not hold here, due to the nonlocal nature of the problem. Indeed, in order to apply the comparison
principle, we should control the sign of the function zR − u in the whole complement of Ω ∩ BR

and not only along its boundary. On the other hand, one cannot conclude directly in our case that
zR − u > 0 in the complement of Ω ∩ BR, since by (3.21) the function zR is negative if x ∈ ΣeN ,θ2

and |x| is very large. To overcome this problem, in what follows we define a suitable truncation wR of
zR, being careful enough so that the thesis of Lemma 3.3 still holds forwR, and moreoverwR−u > 0
in RN \ (Ω ∩BR).

To this purpose, let us consider the algebraic equation

(3.24) 2R−αt− t2 = 1
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which possesses the two solutions

(3.25) t1 = R−α −
√
R−2α − 1 and t2 = R−α +

√
R−2α − 1,

provided that R 6 1. We introduce the set

(3.26) DR := {x ∈ RN : v(x) > t2} =
{
x ∈ RN : v(x) > R−α +

√
R−2α − 1

}
.

Notice that, by (3.21), DR 6= ∅. Moreover, if R > 0 is sufficiently small, we have that

(3.27) if |x| 6
(

3

2C0

)1/α
1

R
then x 6∈ DR

and so, in particular,

(3.28) DR ⊆ RN \BR.

Now we construct the barrier needed for our purposes:

Lemma 3.4. Let zR be the function introduced in Lemma 3.3.

Let

(3.29) wR(x) :=

{
zR(x) if x ∈ RN \DR,

1 if x ∈ DR.

Then, there exist R̄ > 0 small enough and a constant C̄ > 0, both depending only on θ, such that

(3.30)


(−∆)swR > C̄|x|2α−2s in ΣeN ,θ1 ∩BR,

wR > 0 in RN \ ΣeN ,θ1 ,

wR > 1 in ΣeN ,θ1 \BR,

for every R ∈ (0, R̄].

Proof. First of all, we observe that

(3.31) wR > 0 in RN .

Indeed, if wR(x) < 0 then necessarily

(3.32) x 6∈ DR and 2R−αv(x)− v2(x) < 0.

The second inequality is satisfied if and only if v(x) > 2R−α. But 2R−α > t2, so that v(x) > 2R−α

implies x ∈ DR. This shows that the two conditions in (3.32) cannot take place simultaneously, and
proves (3.31).

Now we recall (3.28) and we write

ΣeN ,θ1 \BR = (ΣeN ,θ1 ∩DR) ∪
(
ΣeN ,θ1 \ (DR ∪BR)

)
.

We claim that

(3.33) wR > 1 in ΣeN ,θ1 \BR.

To this aim, we point out that ΣeN ,θ1 ∩ DR ⊆ ΣeN ,θ1 \ BR, thanks to (3.28), and so, by (3.30), we
obtain that wR > 1 in ΣeN ,θ1 ∩ DR. So, to complete the proof of (3.33), we focus now on the value
of wR on the points of ΣeN ,θ1 \ (DR ∪ BR). For this, we recall (3.24), (3.25) and (3.26), and we
observe that

(RN \DR) ∩ {wR < 1} = (RN \DR) ∩ ({v < t1} ∪ {v > t2})
= (RN \DR) ∩ {v < t1}
= {v < t1}.

(3.34)
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Now we remark that

(3.35) {v < t1} ⊆ BR.

Indeed, if v(x) < t1 = R−α −
√
R−2α − 1, then by (3.21) we know that |x|α < t1, i.e.

|x| <
(
R−α −

√
R−2α − 1

)1/α

< R,

which proves (3.35).

From (3.34) and (3.35), we deduce that

(RN \DR) ∩ {wR < 1} ⊆ BR.

As a consequence,

ΣeN ,θ1 \ (DR ∪BR)] ∩ {wR < 1} = ∅,

and therefore wR > 1 in ΣeN ,θ1 \ (DR ∪ BR) for every R sufficiently small, which completes the
proof of (3.33).

Now we focus on the inequality satisfied by the fractional Laplacian of wR in ΣeN ,θ1 ∩ BR. We first
observe that if x ∈ ΣeN ,θ1 ∩ BR, then x ∈ ΣeN ,θ1 \DR, thanks to (3.28), and so wR(x) = zR(x).
Using this and Lemma 3.3, we obtain that, for any x ∈ ΣeN ,θ1 ∩BR,

−(−∆)swR(x) = −(−∆)szR(x) +
[
(−∆)szR(x)− (−∆)swR(x)

]
6 −C|x|2α−2s +

∫
RN

zR(x)− zR(y)− wR(x) + wR(y)

|x− y|N+2s
dy

= −C|x|2α−2s +

∫
DR

wR(y)− zR(y)

|x− y|N+2s
dy

= −C|x|2α−2s +

∫
DR

1− zR(y)

|x− y|N+2s
dy

6 −C|x|2α−2s +

∫
RN\BC1/R

1 + |zR(y)|
|x− y|N+2s

dy

(3.36)

where in the last inequality we used (3.27) with C1 := (3/(2C0))1/α.

Notice also that, if y ∈ RN \BC1/R, then

R−α = C−α1

(
C1

R

)α
6 C−α1 |y|α.

Consequently, by (3.21),

(3.37) |zR(y)| 6 2R−αv(y) + v2(y) 6 C|y|2α for any y ∈ RN \BC1/R.

Furthermore, since R > 0 is appropriately small, we have

(3.38) |x− y| > |y| − |x| > |y| −R > |y|
2

for x ∈ BR and y ∈ RN \BC1/R.
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Plugging (3.37) and (3.38) into (3.36), we infer that

−(−∆)swR(x) 6 −C|x|2α−2s +

∫
RN\BC1/R

1 + |zR(y)|
|x− y|N+2s

dy

6 −C|x|2α−2s + C

∫
RN\BC1/R

|y|2α

|y|N+2s
dy

6 −C|x|2α−2s + C

∫ +∞

C1/R

r2α−2s−1 dr

= −C|x|2α−2s + CR2s−2α

for any x ∈ ΣeN ,θ1 ∩ BR. Hence, recalling that R > 0 is sufficiently small, that |x| < R, and
that α < s, we obtain that −(−∆)swR(x) 6 −C̄|x|2α−2s, for any x ∈ ΣeN ,θ1 ∩ BR, for an
appropriate C̄ > 0, as desired. �

Now we are in the position of completing the proof of Proposition 3.1.

Proof of Proposition 3.1. Let

ũ :=
u

max
{
‖u‖L∞(RN ), 1

} .
Notice that

(3.39) ũ 6 1 in RN .

Let also wR be the function introduced in Lemma 3.4. We claim that

(3.40) wR > ũ in Ω ∩BR

for R ∈ (0, R̄] (where R̄ > 0 is small enough, as given by Lemma 3.4). To prove (3.40), we observe
that, by Lemma 3.4 and (3.39), we know that

(3.41) wR > ũ in RN \ (Ω ∩BR).

Also, we set

(3.42) R := min

R̄2 ,
(
C̄ max

{
‖u‖L∞(RN ), 1

}
2‖g‖L∞(Ω)

) 1
2s−2α

 .

Notice in particular that R < R̄. Hence, using again Lemma 3.4 and (1.6), we have that

(−∆)s(wR − ũ)(x) > C̄|x|2α−2s −
‖g‖L∞(Ω)

max
{
‖u‖L∞(RN ), 1

}
> |x|2α−2s

(
C̄ −R2s−2α ‖g‖L∞(Ω)

max
{
‖u‖L∞(RN ), 1

})

>
C̄

2
|x|2α−2s

> 0

for any x ∈ Ω ∩BR.

This, (3.41) and the maximum principle, imply that wR > ũ in Ω ∩BR, i.e.

(3.43) u(x) 6 (1 + ‖u‖L∞(RN ))wR(x)
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for any x ∈ Ω ∩ BR. On the other hand, if x ∈ Ω ∩ BR, we deduce from (3.28) that x ∈ Ω \ DR,
and therefore, by (3.22) and (3.29),

wR(x) 6 2R−αv(x).

By inserting this into (3.43), we conclude that

(3.44) u(x) 6 2(1 + ‖u‖L∞(RN ))R
−αv(x)

for any x ∈ Ω ∩BR. Now we observe that, by (3.42),

(3.45) R−α 6

(
2

R̄

)α
+

(
2‖g‖L∞(Ω)

C̄ max
{
‖u‖L∞(RN ), 1

}) α
2s−2α

6 C
(

1 + ‖g‖
α

2s−2α

L∞(Ω)

)
,

with C depending only on θ (recall that R̄ depends only on θ). Therefore, recalling (3.44) and (3.21),
we conclude that

u(x) 6 C
(
1 + ‖u‖L∞(RN )

) (
1 + ‖g‖

α
2s−2α

L∞(Ω)

)
|x|α,

for any x ∈ Ω ∩BR, for some positive constant C depending only on θ.

The same argument can be repeated replacing u with −u, and so we conclude that, for any x ∈
Ω ∩BR,

(3.46) |u(x)| 6 C
(
1 + ‖u‖L∞(RN )

) (
1 + ‖g‖

α
2s−2α

L∞(Ω)

)
|x|α.

Now, take p ∈ Ω. We distinguish two cases, either dist(p, ∂Ω) < R or dist(p, ∂Ω) > R.

If dist(p, ∂Ω) < R, we consider p̃ ∈ ∂Ω to be a projection of p along ∂Ω. Up to a rigid motion, we
may also suppose that p̃ = 0 (hence we are in the normalized setting of (3.19)). In this way, we have
that

R > dist(p, ∂Ω) = |p− p̃| = |p|.
Hence, from (3.46), we have that

|u(p)| 6 C
(
1 + ‖u‖L∞(RN )

) (
1 + ‖g‖

α
2s−2α

L∞(Ω)

)
|p|α

= C
(
1 + ‖u‖L∞(RN )

) (
1 + ‖g‖

α
2s−2α

L∞(Ω)

)
dist(p, ∂Ω)α,

which establishes (3.1) in this case.

If instead dist(p, ∂Ω) > R, we have that

|u(p)| 6 ‖u‖L∞(RN ) = ‖u‖L∞(RN )

dist(p, ∂Ω)α

dist(p, ∂Ω)α
6
‖u‖L∞(RN )

Rα
dist(p, ∂Ω)α.

Then, the estimate in (3.1) follows in this case from (3.45). This concludes the proof of Proposition 3.1.
�

Thanks to the above results, we can now complete the proof of Theorem 1.5:

Proof of Theorem 1.5. Since u ∈ L∞(RN), we can restrict to the case when |x− y| is small, say

(3.47) |x− y| < R

4
,

with R > 0 defined in (3.42). It is also not restrictive to suppose that R < 2. We prove the thesis of
the theorem according to four different cases.

Case 1) Assume that

x, y ∈ Ω with dist(x, ∂Ω) >
R

2
.
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In this case, we have that BR/2(x) ⊂ Ω. In particular, by (3.47),

x, y ∈ BR/2(x) ⊂ Ω.

Therefore, by scaling the interior Hölder estimate in [39, Proposition 2.9], we deduce that for a constant
C > 0 depending only on θ

|u(x)− u(y)| 6 C

[(
2

R

)α
‖u‖L∞(RN ) +

(
R

2

)2s−α

‖g‖L∞(Ω)

]
|x− y|α.

Now, using (3.45), we obtain

|u(x)− u(y)| 6 C
[
(1 + ‖g‖

α
2s−2α

L∞(Ω))‖u‖L∞(RN ) + ‖g‖L∞(Ω)

]
|x− y|α,

which is the desired result in this case.

Case 2) Now assume that

x, y ∈ Ω with dist(x, ∂Ω) 6 d(y, ∂Ω) 6
R

2
and |x− y| > dist(y, ∂Ω)

8
.

Then, by Proposition 3.1,

|u(x)− u(y)| 6 2 max{|u(x)|, |u(y)|}

6 C
(
1 + ‖u‖L∞(RN )

) (
1 + ‖g‖

α
2s−2α

L∞(Ω)

)
dist(y, ∂Ω)α

6 C8αC
(
1 + ‖u‖L∞(RN )

) (
1 + ‖g‖

α
2s−2α

L∞(Ω)

)
|x− y|α,

as desired.

Case 3) Now we suppose that

x, y ∈ Ω with dist(x, ∂Ω) 6 dist(y, ∂Ω) 6
R

2
and |x− y| 6 dist(y, ∂Ω)

8
.

Let us set

ρ :=
dist(y, ∂Ω)

4
and ũ(z) := u(y + ρz).

We remark that if z ∈ B4 then

y + ρz ∈ B4ρ(y) = Bdist(y,∂Ω)(y) ⊆ Ω.

Hence, for any z ∈ B4, we obtain from (1.6) that

(−∆)sũ(z) = ρ2sg(y + ρz).

Accordingly, using the fact that α < s, we obtain that, for any z ∈ B4,

(3.48) |(−∆)sũ(z)| = |ρ2sg(y + ρz)| 6 ρα‖g‖L∞(Ω).

Moreover, thanks to Proposition 3.1, we have that

|ũ(z)| = |u(y + ρz)| 6 C
(
1 + ‖u‖L∞(RN )

) (
1 + ‖g‖

α
2s−2α

L∞(Ω)

)
dist(y + ρz, ∂Ω)α

6 C
(
1 + ‖u‖L∞(RN )

) (
1 + ‖g‖

α
2s−2α

L∞(Ω)

)
(dist(y, ∂Ω) + ρ|z|)α

6 C
(
1 + ‖u‖L∞(RN )

) (
1 + ‖g‖

α
2s−2α

L∞(Ω)

)
ρα (1 + |z|)α

for any z ∈ RN , up to renaming C > 0.
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As a consequence,

sup
B2

|ũ| 6 C
(
1 + ‖u‖L∞(RN )

) (
1 + ‖g‖

α
2s−2α

L∞(Ω)

)
ρα

and

∫
RN

|ũ(z)|
(1 + |z|)N+2s

dz 6 C
(
1 + ‖u‖L∞(RN )

) (
1 + ‖g‖

α
2s−2α

L∞(Ω)

)
ρα.

(3.49)

Estimates (3.48) and (3.49) allow us to apply Corollary 2.5 in [35], which implies that

(3.50) ‖ũ‖C0,α(B1/2) 6 C
[(

1 + ‖u‖L∞(RN )

) (
1 + ‖g‖

α
2s−2α

L∞(Ω)

)
+ ‖g‖L∞(Ω)

]
ρα.

Now we observe that
|x− y|
ρ

6
dist(y, ∂Ω)

8ρ
=

1

2

and so

z∗ :=
x− y
ρ
∈ B1/2.

As a consequence, we deduce from (3.50) that

|u(x)− u(y)| = |ũ(z∗)− ũ(0)|

6 C
[(

1 + ‖u‖L∞(RN )

) (
1 + ‖g‖

α
2s−2α

L∞(Ω)

)
+ ‖g‖L∞(Ω)

]
ρα
(
|x− y|
ρ

)α
,

which gives the desired result in this case.

Case 4) Finally, we consider the case in which

x ∈ Ω and y ∈ RN \ Ω.

By Proposition 3.1

|u(x)− u(y)| = |u(x)| 6 C
(
1 + ‖u‖L∞(RN )

) (
1 + ‖g‖

α
2s−2α

L∞(Ω)

)
dist(x, ∂Ω)α.

Since in this case dist(x, ∂Ω) < |x− y|, this completes the proof. �

4. MONOTONICITY AND QUALITATIVE PROPERTIES IN GLOBALLY LIPSCHITZ EPIGRAPHS

In this section, we give the proof of Theorem 1.1. Differently from the strategy adopted in [4], in our
case property (iv) is a direct consequence of the general result in Theorem 1.5.

The organization of this section is the following. In Subsection 4.1 we prove properties (i) and (ii)
in Theorem 1.1. Property (iii) is the object of Subsection 4.2. The uniqueness and the monotonicity
in xN are proved in Subsection 4.3 with a unified approach, simplifying the proof in [4]. Finally, the
general monotonicity property in point (vi) of Theorem 1.1 follows simply by a suitable rotation of
coordinates. We point out that, for such argument, the global Lipschitz continuity of the epigraph Ω is
needed.

Before proceeding, we observe that it is not restrictive to suppose from now on that

(4.1) µ = 1 in assumptions (f1)-(f3),

for the sake of simplicity. Moreover, we define

(4.2) M := sup
Ω
u.
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In this way, we have that 0 < u 6M in Ω. Accordingly, in (1.1) only the restriction of f on the interval
[0,M ] plays a role. Therefore, we can modify the definition of f outside [0,M ] without changing the
equation, and as a consequence from now on we can suppose that

(4.3) f is not only locally Lipschitz, but globally Lipschitz continuous,

and we denote by L its Lipschitz constant.

4.1. Uniform convergence of u to 1. Our goal now is to show that u < 1 in Ω, as claimed in
Theorem 1.1-(i) (and hence, comparing with (4.2), it follows that M 6 1).

Proof of Theorem 1.1-(i). In order to show that u 6 1 we can proceed as in [4], using Theorem 1.7.
For the strict inequality it is sufficient to observe that, being f(1) = 0, we are in position to apply the
strong maximum principle to the function 1− u. For further details, compare with [4, page 1095]. �

In the rest of the subsection we prove property (ii) in Theorem 1.1 (the local counterpart of this
strategy is contained in Section 3 in [4]).

Lemma 4.1. Let D be an open subset of RN , and let g be a locally Lipschitz continuous function.

Let v be a classical supersolution to
(−∆)sv > g(v) in D,

v > 0 in D,

v > 0 in RN \D.

Let also B be a ball with closure B contained in D, and let z be a classical subsolution to
(−∆)sz 6 g(z) in B ∩ {z > 0},
z 6 v in B,

z 6 0 in RN \B.
Then for any one-parameter continuous family of Euclidean motions {A(t) : 0 6 t 6 T} with
A(0) = Id and A(t)B ⊂ D for every t, it results that

zt(x) := z(A(t)−1x) < u(x) in Bt := A(t)B,

for every t ∈ [0, T ].

The proof of Lemma 4.1 is very similar to the one of [4, Lemma 3.1] and thus is omitted. It uses the
fact that (−∆)s is invariant under rigid motions and the strong maximum principle.

Exploiting Lemma 4.1 we can deduce a lower estimate for u far away from the boundary ∂Ω.

Lemma 4.2. There exist ε1, R0 > 0 with R0 depending only on N and δ0 (recall assumption (f2))
such that

u(x) > ε1 if dist(x, ∂Ω) > R0.

The proof of Lemma 4.2 here is a simple extension to that in [4, Lemma 3.2] and therefore is omitted.

We stress that if λ1(BR) denotes the first eigenvalue of (−∆)s in BR with homogeneous Dirichlet
boundary condition, then

λ1(BR)→ 0 as R→ +∞,
by scaling.

We are now ready to prove the counterpart of Lemma 3.3 in [4]. We observe that in this framework the
“localärgument cannot be directly extended, since the proof of Lemma 3.3 in [4] heavily relies on local
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properties of functions whose Laplacian has a sign, and this technique does not work in a nonlocal
setting. Therefore, to overcome such difficulty, we have to modify the approach in the following way.

Lemma 4.3. Let ε1, R0 > 0 be given by Lemma 4.2. Let y ∈ Ω with dist(y, ∂Ω) > R0, so that
u(y) > ε1. Let ε > 0 so small that (1 + ε)u(y) < 1. Let

δε,y := min {f(t) : t ∈ [ε1, (1 + ε)u(y)]} > 0.

Then, there exists C1 > 0 depending only on s and N such that

C1δε,y 6 [dist(y, ∂Ω)−R0]−2s .

Remark 4.4. Notice that the existence of ε is guaranteed by the strict upper estimate u < 1 in Ω,
thanks to Theorem 1.1-(i). The crucial fact in the lemma is that C1 does not depend on y and ε.

Proof of Lemma 4.3. Let v be the solution to{
(−∆)sv = 1 in B1,

v = 0 in RN \B1.

We claim that the thesis is true with C1 := maxB1 v = v(0). If not, we have

C1δε,y > [dist(y, ∂Ω)−R0]−2s ,

and hence there exists R > 0 such that

(4.4) C1δε,y >
1

R2s
> [dist(y, ∂Ω)−R0]−2s .

Notice in particular that R +R0 < dist(y, ∂Ω), and so

(4.5) BR(y) ⊂ {dist(x, ∂Ω) > R0}.
Let

z(x) := R2sδε,yv

(
x− y
R

)
.

Then, by scaling, we have that {
(−∆)sz = δε,y in BR(y),

z = 0 in RN \BR(y),

and the maximum of z is z(y) = R2sδε,yC1.

By (4.5), we are now in the position of exploiting Lemma 4.2: in this way, we have τz < u in BR(y)
provided τ > 0 is sufficiently small. Now we increase τ till we obtain a touching point, namely we let

τ̄ := inf{τ > 0 : τz(x0) = u(x0) for some x0 ∈ BR(y)}.
As a matter of fact, since z = 0 < u on ∂BR(y), we have that x0 lies in the interior of the ballBR(y).

By definition, and since z is radial and radially decreasing with respect to y,

u(x0) = τ̄ z(x0) 6 τ̄ z(y) = τ̄C1δε,yR
2s 6 u(y) < 1.

Using this we infer that u(x0) 6 u(y), and moreover τ̄C1δε,yR
2s < 1, which together with (4.4)

implies that τ̄ < 1.

We are ready to complete the contradiction argument: since u(x0) 6 u(y), by continuity there exists
a neighbourhood U of x0 such that

(4.6) u 6 (1 + ε)u(y) in U.
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Also, by Lemma 4.2 and (4.5), we have that u(x0) > ε1 and so, by continuity, we have that

(4.7) u > ε1 in a small neighborhood U ′ of x0.

Thus, in U ′′ := U ∩ U ′ we have that both (4.6) and (4.7) are satisfied. Therefore, by the definition of
δε,y,

(−∆)su = f(u) > δε,y in U ′′.

As a consequence, since τ̄ < 1,
(−∆)s(τ̄ z − u) 6 τ̄ δε,y − δε,y < 0 in U ′′,

(τ̄ z − u) 6 0 in RN ,

(τ̄ z − u)(x0) = 0,

which by the strong maximum principle implies that τ̄ z ≡ u. This is a contradiction with the fact that
u > 0 = τ̄ z on Ω \BR(y). �

Proof of Theorem 1.1-(ii). Let us assume by contradiction that there exist a sequence of points {yn} ⊂
Ω and some ρ > 0 such that

dist(yn, ∂Ω)→ +∞ and u(yn) ∈ (ε1, 1− ρ].

Then we can choose ε > 0 independent of n such that (1 + ε)(1− ρ) < 1 in Lemma 4.3, deducing
that

(4.8) 0 6 min
[ε1,(1+ε)u(yn)]

f 6 C−1
1 [dist(yn, ∂Ω)−R0]−2s → 0

as n→ +∞.

On the other hand, by assumption (f1),

min
[ε1,(1+ε)u(yn)]

f > min
[ε1,(1+ε)(1−ρ)]

f > 0

and this is in contradiction with (4.8). �

4.2. Boundary behaviour of the solution: lower estimate. In this subsection we describe the
growth of the solution near the boundary of Ω, proving point (iii) of Theorem 1.1. We point out that the
proof is completely different with respect to the one in [4] (proof of Assertion (c) in Theorem 1.2), where
an argument based on the construction of an explicit local barrier is used. Dealing with a non-local op-
erator, such an approach fails, and we should produce a global barrier on which explicit computations
are much more involved. To overcome the problem, we replace the barrier-argument with a conve-
nient geometric constructions, which permits to apply iteratively the Harnack inequality. This approach
seems to be applicable to a wide class of operators.

Proof of Theorem 1.1-(iii). Up to a translation, it is not restrictive to suppose that 0 ∈ ∂Ω. We start
with three simple consequences of the fact that Ω = {xN > ϕ(x′)} is a globally Lipschitz epigraph
(recall that K denotes the Lipschitz constant of ϕ).

1) Let
Σβ := {|x′| < (tan β)xN}

be an infinite open cone, with 0 < β < π/2. It is possible to choose β, depending only on the
Lipschitz constant K , so that if the vertex of Σβ is translated to any point of ∂Ω, then the cone is
included in Ω: that is there exists β̄ ∈ (0, π/4) such that

x0 + Σβ ⊂ Ω for every x0 ∈ ∂Ω and for every 0 < β < β̄.

In what follows we fix β ∈ (0, β̄).
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FIGURE 3. The set D in the proof of Theorem 1.1-(iii).

2) By the Lipschitz continuity of ϕ, and recalling that 0 ∈ ∂Ω (so that 0 = ϕ(0′)), from Lemma 4.2
and Theorem 1.1-(ii) it follows the existence of h1, h2 > 0 such that

u(x) > ε1 if xN > K|x′|+ h1 > ϕ(x′) + h1,

and u(x) > 2ε1 if xN > K|x′|+ h2 > ϕ(x′) + h2.
(4.9)

Here we implicitly suppose that ε1 < 1/2; if this were not the case, we can simply replace ε1 with a
smaller quantity. If necessary replacing h2 with a larger quantity, we can also suppose that

(4.10)
log
(

h2

1+sinβ

)
log (1 + tan β)

− log h1

log (1 + tan β)
> 1.

3) Finally we observe that

{xN 6 ϕ(x′) + h2} ∩ Σβ ⊂ {xN 6 K|x′|+ h2} ∩ Σβ,

and {xN 6 K|x′|+ h2} ∩ Σβ is bounded by construction.

We consider a point

(4.11) x0 = (0′, x0,N), with x0,N ∈ (0, h1).

Let D be a bounded domain of RN such that

{xN 6 K|x′|+ h2} ∩ Σβ ⊂ D ⊂ Σβ,

with ∂D \ {0} sufficiently smooth, see Figure 3.
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We introduce a continuous function v satisfying

(4.12)


(−∆)sv = 0 in D,

v = 0 in (RN \D) ∩ {xN < K|x′|+ h1},
v = ε1 in (RN \D) ∩ {xN > K|x′|+ h2},
0 6 v 6 ε1 in RN \D.

By the maximum principle, v > 0 in D, and hence by compactness there exists C̄ > 0 such that

(4.13) v(x) > C̄ for any x such that Bh1 sinβ(x) ⊆ D and xN > h1.

Also, by (4.9), we have that u > v in RN \ D. Furthermore, (−∆)su > 0 in Ω ⊃ D, thanks to
assumption (f1) and Theorem 1.1-(i). Therefore, by the comparison principle in Theorem 1.7, we find
that

(4.14) v 6 u in RN .

Recalling (4.11), let now r0 := |x0| sin β = x0,N sin β, and let us define

rk+1 := rk(1 + tan β) and xk+1 = xk +

(
0′,

rk
cos β

)
=

(
0′, xk,N +

rk
cos β

)
,

see Figure 4.

In this way Brk(xk) ⊂ Σβ for every k, and

(4.15) rk = r0(1 + tan β)k = x0,N sin β(1 + tan β)k.

As a consequence

xk,N = x0,N +
k−1∑
i=0

(xi+1,N − xi,N) = x0,N +
k−1∑
i=0

x0,N tan β (1 + tan β)i

= x0,N + x0,N tan β
(1 + tan β)k − 1

tan β
= x0,N (1 + tan β)k,

(4.16)

for every k ∈ N.

We claim that

there exists a first natural number k0 depending on x0 such that

xk0 ∈ {K|x′|+ h1 < xN} and Brk0
(xk0) ⊂ Σβ ∩Bh2 ⊂ D.

(4.17)

Thanks to (4.15) and (4.16), and observing that by construction x′k = 0′ for every k, we see that
k0 ∈ N has to be the minimum natural number satisfying

(4.18) x0,N(1 + tan β)k0 > h1 and x0,N(1 + sin β)(1 + tan β)k0 < h2,

that is

(4.19)
log
(

h1

x0,N

)
log (1 + tan β)

6 k0 6
log
(

h2

(1+sinβ)x0,N

)
log (1 + tan β)

.

Notice that such a k0 ∈ N does exist, thanks to (4.10). This proves (4.17).

Furthermore, we remark that

log
(

h1

x0,N

)
log (1 + tan β)

= µ1 − ν1 log(x0,N) and
log
(

h2

(1+sinβ)x0,N

)
log (1 + tan β)

= µ2 − ν2 log(x0,N)
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FIGURE 4. The geometry involved in the proof of Theorem 1.1-(iii).

for suitable µ1, µ2 ∈ R, and ν1, ν2 > 0, all depending only on h1, h2 and β. This and (4.19) say that

(4.20) µ1 − ν1 log x0,N 6 k0 6 µ2 − ν2 log x0,N .

The previous construction implies that we have finite sequences of points xk and radii rk, with k =
0, . . . , k0, such that

(4.21) Brk(xk) ⊂ D

for every k = 0, . . . , k0, and

|xk+1 − xk| = xk+1,N − xk,N =
rk

cos β
=

rk+1

cos β(1 + tan β)
=: ρβrk+1,

with ρβ < 1 independent of k.

From (4.12) and (4.21), we deduce that v is s-harmonic in Brk+1
(xk+1), for any k = 0, . . . , k0 − 1.

Hence, we are in position to apply the Harnack inequality in [11, Theorem 5.1], deducing that

v(xk+1) 6 sup
Bρβrk+1

(xk+1)

v 6 C̃ inf
Bρβrk+1

(xk+1)
v 6 C̃v(xk)
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for every k = 0, . . . , k0 − 1, where C̃ > 0 is a positive constant depending only on β.

Now we observe that
rk0 = x0,N sin β(1 + tan β)k0 > h1 sin β,

thanks to (4.15) and (4.18). Similarly,

xk0,N = x0,N (1 + tan β)k0 > h1,

thanks to (4.16) and (4.18).

As a consequence of this and of (4.13), we obtain that v(xk0) > C̄ . Therefore, using (4.14) and (4.20),
we obtain

u(x0) > v(x0) >
1

C̃k0
v(xk0) >

C̄

ek0 log C̃

>
C̄

eµ2 log C̃ · e−ν2 log C̃ log x0,N
= Cxρ0,N = C(x0,N − ϕ(x′0))ρ,

for some positive constants C, ρ depending only on β, K , h1 and h2.

This gives the desired point-wise estimate at the point x0, with x′0 = 0 and x0,N ∈ (0, h1) (re-
call (4.11)), and with constants C and ρ depending only on β, K , h1 and h2. Up to a translation, the
same estimate holds at any point of Ω, with vertical coordinate xN ∈

(
ϕ(x′), ϕ(x′) + h1

)
. That is,

translating Σβ (and hence D) along the boundary ∂Ω, the family {v(x − x0) : x0 ∈ ∂Ω} gives
a wall of lower barriers for u, providing the desired lower estimate at any point of {ϕ(x′) < xN <
ϕ(x′) + h1}, which completes the proof of Theorem 1.1-(iii). �

4.3. Uniqueness and monotonicity of the positive solution. This section is devoted to the proof
of point (v) in Theorem 1.1. Our approach is inspired by [4, Section 5], but we modify it in such a way
that the proof gives essentially in one shot both uniqueness and monotonicity of the solution. This
simplifies the argument in [4], and completes the proof of Theorem 1.1.

We start with the preliminary observation that, under our assumptions, solutions are bounded away
from 1 if the distance from the boundary is finite (recall (4.1)).

Lemma 4.5. For h > 0, let

Ωh := {ϕ(x′) < xN < ϕ(x′) + h}.
Then, any bounded solution to (1.1) is bounded away from 1 in Ωh, namely

sup
Ωh

u < 1.

Proof. Let u be a solution of (1.1), and let us suppose by contradiction that u(xn)→ 1 as n→ +∞
along a sequence {xn} ⊂ Ωh.

Let us consider then the sequence of translated functions un(x) := u(x+ xn). We observe that

(4.22) lim
n→+∞

un(0) = 1

and

(4.23)


(−∆)sun = f(un) in Ωn,

un = 0 in RN \ Ωn,

0 6 un 6 1 in RN ,

where
Ωn := {xN > ϕ(x′ + x′n)− xn,N}.
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Since ϕ is globally Lipschitz continuous, the translated epigraphs Ωn converge, up to subsequence, to
a limit epigraph Ω̄, which is still globally Lipschitz continuous. Notice also that Ωn satisfies a uniform
cone condition, with opening of the cone independent of n. Thus, by Theorem 1.5, the sequence {un}
is uniformly bounded in C0,α(RN), and hence converges locally uniformly in RN to a limit function ū ∈
C0,α(RN).

Thus, by (4.23) and the stability property of viscosity solutions [12, Lemma 4.5], we infer that ū is a
viscosity solution to

(4.24)


(−∆)sū = f(ū) in Ω̄,

ū = 0 in RN \ Ω̄,

0 6 ū 6 1 in RN .

Actually, arguing as in [33, Remark 2.3], we see that ū is a classical solution. Since also the function
constantly equal to 1 is a solution of the equation in (4.24) (recall that f(1) = 0), the strong maximum
principle implies that ū < 1 in RN .

This is in contradiction with the fact that ū(0) = 1, which follows from (4.22). �

In order to prove Theorem 1.1-(v), let us consider two bounded solutions u and v of (1.1). We show that
necessarily u > v. Exchanging the role of u and v we deduce also that v > u, whence uniqueness
follows.

For this, first of all we observe that, by Theorem 1.1-(ii), there exists A > 0 such that

(4.25) u(x), v(x) > t1 if dist(x, ∂Ω) > A,

where t1 was introduced in assumption (f3). Let

ΩA := {x ∈ Ω : dist(x, ∂Ω) < A} and ΩA := Ω \ ΩA.

Also, for τ > 0 let us consider
uτ (x) := u(x+ τeN).

As in [4, Lemma 5.1], we show that:

Lemma 4.6. If uτ > v in ΩA, then uτ > v in RN .

Proof. First of all, since Ω is an epigraph we have

(4.26) if x ∈ ΩA, then x+ τeN ∈ ΩA.

Now we notice that uτ > 0 = v in RN \ Ω. Thus, to establish the desired result, we have only to
prove that

(4.27) uτ > v in ΩA.

To this aim, we use (4.26) and we observe that{
(−∆)s(v − uτ )− cτ (x)(v − uτ ) = 0 in ΩA,

v − uτ 6 0 in RN \ ΩA,

where

cτ (x) :=


f(v(x))− f(uτ (x))

v(x)− uτ (x)
if v(x) 6= uτ (x),

0 if v(x) = uτ (x).

Now we claim that

(4.28) uτ , v > t1 in ΩA.
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Indeed, let x ∈ ΩA. Then x+ τeN ∈ ΩA, thanks to (4.26). Hence (4.28) follows from (4.25).

Now, since f is non-increasing in (t1, 1), we deduce from (4.28) that cτ 6 0 in ΩA, and by Lipschitz
continuity we have also cτ ∈ L∞(ΩA).

Moreover, it is clear that ΩA satisfies an exterior cone condition (since Ω does), and hence Theorem
1.7 and the strong maximum principle imply (4.27), as desired. �

Now, we aim at showing that uτ > v in RN for τ = 0. Thanks to Lemma 4.6, this statement is
equivalent to showing that uτ > v in ΩA for τ = 0.

By Lemma 4.5, we know that v 6 C with C < 1 in ΩA. Moreover, since u → 1 uniformly as
dist(x, ∂Ω) → +∞ (recall Theorem 1.1-(ii)), we have that uτ > v in ΩA for τ sufficiently large.
Therefore, we can define

(4.29) T := inf {τ > 0 : ut > v in ΩA for every t > τ } ∈ [0,+∞).

Remark 4.7. For the uniqueness, one could replace the previous definition of T with

inf{τ > 0 : uτ > v in ΩA},
as done in [4]. Nevertheless, as we will show later, definition (4.29) permits to perform the same
argument used for the uniqueness also for the monotonicity of u.

We are now in the position of completing the proof of Theorem 1.1-(v).

Completion of the proof of Theorem 1.1-(v). By continuity uT > v in ΩA. Hence, by Lemma 4.6,

(4.30) uT > v in RN .

Thus, if T = 0 the proof is complete. To rule out the possibility that T > 0, we argue by contradiction.

If T > 0, then there exist sequences 0 < τj < T and xj ∈ ΩA such that

(4.31) lim
j→+∞

τj = T > 0

and

(4.32) u(xj + τjeN) 6 v(xj).

Let us consider
uj(x) := u(x+ xj) and vj(x) := v(x+ xj).

As in Lemma 4.5, we have that, up to subsequences, uj → ū and vj → v̄ locally uniformly, and ū
and v̄ are solutions to (1.1) in a limit epigraph Ω̄.

We remark that, since xj ∈ Ω, the point 0 belongs to the approximating domains and therefore

(4.33) 0 belongs to the closure of Ω̄.

We also notice that

(4.34) ūT (x) := ū(x+ TeN) > v̄(x) for any x ∈ RN ,

thanks to (4.30). Furthermore, in light of (4.31), (4.32) and using the uniform convergence,

ūT (0) = ū(TeN) = lim
j→+∞

uj(τjeN) = lim
j→+∞

u(xj + τjeN)

6 lim
j→+∞

v(xj) = lim
j→+∞

vj(0) = v̄(0).
(4.35)

By (4.34) and (4.35), we conclude that

(4.36) ūT (0) = v̄(0).
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Now we claim that

(4.37) ūT > 0 = v̄ on ∂Ω̄.

To check this, we take p̄ ∈ ∂Ω̄. Then there exists x0 ∈ ∂Ω such that pj := x0 − xj → p̄ as
j → +∞. As a consequence, using the uniform convergence, we see that

(4.38) v̄(p) = lim
j→+∞

vj(p) = lim
j→+∞

vj(pj) = lim
j→+∞

v(pj + xj) = v(x0) = 0

and

ūT (p) = ū(p+ TeN) = lim
j→+∞

uj(p+ TeN) = lim
j→+∞

uj(pj + TeN)

= lim
j→+∞

u(pj + xj + TeN) = u(x0 + TeN) > 0,
(4.39)

since x0 + TeN ∈ Ω (here we are using that T > 0). Combining (4.38) and (4.39), we obtain (4.37).

Also,
(−∆)s(ūT − v̄)− cT (x)(ūT − v̄) = 0 in Ω̄,

where

cT (x) :=


f(ūT (x))− f(v̄(x))

ūT (x)− v̄(x)
, if ūT (x) 6= v̄(x)

0 if ūT (x) = v̄(x),

and cT ∈ L∞(Ω̄). Thus, the strong maximum principle and (4.34) imply that either ūT > v̄ in Ω̄, or
ūT ≡ v̄ in RN .

But the latter alternative is not admissible, due to (4.37). Therefore, we conclude that ūT > v̄ in Ω̄
and so, again by (4.37), in the closure of Ω̄. This is in contradiction with (4.33) and (4.36), hence the
proof of Theorem 1.1-(v) is complete. �

Proof of Theorem 1.1-(vi). We proceed exactly as for the uniqueness, but instead of comparing uτ
with v we compare uτ with u (indeed, v was just the generic solution, so the case v := u is admissi-
ble). In the end, we obtain that uτ > u in ΩA for every τ > 0, which by Lemma 4.6 yields the desired
monotonicity. �

5. MONOTONICITY OF SOLUTIONS IN COERCIVE EPIGRAPHS

This section is devoted to the proof of Theorem 1.3, which rests upon the moving planes method. We
introduce some notation: for λ ∈ R, we set

Tλ := {x ∈ RN : xN = λ};
Hλ := {x ∈ RN : xN < λ};
xλ := (x′, 2λ− xN) the reflection of x with respect to Tλ;

Aλ := the reflection of a given set A with respect to Tλ;

Σλ := Hλ ∩ Ω;

λ0 := inf
{
xN : there exists x′ ∈ RN with (x′, xN) ∈ Ω

}
.

The crucial remark is that, since we deal with a coercive epigraph, the set Σλ is bounded for every
λ ∈ R, even if Ω is unbounded. Therefore, one can adapt the proof of [27, Theorem 1.1], which
uses the moving planes method for fractional elliptic equations in bounded domains. For the reader’s
convenience, we recall the following weak maximum principle in sets of small measure, which we
conveniently re-phrase for our purpose.
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Proposition 5.1 (Proposition 2.2, [27]). Let D be an open and bounded subset of RN . Let c ∈
L∞(D) with ‖c‖L∞(D) < M , and let z be a solution to

(5.1)

{
(−∆)sz > c(x)z in D,

z > 0 in RN \D.

Then, there exists δ > 0 depending only on N , s and M such that if |D| < δ then z > 0 in D.

Remark 5.2. Consider a sequence of boundary value problems of type (5.1), with c = cn and D =
Dn, n ∈ N. If we have a uniform bound ‖cn‖L∞(Dn) < M , then Proposition 5.1 gives a threshold δ
independent of n.

Proof of Theorem 1.3. We set uλ(x) := u(x′, 2λ− xN) and wλ(x) := uλ(x)− u(x).

We aim at proving that wλ > 0 in Hλ for every λ > λ0, which gives the desired monotonicity.

For any λ > λ0, we have that 2λ− xN > xN in Σλ. Accordingly, the monotonicity of f in xN gives

(−∆)swλ(x) = (−∆)s(uλ(x)− u(x))

= f(x′, 2λ− xN , uλ(x))− f(x, u(x))

> f(x, uλ(x))− f(x, u(x))

= cλ(x)wλ(x)

(5.2)

in Σλ, with

cλ(x) :=


f(x, uλ(x))− f(x, u(x))

uλ(x)− u(x)
if uλ(x) 6= u(x),

0 if uλ(x) = u(x).

Notice that, thanks to the Lipschitz continuity of f and the fact that u ∈ L∞loc(RN), for any λ̄ > λ0,
there exists C > 0 such that ‖cλ‖L∞(Σλ) 6 C for any λ ∈ (λ0, λ̄].

For convenience, we now divide the proof into separate steps:

Step 1) We show that wλ > 0 in Σλ for any λ > λ0, with λ− λ0 small enough.

For this, let Σ−λ := {x ∈ Σλ : wλ(x) < 0}. We first show that

(5.3) wλ > 0 in Σλ for any λ > λ0, with λ− λ0 small enough,

i.e., that Σ−λ = ∅. To this aim, we argue by contradiction. If Σ−λ 6= ∅, we can define

(5.4) w1,λ :=

{
wλ in Σ−λ
0, in RN \ Σ−λ ,

and w2,λ :=

{
wλ in RN \ Σ−λ ,

0 in Σ−λ .

We observe that wλ = w1,λ + w2,λ, and that w1,λ 6 0 while w2,λ > 0. Exactly as in [27, Theorem
1.1, step 1], it is possible to show that (−∆)sw2,λ 6 0 in Σ−λ . Hence, by (5.2),{

(−∆)sw1,λ > cλ(x)w1,λ in Σ−λ ,

w1,λ = 0 in RN \ Σ−λ .

Thus, by the maximum principle in sets of small measure (see Proposition 5.1), we infer that, for
any λ > λ0 close to λ0, it results that wλ > 0 in RN . As a consequence, w1,λ = wλ > 0 in Σ−λ ,
which proves (5.3).

As a side remark, we notice that here we do not need u ∈ L∞(RN), but only u ∈ L∞loc(RN) (which
follows automatically by the definition of classical or even viscosity solution), since Σλ is bounded.
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Now we claim that

(5.5) if λ > λ0 and wλ > 0 in Σλ, then wλ > 0 in Σλ.

This is not a consequence of the strong maximum principle since the function wλ changes sign, by
definition.

By contradiction, let us suppose that there exists x0 ∈ Σλ such that uλ(x0) = u(x0). Since |x0 −
y| < |x0 − yλ| for every x0 ∈ Σλ and y ∈ Hλ, and wλ is positive in a subset of Hλ having positive
measure, we deduce that

0 = cλ(x0)wλ(x0) 6 (−∆)swλ(x0) = −
∫
Hλ

wλ(y)

|x− y|N+2s
dy −

∫
RN\Hλ

wλ(y)

|x− y|N+2s
dy

= −
∫
Hλ

wλ(y)

(
1

|x− y|N+2s
− 1

|x− yλ|N+2s

)
dy < 0,

where (5.2) was used, and so we obtain a contradiction.

This proves (5.5). Then, the desired result in Step 1 follows by combining (5.3) and (5.5).

Step 2) We show that wλ > 0 in Σλ for every λ > λ0. Let

λ̃ := sup{λ > λ0 : wµ > 0 in Σµ for every µ ∈ (λ0, λ̃)}.

By the previous step λ̃ > λ0. If λ̃ = +∞ the proof of Step 2 is complete, and hence we argue by
contradiction supposing that λ̃ < +∞.

By continuity and by (5.5) we have

(5.6) wλ̃ > 0 in Σλ̃.

Let us consider now

m := sup
λ∈(λ0,λ̃+1]

‖cλ‖L∞(Σλ).

This value is finite since u ∈ L∞loc(RN), f is locally Lipschitz, and Σλ̃+1 is bounded. Therefore, the
threshold δ = δ(N, s,m) for the maximum principle in domains of small measure in Proposition 5.1
is well defined (recall Remark 5.2).

Let us fix a compact set K b Σλ̃ such that

(5.7) |Σλ̃ \K| <
δ

2
.

By compactness and (5.6), we have that

inf
K
wλ̃ > 0.

Using this and (5.7), we have that, by continuity, there exists ε̄ > 0 small enough such that

(5.8) |Σλ̃+ε \K| < δ and inf
K
wλ̃+ε > 0

for every ε ∈ (0, ε̄).

Let now Σ−
λ̃+ε

:= Σλ̃+ε ∩ {wλ̃+ε < 0}. We observe that

(5.9) the measure of Σ−
λ̃+ε

is smaller than δ,

thanks to (5.8).
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Now, we consider the functions w1,λ̃+ε and w2,λ̃+ε defined as in (5.4) with λ := λ̃+ ε. Proceeding as
in Step 1, we can check that

(−∆)sw1,λ̃+ε > cλ̃+ε(x)w1,λ̃+ε in Σ−
λ̃+ε

.

We use this, (5.9) and the maximum principle in sets of small measure (see Proposition 5.1) to con-
clude that w1,λ̃+ε > 0 in RN for every ε sufficiently small.

As a consequence, recalling (5.4), we have that wλ̃+ε > w1,λ̃+ε > 0. Therefore, from (5.5) we
conclude that wλ̃+ε > 0 in Σλ̃+ε for any ε > 0 small enough, in contradiction with the definition of

λ̃. �

6. OVERDETERMINED PROBLEMS

This section concerns the study of the overdetermined problem (1.4), where Ω is a globally Lipschitz
epigraph, satisfying the additional flatness assumption (1.5). Regarding f , it satisfies (f1)-(f3) in the
introduction. As in the proof of Theorem 1.1, it is not not restrictive to suppose that µ = 1.

In particular, we now proceed with the proof of Theorem 1.4, which is the fractional counterpart of the
proof of Theorem 7.1 in [4], where the local case was considered.

Proof of Theorem 1.4. We claim that for any τ ′ ∈ RN−1

(6.1) Ω ⊆ Ω− (τ ′, 0) = {x : (x′ + τ ′, xN) ∈ Ω}.
To this extent, for τ = (τ ′, 0) fixed and h > 0, let us consider

Σh,τ := Ω− τ − heN = {x ∈ RN : (x′ + τ ′, xN + h) ∈ Ω}.
Since ϕ is Lipschitz continuous, for h > 0 sufficiently large we have that Σh,τ contains strictly Ω. In
other words, we can define the real number

(6.2) h∗ := inf {h > 0 : Σk,τ ⊃ Ω for every k > h} .
We claim that

(6.3) h∗ = 0.

To prove this, let us suppose by contradiction that h∗ > 0. Then there exist sequences 0 < hj < h∗

and xj ∈ Ω \ Σhj ,τ with
lim

j→+∞
hj = h∗ > 0.

By assumption (1.5), we infer that {xj} is bounded, and hence up to a subsequence xj → a, for
some a ∈ Ω \ Σh∗,τ ⊆ Ω \ Σh∗,τ .

On the other hand, by (6.2), we know that Σh∗,τ ⊇ Ω and therefore a ∈ ∂Ω∩∂Σh∗,τ . In other words,
the set Ω is internally tangent to Σh∗,τ in a.

Now, let us consider, for h > h∗,

uh,τ (x) := u(x+ τ + heN).

We claim that

(6.4) uh∗,τ > u in RN .

To this aim, we argue as in Subsection 4.3. First, we introduce A > 0 large enough, so that both u
and uh∗,τ are larger than t1 in ΩA := {dist(x, ∂Ω) > A} (t1 is defined in assumption (f3)).

Then, for any h > h∗, we have that uh,τ > t1 in ΩA, and uh,τ > 0 = u in RN \ Ω.
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By Lemma 4.5 and Theorem 1.1 applied to u, we know that uh,τ > u in ΩA = Ω \ ΩA if h is
sufficiently large. Therefore we can define

h̃ := inf{h > h∗ : uk,τ > u in ΩA for every k > h}.

If h̃ = h∗, then claim (6.4) follows from Lemma 4.6. On the other hand, if h̃ > h∗ it is not difficult to
obtain a contradiction as in Subsection 4.3, thus completing the proof of (6.4).

Moreover, by internal tangency, the outer normal to ∂Ω and to ∂Σh∗,τ coincide at the point a. Accord-
ingly, by the s-Neumann condition in (1.4) reads

(6.5) (∂ν)su(a)− (∂ν)suh∗,τ (a) = 0.

On the other hand, the function wh∗,τ := uh∗,τ − u satisfies{
(−∆)swh∗,τ − ch∗,τ (x)wh∗,τ = 0 in Ω,

wh∗,τ > 0 in RN ,

where

ch∗,τ (x) :=


f(uh∗,τ (x))− f(u(x))

uh∗,τ (x)− u(x)
if uh∗,τ (x) 6= u(x),

0 if uh∗,τ (x) = u(x).

Therefore, the Hopf lemma for the fractional Laplacian (see [28, Lemma 1.2]) gives

0 > (∂ν)swh∗,τ (a) = (∂ν)suh∗,τ (a)− (∂ν)su(a),

in contradiction with (6.5). This proves (6.3).

Using (6.3), we deduce that
Σ0,τ = Ω− τ ⊇ Ω,

which in turn implies (6.1).

Now, we deduce from (6.1) that the function ϕ is necessarily a constant, i.e. Ω is a half-space (and
this concludes the proof of Theorem 1.4).

Indeed, if by contradiction ϕ is not constant there exist x′1, x
′
2 ∈ RN−1 such that ϕ(x′1) < ϕ(x′2). Let

y := (ϕ(x′1) + ϕ(x′2))/2. Notice that ϕ(x′1) < y < ϕ(x′2), and therefore

(6.6) (x′2, y) 6∈ Ω and (x′1, y) ∈ Ω.

Thus, using (6.1) with τ ′ := x′2 − x′1, we obtain that

(x′1, y) = x1 ∈ Ω ⊆ Ω− (x′2 − x′1, 0).

By adding (x′2 − x′1, 0) to this inclusion, we find that (x′2, y) ∈ Ω, which is in contradiction with (6.6).

�
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