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Abstract 

In this paper we consider a piecewise bilinear collocation method for the solution 
of a singular integral equation over a part of the surface of the earth. This singular 
equation is the boundary integral equation corresponding to the oblique derivative 
boundary problem for Laplace's equation. We introduce special wavelet bases for 
the spaces of test and trial functions. Analogously to well-known results on wavelet 
algorithms, the stiffness matrices with respect to these bases can be reduced to 
sparse matrices such that the a;ssembling of the matrices and the iterative solution 
of the matrix equations become fast. Though the theoretical results apply only to 
integral equations with "smooth" solutions over "smooth" manifolds, we present 
numerical tests for a geometry as difficult as the surface of the earth. 

0 Introduction 

It is a well-known fact that usual finite element discretisations of linear integral equa-
tions (e.g. of boundary integral equations) lead to systems of linear equations with fully 
populated matrices. Thus, even an iterative solution method requires a huge number 
of arithmetic operations and a large storage capacity. In order to improve these finite 
element approaches, several new algorithms have been developed. For a relatively wide 
class of boundary integral equations, Rokhlin and Greengard [29, 15] have introduced their 
methods of multipole expansion, Hackbusch and Nowak [16] ( cf. also [30]) have considered 
panel clustering algorithms, and Brandt and Lubrecht [3] have set up multilevel schemes. 
Another approach for saving storage and computation time consists in employing wavelet 
bases of the finite element spaces. This idea goes back to Beylkin, Coifman, and Rokhlin 
[2], and has been thoroughly investigated by Dahmen, v.Petersdorff, Pro:Bdorf, Schneider, 
and Schwab [11, 12, 10, 13, 26, 25, 24, 31] (cf. also the contributions by Alpert, Harten, 
Yad-Shalom, Dorobantu, Kleemann, and the author [1, 17, 14, 7, 8, 28]). Note that all 
.the different algorithms from multipole expansion to wavelets seem to have a common 
multilevel background. 

The subject of the present paper is to apply the wavelet technique from [2] to the solution 
of a two-dimensional singular integral equation which corresponds to the oblique derivative 
problem for Laplace's equation. For the computation of the gravity field of the earth in 
geodesy, this equation has to be consider.ed over the surface of the earth or part of it 
( cf. Klees [19, 18] or cf. the similar equation for the Molodensky problem in Moritz [22], 
Section 43). If the underlying surface is smooth (piecewise continuously differentiable up 
to a certain order), then it is clear that the wavelet algorithms ( cf. [10, 25]) admit high 
order compressions. In addition., if the surface is piecewise analytic, then the algorithms 
are fast ( cf. [31, 25]). The surface of the earth, however, cannot supposed to be smooth. 
Thus, we will apply a wavelet algorithm for a complicated real-life geometry and report 
on numerical tests for a situation where no proofs are available yet. 

Following Klees [19, 18], we will describe the problem of oblique derivative, the correspond-
ing boundary integral equation, and its discretisation via piecewise bilinear collocation 
over uniform grids in Section 1. In Section 2 we will introduce the wavelet algorithm 
based on biorthogonal wavelets for the bilinear trial space ( cf. Cohen, Daubechies, and 
Feauveau [5] as well as their application in [26, 28]) and on wavelets defined by Harten 
and Yad-Shalom [17] for the space of test functionals ( cf. also the earlier paper by Brandt 
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and Lubrecht [3]). We will discuss two different compression schemes. The first one will 
be similar to that of Dahmen, Pro:Bdorf, Schneider, v.Petersdorff, and Schwab [10, 25]. 
For the number of degrees of freedom n, it admits a reduction from n 2 entries in the full 
matrix to n 413 entries in the compressed sparse matrix. Though this compression is not 
asymptotically optimal, we expect shorter computation times for n ::; 10 000. The second 
compression algorithm is a heuristic scheme including the determination of approximate 
values for some entries of the stiffness matrix. Section 3 is devoted to the quadrature 
algorithm for the computation of the stiffness matrix implemented in the numerical tests. 
The rules are based on singularity subtraction and graded meshes defined with the help 
of Duffy's transformation. We present further details of the algorithm and the results of 
the numerical tests in Section 4. For a 9 025 x 9 025 matrix, it turns out that, in order to 
keep the relative compression error less than 10-5 , it is sufficient to compute only 5% of 
the stiffness matrix. The computing time for a 2 025 x 2 025 system can be reduced from 
1005s (seconds) in case of the conventional finite element code to 405s for the wavelet 
algorithm. The saving of computing time is likely to be much higher for the 9 025 x 9 025 
system. Unfortunately, the main memory of 96 MB was not enough to perform the test 
for conventional finite elements. Finally, in order to understand the features of the matrix 
assembling, we present a modified quadrature algorithm for a model problem in Section 
5. For this, we estimate the quadrature error and the number of arithmetic operations. 
We will show that the n 413 entries of the compressed stiffness matrix can be computed 
with 0( n 513{log n }2) operations. A further reduction of the number of operations up to, 
roughly speaking, the number of entries in the compressed matrix will be indicated. Note 
that, in contrast to the quadrature algorithms in [25, 31], we do not use any analyticity 
assumption on the kernel or on the underlying geometry. 

In summary, the wavelet algorithm presented here provides a good tool for an improvement 
in computing time and storage requirements even for complicated geometries. However, 
the question remains open which of the fast methods from multipole expansion to wavelets 
is the best. For an answer, a lot of further numerical test would be necessary. From the 
theoretical point of view, panel clustering seems to be more suitable for the test example 
in consideration since the kernel function of the integral operator is, roughly speaking, the 
restriction of an analytic function in space to the complicated surface (The kernel function 
is the sum of products of such analytic kernels with non-smooth functions depending on 
one variable only!). If a Galerkin discretisation is chosen, then even the sparse grid 
methods of Zenger [32] can be applied successfully. This approach is closely related to a 
wavelet method where the higher dimensional wavelets are replaced by tensor products 
of univariate wavelets. 

1 The Boundary Element Method for the Solution of 
a Geodetic Boundary Value Problem 

1.1.' The Singular Integral Equation 

In this section we recall the boundary element approach of Klees [19, 18] ( cf. also [21], 
Section 23). The potential w of the gravity field in the external space na of the earth's 
body can be represented as a sum of a known reference potential w 0 and an unknown 
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difference 8w == w - Wo. If g == jVwl is given by measurements on the earth's surface 
. r and if a small ord~r term in the non-linear boundary condition I \7 ( &v + w0 ) I == g 1s 
neglected, then &vis the solution of the boundary value problem 

where 

0, in Oa, 
v, on r, 

- 92 
- 1Vwol2 

v :== 2 ' :;- :== \lwo. 

We seek a solution &v in ~orm of a single layer potential 

&v(z) := ~ I u(y) d r 
47r lr IY - zl Y 

(1.1) 
(1.2) 

(1.3) 

with a yet unknown density function ii on r. Substituting (1.3) into the boundary condi-
tion (1.2) and applying the jump relations for the derivative of the single layer potential, 
we arrive at to the singular integral equation 

1 _ _ _ 1 fr cos [T ( x), y - x] _ _ · 
-- cos[n(x),r(x)]u(x) + -4 p.v. I 12 u(y)dyr == v(x), x Er, 2 1f r y-x (1.4) 

where ii( x) denotes the unit normal of the surfacer at x pointing into na, and the integral 
over r is to be understood in the principal value sense (cf. (20]). By cos[fi(x),-T(x)] we 
denote the cosine of the angle between the vectors fi(x) and r(x) and cos[T(x),y- x] is 
defined analogously. Throughout this paper we will assume cos[fi(x), r(x)] > 0 for any 
x E r. This guarantees that the operator on the left-hand side of (1.4) is strongly elliptic 
( cf. [19, 20]). Moreover, we will assume that the null space of the operator is trivial. This 
together with the strong ellipticity implies the operator on the left-hand side of (1.4) to 
be invertiblein the space L2 (r). 

If we wanted to discretise the whole surface of the earth, any work station would be likely 
to collapse because of the enormous number of grid points we would have to take into 
account. Therefore, we restrict the domain to a rectangular part of r which we denote 
by the same letter. More precisely, r is the set of points with latitude between 48.60° 
and 56.65° and with longitude between 5.35° and 13.40°. The surface is given by a 0 1 

parametrisation F over the square S :== [O, 1] x (0, 1]. This parametrisation is the tensor 
product Overhauser interpolation ( cf. (23]) over a uniform rectangular grid. Using F, we 
arrive at the equivalent singular integral equation Au == v of the form 

1 . , 1 r cos[r(P), F( Q) - F(P)] I 

- 2cos[n(P),r(P)]u(P) + .41rp.v. Js IF(Q)- F(P)l 2 F (Q)u(Q)dqS == v(P), 

(1.5) 

where P runs over S, n(P) :== fi(F(P)), r(P) :== 1-(F(P)), u(P) := u(F(P)), v(P) :== 
v(F(P)),. and 

F'( Q) :== 18:uF(( x, y )) x 8yF(( x, y ))I (1.6) 
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for Q = (x,y) E S. Equation (1.5) is uniqu,ely solvable in L 2 (S), and we are going 
to solve it numerically by bilinear collocation. If uh denotes the approximate solution 
of u, then, to get an approximate value &uh(z) to the difference potential &u(z), we set 
uh(F(P)) := uh(P) and 

1 r uh(Y) 1 r uh(P) I 

&uh(z) := 47r lr IY - zl dyr = 47r ls IF(P) - zl F (P)dpS. (1.7) 

1.2. The Collocation Method 

In order to set up the collocation system, we introduce a basis of trial functions { cpf} and 
the collocation points {Pf}. We choose an integer N and set h := N~l' Xi := ih, i = 
0, 1, ... , N - l as well as P1 := Pf := (xi, Xj) for I EM:= {(i,j): i,j = 1, ... , N - 2}. 
Over the uniform grid { xi} on [O, 1], we define the scaled hat functions 

l { x-~i-l if Xi-1 < X < Xi 
N( ) Xi+1-x 'f 'Pi X := 1h, h 1 Xi < X < Xi+l 

V n 0 else 
(1.8) 

for i = 1, ... , N - 2. By taking tensor products, we obtain cp1{(Q) := cpf (x) · cpf (y) for 
I E J\li and Q = (x, y) E S. Note that the trial functions from the space Xh :=span{ cpf : 
I E M} vanish on the boundary of S. 

Now with the collocation method one seeks an approximate solution uh = EieM 6cp1{, 
6 E IR, which fulfills Equation (1.5) at least at the collocation points P1, I E M, i.e., 

Auh(P1) = v(P1), I EM. (1.9) 

Obviously, (1.9) is equivalent to the matrix equation Ahe = 71 with e := {e1heM, 71 := 
{m} := {hv(P1)}1eM and Ah := (h(Acpf)(PJ))J,IEM· The matrix Ah can be identified 
with the operator in the space Xh whose matrix with respect to the basis { cpf : I E M} 
coincides with Ah. The space Xh is a subspace of L2 (S). Now the collocation method is 
called stable if, for h sufficiently small, the approximate operators Ah are invertible and 
the norms llAh"1 ll.c(xh) are uniformly bounded. In other words, the collocation is stable 
if and only if the l 2 condition numbers of the matrices Ah are uniformly bounded with 
respect to h. The following theorem is due to Profidorf and Schneider [27]. 

Theorem 1.1 If the surface r is sufficiently smooth, then the piecewise bilinear collo-
cation method is stable. Moreover, if the exact solution u belongs to the Sobolev space 
H 2 over S and vanishes at the boundary of S, then there exists a constant G such that 
llu - uh llL2 ~ G h 2 holds for the approximate solutions uh of the collocation method. Fur-
thermore, for a fixed z Ena and &uh from {1. 7), the estimate ID.8&u(z)-D.8&uh(z)I ~ G h2 

is valid where D.8 denotes the partial derivative of multiindex f3 and the constant G depends 
on /3, z, and u but not on h. · 

Remark 1.1 Obviously, the error for the numerical approximations to the solution u of 
{ 1. 5) and to the potential &u is affected by the restriction of the boundary integral equation 
to a part of the earth's surface and by employing the Overhauser parametrisation defined 
over the same grid as the trial functions. Though a rigorous analysis of the collocation 
method would require the investigation of these influences, we will ignore them throughout 
the present paper. 
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2 The Wavelet Algorithm 

2.1. Basis Transformations and the Wavelet Transform of the 
Stiffness Matrix 

The wavdet algorithm for the bilinear collocation method relies on the introduction of two 
new wavelet bases which will be defined in the multilevel settings of the next subsections. 
The first is the basis { 'lj; I' I E JV} of wavelet basis functions in the space xh. The 
set N is a new index set with the same cardinality as M. This basis { 'lj; 1 , I E N} is 
chosen such that the functi.ons 'lj; r have a possibly small support and such that certain 
moment conditions are satisfied, i.e., the 'l/;r are orthogonal to polynomials of an order 
less than a certain prescribed number. Similarly, we chose a wavelet basis { {) 1 , I E N} 
in the space of test functionals spanned by the functionals of function evaluation at the 
collocation points. In fact, the {) r will be linear combinations of a small number of 
function evaluations. Analogously to the moment conditions for the 'l/;r, we require that 
these functionals vanish at polynomials of low order. We arrive at 

Xh == span{ <.pr, I E A1} 
span{h6p1 , I E A1} 

span{'l/;r, I EN}, 
span{ {)I, I E JV}. 

In view of these new bases, the collocation equation (1.9) is equivalent to 

(Auh, {) J) == (v, {) J), JEN, uh== L µ1'l/;1. 
IEN 

(2.1) 
(2.2). 

(2.3) 

The matrix equation Ahe == 77 can be replaced by Bhµ == v, where v :== {vJ} JEN :== 
{(v,{)J)}JEN and µ :== {µJ}JEN· The matrix Bh :== ((A'l/;1,{)J))J,IEN is called the 
wavelet transform of Ah. We define the basis transform Eh by Ehffr hEM == {µr hE.N 
for·~IEM6'Pr == ~JEJ.!µJ'l/;J and the basis transform Rh by Rh{vrhE.N == {171}rEM, 
where 171 :== hvh(Pr) and Vh is the unique function in xh with (vh,{)J) ==VJ. Then we get 
Ah == RhBhEh. 

Now the wavelet algorithm looks as follows. We solve the equation Ahe == 77 iteratively 
(e.g. by classical iteration, Jacobi's iteration or by GMRes)._ The main part of t~e com-
putation is spent for the multiplication of iterative solutions e or residual vectors e by the 
matrix Ah. In the wavelet algorithm, this step is done.by first multiplying l by Eh, then 
by Bh, and finally by Rh. As we will see in the next subsections, the basis transforms 
l 1--+ Eh[ and [ BhEh[] 1--+ Rh[ BhEhl] can be realized via fast pyramid type algorithms. 
For the multiplication by Bh, we will prove that, due to the moment conditions and the 
smallness of the supports of the bases {{)1, I E N} and {'l/;r, I E N}, the majority of 
entries in Bh is very small ( cf. Lemma 2.3). Thus, setting these entries equal to zero, we 
end up with a compressed matrix eh and the multiplication by Bh can be replaced by the 
multiplication with eh. The additional error due to the compression will be less than the 
discretisation error of the collocation ( cf. Theorem 2.1). Since the matrix eh is sparse, 
the multiplication by eh is fast. 

Remark 2.1 In some situations it is possible to solve Bhµ == v directly. For in$tance, 
if the transforms Eh, Rh are uniformly bounded in suitable Sobolev spaces and if the 
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norm of a trial function uh can easily be expressed in terms of its wavelet coefficients, 
then Bh admits a diagonal preconditioning and Ehµ = v can be solved with a number of 
iterations independent of the mesh size h. For details we refer to the papers by Dahmen, 
Kunoth, ProjJdorf, and Schneider {9, 12}. In the situation considered in the present paper, 
however, Rh will be unbounded and no diagonal preconditioner is known. In general, if the 
condition number of the original matrix Ah is uniformly bounded, then the actual value 
of the condition number of the wavelet transform Bh is often much worse even if it is 
uniformly bounded. For this case, the iterative solution of the original matrix equation is 
faster. 

In any case, the main part of the computing time for boundary element methods is spent 
for the calculation of the stiffness matrix. For the wavelet algorithm, we do not need 
the whole matrices Ah or Bh but only the compressed matrix Ch which saves a lot of 
computing time. However, this reduction in computing time is not so easy to achieve as 
it might seem at first glance. In fact, a sophisticated algorithm of quadrature is needed 
to guarantee small quadrature errors and to reduce the amount of work. We will discuss 
this issue in the Sections 3 and 5. 

2.2. The Bilinear Wavelets for the Trial Space 

0.6 Mother Wavelet -

0.4 

0.2 

0 

>. -0.2 

-0.4 

-0.6 

-0.8 

-1 

-2 -1.5 -1 -0.5 0 0.5 1.5 2 
x 

Figure 1: Mother wavelet 1f;. 

Set Ni= 3 · 2z + 1, l = 0, 1, ... and suppose the number Nin Section 1.2 is equal to NL 
with L ~ 1. Recall that h = NL1_ 1 • Similarly to the functions c.pf' and c.pfi,j) of Section L2, 
we define c.pft and c.p~:i), respectively. We begin with univariate wavelets and introduce 
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0.6 

-1 -0.5 0 0.5 
x 

Left Boundary Wavelet -

1.5 

Figure 2: Boundary wavelet 'l/Ja· 

2 

the shape function 'ljJ together with its boundary modifications 'l/Ja and 'l/Jb by ( cf. the 
Figures 1 and 2) 

{ 
~ Ix I - 1 if Ix I ::; 1 

'l/J ( x) . - 1 - ~ Ix I if 1 < Ix I ::; 2 
0 else , 

(2.4) 

{ 
'l/1~(1x_) x if 0 ::; x 

'ljJ a ( X) . - if - 1 < X ::; 0 
else, 

(2.5) 

'l/lb(x) .- 'l/la(-x ). (2.6) 

Then a multilevel basis of span{ cpf L, j = 1, ... NL - 2} is given as follows. We define 
basis functions on each level l = 0, ... , L. For l = 0, we easily take the hat functions 
{ cpf0 : i = 1, 2} on the coarsest grid. For l > 0, we take the dilated shape function 
x r-t 'l/1([3 · 2l]x) and shift it to each point of the difference grid {Nzi_1 : i = 1, ... , Nz -
2} \ {Nz_i

1
_ 1 : i = 1, ... , Nz_1 - 2}. In other words, we set 

'l/Jo,i(x) cpf0 (x), i==l,2==No-2, (2.7) 
'l/Jl,1(x) .- 'l/Ja ([3 · 2l] · X - l) ra:2l, l = 1, ... L, 

'l/Jz,i(x) 'ljJ ([3 · 2l] · x - (2j - 1)) ra:2l, j = 2, ... , Nz_1 - 2, l = 1, ... L, 

'l/lz,Nz_1-1(x) 'l/Jb ([3 · 2l] · x - (2[Nz-1 - 1] -1)) ra:2l, l = 1, .· .. L. (2.8) 

Now we set 

N .- {(l,t,i,j): l=O,t=l,i,j=l,2, (2.9) 
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l = 1, ... , L, t = 1, i = 1, ... , Nz_ 1 - 1, j = 1, ... , Nz_1 - 2, 
l = 1, ... , L, t = 2, i = 1, ... , Nz-1 - 2, j = 1, ... , Nz-1 - 1, 
l = 1, ... , L, t = 3, i,j = 1, ... , Nz-1 - 1} 

and introduce the two-dimensional wavelets as follows. We define basis functions for each 
level l E {O, 1, ... , L}. For l = 0, we take the tensor product hat functions (x,y) r--+ 
c.//0 (x)r.pf0 (y) with i,j = 1, 2 on the coarsest grid. Now let r.p stand for the univariate hat 
function · 

r.p(x) := { 1- 1 ~ 1 if lxl ~ 2 
0 else . 

(2.10) 

Then, instead of the univariate shape function 'lj; in the definition of ·univariate wavelets, 
we consider the three shape functions ( x, y) r--+ 'l/;( x )r.p(y ), ( x, y) r--+ r.p( x )'l/;(y ), and ( x, y) r--+ 
'l/;(x)'l/;(y). For each level l > 0, we take the dilated shape functions and shift them to 
the points of the difference grid { ( Nzi-l, N/_1) : i, j = 1, ... , Nz - 2} \ {( Nz_i1 _1, Nz!i-l) : 
i,j = 1, ... , Nz_1 - 2}. More exactly, we shift (x,y) r--+ 'l/;([3 · 2l]x) r.p([3 · 2l]y) to the 
points { (~~i, N~~ 1 ) }, the function ( x, y) r--+ r.p([3 · 2z]x )'l/;([3 · 2l]y) to { (N~~ 1 , ~=~) }, and 
(x,y) r--+ 'l/;([3 · 2z]x)'l/;([3 · 2l]y) to the points { (~~;, ~=~) }. In other words, we set (cf. 
the Figures 3 and 4) 

'l/;(0,1,i,j) r.pfo ( X )r.pf o (y)' (2.11) 

'l/;(Z,1,i,j) .- 'l/;z,i( X )r.pfZ-1 (y)' (2.12) 

'l/;(l,2,i,j) .- r.p~Z-l ( X )'l/;z,j(Y ), (2.13) 
'l/;(l,3,i,j) 'l/;z,i( x )'l/;z,i(y ). (2.14) 

It is easy to see that the functions 'l/;z,j, l ~ 1, j = 2, ... , Nr_1 - 2 are orthogonal to 
linear functions. Hence, the functions 'l/;1 = 'l/;(z,t,i,j) are orthogonal to bilinear functions 
if l ~ 1, t = 1 and i =f. 1, Nz_ 1 - 1 or if l ~ 1, t = 2 and j =f. 1, Nz_1 - 1 or if l ~ 
1, t = 3 and {i,j} i {1, Nz_ 1 - 1}. The functions {'l/;1, I E N} belong to the class of 
biorthogonal wavelets in the sense of [5]. More exactly, the functions without the boundary 
modification including 'l/;a, 'l/;b belong to this class. However, the boundary modification 
at the end points 0 and 1 of the interval is well known, too. Namely, the functions from 
span{r.pfL, j = 1; ... , NL - 2} can be extended to odd functions over [-1, 1] and further 
to 2-periodic functions over the real axis IR. The boundary function x r--+ 'l/;a(3 · 2z · x ~ 1) 
is the difference of the basis functions x r--+ 'lj; ( 3 · 2z · x - 1) and x r--+ 1/; ( 3 · 2z · x + 1) over 1R 
and, thus, the restriction of a natural basis function from the space of extended functions. 
This fact guarantees the boundedness of the wavelet basis transform also for the case of 
the interval. Note that the univariate function 'l/;t,j have been used also in (26, 28]. All 
properties of the functions.{ 'l/;1, I EN} mentioned in this subsection are well known from 
the theory of wavelets ( cf. [6, 4, 5]). 
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Lemma 2.1 a) The wavelet transform Eh introduced in Subsection 2.1 and its inverse 
E'i: 1 are bounded in the l2 operator norm and the bounds are uniform with respect to L 
{recall that h = N~l' N = 3 · 2L + l). 
b) The basis {?f11, I E JV} represents a hierarchical basis of Xh, i.e., for l = 1, ... , L one 
has 

{ Ni· .. - 1 N 2} -span cp i,j . i, J - , ... , z - - span { cp~-i : i, j = 1, ... , Nz_1 - 2} (2.15) 

EB span{?f11: I= (l', t,i,j) EN, l' = l}. 

This is a consequence of so called two-scale relations including the relations 

'lf1z,1 j = 1, ... , Nz-1 - 1, 

j = 1, ... , Nz-1 - 2, 

(2.16) 

(2.17) 

where we have to set cp~z := 0 and cp~~-l := 0 in (2.16) for j = 1 or j = Nz_1 - 1. As 
a consequence of Lemma 2.1, b) we obtain the following fast pyramid algorithm for the 
application of Eh. Suppose we are given the vector of coefficients {efi,i)' i,j = 1, ... NL-2} 
of the function UL = 2:: et,j)'P~J)• In view of (2.15) with l = L, we split UL = uL-l + VL 
such that uL-l = 2:: e(ij)cp~j)1 and VL = 2:: T/(L,t,i,j)?f1(L,t,i,j)· We have obtained the first 
wavelet coefficients T/(l,t,i,j) for l = L. In the next step we use (2.15) with l = L-l and split 

L-1 L-2+ L-1 h th t L-2 ""'tL-2 ·NL-2 d L-1 ""' ,./, Th' u = u v sue a u = L.J ~(i,j) 'P(i,j) an v = L.J T/(L-1,t,i,j) <fl(L-1,t,i,j)· is 
gives us the values T/(l;t,i,j) for l = L-1. Proceeding in t.he same fashion for l = L-2, ... , 1, 
we finally get all the coefficients T/(l,t,i,i) for l = L, ... , 1 and T/(o,1,i,i) = e(i,i). 

It remains to show that the splitting u1 = u1- 1 + v1 with u1 = 2:: e(i,j)'P~:j)' ul-l = 
2:: e(;,J) cp~:n1 ' and Vz = L: T/(l,t,i,j)?f1(z,t,i,j) can be done by a fast algorithm. To this end, 
we observe that the bases { cp~:i)}, { cp~:n1 

}, and { ?f1(z,t,i,j)} are tensor products of the 
one-dimensional bases { cpfz}, { cpft-l }, and { ?f1z,i}, respectively. Consequently, we only 
need to apply one-dimensional splittings. Indeed, for every i, we split 'Ej e(i,j)'Pfl(y) into 

L:i a(i,j)?f1Z,i(Y) + L:i /3(i,j)'Pfz-i (y), i.e., 

Le(i,i)'Pfz(x)cpfz(y) = La(i,i)'Pfz(x)?f1z.1(Y) + Lf3(i,i)'Pfz(x)cpfz-i(y). 
i,j i,j i,j 

Then, for any j, we split L:i a(i,i)'Pfz ( x) and L:i /3(i,j)'Pfz ( x) into the sums L:i r(i,i) ?f1z,i( x) + 
l:i 8(i,i)'Pfz-i ( x) and L:i c(i,i)'lf1z,i( x) + L:i C[i,i)'Pft-l ( x ), respectively. In other words 

L e(i,j)'Pfl( x )cpfl(y) L r(i,j) 'lf1z,i( x )?f1z.AY) + L <S(i,j)'Pfl-l ( x )?f11AY) 
i,j i,j iJ 

+ L c(i,j)'lf1z,i(x)cpfi-i(y) + L C(i,j)'Pfz-i(x)cpfz-1 (y). 
i,j i,j 

Setting e(i,}) = C[i,i), T/(z, 1,i,i) = c(i,i), T/(z,2,i,i) = <Ski), and T/(l,3,i,i) = r(i,i), we arrive at the 
two-dimensional splitting. 
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For the one-dimensional splitting, we have to determine {ai}, {/3i} from {ei} such that 

(2.18) 

If we substitute (2.16), (2.17) into the right-hand side of (2.18) and compare the coeffi-
cients of the c//z, we arrive at a tridiagonal linear system for the unknowns ai, f3i· This, 
however, can be solved with O(Ni) arithmetic operations. The whole algorithm for the 
multiplication by Eh requires no more than 0(22£) = O((NL - 2) 2) operations, where 
(NL - 2)2 is the dimension of the trial space. 

Remark 2.2 For the numerical tests, we modify the boundary wavelets 'l/;a and 'l/;b. We 
set 

if 1 < x < 2 
if 0 < x < 1 
if -1 < x < 0 
else 

(2.19) 

and 'l/;b(x) := 'l/;a(-x). Though we do not know whether Lemma 2.1 a) holds for this 
· modification, we have not observed any instability in the computations. The advantage 

of the modification is that we obtain the moment condition of order zero, i.e., the new 
boundary wavelets are orthogonal to constant functions. 

2.3. The Wavelets for the Test Space 

Retain the notation of N and Nz from the previous subsection and, in accordance with 
Section 1.2, set P(f,j) := (Nz~l' N/_1 ). We denote the functionals of function evaluation at 
P(f.!z.) by bpNz , i.e., we set (!, bpNz ) = J(P(~i·)). Now we introduce the wavelet functionals 

i,J (i,j) (i,j) '1 

as follows. We define the basis functionals for each level l E {O, 1, ... , L}. If l == 0, 
then we choose the bpNo with i, j = 1, 2. For l > 0, we define the basis functionals as 

(i,j) 

differences bp -5q, where Pisa point of the differ~nce grid {Pcf,j) : i,j = 1, ... , Nz - 2} \ 
{P(~j) 1 

: i,j == 1, ... , N 1_ 1 - 2} and Q is a neighbor point of Pon the grid {P(f,J): i,j = 
1, ... , Nz - 2}. If P = (~-_i, N~~ 1 ) with 2i < Ni - 1 then we choose the right neighbor 

Q := (N~~ 1 , N~~ 1 ). For P = (~-_i, N~~ 1 ) with 2i = Ni ~ 1, we take the left neighbor 

Q ·- (2i-2 2i ) . (~ _1.L)·. . th "d {PNi · .. -1 .,..r - 2} .- Ni-l' Nz-l smce Ni-l' Nz-l 1s no more 1n e gn (i,j) . i,J - , ... , 1vi . 

Similarly, we choose the upper neighbor Q := (Nz~l' N~~ 1 ) for P = (Ni~l' .~t~~) with 
• "l\T 1 ·11 h 1 • hb Q ·- ( i 2i-2 ) J: P - ( i 2j-l) "th 2J < lVl - as we as t e ower ne1g or .- Nz-l' Nz-l ior - Nz-l' Nz-l w1 

21· = Nz _,, 1. In other words, for J = (l, t, i, j) E 1V, we introduce the wavelet functio_nals 
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5Nz -5Nz 
p(2i,2j-1) p(2i,2j) 

5 Nz - 5 Nz 
p(2i,2j-1) p(2i,2j-2) 

5pNz - 5pNz 
(2i-1,2j-1) (2i-1,2j) 

if l == 0' t == 1, i' j == 1, 2 

if l ~ 1, t == 1, i, j == 1, ... , Nz-1 - 2 

if l ~ 1, t == 1, 

i == Nz-1 - 1, j == 1, ... , Nz-1 - 2 
if l ~ 1, t == 2' 
i, j == 1, ... , Nz-1 - 2 
if l ~ 1, t == 2, 

i == 1, ... , Nz-1 - 2, j == Nz-1 - 1 
if l ~ 1, t == 3, 

i == 1, ... , Nz-1 - 1, j == 1, ... , Nz-1 - 2 
5 pNz - 5 pNz if l ~ 1, t = 3, 

(2i-1,2j-1) (2i-1,2j-2) 

i == 1, ... , Nz-1 - 1, j == Nz-1 - 1. 

It is easy to see that span{'!?1, JEN} =span{h5pN, I EM}. 
I 

(2.20) 

In order to analyse the wavelet transform Rh, we introduce the bidual wavelet system. 
First, for each level l E {O, 1, ... , L}, we consider the uniform partition (0, 1] x (0, 1] == 
uNz-l ( i-l i ] ( j-l j ] Th f . . t t f t" th" i,j=l Nz-l, Ni-l x Ni-l' Nz-l . e space o p1ecew1se cons an unc 10ns over 1s par-
tition is ( Nz - 1) 2 dimensional. To get an ( Nz - 2) 2 dimensional space we enlarge the 
subdomains intersecting the right and the upper part of the boundary 8S. Thus, we 
consider the partition 

(0,1) x (0,1) LJNz-23Nz i,j=l i,j' 

l (~;!1' Ni~l) X ct~l' N/-1J 
( i-1 i+l ] x ( j-1 j ] 
Nz-1' Nz-1 Nz-1' Nz-1 

.- ( i-1 i ] x ( j-1 i+l ] 
Nz-1' Nz-1 Nz-1' Nz-1 

( i-1 i+l ] x ( j-1 i+l ] 
Nz-1' Nz-1 Nz-1' Nz-1 

(2.21) 
if i, j == 1, ... , Nz - 3 
if i == Nz - 2, j == 1, ... , Nz - 3 
if i == 1, ... , Nz - 3, j == Nz - 2 
if i == j == Ni - 2. 

The set of piecewise constant functions over this partition of level l is spanned by the 
functions XN(.z.)' i,j, == 1, ... , Nz - 2, where . i,J 

(2.22) 

Now we introduce a simple hierarchical basis for the space Yh :== span{xfL : I E M} of 
piecewise constant functions over the finest level. For the coarsest level l == 0, we take the 
x{i,j) with i, j = 1, 2. For l. > 0, we observe that the piecewise constant functions of level 
l over the square sfj-l are spanned by the level ( l - 1) function xf]-1 and the three level 
l functions x~z_ 1 ,21 + x~z_ 1 ,21_ 1 , x~~2i_ 1 , and x~z_ 1 ,21_ 1 . Thus, for each i,j, we take these 
three level l functions as basis functions. In other words, the hierarchical basis in Yh is 
given by 

W(O,l,i,j) .- X(i,0j)' i,j == 1, 2 (2.23) 
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W(z,1,i,j) 
Nz +Nz . 1 u 1 . 

X(2i-1,2j) X(2i-1,2j-1)' i = , · · ·, 1vz-1 - , J == 1, ... , Nz-1 - 2 
W(l,2,i,J) Nz . 1 7\T 2 . 

X(2i,2j-1)' i == , · · ·, 1vl-1 - , J == 1, · ·., Nz-1 - 1 

W(l,3,i,j) Nz · · _ 1 7\T 1 
.- X(2i-1,2j-1)' i, J - ' ... 'lV[-1 - ' 

l==l, ... ,L. 

For this basis it is not hard to verify that, for any I, JEN, there holds 

(2.24) 

and the projection Ph onto the space Yh interpolating at the points {P1, I E M} can be 
represented as 

Phf == :E hf(P1)x1/L == :E (f,{h)w1. (2.25) 
!EM JEN 

Now the matrix Rh of Subsection 2.1 is nothing else than the basis transform from {w1 } 

to {xf L}, i.e., Rhv == µ if °EJEN v1w1 == °EIEM µ1x1/L. In view of the uniform norm 
equivalence 

II L µ1xf L llL2(S) rv (2.26) 
!EM 

it is natural to supply the image space of Rh with the l 2 norm. Unfortunately, the 
analogous norm equivalence for the system { WJ} is not valid. We get 

Lemma 2.2 a) For the basis transform Rh E £(l2 (N), l2 (M)), there exists a constant G 
independent of L (recall that h == N~l' N == 3 · 2£ + 1) such that 

c-1-JL 5:. llRhll 5:. c-/L, 
c-12£ 5:. llRh'11l 5:. c2L. 

(2.27) 
(2.28) 

b) The basis {w1, JEN} represents a hierarchical basis of Yh, i.e., for l = 1, ... 'L, we 
get 

{ Ni . · · _ 1 7\T 2} -span Xi,j. i,J - , ... ,1vz- _ - span {xf,)-1 
: i,j = 1, ... , Nz_1 - 2} (2.29) 

EB span {w1: I== (l', t, i,j) EN, l' == l}. 

This fact is a consequence of the two-scale relations which include the relations (2.23) and 

Ni-1 _ 2 { Ni + Nz + Nz + Nz } -
X(i,j) - X(~i-1,2j-1) X(2i-1,2j) X(2i,2j-1) X(2i,2j) · (2.30) 

Proof. Since b) is easy to check, we only show a). Now and in the following, let G 
st_and for a general constant the value of which varies from instance to instance. Setting 
v = °EJEN v1w1 == °EIEM µ1xf L, we get Rhv = µ. From (2.25) we infer 

µ1 == hv(P1) == L v1hw1(P1). (2.31) 
JEN 
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The last sum contains no more than C · L terms different from zero and, for J -
(lJ, iJ,iJ,JJ), each term can be estimated by 

Iv JI· h ·sup lwJ(P)I :::=; CjvJj2lrL. 
p 

By the Cauchy Schwarz inequality, we conclude 

lµ1l2 < CL L 22(ZJ-L)lvJl2, 
JEN: wJ(Pr )#0 

I: lµ1l2 < CL I: 22(ZrL) lv1!2 L l. 
IEM JEN lEM:wJ(Pr)#O 

(2.32) 

(2.33) 

Taking into account that the support of WJ contains no more than c22CL-ZJ) grid points 
P1, we continue 

L lµ1l 2 :::=;CL L lvJl 2· (2.34) 
IEM JE./lf 

This proves II Rh II :::; c.JL. For the converse estimate, we choose VJ := 2-ZJ. A simple 
calculation yields llvll :::; CVL and lµrl ~ c2-L L for P1 on the difference grid {Pr, I E 
A1} \ {(NL~i-l'NL!1 _ 1 ), i,j = l, ... ,N£-1 - 2}. Hence, ·we conclude llµll ~CL and 
llRhll ~ CVL. 
Now we turn to R""h,1. Analogously to (2.31), we arrive at 

VJ= I: µr(xf L ,1Ji). (2.35) 
IEM 

In this sum the number of terms different from 0 is bounded by a constant. Each term 
can be estimated by lµrl2(L-ZJ), and the Cauchy Schwarz inequality yields 

IEM: (xr,t9J}#0 

L lvJl 2 < C L !µ112 L 22(L-lJ). (2.36) 
JEN IEM JE./\f: {xr,t9J};f0 

For fixed I E M and fixed lJ, 0 :::=; l; :::=; L, the number of J = (l1, t1,i1,]1) EN with 
(x1, {) 1) =J. 0 is bounded by a constant. Consequently, we obtain 

L 

L lv1l 2 < C L lµ1l 2 L 22(L-lJ), 
JE./\f IEM lj=O 

llvllz2 < 02Lllµllt2 (2.37) 

and 11Rh"1ll :::=; 02£. On the other hand, choosing µ1 := 2-L·for the coarse grid point 
P1 = (~, ~) and µr := 0 else, we arrive at llµll :::; 02-L and lvco,1,1,1)! ~ C. In other words, 
llvll ~ C and l!Rh" 1 11~02-L. 
<> 

Similarly to Eh, the basis transform Rh can be performed with the help of a fast pyramid 
scheme. Indeed, suppose we are given the vector of wavelet coefficients v = {v 1} JE./lf of a 
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function vL == LJEN VJWJ. In view of W(o,i,i,i) == xIT~i) and the relation (2.29) with l == 1, 
we compute the coefficients µ(i,i) of the representation v 1 == Li,i=l, ... ,N1 _ 2 µ(i,i)XIT~i) for the 
function v1 :== LF=o Lt,i,j V(z,t,i,j)W(z,t,i,i)· Next, in view of (2.29) with l == 2, we compute 
the coefficients µ(i,i) of the representation v 2 == Ei,j=l, ... ,N2 _ 2 µ(i,i)XK2i) for the fnnction 
v 2 :== Ei,j=l, ... ,N1 -2 µ(i,j)XIT~i) + L:t,i,j V(2,t,i,j)W(2,t,i,i)- Proceeding in this manner, we finally 
determine the coefficients µ(i,j) == µ(i,i) of the representation Li,i=l, ... ,NL-:-2 µfi,i)X~J) for 
the function vL :== L:i,j=l, ... ,NL_1 _ 2 µtj)X~J) 1 + L:t,i,i V(L,t,i,j)W(L,t,i,i)- Remark that, for 
each level l, the computation of the µ~i,i) from the µ(i,J) and the V(z,t,i,j) can be realised by 
substituting the two scale relations (2.23) and (2.30) into Li 3· µl(. ·)XNc·' ·) == Ei 3· µ

1(-:--~)XNc·'-:-)1 + , i,3 i,3 , i,3 i,3 

Lt,i,j V(z,t,i,j)W(z,t,i,i) and by comparing the coefficients of the functions x~~i)' In other words, 
on each level l, the vectors {µ(i,J)}(i,j) and {v(z,t,i,i)}(t,i,i) are to be multiplied by a matrix 
containing only a small number of non-zero entries in each row. By this way, the number of 
all arithmetic operations for the multiplication by Rh is less than 0(22£) == O((NL - 2) 2), 

where (NL - 2) 2 is the dimension of the test space. 

2.4. The Compression Schemes · 

In this section we describe two compression algorithms. For the first, the results and proofs 
are completely analogous to those given by Dahmen, Profidorf, Schneider, v .Petersdorff, 
and Schwab [12, 25]. Hence, we present the results and only those parts of the proofs 
which are necessary for the analysis of the quadrature algorithm in Subsection 5.2. We 
begin with an estimate for the entries of Bh. 

Lemma 2.3 Suppose the parametrisation F of the surface r is smooth. Then, for J == 
(l1, t1,i1,j1) and I== (l1, t1,i1,j1) fromN such that'lf;1 is orthogonal to bilinear functions, 
the entry b1,1 :== (A'lf;1,1h) of the wavelet transform Bh can be estimated as 

lb1,1I::; 2-3li-2lJ [dist (supp'Zf;1,supp191)r5
, (2.38) 

where supp 1/;1 and supp 19 J denote the supports of the function 1/;1 and the functional 
191, respectively. By dist(supp1/;1,supp191) we have denoted the distance between the sets 
supp 'lj; l and supp 19 J. 

Proof. Instead of repeating the rigorous proof of [12, 25], let us only explain, where the 
different factors in (2.38) come from. One factor 2-LJ is from the scaling factor [3 · 21J]- 1 

in the definition of (2.20). The second factor 2-lJ is due to the second term in the Taylor 
series expansion of the kernel function at a point P of supp 19 J. Indeed, applying 19 J to 
f :== A'lj; 1 and using that 19 J vanishes over constant functions, we get 

f(Q) f(P) + V'f(P') · (P - Q), 
j(f,[3·2lJ]191)I ::; CsupJV'f(P')I sup jP-Ql::;CsupjV'f(P')j2-zJ. (2.39) 

. QEsuppt9J · 

Similarly, writing (A1/;1,fh) == (1/;1,A*191) == J f'lf;1 with f :== A*'l9i, using the moment 
conditions of order two for the trial wavelet, and choosing P E supp 1/;1, we conclude 

. 1 
J(Q) == f(P) + V'f(P) · (P - Q) + 2V'2f(P') · (P - Q) · (P- Q), 
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j ~\72f(P') · (P - Q) · (P - Q),Pr(Q)dQ, 

< e sup l\72 f(P')l1 IP - Ql 2 l~1(Q)ldQ 
supp1/J1 

(2.40) 

< C sup l\72f(P')l2_ 2z11 l~1(Q)ldQ. 
supp1/J1 

Thus, a factor 2-2z1 in (2.38) is due to the second order moment conditions of the wavelet 
in the trial space and an additional 2-z1 arises from the scaling factor [3 · 2z1] = ~2 

in 
(2.8), (2.12)-(2.14) and from the measure meas(supp 'l/li) rv 2-2z1. Applying these Taylor 
series arguments to the integrand in (A~1,{h), it remains to estimate the third order 
derivatives of the kernel function K(P, Q) of the operator A for P between the points of 
suppfi1 and Q E supp~I· It is not hard to show that 

(2.41) 

Hence, the estimate of the kernel function leads to the factor [dist(supp ~1, supp fi J )]-5 in 
(2.38). 
<> 

Theorem 2.1 Suppose that the parametrisation F of the surface r is smooth and that 
the solution u and the right-hand side v of {1.5) belong to the Sobolev space H2 and vanish 
on the boundary of the domain S. Choose {3} /, and a such that~ ::; f3::; 1, 1 ::; / < ~' 
and a = ~ + f3. Let the compressed matrix eh = ( CJ,I )i,1EN be defined by 

·- { b1,I if dist ( supp ~I, sup. p fi J) ::; max{2-Z1, 2-ZJ, ( a2aL)2-.Blr"fl1} 
CJ,I .- 0 else (2.42) 

with a suitable constant a. If a is large enough, then there is an ho > 0 such that, for 
any h = N:-i < h0 , the operator Ah := [RhChEh] E £(Xh) is invertible and its inverse 
Ah"1 is uniformly bounded. Additionally, if uh denotes the solution of A.huh = vh with 
Vh = ~IEMhvh(P1)cp1, then ' 

II - II < c· -3h2 og i - 3 { 
{l h-1}3/2 f {3 - 1 

U Uh L2 _ a .Jl h l l og -. e se 
(2.43) 

and the number of non-zero entries in the (NL - 2) 2 X (NL - 2)2 matrix eh is less than 
ea2[(NL - 2) 2] 413 [log (NL - 2W = Ca2[h-2] 413 (log h-1]b} where 

{ 

2 if {3 = r = 1 
b : = 1 if f3 = 1 -j. · / or if/ = 1 -j. f3 

0 else . 
(2.44) 

Jn other words, if the matrix Ch is given and if the equation A.huh = Vh is solved by 
an optimal iterative algorithm, then an approximate solution with an error less than 
Ch2.jlog h-1 can be computed with no more than e[h-2]413 [log h-1]b arithmetic opera-
tions. 
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Proof. For a proof we again refer to [12, 25]. We only present that part of the proof 
which will be important for the treatment of the quadrature algorithm in Subsection 5.2. 
More precisely, for the stability and for the convergence estimate, we will prove 

with 0 :::; s :::; 2. After this, we will count the non-zero entries of Oh. 
To prove (2.45), we set Dh := Bh -Ch = ( dJ,I )J,IEN and get Ah -Ah == RhDhEh. In view 
of Lemma 2.2 and the estimate ( cf. e.g. [9]) 

:E lµ1l 22 2slr :::; Oii :E µ1'l/J1llH", (2.46) 
l=(lrh,ir,ir)EN !EN 

we have to estimate the matrix Dh, :== (dj, 1 )J,1EN E .C(l2(N)) with dj,1 :== dJ,12-szr. By 
Schur's lemma the norm can be bounded as follows. 

11Dh.ll.c(z2(N)) < max{o-1,0-2}, (2.47) 

0-1 .- sup [2zJ :E ldi,112-Zr] 
JEN !EN 

Set a* :== max{2-z1, 2-ZJ; (a2aL)2-.Blr'"Ylr} and <list :== dist(supp'l/;1,supp-z?J). Using 
(2.38) and (2.42), we get 

Applying 

we arrive at 

0"1 :::; G sup [2ZJ :E 2-3lr-2lJ dist-s2-sZ12-Z1] 
JEN !EN: dist>a. 

(2.48) 

< C sup [2-ZJ :E 2-Zr(2+s) :E dist-5r 2z1] 
JEN l1,tr (i1,j1): dist>a. 

(2.49) 

o-1 < G sup [2-ZJ :E 2-Zr(2+s)a;3] (2.50) 
JEN lrh 

< G sup [2-ZJ :E 2-l1(2+s) ( ( a2aL)2-.Blr'"Ylr )-
3] 

JEN , lr,tr 

< C sup [a-32-3aL2(3,8-l)ZJ t 2z1(3')'-2-s)] 
JEN lr=O 

< ca-32{-3a+(3,8-1)++(3')'-2-s)+}L '{ L if (31 - 2 - s) == 0 
1 else . 
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Here( ... )+ denotes the non-negative part of the expression( ... ). Analogously we obtain 

0"2 < e sup [ir L 2-3lr-2lJ dist-52-sZr2-ZJ] 
IEN JEN: dist>a* 

< e sup [2-(2+s)Zr L 2-lJ L d~st.-s2-2zJ] 
IEN lJ,tJ (iJ,iJ):dist>a* 

< e sup [2-(2+s)Zr L 2-ZJ ( ( a2aL)2-.Blr"fl1 )-3] 
IEN lJ 

< e sup [a-32-3aL 2 (3"f-2-s)l1 t 2zJ(3,B-1)] 
IEN lJ=O 

< ea-32{-3a+(3,B-1)++(3"f-2-s)+}L { L if (3(3 - 1) = 0 
1 else . 

(2.51) 

The choice a = (3 + ~ and the bounds (2.50) and (2.51) yield that II Dh ll.c(l2(J.!)) is less than 
ehmin{2,4- 3..,.+s} times maybe a logarithmic factor .L r-.J log h-1. This together with (2.46) 
and Lemma 2.2 implies (2.45). 

Now we count the number of non-zero entries in eh. For a fixed row corresponding to a 
fixed fh with J = (l1, t1,i1,]1), the number of non-zero entries is bounded by 

(2.52) 

L L L L 1 < e L 1 + e2-2lJ L 22Zr + e(a222aL)2-2.BlJ L 22(1-..,.)Zr. (2.53) 
I: dist:'.5a* lr=O lr=O lr=O 

Now we observe that there exist no more than e22ZJ test functionals at level l1. Summing 
up over all rows, i.e., over all J leads to the bound 

L e I: 22zJ I: 1 < 
lJ=O I: dist:'.5a* 

e L22L + ea22{2a+2(1-'Y)++2(1-,B)+}L ( 
L 2 if (3 = r = 1 
L if (3 = 1 =/= r 

1. 
or if (3 =/= 1 = r 

else 

(2.54) 

Thus, the estimate for the number of non-zero entries in eh is proved. 
<> 

Remark 2.3 An optimal compression eh of Bh to a number of non-zero entries less than 
e(NL-2)2 like for the Galerkin scheme in {31} (cf. also the almost optimal compression in . 
{12, 26]} seems to be impossible since the moment conditions for the wavelets are not strong 
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enough. However, we have chosen the test wavelets not to achieve optimal asymptotic 
orders of complexity but to develop a fast algorithm for the case (NL - 2)2 ::; 10 OOO. In 
certain parts (cf. Algorithm 3 in Subsection 4.1) of the matrix assembling the number 
of points in the test functionals appears as a factor for the computing time. This is the 
reason why we have chosen the particular wavelets presented in Subsections 2.2 and 2.3. 

Remark 2.4 From the Lemmata 2.2 and 2.1 we get llChll = llR;;1AhEh"1 ll ,-..,J 2L and 
llR/ill ,-..,J L. Thus, the multiplication of a certain vector eh by RhChEh can lead to an 
additional error of c2L L times the numerical error of eh· 

In the numerical computations we have tested several choices of f3 and r· Choosing 
/3 = ~ and r = ~ has turned out to be a little bit worse than the others. However, the 
compression rates (compression rate = number of all entries divided by the number of 
non-zero entries in Oh) have not differed too much. The numerical results presented in 
Section 4 are obtained with /3 = 1 and r = 1. The constant a has been determined by 
tests such that the additional error caused by the compression is less than a prescribed 
error. We will call the just defined compression (2.42) an a priori compression since the 
pattern of the compressed matrix is given a priori. 

In addition to the scheme (2.42), we will consider a second adaptive compression algorithm 
which we will call oracle scheme. For large systems, this scheme performs better than 
(2.42). However, we have not tried to prove asymptotic orders like in Theo~em 2.1. To 
motivate the oracle scheme, we apply Bh to the yet unknown solution uh = LIEN''f/I'l/;I. 
The resulting coefficients are given by [Bhuh]I =LIEN' bJ,I'T/I· Analogously to the Galerkin 
method, we seek Bhuh in a space with a norm "equivalent" to a negative Sobolev norm. 
In other words, for J = (l1, t1, i1,j1 ), we consider 

2-ZJ[Bhuh]J = L 2'-lJbJ,I'T/I· 
IEN' 

(2.55) 

Now the compression step from Bh to Oh restricts the last summation to a fewer number 
of terms. This should be accomplished in such a manner that the restricted sum is close 
to the complete sum in (2.55), i.e., such that the additional compression 'error leads to 
a small perturbation in the consistency estimate. In view of (2.55) we choose a positive 
threshold c and neglect those b1,I for which 12-zJbJ,I'T/II < c, i.e., we set 

c . ·= { b1,I if j2-zJb1,I'T/II 2:: c 
J,I · 0 else. (2.56) 

For a realisation of this scheme, we need an "oracle" to tell us the values of b1,I and 
'T/I· Clearly, it is sufficient to take "approximate" values which are of the same size. We 
replace the coefficient 711 of uh = LIEN' 'f/I'l/;I by the coefficients ilI of the right-hand side 
vh = LIEMhv(PI)'PI = LIEN'ilI'l/;I· The entries b1,I are replaced by an approximate 
value b1,I := (A{;I,ih), where A'l/;I in b1,I := (A'l/;I,fh) is replaced by a crude quadrature 
approximation A{;I. More precisely, we set 

(2.57) 
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-j;(l,2,i,j) 

;j;(l,3,i,j) 

where l = 1, ... , L. However, b1,1 is an acceptable approximate value for b1,1 only if the 
support of 'l/J1 does not intersect the boundary as of domains and if dist(supp 'l/J1, supp 1J J) 
> min{ diam(supp 'l/;1 ), diam(supp 1J 1 )}. Here, by diam(supp 'l/J1) and diam(supp 1J 1) we 
have denoted the diameters of the sets supp 'l/;1 and supp 1J 1, respectively. We arrive at 
the compression scheme 

CJ,! := or if supp 'l/J1 n as =f 0 ·or if 12-ZJ ( A'l/;1, 1J J) 7]11 ~ e . (2.58) l b1,1. if ~ist (supp'l/J1,supp1J1) ~ min{dia~(supp~1) ,diam(supp1J1)} 

0 else. 

Of course, this scheme and also (2.42) lead to O((NL - 2)4 ) arithmetic operations for the 
assembling of the (NL - 2) 2 x (NL - 2) 2 matrix eh if we check for each entry whether 
it is to be computed or not. For a fast algorithm, we will use the tree structure of 
the hierarchical wavelet basis. Namely, to any wavelet 'l/;1 with I= (l,t,i,j) on level l 
with 1 ~ l ~ L, there correspond four sons 'l/J1u 'l/;12 , 'l/;13 , and 'l/;14 on level l + 1, where 
11=(l+l,t,2i-1,2j-1),12 =(l+l,t,2i,2j-1),13 = (l+l,t,2i-1,2j), and 
/4 = (l + 1, t, 2i, 2j). We call 'l/;1 the father of 'l/J1k, k = 1, ... , 4. For the scheme (2.42), 
we observe that, if b1,1 is neglected, then also the entries b1,1k, k = 1, ... , 4 are neglected, 
i.e., c1,1 = 0 implies CJ,Ik = 0, k = 1, ... , 4. Consequently, if an entry is neglected, 
then all the entries corresponding to the sons, the sons of the sons and etc. can be 
neglected without any test whether the compression criterion is fulfilled or not. For the 
oracle scheme (2.58), we simply assume that this property is satisfied. We arrive at the 
algorithm for the determination.of the matrix pattern of eh presented as Algorithm 1. 
This is the algorithm which has shown better results in the numerical computations than 
the a priori scheme (2.42), i.e., for N5 = 97 we have obtained a higher compression rate 
with Algorithm 1. However, to check the compression criterion, a lot of kernel functions 
have to be evaluated. In the end, the computing times for both schemes are comparable. 

Remark 2.5 If the boundary wavelets are as in Remark 2.2, then the criterion supp 'l/;1 n 
a S :f. 0 in Algorithm 1 can be dropped. How ever, corresponding to the zero order moment 
condition, the definition of ,(/;1 in {2.51) is to be modified if supp 'l/;1 n as :f. 0. For l ~ 1 
and t = 1, 2, we have to set 

;j;(l,1,1,j) 3 . 2 - -8 N: - -8 N: [ l] 1 { 1 1 } 
2 p(1 :2i) 2 p(2:2j) 

(2.59) 

.- 3 · 2 - --8 N + -8 N [ . l] 1 { 1 1 } 
. 2 Pc2k_1 -a,2j) 2 P(2~z-i -2,2j) 

'l/J(l,2,i,1) [ l] 1 { 1 1 } · - 3 · 2 - -8 Nz - -8 Nz 
2 p(2i,1) 2 p(2i,2) 

;j;(l,2,i,Nz-1-l) [ l -1 { 1 1 } ·- 3 · 2] --8pNz + -8pNl · 2 (2i,2Nz_1 -a) 2 (2i,2Nz_1 -2) 
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do for any index J E N of test functionals 
do for h = 0, ... , L 

if l1 = 0 then 
do for any index I= (0, t, i, j) E JV of trial functions 

Compute CJ,I = bJ,I· 
end do 

else if l1 = 1 then 
do for any index I= (1, t, i, J.) EN of trial functions 

if dist(supp 'l/;1, supp {} J) ::; min{ diam(supp 'l/;1 ), diam(supp {} J)} 
or supp'l/;1n8S -j. 0or12-zJ(A-J;1,iJJ)i]II 2:: e then 
Compute CJ.I= ·bJI. 

' ' else 
Set CJ,I = 0. 

end if 
end do 

else if iJ > 1 then 
do for any index I= (h, t,i,j) EN of trial functions 

Determine 1' the index of the father of index I. 
if CJ,!' -f. 0 and 
if dist(supp 'l/;1, supp {} J) ::; min{ diam(supp 'l/;1 ), diam(supp {} J)} 

or supp'l/;1 n as i- 0 or 12-zJ(A,,J;1,ilJ)i7JI 2:: e then 
Compute c11 = bn. 

I l 

else 
Set CJ.I= 0. 

I 

end if . 
end do 

end if 
end do 

end do 

Algorithm 1: Algorithm of the oracle scheme. 

3. The Quadrature Algorithm for the Computation 
of the Stiffness Matrix 

In the present' section, we describe the quadrature rules which we have used for the 
numerical tests. A different quadrature algorithm has been introduced and analysed by 
Schneider, v.Petersdorff, and Schwab [31, 25]. This algorithm for the Galerkin method 
should apply also to collocation. However, it relies on Gau:B rules with variable degrees 
and requires the analyticity of the kernel and the underlying geometry. The quadrature 
rules we have implemented in the numerical tests of the present paper ( cf. also the similar 
quadrature algorithm for one-dimensional double layer equations in [28]) are easier than 
those of [31, 25].' Instead of composite GauB rules of variable order we apply ·composite two 
point rules. A proof for a similar quadrature scheme applied to a simple model problem 
will be presented in Section 5 ( cf. Theorem 5.3). Due to the use of mesh grading, the 
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quadrature procedures are not asymptotically optimal. However, at the end of Section 5 
we will give a remark on how to improve them. 

3.1. Quadrature Rules for the Collocation without Wavelets 

We have to define quadrature rules for the integral 

(3.1) 

where p is a collocation point, Uh is a bilinear function of Xh, and the kernel ( cf. (1.5)) 

K(P Q) ·= 1 cos[r(P), F(Q) - F(P)] F'(Q) 
' . 47r IF(Q) - F(P)l 2 

(3.2) 

is singular for Q = P. We denote the Frechet derivative of the parametrisation F by DF 
and introduce the main part H(P, Q) of the kernel K(P, Q) by 

H(P Q) ·= 1 cos[r(P), DF(P) · (Q - P)] F'(P) 
' . 47r IDF(P). (Q - P)l 2 • 

(3.3) 

Substituting K = H + (K - H) into (3.1) and applying singularity subtraction to the 
integral with the main part H, we arrive at 

Int = ls H(P, Q)dQSuh(P) +ls H(P, Q)[uh(Q) - uh(P)]dQS (3.4) 

+ fslK(P, Q) - H(P, Q)]uh(Q)dqS. 

In the last two integrals we employ a quadrature rule of the form 

(3.5) 

to get 

Int ~ 1 H(P, Q)dqSuh(P) + I; H(P, QK)[uh(QK) - uh(P)]w~ (3.6) 
S KEO 

+I: [K(P, QK) - H(P, QK)]uh(QK)wK, 
KEO 

Int f'V {1 H(P, Q)dQS - L H(P, QK)wK} uh(P) + L K(P, QK)uh(Q~)wK,(3.7) 
S , KEO XEO 

where the integral fs H(P, Q)dQS can be computed with the help of the formula 

la lb ex+ dy -------dydx = 
a-1 b-1 { ex2 + f xy + gy2}3/2 

2gc - fd 
1 

{ [2gb +fa+ 2y19../ea2 +Jab+ gb2](1 - a) 2 

-2 og 
v'9[4eg + !2] [2gb - f (l - a) + 2-19/ e(l - a )2 - f (l - a )b + gb2]a2 
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2g(l - b) - fa+ 2V§/ea2 - f a(l - b) + g(l - b)2 } 

. 2g(l--: b) + f(l - a)+ 2V§/e(l ~ a)2 + f(l - a)(l - b) + g(l - b)2 

_ 2 2ed - Jc log { [2ea + fb + 2Ve,Jea2 +Jab+ gb2](1 - b)2 

v'e[4eg + !2] [2ea - f(l - b) + 2ve/ea2 - fa(l - b) + g(l - b)2]b2 

2e(l - a) - fb + 2Ve,/e(l - a)2 - fb(l - a)+ gb2 } 

2e(l - a)+ f(l - b) + 2ve/e(l - a) 2 + f(l - a)(l - b) + g(l - b) 2 

The integrands Q r-+ H(P, Q)[uh(Q) - uh(P)] and Q r-+ [K(P, Q) - H(P, Q)]uh(Q) are 
weakly singular at the point Q = P. Nate that 

IH(P, Q)[uh(Q) - uh(P)]I:::; OIQ - Pl-1
, 

l[K(P, Q) - H(P, Q)]uh(Q)I:::; OIQ - Pl-1 . 

(3.9) 

Therefore, we have to choose a rule (3.5) which depends on the singularity point P and 
is accurate for integrals of weakly singular functions. 

To set up (3.5), we will give a rectangular partition of S which is adapted to the singular 
behaviour of the integrand and to the uniform grid which has been used for the definition 
of the trial space. From this partition, we obtain (3.5) by taking the tensor product of 
the two point Gaufi rule over each subdomain. Thus, to define the underlying partition in 
dependence on the collocation point, we fix P = ( xp, yp) = ( iph, jph) and· consider the 
eight parts of the domain S obtained by cuts along the straight lines through P parallel 
to the sides and diagonals of S. For symmetry reasons, it is sufficient to present the 
partition over one of these eight parts. In other words, we restrict the consideration to 
S' :=Sn {(x, y) : xp :::; x, 0 :::; y-yp :::; x - xp} and define those rectangular subdomains 
of the partition which intersect S'. The first term of the asymptotics at P far the singular 
integrands in (3.4) takes the form 

if?( YQ - YP) . 1 ' (3.10) 
XQ - Xp XQ - Xp 

where Q = ( XQ, YQ) E S' and if? stands for a continuous function. For this kind of 
integrands, we apply two concepts: 

i) An appropriate quadrature partition for singular functions containing factors like 
if?(~q=~:) is generated by Du:ffy's transformation. Roughly speaking, this means 
that, to a step size hx in x direction at x = XQ, there should correspond a step size 
hy:::; hx(XQ - xp) in y direction. 

ii) Since the derivatives of the trial functions have jump discontinuities along the lines 
of the uniform rectangular partition with mesh size h, the quadrature partition 
should be a refinemei:it. of this uniform grid. 

Combining these ideas, we get the partition as follows. We consider the uniform partition 
NL-2-ip min{NL-2-jp,i} 

S' c LJ LJ Si,j, (3.11) 
i=O j=O 

Si,i .- {(xQ, YQ) : ih < XQ - Xp < (i + l)h, jh < YQ - YP < (j + l)h} 
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and divide each square Si,j· For the subdomain So,o adjacent to the singularity point P, 
we apply Duffy's transformation to get 

1d:p+h 1yp+h 
f(x, y)dydx 

Xp YP 
(3.12) 

f fox f(xp+x,yp+y)dydx+ ff f(xp+x,yp+y)dxdy 

= lh f J(xp + x,yp + zx)xdzdx + lh f J(xp + zy,yp + y)ydzdy 

NL-1 h ih . NL-1 h ih 
~ l ji-i)hf(xp+x,yp+zx)xdzdx+ ~ l t.~i)hf(xp+zy,yp+y)ydzdy. 

In accordance with this splitting, we set kg•0 := 2(NL - 1) and introduce 

So,o,k .- {(xp+x,yp+zx): o:::;x:::;h, (k-l)h<z<kh}, (3.13) 
So,o,NL-l+k ·- {(xp + zy,yp + y): 0:::; y:::; h, (k- l)h < z < kh} ,k = 1, ... , NL -1. 

In the case of. Si,i with i > 0, we leave the subdomain unchanged and set k~,i := 1 and 
Si,i,l = Si,i· For Si,j and i > j, we do not change. ~he step size hx = h in x-direction but 
reduce the step size in y-direction. We define k~'3 to be the smallest integer greater or 
equal to ~~~ 1 and introduce 

{ 
h h } . . . 

Si,i,k := · (x,y) E Si,i: (k -1) k~·i < y-yp -jh < kk~·i , k = 1, ... ,k~·1 • (3.14) 

Note that the step size hy = h/k~·j is chosen in accordance with i), i.e., hy:::; h[(i + l)h]. 
Finally, we arrive at the partition . 

NL-2-ip min{NL-2-jp,i} k~,j 

S' ~ LJ LJ LJ Si,j,k· (3.15) 
i=O j=O k=l 

The rule (3.5) is the composite quadrature rule with a tensor product two point Gaufi rule 
over each subdomain Si,j,k of S' and over each similar subdomain defined for the seven 
other parts of S. Of course, for the square So,o and its subdomains So,o,k, the Gaufi rule 
is meant to be applied to the 2(NL -1) integrals on the right-hand side of (3.12). 

Remark 3.1 Note that the quadrature rule can be improved, i.e., the same accuracy can 
be achieved with fewer quadrature knots. For details we refer to Section 5 and, especially, 
to Remark 5.1. . 

3.2. Quadrature Rules for the Wavelet Algorithm 

The quadrature rule for the wavelet algorithm is very similar to that of Subsection 3.1. 
Now the quadrature rules are to be applied to the last two integrals in (3.4), where 
uh E Xh is spanned by some but not all of the wavelet basis functions 'l/;1. Since we will 
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use a composite rule of tensor product two point Gau:B rules, we only have to define the 
partition. 

Consider a fixed collocation point P. This point belongs to the support of at most 
2L + 3 test functionals {} l. Let us denote them·· by {} li , {} 12 , ••• , {} lm.. In view of the 
compression, we have to compute (3.4) for uh in the span Zh of all 'lj;1, I EN such that 
there exists a non-zero entry c1i,l, 1 ::; i::; m of oh. Thus, analogously to point ii) of the 
previous subsection the underlying partition of the quadrature should be a refinement of 
the partition PartL for which the functions of Zh are smooth on each subdomain. More 
precisely, the partition PartL is defined recursively in the following way. For L == 1, we 
set Part1 == {Ti,j: i,j == 1, ... , Ni - 1} with Ti,j :== {(x,y): ~:~1 < x < N

1
i_1 , J:~1 < 

y < N/_1 }. If Part1-1 is given, then Partz is the refinement of Part1_1, where only those 
subdomains are divided into four equal squares for which there exists a non-differentiable 
function in Zh or which are adjacent to P. 

To get the refined partition of the quadrature, we leave the squares of PartL with side 
length greater than h unchanged and divide the squares with side length h by the same 
manner as in Subsection 3.1. ·Finally, we define the composite quadrature rule over this 
partition by taking the tensor product two point Gau:B rule over each subdomain. 

Since we have started from the partition PartL which is much coarser than the uniform 
partition (3.11), the number of quadrature knots will be smaller than that for the rule in 
Subsection 3.1. This is the essential point which leads to a reduction in computing time 
for ·the assembling of the stiffness matrix. 

4 The Numerical Tests 

4.1. The Algorithm for the Assembling of the Stiffness Matrix 

Since the time for the set up of the matrix is much longer than that for the iterative 
solution of the matrix equation, we consider the assembling of the matrix in more de-
tail. Instead of the scaled stiffness matrix Ah == (hAc.p1(P1))1,lEM we compute Ah :== 
(Ac.p1(P1))1,lEM, and instead of the compressed matrix Oh of the scaled wavelet trans-
form Bh == ( (1J1, A'l/;1) )1,JEN we set up the compressed matrix o;: of the matrix B't'; :== 
(([3 · 211 ]1J1,A'lj;1))1,1E.Af· In other words, we have to compute the entries a[,1.';::3Ac.p1(P1) 
with I, J E J\ll of the collocation matrix without wavelets by (cf. (3.7)) 

a[,1 == L K(P1, QK)c.p1(QK)wK + (4.1) 
KEO 

[-~ cos[n(P1), r(P1)] + r H(P1, Q)dQS - L H(P1, QK)wK] 51,J 
2 Js KEO . 

and the non-zero entries c[,1 ';::3 ([3 · 211 ]1J1, A'l/;1), I, JEN of the wavelet algorithm by 

c1J,1 L K(P],QK)'l/;1(QK)wK-{! L K(P],QK)'l/;1(QK)WK ·(4.2) 
KEO KEO 

+ [-~ cos[n(PJ), r(Pf)] + r H(P]' Q)dQS - L H(PJ' QK)wK] 1/;1(Pf) 
2 Js KEO 
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-e [-~ cos[n(P]), r(P])] + r H(PJ, Q)dqS - L H(PJ, QK)wK] 'l/JI(PJ), 
2 Js KEO 

where PJ, PJ are defined such that ([3 · 2L1 ]fi1, f) = J(Pf) - ef(PJ) with g = 0 for 
I = (0, 1, i, j) and with g = 1 else ( cf. (2.20) ). The most time consuming elements of 
the algorithm are the evaluations of the kernel function which include several Overhauser 
interpolations and transitions from spherical coordinates to the parameter coordinates 
over the square S. One computation of a kernel function requires more than twenty 
times the time of a single evaluation of a wavelet function. Therefore, we have to arrange 
the do loops in such an order that the number of kernel evaluations is minimised. For 
the algorithm without wavelets, this leads to the scheme of Algorithm 2. Proceeding 
analogously, the wavelet algorithm looks as in Algorithm 3. The essential parts in the 
Algorithms 2 and 3 are the do loops over the quadrature knots Qk. Comparing these, we 
observe that the wavelet algorithm contains an additional do loop over the functionals fi i 
with P1 E supp fi i· In view of this loop, we have chosen the test wavelets fi i as linear 
combinations of only two Dirac delta functionals. Hence, for this choice, the loop over the 
fi I is in the average over two items. On the other hand, to the do loop over two functions 
'PI with 'PI( Qk) =f. 0 in Algorithm 2, there corresponds a do loop over more than two 
functions 'l/JI with 'l/JI( Qk) =f. 0 in Algorithm 3. The greater the number of vanishing 
moments, the larger is the support of the wavelets and the larger is the number of 'l/JI 
not vanishing at Qk. Though the higher compression for wavelets with more vanishing 
moments reduces the number of 'l/JI with 'l/JI(Qk) =f. 0 and J E Nu(P1), we believe that the 
number of vanishing moments should not be too large, and we have chosen two vanishing 
moments in Subsection 2.2. Nevertheless, the additional do loop over the fi1 and the 

do for any collocation point P1, I E M 
do for any 'PI with J EM 

Set the initial value for the matrix entry a[,I equal to zero. 
end do 
Compute d1 := -~ cos[n(P1), r(P1)] + fs H(P1, Q)dqS by (3.8). 
Determine the knots Q K and the weights WK, K E 0 of the quadrature 
rule (3.5) in dependence on P1. 

******************************•**************** 
do for any quadrature knot QK with KE 0 

Compute [H(P1, QK)wK]' and [K(P1, QK)wK]· 
Subtract [H(P1, QK)wK] from d1. 
Determine the set M ( Q K) of all indices J E M with cp I ( Q K) =f. 0. 
do for any 'PI with J E M(QK) 

Compute 'PI(QK) and [K(P1, QK)wK]'PI(QK)· 
Add [K(P1, QK)wK]'PI(QK) to a[ I· 

end do ' 
end do 

*********************************************** 
Add d1 to a[ 1. , 

end do 

Algorithm 2: Matrix computation for the collocation. 
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Compute the matrix pattern according to (2.42) or Algorithm 1. 
do for any collocation point Pr, I E J\lt 

Determine the set JV(Pr) of l EN with Pr E supp19i. 
do for any 191 with J E N(Pr) 

Determine the set N(Pr,l) of JEN such that, according to the 
just determined matrix pattern, there exists a 
non-zero matrix entry cj 1 with JEN. 
do for any 'Z/J1 with J E JV(Pr,l) 

Set the initial value for the matrix entry c1j 1 equal to zero. 
end do ' 

end do 
Determine the union Nu( Pr) of the sets N(Pr, l). 
Compute dr := -~ cos[n(P1),r(P1)] + fs H(Pr, Q)dqS by (3.8). 
Determine the knots QK and weights WK, KE 0 of the quadrature 
rule (3.5) in dependence on Pr and Nu(Pr). 

*********************************************** 
do for any quadrature knot QK with KE 0 

Compute [H(Pr, QK)wK] and [K(P1, QK)wK]· 
Subtract [H(P1, QK )wK] from dr. 
Determine the set Nq(QK) of all indices J E Nu(P1) with 'Z/J1(QK) f:. 0. 
do for any 'Z/J1 with J E Nq(QK) 

Compute 'l/J1(QK) ~nd [K(P1, QK)wK]'Z/J1(QK)· 
do for any 19 i with 1 E N( P1) 

if J E N(Pr, l) then 
Add ±[K(P1, QK)wK]'Z/J1(Qx) to cl,r 

end if 
end do 

·end do 
end do 

*********************************************~* 
Determine the set NA(P1) of JEN with 'Z/J1(Pr) f:. 0. 
do for any 'l/J1 with J E NA(P1) 

Compute [d1'Z/J1(Pr)]. 
do for any 191 with J E N(Pr) 

Add ±[d1'Z/J1(P1)] to cj r , 
end do 

end do 
end do 

AlgorithIIl. 3: Matrix computation for the wavelet approach. 

longer do loop over the 'Z/J1 suggest longer computing times for the wavelet algorithm. The 
only way for Algorithm 3 to be faster than Algorithm 2 is that the number of quadrafore 
knots is less for Algorithm 3. Indeed, for high. compression rates, the number of knots 
will be essentially reduced for the wavelet algorithm and, hence, a fewer number of time 
consuming kernel evaluations will reduce the overall computing time. 
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Figure 5: Height depending on latitude and longitude. 

Now we make a remark on how to store the matrices. For a computation on a work 
station, it is important to take into account the number of I/O operations between CPU 
and main memory. In case of Algorithm 2, the fully populated matrix Ah can be stored 
as a two dimensional field. For Algorithm 3, the non-zero entries of eh are stored in 
a one-dimensional field and their indices in extra fields. Doing so, we frequently have 
to access to entries from eh stored at different places of the one-dimensional field and, 
consequently, the ratio of I/ 0 time per time for arithmetic operations is much worse than 
for Algorithm 2. To improve this ratio, we recommend to introduce an additional two-
dimensional field which, for a fixed collocation point Pr, stores the values for the entries 
of eh depending on i E N(P1) and on J E JV (cf. Algorithm 3 and recall that N(P1) 
contains no more than 2L + 3 indices.). In the do loop over the quadrature knots, we sum 
up the values of the entries and put them into the two-dimensional field. After the loop, 
we write the values into the one-dimensional array and store the indices in extra fields. 

Finally, let us note that, to reduce the computing time for the evaluation of wavelet 
functions, the scaling factors ~ ( cf. (2. 7)-(2.8)) should be dropped and the recursive 
structure of the function system should be applied. Namely, knowing the values of the 
two univariate scaling functions cpfi and cpn1 ·and of the ·two univariate wavelet functions 
'l/Jl,j' and 'l/JZ,j'+l of level l not vanishing at a certain point Qk, it takes only a few number 
of operations to compute the values of the level l - 1 scaling and wavelet functions not' 
vanishing at Qk. 
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Figure 6: Density depending on latitude and longitude. 

Figure 7: Matrix pattern of the stiffness matrix Ah for the collocation without wavelets. 
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:rrq 11 s.8 · 10-~ I i.2 · 10-; 14.0 · 10-~ 11.4 · 10-! I 
Table 1: Quadrature error for the collocation without wavelets. 

4.2. Numerical Results of the Tests 

For the numerical tests, we have taken a rectangular part r of the earth's surface con-
taining Northern Germany ( cf. Figure 5). The reference potential including the c·en-
trifugal potential is computed in a preprocessing step from an expansion into spherical 
harmonics up to degree/order 10. We have solved. equation (1.5) by collocation with 
N = NL = 3 · 2L + 1 and L = 0, ... , 5. The approximate density function uh ( cf. (1. 7)) is 
given in Figure 6. In order to check the quality of the quadrature rules from Subsection 
3.1, we have computed another solution ut by halving the size of the underlying quadra-
ture mesh and by refining the subdomains Si,j, i, j ~ 0 in x direction with additional 
grid points of a polynomially graded mesh (cf. Subsection 5.1). We have obtained the 
estimates for the quadrature errors errQ: . supjuh(Pr)-ut(Pr)I given in Table 1. The 
supremum in the definition of errQ is taken over four different points, two fixed in the 
interior of Sand two as close as possible to corners of as. Note that we are dealing with 
errors for values with a size of about 5 · 10-4 • These estimates show that the quadrature 
rules of Subsection 3.1 are satisfactory or even too good. The quadrature rules of Subsec-
tion 3.2 for the wavelet algorithm are also quite accurate since replacing them by those 
of Subsection 3.1 has not led to a reduction of the quadrature error. 

Unfortunately, we have no good estimate for the discretisation errors of the collocation 
method (1.9). We believe them to be much larger than the quadrature errors. Since 
discretisation errors play the role of thresholds for the compression errors, we somehow 
have to choose an estimate. In view of a comment in [19] on the Galerkin discretisation 
error over a different domain, we assume a relative discretisation error in the supremum 
norm of 45-L · 10-5 for the collocation solution uh with h = N:-1 , NL = 3 · 2L + l. In 
other words, we suppose an error 10-5 for L = 5 and determine the errors for the lower 
levels by assuming a second order convergence rate. Now let us have a look at the size of 
the entries in the stiffness matrices Ah and Bi: (cf. Subsection 4.1), respectively. In the 
Figures 7 and 8 we have marked the entries greater than 10-4 by black pixels and those 
less than 10-4 but greater than 10-5 by grey ones. These pictures obtained for N = N4 

clearly demonstrate that the wavelet transform Bi: contains much more small entries than 
Ah. In other words, Bi: seems to be. appropriate for a compression. 

We have implemented the a priori compression (2.42), and the constant a has been chosen 
by experiment such that the additional error du.e to the compression is less than the 
estimate for the discretisation error. However, instead of the supremum norm we have 
taken the maxi~um over the four points used for the computation of errQ. The values 
for the optimal constants a and the compression rates rat (rat = number of all entries 
divided by the number of non-zero entries· in Ch) are presented in Table 2 (cf. Figure 9). 
By knotc we have denoted the sum :EP #CJ of the numbers #CJ of all quadrature knots 

. in the rule of Subsection 3.1 depending on the collocation point P. Similarly, by knotw 
we have denoted the number of all' quadrature knots in all the rules of Subsection 3.2. 
These numbers are also the numbers of evaluations of kernel functions. in the Algorithms 
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Figure 8: Matrix pattern of the stiffness matrix Bh, i.e., of the wavelet transform of Ah. 
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Figure 9: Compression rates of the wavelet algorithm depending on the degrees of freedom 
(NL - 2) 2 for the approximation of the density function. 
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Figure 10: Computing times depending on the degrees of freedom (NL - 2) 2 for the 
approximation of .the density function. 

2 and 3, respectively. The last two rows in Table 2 contain the computing times time 
for Algorithm 2 without wavelets and timw for the wavelet algorithm Algorithm 3 ( cf. 
Figure 10). 

We note that the storage capacity of 96 MB of our work station was not sufficient for 
solving (1.5) on level L = 5 without wavelets. The introduction of wavelets admits 
compressions of the matrix up to 73 for N = N5 . Of course, the saving of storage is a 
little bit less since additional working space is required. The smaller numbers of kernel 
evaluations lead to a reduction in the computing time from time = 1 005s to timw = 405s 
for N = N4 and from estimated time = 15 447 s to timw = 5 580s for N = N5 • 

The compression rates and computing ti~es depend strongly on the threshold for the 
compression. In a second experiment we have computed a directional derivative of the 
potential &vh from (1. 7) over eight points placed in a height of' 0.0lm, 0. lm, lm, lOm, 
lOOm, 1 OOOm, 10 OOOm, and 100 OOOm over the surface point with longitude 9.333 and 
latitude 52.666. The parameter a in the compression has been chosen such that the 
relative compression errors for the resulting eight derivatives of the potential are less than 
45-L · 10-5 . The values a, the compression rates rat, the numbers of quadrature knots 
knotc, knotw, as well as the computation times time, timw are presented in Table 3 
( cf. also Figures 11 and 12)·. It has turned out that, for the computation of the potential 
far from the points of the boundary as, much higher compression rates are possible. The 
same is likely to be true for the determination of the density uh over a part of S which 
has a positive distance to as. 
Finally, we remark that, for N = N5 and a compression not affecting the supremum norm 

32 



IL II 01 51 
NL 4 7 13 25 49 97 
(NL - 2) 2 4 25 121 529 2209 9025 
a· 2£ 0 0 0 0.1 0.5 1.4 
rat 1 1.19 2.69 6.82 12.64 13.99 
knote 464· 8000 125 232 1948 096 31064 672 
knotw 464 8000 100104 1054664 10 694100 134108 232 
time 2.80s 2.92s 6.64s 65.49s 1005.81s 
timw 2.90s 3.08s 6.06s 39.55s 405.l 7s 5 580.07s 

Table 2: Compression rates, number of quadrature knots, and computation 
time for the algorithms without and with wavelets. Approximation of the 
density function. 

error of the density function, we have obtained the higher compression rate 23.03 using 
the oracle scheme ( cf. Algorithm 1 of Subsection 2.4). The computation took a time of 
6 981s from which 1 090s were spent only for the determination of the matrix pattern. In 
other words, we recommend to take the a priori scheme. The oracle scheme is preferable 
only if the saving of storage is more important than the saving of time and if a high 
accuracy is required. 

All the computations have been performed on a DEC 3 OOO AXP 400 a- processor work 
station. 

II ol 51 
NL 4 7 13 25 49 97 
(NL - 2) 2 4 25 121 529 2209 9025 
a· 2L 0 0 0 0 0.2 0.5 
rat 1 1.19 2.69 6.83 19.44 36.90 
knote 464 8000 125 232 1948 096 31064 672 
knotw 464 8000 100104 1054 664 9435 704 90 949 376 
time 2.90s· · 3.13s 7.4ls 68.33s 1Ol7.03s 
timw 2.90s 3.09s 6.06s 39.55s 351.63s· 3 641.05s 

Table 3: Compression rates, number of quadrature knots, and computation 
time for the algorithms without and with wavelets. Approximation of the 
potential. 
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Figure 11: Compression rates of the wavelet algorithm depending on the degrees of free-
dom (NL - 2) 2 for the approximation of the potential. 
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Figure 12: Computing times depending on the degrees of freedom (NL - 2) 2 for the 
approximation of the potential. 
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5 Asymptotic Quadrature Estimates 

5.1. An Asymptotic Estimate for a Quadrature Algorithm Ap-
plied to Collocation without Wavelets in Case of a Model 
Operator 

In order to simplify formulae and proofs, let us consider a model operator M instead of A. 
Since we do not want to treat singularities at the boundary of the domain S, we consider 
the torus 'Ir2 instead of S, i.e., we set 11'2 :== IR2 j'll} and identify 11'2 with the product of . 
the 1-periodic interval [-~, ~] by itself. We introduce M as the sum of a multiplication 
operator and a convolution operator, i.e., we set 

Mu(P) aM(P)u(P) + p.v. f KM(P, Q)u(Q)dQ'Ir2 (5.1) }1I'2 

aM(P)u(P) + p.v.1:~:t 1:~:t KM(P, (xq, yq))u((xq, yq))dyqdxq, 

where P == (xp, yp) E 'Ir2
, aM is at least twice continuously differentiable, and the 

convolution kernel KM takes the form 

(5.2) 

The function <P defined on the unit circle S1 in the complex plane is supposed to be twice 
continuously differentiable and to admit an expansion into a trigonometric series of the 
form 

00 2 

<P(ei>.) == L ak sin(k,\) + L bk cos(k,\). (5.3) 
k=l . k=l 

Note that <P(O) == -<P(-8) is sufficient for (5.3). The condition (5.3) implies 

{ <I>( B)deS1 == 0 }51 (5.4) 

and, hence, the existence of the principal value integral in (5.1) ( cf. [20]). Moreover, (5.3) 
implies 

J_a J_a ( (x,y) ) 1 <P y' 2 2 2 . 2 dydx==O, a>O 
-a -a X + y X + Y 

(5.5) 

which will be important for the next proof. In addltion, we assume that the model 
operator M is invertible in L 2 ('Ir2

) and strongly elliptic. 

Analogously to the collocation for operator A, we can introduce the bilinear collocation to 
the numerical solution of equation Mu== v. The necessary modification due to the change 
of the underlying domain is straightforward. For instance, we have to set M :== { ( i, j) : 
i,j == 0, ... ,NL - 2} and P(i,j) :== (N;_1 , NZ-i) E 1r2 for (i,j) EM. The trial functions 
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'Pi,j are defined by formula (1.8) over (~;~1 , ~:~ 1 ) x (J;~ 1 , J.:~ 1 ), extended by zero to 

(N:-l - ~' N:-l + ~) x (Nj_1 - ~' Nj_1 + ~), and, from this, extended to a 1-periodic 
function. We arrive at a collocation method seeking uh E Xh :==span{ cpr: I EM} which 
satisfies Muh(PJ) == v(PJ) for J E M. Analogously to Ah, we denote the c·orresponding 
stiffness matrix ( M cp 1( P1) );.rEM by Mh and identify it with the corresponding operator 
in .C(Xh)· 
Next we introduce a quadrature approximation of Mh. Following Subsection 3.1 and using 
(5.5), we write 

l
xp+~ [YP+~ 

p.v. xp- 1 }yp-1 KM(P,(xq,yq))uh(Q)dyQdXQ 
2 2 . 

(5.6) 

c:t c:~ KM(P,(xq,yq))[uh(Q)-uh(P)]dyqdxq 

rv L KM(P, QK)[uh(QK) - uh(P)]wK 
KEO 

-{ L KM(P,QK)wk}uh(P) + L KM(P,QK)uh(QK)wk, 
KEO KEO 

where the rule 

(5.7) 

depending on the collocation point P will be specified later. In any case the quadrature 
rule will be symmetric with respect to Pin the sense that, if QK is a quadrature knot with 
weight WK, then also the points defined by the operations P-(QK-P), P-Fl(QK-P), 
and P + FI( Q K - P) in the field of complex numbers are knot points with the same 
weight. This kind of symmetry together with assumption (5.3) implies 

L KM(P,QK)WK = 0. (5.8) 
KEO 

The quadrature step (5.6) leads us to an approximate matrix M~ := (hM1cp1(PJ));.1EM 
for the stiffness matrix Mh, where 

M'cpr(PJ) := aM(PJ)5J,I + L KM(PJ, QK)cpr(QK)wK. (5.9) 
KEO 

The quadrature rule (5. 7) employed in (5.9) will be defined as follows. We start with the 
underlying partition and, similarly to Subsection 3.1, we give this partition only. over 

Without loss of generality we may suppose P = (xp, yp) = (0, 0). Now we choose a 
parameter q > 1 and start with the partitioning in x-direction. We would like to take a 
graded partition of the type {[ih]q: i == 1, ... }. However, in accordance with point ii) of 
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Subsection 3.1, we need a refinement of the uniform partition {ih: i = 1, ... }. Th.us, we 
introduce the partition 0 = zo < z1 < ... < Zm = ! of [O, !J by 

{ Z; : i = 0, .. ., m} := { ih : i = 0, 1, ... , NL 2- 1} n {[ih]• : i = 0, 1, ... , [2-l/qh-1]} 

and arrive at a partition into m strips. 

Now we turn to the subdivision in y-direction. In the strip {(x, y) E.[-~, ~] 2 : Zi-l ~ x 
~ Zi, 0 ~ y ~ zi} the partitioning should be uniform with step size less than Zi - Zi-l· 
Again, we have to take care of point ii) of Subsection 3.1. Consequently, we introduce the 
partition 0 = (i,o < (i,1 < . · .. < (i,mi-1 = Zi-l < (i,mi = Zi, where 

{(i,j: j= 1, ... ,mi-1} = {jh E [O,zi-1]: j = l, ... } (5.10) 
U{j[zi - Zi-d E [O, Zi-1] : j = 1, ... }. 

Finally, we arrive at the partition 

S' c um umi Si,i 
i=l j=l ' (5.11) 

Si,j .- { (x,y) E [-~, ~] 2 : Zi-1 :<::: X :<::: z;, (i,j-1 :<::: Y :<::: (;,j}. 

Now the rule (5. 7) is the composite quadrature rule, where the mid-point rule is taken over 
each subdomain Si,j and over the corresponding subdomains of the parts of 'lf2 defined 
similarly to S'. 

Theorem 5.1 The quadrature approximation Mh of Mh is stable. If the solution u of 
Mu = v is twice continuously differentiable and if u~ E Xh is the approximate solution 
defined by M~u~ = {hv(P1)}1eM, then there exists a constant G independent of h such 
that 

{ 

h2 if q > 2 
llu - u~llL2 ~ G h2 log h-1 if q = 2 

hq if q < 2. 
(5.12) 

Proof. a) First we suppose Mh is stable, i.e., ll[Mh]-1 11.c(xh) is uniformly bounded. 
Let Qh stand for the interpolation projection onto Xh ~ L2 (1f2

) defined by Qhf := 
'EreM hf(P1)cp1 and set uh:= Qhu, vh := Qhv = QhMu. Then we have 

u - u~ u - Qhu + (5.13) 
[M~J-1{M~uh - QhMuh + (Qh - I)M(Qh - I)u + M(Qh - I)u}, 

llu - u~llL2 ~ Ollu - QhullL2 + GllM~uh - QhMuhllL2 + ll(Qh - I)M(Qh - I)ullL2· 

Using the second order estimate llf-QhfllL2(1I'2) ~ Oh2llfllH2(7r2) and the uniform bound-
edness of the projections Qh in H 2 ('lf2

), we arrive at 

llu - u~llL2 < Oh2 ilullH2 + Gh2 jjM(Qh - I)ullH2 + GjjM~uh - QhMuhllL2· 
< Gh2 + GllM~uh - QhMuhll£2. (5.14) 
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It suffices to estimate llM~uh - QhMuhllLoo, i.e., to estimate IM~uh(P) - Muh(P)I for 
P E {PJ, J E M}. Without loss of generality, we suppose P = (0, 0) and, in view of 
(5.6), we get 

1 1 J: J2

1 
KM(P, Q)[uh(Q) - uh(P)]dyqdxq 

2 2 

(5.15) 

- :E KM(P, QK)[uh(QK) - uh(P)]wK. 
KEM 

To estimate this quadrature error, we use the formula 

t t J(x, y)dydx - f (-a ;-b, _c ~-d) [b - a][d - c] ::; (5.16) 

a2 a2 
C[b - a]3 [d - c] sup a 2 f(x, y) + C[b- a][d- c]3 sup ay2 f(x, y) 

a<~<b X a<~<b 
c<y<d c<y<d 

on each subdomain 3i,j of the partition (5.11). For the derivatives of the integrand 
J(Q) = KM(P, Q)[uh(Q) - uh(P)], we apply the simple estimates 

( a ) a1 ( a ) a2 
ax 8y KM (P, (x,y)) (5.17) 

~ I( ) PI < Cl(x,y)- p1-2-a1-a2, 

I ( 
a ) a1 ( a) a2 { · ( (x, y) _ p ) _2 } I 
ax 8y M l(x,y) - PI x,y -

Thus, the quadrature error of (5.15) over Si,j with i > 1 is less than 

C(zi - Zi-1)3 ((i,j - (i,i-dlP - (zi-1, (i,i-dl-3 

~ C(zi - Zi-1)3 1Zi-1 + (i,j-1l-3 ((i,j - (i,j-1). 

Summing up this estimate for j = 1, ... , mi and using 

(5.19) 

we arrive at the estimate C(zi - Zi- 1 ) 3zi=-~ for the quadrature error over Uj~1 Si,i. For the 
error over ur:2· U~1 Si,i, we get the bound 

NL-1 
m 2 

C l::(zi - Zi-1 ) 3 zi=-21 < C :E ([ih]q - [(i - l)h]q)3 ([(i - l)h]qf2 (5.21) 
i=2 i=2 

{ 

h2 if q > 2 
< C h 2 log h-1 if q = 2 

hq if q < 2. 
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The quadrature error over S 111 is less than 

(5.22) 

Formulae (5.21) and (5.22) prove the convergence estimate (5.12). 

b) Now we turn to the question of stability. We estimate the quadrature error for the 
matrix entries separately, i.e., we set uh = 'PI in (5.6). First consider a1,1 = hMcp1(P1) 
with P == P1 == (0, 0) not in the support of 'PI· We have to estimate 

h j KM(P,Q)cpr(Q)dq'If2 -h L KM(P,QK)cpr(QK)wK. 
KEO 

(5.23) 

Using the exactness of the quadrature formula on the set of trial functions, we can write 
the last expression as 

h ~ ~ fsi,j [KM(P, Q)- KM(P, QK)]cpr(Q)dq'If2. 
7. J 

(5.24) 

Note that we may suppose i > 1 since P = (0, 0) is not in the support of cp1 . The 
expression ( 5. 24) is less than 

c sup sup IKM(P, Q) - K~2(P, QK)I h r IP - Ql-2cpr(Q)dq'If2. (5.25) 
i>1,j~1 Qesi,i IP - QI 111'2 

Now it is not hard to see that hf IP - ·l-2cpr is less than l(ir,ir) - (i1,i1)l-2 = {(i1 -
i1)2+(j1-i1)2}-1 for I= (ir,jr) and P == P1, J = (i1,i1). Hence, byYoung's inequality 
for convolution operators, the norm of the matrix ((1- 81,1)hf IP - ·l-2cpr)J,r is less than 

C L L .2 

1 
.. 2 :::; Clog NL :::; Clog h-1

• (5.26) 
lil<N I "l<N i + J _ L J _ L 

On the other hand, from (5.17) we infer 

IKM(P,Q)- KM(P,QK)I 
Qs:S~.i IP - Ql-2 (5.27) 

Now we observe that P = (0,0) f/. suppcp1 and that we can restrict the consideration to 
Si,j ~ supp cp1 . Consequently, we may suppose [O, h] 2 n Si,j = 0 and, hence (cf. (5.11)), 
Si,j ~ {(x,y): Zi-l:::; x:::; Zi} such that [zi-i,Zi] ~ [[(k-l)h]q,[kh]q] and [(k-l)h]q 2:: h. 
We get k 2:: h1/q-l and 

IKM(P, Q) - KM(P, QK )I < c [kh]q - [(k - l)h]q < c~ < ch1-~ (5.28) 
Qs~.i IP - Ql-2 - [(k - l)h]q - k - · 

In other ~ords, by the estimates (5.25), (5.26), and (5.28), the matrix of the quadra-
ture errors corresponding to the entries a1,1 satisfying P1 f/. supp cp I has norm less than 
log h-1 hl-l/q and tends to 0 for h -+ 0. 
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Now consider the case of entries aJ,I for which PJ E supp CfJI· On S0 := [O, h]2 we have to 
estimate 

instead of (5.23). In view of 

1
1 ( x, y) - PI if al = a2 = 0 

< (Jh2 1 if al < 2, a 2 < 2, 
- and 0 < al + a2 

0 else, 

the difference (5.29) can be shown to be less than Chq- 1 log h-1 analogously to part a) 
of this proof. For the analogous estimation over 1r2 

\ S 0 , we have to consider (5.23) over 
1r2 

\ S 0 and 

separately. The term (5.23) can be treated like the entries aJ,I with PJ tJ. supp cp1 and, 
analogously to (5.8) and (5.5), the term (5.30) vanishes due to (5.3). 
0 

5.2. An Asympto.tic Estimate for a Quadrature Algorithm Ap-
plied to the Wavelet Approach 

We consider the equation Mu = v and the collocation of the previous· subsection. Analo-
gously to Section 2, we apply the wavelet algorithm including (2.42) and the parameters 
a = ~' (3 = r = 1. Again, the modification due to the replacement of S by 1r2 is 
straightforward. Indeed, we set 

JV := {(l,t,i,j): l = o, t = 1, i,j = 0,1,2, (5.31) 
l = 1, ... , L, t = 1, i = 1, ... , Nz-1 - 1, j = 1, ... , Nz-1 - 2, 
l = 1, ... , L, t = 2, i = 1, ... , Nz-1 - 2, j = 1, ... , Nz-1 - 1, 
l = 1, ... , L, t = 3, i, j = 1, ... , Nz-1 - 1} 

and replace the boundary wavelets 'l/Jz,1 and 'l/Jz,Ni-i -1 by 

'l/JL,i(x) := 'lf;([3 · 2l]x - (2j - 1))~, l = 1, ... , L, j = 1, Nz-1 -1. (5.32) 

These functions and the functions 'l/Jt,j, 1 < j < Nz_1 - 1 of (2.8) are to be defined over 
Ufi=~, ~:~) and to be extended to a 1-periodic function~ Using these univariate wavelets, 
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we define the two-dimensional wavelet functions 7./;r, I E N by (2.11)-(2.14). The test 
functionals {} J are given by 

5 Nz - 5 Nz 
p(2i,2j-1) p(2i,2j) 

if l = 0, t = 1, i, j = 0, 1, 2 

if l ~ 1, t = 1, i = 1, ... , Nl-l - 1 
j = 1, ... , Nz-1 - 2 

if l ~ 1, t = 2, i = 1, ... , Nz _ 1 - 2 

j = 1, ... , Nz-1 - 1 
5pNL - 5pNL if l ~ 1, t = 3,i,j = 1, ... ,Nl-1 -1, 

(2i-1,2j-1) (2i-1,2j) 

(5.33) 

We arrive at a wavelet transform Bh :== ( (M7./;r, 1J1) )1,IEN' and denote the compressed 
matrix of Bh by eh. The wavelet algorithm is the same as that in Subsection 2.1. 

For the numerical computation of eh, we introduce a quadrature approximation C~. To 
this end we apply a new rule of the form (5. 7). The underlying partition of this rule will 
be a refinement of PartL ( cf. Subsection 3.2). This refinement is obtained by leaving 
unchanged those squares of PartL which belong to a coarser grid, i.e., for which the side 
length is greater than N:-l. The squares with side length N:-l are divided by the same 
procedure as in the previous subsection using a parameter q > 2. We denote by Part£ 
the set of all squares in PartL with side length greater than NL1_ 1 and by Part{ the set of 
the subdomains resulting from the subdivision of the squares with side length N:-l. For 
this refinement Part£ U Part{ of PartL, the new rule (5. 7) is just the following composite 
rule. Over the subdomains of Part{ we take the mid-point rule and over those of Part£ 
we take the tensor product two point Gaufi rule. Note that the tensor product two point 
Gaufi rule is exact for polynomials of degree less than three, i.e., less than the degree of 
functions in the trial space two plus the order of moment conditions one. Applying this 
new rule to (5.6) with uh from the span of certain wavelet basis functions in Xh and using 
(5.5) as well as (5.8), we arrive at the approximate value (cf. (4.2)) 

c~,r == L KM(P],QK)7./;r(QK)wK-e L KM(PJ,QK)7./;r(QK)wK (5.34) 
KEO KEO 

+aM(Pi)?.f;r(Pj) - eaM(Pi)?.f;r(PJ) 

for the non-zero entry (M?.f;r, {} l) of the compressed stiffness matrix Ch corresponding to 
M. We denote the compressed approximate matrix by C~ :== (c~,1)J,rEN· 

Theorem 5.2 i) The quadrature approximation M~ := [RhC~EH] is stable. . 
. ii) If the solution u of Mu == v is twice continuously differentiable and if ii,~ E Xh is the 
approximate solution defined by J?~ ii,~ == vh, then there exists a constant e independent 
of h such that 

(5.35) 

.iii) The sum E1eM #0 of.the numbers #CJ of all quadrature knots for the rules (5. 7) 
depending on PJ is less than C[h-2] 2- 2!(3q). Hence, the number of arithmetic operations 
in the wavelet algorithm (cf. Algorithm 3 of Subsection 4.1) applied to M instead of A is 
less than e[h-2] 2- 2/(3q)[log h-1 ] 2 • · 
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Proof. i) Similarly to Theorem 2.1, the sequence IVh :== [RhGhEh] defined for the operator 
lvf instead of A is stable. Thus, it suffices to show that Mfi - Mh == Rh[Gfi - Gh]Eh tends 
to zero for h--+ 0. The matrix O~ - Oh of quadrature errors splits into the sum Oh+ 0£, 
where Oh_ denotes the matrix of quadrature errors over the domains of Part£ and 0£ that 
of the errors over the squares of Part{. We get Mh - Mh == Mh + Mf with Mh := Rh Oh Eh 
and Ml :== RhCkEh. 
First we show that 11Ml11 --+ 0 for h -+ 0. Analogously to the matrix Ah fat A in 
Subsection 1.2, we denote by Mh the collocation matrix without wavelets for operator M. 
We let Mh stand for its quadrature approximation ( cf.(5.9)) and M~ for the compressed 
matrix Mh obtained by applying algorithm (2.42) to its wavelet transform. We observe 
that the quadrature rules of the wavelet algorithm depend on the collocation point but not 
on the wavelet functional{} J containing the collocation point in its support. Consequently, 
the product Ml== RhGhEh is equal to the matrix of quadrature errors in Mh if the same 
quadrature rules are applied over the Part{ domains. Over these domains the quadrature 
rules of the wavelet algorithm are the same as those of the algorithm of the previous 
subsection. Thus, the entries of Ml are bounded by the estimates for the entries in 
Mh - M~. Hence, it remains to estimate II Mh - M~ II by giving a bound for the norm 
of the matrix of absolute values. Now, analogously to the stability result in Theorem 
2.1, we conclude llMh - Mhll --+ 0 and part b) of the proof to Theorem 5.1 implies 
llMh - Mhll --+ 0. Consequently, we only have to estimate the norm of Mfi - M~, i.e., 
the compression error for the quadrature approximation Mh. To this end we fix a {} 1 and 
a 'lj; l and consider the entry b~,l of the wavelet transform to Mh. Analogously to Lemma 
2.3, we arrive at 

(5.36) 

Note that the fourth order exponent in (5.36) instead of the fifth order exponent in 
Lemma 2.3 is due to the fact that the integral over the kernel function multiplied by a 
wavelet with two vanishing moments is replaced by a quadrature for this product. The 
functional, mapping a function to the quadrature value for the integral of the function 
multiplied by a wavelet, has one vanishing moment only. Now we take into account the 
condition (2.42) of the compression algorithm as well as the estimate (5.36) and apply 
a Schur lemma argument similar to that proving Theorem 2.1. Finally, we arrive at 
llMh - M~ll:::; Clog h-1 h213

• 

Now we turn to Mh.. We fix a collocation point P from the difference grid 

{ (Nii-1' N/-1)' i,j == 1, ... 'Nl - 2} \ 
{ (Ni-i1-l' Ni!i-1)' i,j == 1, ... 'Nl-1 - 2} 

(5.37) 

with l == lp and consider the quadrature error of the two point Gau:B rule over a subdomain 
D E Part£.' Then P E su,ppiJJ, J == (lJ, tJ,iJ,jJ) is possible only if l1 > lp. Let us. 
consider a cpfi with l == ln and I == ( i, j) E {( i, j) : i, J. == 0, 1,, ... , Nl - 2}. Since D 
belongs to the partition Part£ and since any 'l/J!' of level l11 > ln with supp 'l/;11 n D =f:. 0 
has a discontinuous derivative over D, we conclude that ·these 'l/;11 are discarded, i.e., they 
satisfy ( cf. (2.42)) 

(5.38) 

42 



. N N 
Consequently, for the cp/ with supp cp/ n D =/= 0, there holds 

Odist(suppcpfz,supp191) > max{2-l, rlJ, (a2tL)rl-lJ}. (5.39) 

Now we estimate the quadrature error of the tensor product two point Gau:B rule over D 
for the integral in ( 19 J, M cpfz) using a third order variant of the second order estimate 
(5.16) and we apply 

l~J(f)I = lf(PJ{~1~(PJ)I ::; sup IVJI IP{~1~JI ::; Cr21' sup IVfl. (5.40) 

The derivatives arising from (5.40) and the formula for the quadrature error are estimated 
by (5.17) and by 

We arrive at the bound 

if 0 ::; ai, a2 ::; 1 
else. 

(5.41) 

(5.42) 

for the quadrature error of (19 J, Mcpfz) over D. Summing up over all D with supp cpfznD =f 
0 and applying dist ( supp cpfz, supp 19 J) ~ 02-zD ( cf. ( 5.39)), we estimate the quadrature 
error of ( 19 J, M cpf 1) by 

(5.43) 

This is the same estimate as that of Lemma 2.3. Now the operator of quadrature errors 
Mh. is determined by the entries ( 19 J, M cpfz), where cpfz is a function on level l such that 
there exists a subdomain D E Part£ with lD == l and supp cpfz n D =f 0. To estimate such 
an operator, we supply Xh with the norm 

L 

llwhll* := :E :E 1eL1 2
, (5.44) 

l=O i,j 

where Wh = °El,t,i,j µ(l,t,i,j)'l/J(z,t,i,j) E xh and et; is defined by E~'=O Et,i,j µ(l',t,i,j)'l/J(l',t,i,j) = 
Ei 1· e~ ·cpf1~. Then, using (5.43) and (5.39) and repeating the Schur lemma argument 

I 1.1J I 

leading to Theorem 2.1, we conclude 

(5.45) 

Here llMh.11* is the operator norm of Mh. acting from xh supplied with 11 ·II* to xh supplied 
with the norm llwhll = °El,t,i,j lµ(l,t,i,j) 12 which is equivalent to the L 2 norm restricted to 

xh. Indeed, the norm equivalence II EreM ef cpf L llL2 rv /EreM 1ef 12 is not hard to verify 

and V~IEM 1er 12 
rv /EreN lµrl2 is a consequence of Lemma 2.1. From Lemma 2.1 a), 

we also infer that llwhll* ::; OLllwhll· Consequently, the operator norm llMh.11 induced by 
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the norm II · II is less than C{log h-1 }3l2h. Hence, llMhll -+ 0 for h -+ 0 and Mh is 
stable. . 

ii) In view of (5.13), we have to estimate Mkuh - Mhuh for uh := Qhu. We observe that 
the convergence estimate of Theorem 2.1 is valid also for A replaced by M. The proof of 
this results relies upon an argument as in (5.13) and the estimate llMhuh - MhuhllL2 ~ 
Oy1og h-1h2. In view of the last inequality it remains to consider Mhuh - Mhuh, i.e, 
Mh_uh and Ml uh. For Mhuh we remark that the arguments leading to (5.45) imply 

(5.46) 

Thus, we turn to Ml uh and fix a test functional 1) 1 as well as a collocation point P 
with P E supp 1J J· Following part a) of the proof to Theorem 5.1, we first will estimate 
(Mfuh,1JJ). For the fixed 1J1, we denote by uh the compressed sum of uh, i.e., the sum 
over all 'f/1'l/;1 in the representation of uh for which the entry c1,1 of the wavelet transform 
oh of Mh is different from zero. We observe that the quadrature error (Mfuh,1J1) is 
nothing else than the quadrature error (Mhuh,1J1) restricted to the domains of Part{. 
Hence, following part a) of the proof to Theorem 5.1, we obtain 

l(M'u* 1J )I< 0 max 2-zJIM'u*(P)I < Ch2log h-12-zJ. h h' J - p _Q h h -EsuppvJ 

Here the factor log h-1 is due to the fact that instead of (5.18) we have used 

( a ) a1 ( a ) a2 I Bx By [uh((x,y)) - uh(P)] 

! l(x,y)-PI 
~Clog h-1 1 

0 

if al= a2 ~ 0 
if al < 2, a2 < 2, 

and 0 < a1 + a2 
else 

which will be shown in a moment. We finally get (cf. Lemma 2.2 a)) 
-, -, fT llMhuhllL2 ~ Oll{(Mhuh,1J1)}JENllz2V L 

~ O{log h-1 }3/2h2ll{2-ZJ} JENllz2 ~ Ch2{log h-1 }2. 

It remains to prove (5.48). For a subset Nu(P1) of N, we get 

Uh :E 1JI'l/JI, 
IENu(PJ) 

l=l t,i,j: l=(l,t,i,j)ENu(PJ) L= 
L 

< :E . . sup lrJI22lr I 
lr=l t,i,1: l=(l1,t,i,1 )ENu(PJ) 

(5.47) 

(5.48) 

(5.49) 

(5.50) 

Since the trial functions are biorthogonal wavelets, there exist bidual mother wavelet 
functions 'l/JP, t = 1, 2, 3 of exponential decay such that 

'f/(l,t,i,j) J uh(P)[3. 2l]'l/;f ([3. 2z]P - (2i - 1, 2j - l))dP (5.51) 

[3. 2zr1 j uh([3. 2zt1[P + (2i ~ 1, 21 - l)])'lfJf (P)dP. 
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If we expand uh at [3 · 2z]-1(2i - 1, 2j--'- 1) into the Taylor series 

uh ([3 · 2zJ-1[P + (2i ~ 1, 2j - l)J) ==uh ([3 · 2zJ-1(2i - 1, 2j - 1)) + 
\7uh ([3. 2Zt1[P' + (2i - 1, 2j - l)J) . [3. 2zt1P 

(5.52) 

and take into account that 'l/;f is orthogonal to the constant functions, we may continue 
as 

(5.53)' 

This together with (5.50) shows (5.48) for the case of first order derivatives. The other 
cases follow in a similar way. 

iii) Now we count the quadrature knots. For domains DE Part£, we have four knots for 
every square D. Let D' stand for the square on the next coarser level (lD - 1) containing 
D. If the collocation point is fixed, then to each D E Part£ there corresponds a wavelet 
basis function 'lj; 1 on the same level as D such that supp 'lj; 1 n D' :j:. 0 and that the entry 
CJ,! is non-zero for a J with P E supp {} J ( cf. the definition of PartL in Subsection 3.2). 
Hence, the numbers of knots over the domains D E Part£ is less than constant times the 
number of non-zero entries in the compressed matrix Ch, i.e., less than C[h-2]413[log h-1)2. 

It remains to count the knots defined by the algorithm of Subsection 5.1 over the domains 
D E Part{. We fix a collocation point P from the difference grid (5.37). In view of 
(2.42), there i~ a square shaped neighborhood of width 02min{L/3-lp,O} which is divided 
by the algorithm of Subsection 5.1. The subdomains of PartL which are adjacent to this 
neighborhood have already a size of NL~i -l' i.e., the number of knots inside of these 
subdomain is already covered by the estimate C[h-2]413 [log h-1]2. Thus, only the knots 
in the neighborhood of size C2min{L/3-lp,O} ·are to be counted. This neighborhood is split 
into io strips { ( x, y) : Zi-1 < x < zi}, where io is defined by Zio f'.J [i0h]q f'.J 02min{L/3-lp,O}. 
In other words, i0 ::; 02min{L/3-lp,o}/qh-1. Each strip is divided into [zi-i/(zi - Zi-1)] + 1 
subdomains, i.e., in about [ih]q/{[ih]q - [(i - l)h]q} f'.J i squares. The whole number of 
squares is bounded by 

io c 2: i ::; Ci~ ::; a22{L/3-lp}/q+2L. (5.54) 
i=l 

if lp > L /3 and by 22£ if lp ::; L /3. Summing up over all collocation points, we arrive at 
the estimate 

L/3 L . 2 2/(3 ) c L 22Lp22L + c I: 22Zp22{L/3-lp}/q+2L ::; c [22£] - q • 

lp=O lp=L/3+1 

which proves iii). 
<> 

(5.55) 

Remark 5.1 The previous proof shows that the non optimal estimate for the number 
of quadrature· knots is caused by the quadrature rule applied to the singular and almost 
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singular elements which are handled as in the algorithm without wavelets. If optimal rules 
for these elements are applied, then the reduction in computing time will be similar to the 
reduction in storage. Such optimal rules leading to O(h-2{log h-1 }b), b > 0, quadrature 
knots over the domains which are treated as in the non wavelet algorithm are well known. 
The singular elements are to be simplified by Duffy 's transformation and Gauft quadrature 
rules with degrees depending on the logarithmic distance to the collocation points ate to 
be exploited. For the estimate of the quadrature errors, the piecewise analyticity of the 
trial functions and of the parametrisation by Overhauser interpolation is essential. The 
analyticity of the geometry is not required. Note, however, that such an approach requires 
estimates for the second order derivatives of the coordinate mappings of r in order to 
control the maximal domains of analyticity for the approximate kernels which arise after 
the introduction of the parametrisation in the integral equation. The quadrature rules we 
have applied should be more robust with respect to the geometry. 

At the end of the present section, we consider a quadrature algorithm defined by Duffy's 
transformation leading to O([h-2 ] 513 ) knot points. This algorithm is close to that which 
we have implemented in the numerical tests ( cf. Section 3). For the new quadrature 
algorithm, we have to define a new quadrature rule depending on P. Without loss of 
generality, we suppose P = (0, 0). Moreover, for symmetry reasons, it is sufficient to 
define the quadrature rule over S' := {(x,y): 0::; x::; ~' 0::; y::; x}. We will set up the 
rule separately over S' n [O,h] 2 , over S' n [(i - l)h,ih]2, i = 2, ... , (NL -1)/2, and over 
the strips [( i -1 )h, ih] x [O, ( i-1 )h], i = 2, ... ' (NL - 1) /2. For the subdomain S' n [O, h] 2 ' 

we apply Duffy's transformation and obtain 

l h ix 1h 11 NL-1 lh ijh f(x, y)dydx = f(x, zx)xdzdx = L . . f(x, zx)xdzdx. 
0 0 0 0 j=l 0 (j-l)h ., 

(5.56) 

To these integrals we apply the tensor product of the two· point GauB rule 
1 1 2 1 g(s)ds r-..; "2 L g(rK.), 

0 K.=l 

1 1 ' 1 1 
71 := -(1- ;;;-), 72 := -(1 + ;;:;) 

2 v3 2 v3 
(5.57) 

to get 

(5.58) 

If the subdomain is S' n [( i - 1 )h, ih] 2 , then we write 

iih ix h 2 i(i-l)h+rKh 
· f(x,y)dydx r-..; - L f([(i- l)h + TK.h],y)dy. 

(i-l)h (i-l)h 2 K.=1 (i-l)h 
(5.59) 

For i > 1, we divide [(i- l)h, (i- l)h +rK.h] into ni,K. equal parts so that each subinterval 
is less than [(i - l)h + rK.h]/(NL - 1) = [(i - 1) + rK.]h2 • Thus, we denote by·ni,K. the 
smallest integer greater than {[(i- l)h+ rK.h] - [(i- l)h]}/{[(i-1) +rK.]h2} and arrive at 

i

ih ix h 2 ni,K i(i-l)h+jrKh/ni K 
f(x, y)dydx r-..; - L L ' f ([(i - l)h + rK.h], y) dy 

(i-l)h (i-l)h 2 K.=l j=l (i-l)h+(j-l)rKh/ni,K 

~ ~ E~ ;~.: ~ f ([(i - l)h + T"h], [(i - l)h + (j - 1) ::: + <:.)). (5.60) 
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Finally, we consider {(x,y) : (i - l)h ~ x :s; ih, 0 ~ y ~ (i - l)h}. Introducing the 
partition 0 = Zo < Z1 < ... < Zmi = (i - l)h by 

{zj: j = 0, ... 'mi} := {jh: j = 0, 1, ... , i - 1} n (5.61) 
{j[i - 1/2]h2 E [O, (i - l)h] : j = 1, ... }, 

we obtain the composite tensor product Gaufi rule 

rih r(i-l)h f ( X, Y )dydx rv I: rih 1Zj f ( X, Y )dydx 
l(i-l)h lo j=l l(i-l)h Zj-1 

(5.62) 

mi h z. - Z. 2 2 
rv L 2 J 2 J-l L L:t([(i - l)h + Tx;h], [zj-1 + r,,(zj - Zj_i)]). 

j=l x:=lt=l 

Putting formulae (5.58), (5.60), and (5.62) together, we get a new rule of the form (5.7). 

Theorem 5.3 Applying the just defined quadrature rules (5.58), (5.60), and (5.62) over 
the subdomains of Part{ and combining it with the tensor product two point Gaufl rules 
over the Part£ subdomains, we arrive at a wavelet algorithm {cf. Algorithm 3 of Sub-
section 4-1} with no more than O([h-2] 513{log h-1 }2) arithmetic operations and an error 
estimate of O(h2{log h-1}3!2) provided the discretised wavelet method is stable and the 
exact solution u of Mu= v is three times continuously differentiable. . 

Proof. We set 

( ) ( 
( x, y) - (o, o) ) 1 r- ( ) _ ( )J 

f x, y :=<I> l(x, y) - (0, O)I l(x, y) - (0, 0)12 uh x, y - uh 0, 0 ' (5.63) 

where uh E Xh is the bilinear interpolation of the solution u. For this f, we will show that 
the quadrature error for the integral off over S' is less than O(h2 log h-1 ). Starting from 
this estimate instead of (5.12), the proof of the theorem is analogous to that of Theorem 
.5.2. We only remark that, this time, the quadrature estimate over the Part{ domains 
requires that uh is the interpolant of a three times continuously differentiable function. 
Since this is not true, only the quadrature error over the ·Part{ squares with uh = uh 
can be estimated. However, due to the application of two point Gaufi rules, the squares 
with uh =f. uh can be treated like the Part£ domains. Arguing this way, one gets the 
O(h2{log h-1 }312) estimate instead of the O(h2{log h-1 }2) in Theorem 5.2. 
First we consider the quadrature error for f over S' n [O, h]2• Note that the integrand 
takes the form 

(5.64) 

where W is at least twice continuously differentiable. Duffy's transformation changes the 
integrand into 

f(x,zx)x = w(z) [uh(x;xz)-uh(O,O)] = w(z) f 1
\7uh(Ax;Axz) · (1,z)dA. (5.65) 

x · lo 
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Since the last expression is smooth, we arrive at an O(h2 ) estimate for the quadrature 
error over S' n (0, h] 2 • 

Next we consider the integral and the quadrature rule over S' \ (0, h] 2• Over this domain, 
we can replace uh in the definition off by the exact solution u. Indeed, this leads to an 
error 

[

2 f IJ!' (;) :Jii.h(x, y) - u(x, y)]dydx (5.66) 

< sup lith(x,y) - u(x,y)I [
2 [II]!' m I :2dydx 

11/2 1 < Ch2 -dx :::; Oh2 log h-1 

h x 

for the integral and, analogously, to an error less than C h 2 log h-1 for the quadrature 
rule. Hence, we have to estimate the quadrature error for the integrand 

J(x, y) = IJ!' m :2 [u(x, y) - u(O, O)]. (5.67) 

We observe that the function 

x i-+ [ f(x,y)dy {1 '1I(z) [u(x, zx) - u(O, O)] dz 
lo x (5.68) 

l IJ!'(z) l V'u(>.x,Azx) · (1,z) d>.dz 

is twice continuously differentiable. Consequently, 

[
2 [f J(x, y)dy] dx - ~

1 

~ j; [t-l)h+T.h J([(i - l)h + r,.h], y)dy] :::; Ch2
• 

Hence, it r~mains to estimate the difference of~ L:!=l JJi-l)h+rKh f([(i - l)h + Ttth], y)dy 
and the quadrature rule over {(x,y) ES': (i - l)h:::; x:::; ih}. Using l(8/8y) 2f(x,y)I:::; 
C[ih]-3 and the fact that the step size in y-direction: is less than Cih2 , the sum of the 
considered differences is less than · 

(5.69) 

i=2 i=2 

0 

Remark 5.2 Note that a stability proof for the quadrature discretisation of the wavelet 
algorithm in Theorem 5.3 seems to be very hard. However, using the ideas of the proof 
to Theorem 5.2, it is not hard to define a slight modification which can be proved to be 
stable. 
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