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Abstract

This work presents a detailed investigation of a parameter estimation approach based
on the reduced order unscented Kalman filter (ROUKF) in the context of one-dimensional
blood flow models. In particular, the main aims of this study are (i) to investigate the effect
of using real measurements vs. synthetic data (i.e., numerical results of the same in silico
model, perturbed with white noise) for the estimation and (ii) to identify potential difficul-
ties and limitations of the approach in clinically realistic applications in order to assess
the applicability of the filter to such setups. For these purposes, our numerical study is
based on the in vitro model of the arterial network described by [Alastruey et al. 2011, J.
Biomech. 44], for which experimental flow and pressure measurements are available at
few selected locations. In order to mimic clinically relevant situations, we focus on the es-
timation of terminal resistances and arterial wall parameters related to vessel mechanics
(Young’s modulus and thickness) using few experimental observations (at most a single
pressure or flow measurement per vessel). In all cases, we first perform a theoretical
identifiability analysis based on the generalized sensitivity function, comparing then the
results obtained with the ROUKF, using either synthetic or experimental data, to results
obtained using reference parameters and to available measurements.

1 Introduction

One-dimensional blood flow models provide a powerful tool to simulate complex cardiovas-
cular conditions. These models have been validated versus in vitro experiments [19, 1, 4, 14]
and in vivo measurements [31, 34, 33, 28, 5] and have proved to provide useful insights for the
understanding of cardiovascular physiology and pathology (see, e.g., [2, 17, 16, 13, 30, 6, 23]).

One way to enhance the predictive and descriptive capabilities of models regarding clinically
relevant applications, is to tune model parameters in order to perform patient-specific simula-
tions. In order to do so, geometrical and physical parameters need to be adjusted to capture
the features of specific subjects. This is the focus of data assimilation and parameter estima-
tion methods, i.e., algorithms that combine mathematical models with available measurements
in order to improve the accuracy of model predictions according to available observations.

We focus on the Kalman filter, a sequential approach in which estimates for state and param-
eters are corrected at each time step of the simulation, taking into account the error between
the available measurements and the current numerical predictions. In particular, the reduced-
order unscented Kalman filter (ROUKF) [20] has the advantages of not requiring the solution
of a tangent problem, as it is based on an efficient sampling of the parameter space (through
the so-called sigma points). Recently, the ROUKF has been successfully employed in the field
of blood flow simulations for the estimation of the mechanical properties of the aorta [3] and
to tune lumped parameter (0D) models used as boundary condition for 3D models according
to patient data [32].

However, to the best of our knowledge, the only previous work dealing with the ROUKF and
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one-dimensional models is the one by Lombardi [18], in which only in silico data (e.g. numeri-
cal results obtained with the very same model that defines the direct problem, perturbed with
Gaussian noise) were used to feed the filter, and the number of measurement points per ob-
served vessel was as big as the vessel spatial discretization (one data for each computational
cell). In this work, as a further step towards the assessment of ROUKF in clinically realistic
settings, we consider the in vitro arterial network described in [19, 1], for which parameter
values have been determined prior to the experiment, and, at the same time, experimental
flow and pressure measurements are available at selected points over the network (at most
one measurement location per vessel). The latter aspect is particularly relevant when aim-
ing at the application of this methodology in clinical cases, where measurements are usually
available at only a few locations. A remarkable example of the application of parameter es-
timation to one-dimensional blood flow models is the one presented in [8]. However, in that
work the methodology employed relied on the ensemble Kalman filter, which is different from
the ROUKF examined here.

Focusing on this experimental setting, our main goal is the investigation of the accuracy and
of the robustness of the ROUKF. Specifically, we present two sets of numerical tests, consid-
ering the estimation of (i) terminal resistances used for imposing boundary conditions and (ii)
arterial wall parameters (such as Young’s modulus and vessel thickness). In both cases, we
present a case considering several unknown parameters (16 resistances and 8 thicknesses),
and a test focusing on few parameters (two resistances on the same terminal branch and
a single Young’s modulus). While the former setup aims at assessing the robustness of the
estimator, the latter has the scope of investigating the accuracy of the final estimate. For all
presented numerical studies, we compare the results using perturbed in silico measurements
with those obtained using in vitro data from [1], assumed to be located at the middle point
of each observed vessel. Furthermore, the filter performance and its identification capabilities
using either flow or pressure measurements are studied. In order to solve the one-dimensional
blood flow model, corresponding to the experimental network, we consider the finite volume
numerical method described in [27, 21, 25].

The rest of the paper is organized as follows. In Section 2 we shortly introduce the numerical
method for the solution of one dimensional blood flow models, the reduced unscented Kalman
filter and the considered in vitro arterial model. The assessment of the estimation algorithm
with in silico and in vitro measurements is then presented in Sections 3 (terminal resistances)
and 4 (arterial wall parameters). Finally, Section 5 draws the conclusions and the perspectives
for future studies.

2 Methods

2.1 One-dimensional blood flow model

One-dimensional models are a suitable approach to investigate wave propagation phenomena
in large arterial and venous networks. In fact, they deliver useful information on pressure and
flow waveforms, while keeping the computational cost reasonably low. The set of equations

2



under study is 
∂A
∂ t

+
∂q
∂x

= 0,

∂q
∂ t

+
∂

∂x

(
q2

A

)
+

A
ρ

∂ p
∂x

= f ,
(1)

where A(x, t) is the cross-sectional area, q(x, t) is the mass flow rate, p(x, t) the average
blood pressure over the cross section, f (x, t) stands for the friction force per unit length and
ρ denotes the blood density. We close system (1) with a constitutive law (usually called tube
law) that relates the strain and strain rate of the vessel to the internal pressure [11] via the
following relation

p(x, t) = pe(x, t)+K(x)φ(A(x, t),A0(x))+
Γ

A0(x)
√

A(x, t)

∂A
∂ t

, (2)

with

φ(A,A0) =

(
A
A0

)m

−
(

A
A0

)n

+ p0 , (3)

where pe(x, t) denotes the external pressure, K(x) is related to the geometrical and mechani-
cal properties of the vessel wall, since it is a function of the Young’s modulus, the wall thickness
and A0(x), which is the cross-sectional area at a reference pressure p0. In turn, Γ is related to
the viscosity of the vessel wall [1].

It can be easily observed that the viscoelastic term of tube law (2) results in a diffusive term
in the momentum balance equation. Moreover, the spatial variation of mechanical and geo-
metrical properties might give rise to extra source terms in the momentum balance equation.
These source terms involve the product of the spatial derivative of a parameter and one of
the unknowns. Such terms are called geometric source terms and their discretization must be
carefully performed if explicit numerical schemes are to be used. Here we adopt the model
proposed in [21], which consists in a reformulation of (1) that yields a first-order hyperbolic
system with stiff source terms. A key ingredient of this reformulation is the introduction of an
auxiliary variable Ψ, a relaxation parameter ε and an evolution equation

∂Ψ

∂ t
=

1
ε

(
∂q
∂x
−Ψ

)
, (4)

such that

Ψ→ ∂q
∂x

, ε → 0 . (5)

Considering (4) and (5), and replacing

∂A
∂ t

=−∂q
∂x

=−Ψ+O(ε) ,

in (2), system (1) reads
∂tQ+A(Q)∂xQ = S(Q) , (6)

in terms of the unknowns
Q = [A,q,K,A0, pe,Ψ]T , (7)

with source term vector
S(Q) = [0,− f ,0,0,0,− 1

ε
Ψ]T (8)
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and the coefficient matrix A(Q) given by

A(Q) =



0 1 0 0 0 0
c2−u2 + aΓ

2 2u A
ρ

φ
A
A0

(
aΓ− c2

) A
ρ
−A

ρ

Γ

A0
√

A
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 − 1

ε
0 0 0 0


, (9)

where

c2 = A
ρ

K
∂φ

∂A
, u =

q
A
, aΓ =

Γ

A0
√

A
Ψ

ρ
. (10)

Note that we are considering the trivial evolution equations

∂K
∂ t

= 0 ,
∂A0

∂ t
= 0 ,

∂ pe

∂ t
= F(x, t) ,

with F(x, t) prescribed, as proposed by [37]. Doing so incorporates the variation of geometrical
and mechanical properties in the eigen-structure of the system and allows for the development
of well-balanced numerical schemes for one-dimensional blood flow models [27]. See [21] for
details on the derivation of (6) and for a complete mathematical analysis of the system.

System (6) is numerically solved using the high-order ADER finite volume scheme [38], with
the DET solver for the generalized Riemann problem (GRP) [9]. As it is well known, all GRP
solvers require a classical Riemann solver, see [22]; to this end we adopt the Dumbser-Osher-
Toro (DOT) scheme [10], modified as described in [27]. The numerical scheme is implemented
using a local time stepping second order implementation [25] which ensures a consistent
high-order treatment of coupling conditions at junctions of viscoelastic vessels [24, 26]. For
background on the ADER approach and recent developments see [36, Chapters 19 and 20]
and references therein.

The one-dimensional domain, at terminal sites, is coupled to lumped parameter models rep-
resenting the peripheral circulation (see [12] and therein cited references for full details). For
the network considered here, see [1], these models are purely resistive

Q =
P1D−Pout

RTOT
, (11)

where Q is the flow rate across the lumped model, P1D is the pressure in the one-dimensional
domain, Pout is the outlet pressure and RTOT is the total peripheral resistance.

We conclude this section by noting that more complex terminal models can be used, as those
that include the compliance of peripheral vessels and/or the inertia of blood in those networks.
In such cases the terminal models are ordinary differential equations that have to be coupled
to the one-dimensional domain. Moreover, it is worth mentioning that other portions of the car-
diovascular system can also be modeled using lumped models, e.g. the heart, the pulmonary
circulation and valves in veins (see, e.g., [28, 29]).
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2.2 The Kalman filter for parameter estimation

The Kalman filter is a widely used tool for data assimilation application, aiming at improving
the results of a computational model and estimate the values of unknown parameters, taking
into account available measurements on a given system [20, 3, 32].

In order to introduce the method from a general point of view, let us write the discretized
evolution of the one-dimensional model described in Section 2.1 in the form of a dynamical
system

Xn+1 = F (Xn,θ) ,

X0 = Y +ξ
X ,

(12)

where Xn denotes the ensemble of the state variables at time step tn (values of flow, pressure
and cross-sectional area at each discretization node along the network and state variables of
the lumped parameter models), F is an operator which depends on equations (6) and (11)
and on their particular discretization, and θ is a vector of parameters, whose values are to be
estimated. For instance, these unknown parameters might comprise the Young’s modulus of
selected vessel segments or the terminal resistances of lumped parameter models. Finally,
Y stands for the initial condition, while ξ X is a random variable that takes into account the
uncertainty of the initial state.

Let us now assume that a measurement vector Zn ∈ RM, for M measurements, is available at
n = 1, . . . ,N selected time instants, obtained by observing the state X through an observation
operator H (Xn), such that

Zn = H (Xn)+ξ
Z ,

affected by a noise ξ Z , which is usually assumed to be independent at all times and Gaussian
with zero-mean and covariance matrix ΣZ . In a clinical setting, the main contribution to the
observation noise is given by error statistics of measurement devices, thus the noise distribu-
tion of the observation will be considered constant in time [32]. For the ease of presentation,
we assume that measurements Z are available at each discrete time instant tn for which a
numerical approximation of blood flow dynamics is resolved. In practice, this assumption can
be easily relaxed interpolating the available observations at the discrete simulation times.

The idea behind the Kalman filter is to apply a prediction-correction scheme to an augmented
state (Xn,θn), including a trivial dynamics for the parameters (assuming that they do not
change in time).

Namely, the prediction is obtained via a forward propagation

X−n+1 = F (X+
n ,θn) ,

θ
−
n+1 = θn ,

(13)

while the correction takes into account the discrepancies between observations and measure-
ments (often called innovation)

X+
n+1 = X−n+1 +KX

(
Zn−H (X−n+1)

)
,

θ
+
n+1 = θ

−
n+1 +Kθ

(
Zn−H (X−n+1)

)
.

(14)

The Kalman matrices KX and Kθ are defined in order to minimize the distance between ob-
servations and measurements in a proper norm, which depends on the confidences in both
the measures and the model.
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2.2.1 The reduced-order unscented Kalman filter

It can be shown that, in the case of linear dynamics with white noise, the Kalman filter provides
an optimal estimate [20]. For non-linear systems, different extensions of the Kalman filter are
available. Among these, the unscented Kalman filter achieves second order accuracy employ-
ing a minimal set of deterministically chosen points in the state space for forward propagation
[39].

In this case, the prediction-correction strategy for the filtering consists in (i) a forward propa-
gation of the mean (current estimate) and covariance of the state, based on the dynamics of
selected points in the state space, and in (ii) a correction of the propagated statistics, com-
puted taking into account the noisy observations. In particular, the UKF computes state and
parameter estimates at all time iterations, as well as state and parameter covariance matri-
ces, based on the current confidence, represented by the covariance matrix PX and by the
observation error covariance PZ .

The main drawback of the UKF is that it might require costly matrix operations (factorization
and computation of inverse matrices) on large matrices (dimension of the state vector). How-
ever, neglecting the uncertainty on the state (i.e. on the initial conditions) allows to formulate
the so-called reduced-order unscented Kalman filter (ROUKF) [20], for which the filtering op-
erations only involve matrices of the size of the unknown parameter space, which is typically
much lower than the size of the state space. Moreover, it can be shown that for the estimation
of p parameters, only a discretization of p+1 points for the state-parameter space is required.
This optimal sampling can be obtained using simplex sigma-points

(
I(i)
)

i=1,...,p+1 (p+ 1 vec-
tors of size p) with properly defined weights d1, . . . ,dp+1. For simplicity of notation, in what
follows the sigma-points will be grouped in a matrix I (of size (p+1)× p), while the weights
will be collected in a diagonal matrix D. In practice, the sigma-points and their weights can be
recursively defined for each size of the parameter space. We refer to [20, 15] for details.

The algorithm The ROUKF algorithm can be summarized as follows (see, e.g., [20, 3] for
further details):

� Initialization: Assume that an initial parameter covariance matrix Pθ and the error covari-
ance matrix PZ , as well as the initial estimates X+

0 and θ
+
0 , are given. In the simulations

presented in the following section, we will assume that the matrices Pθ and PZ are diag-
onal matrices with entries

(
σ2

param,i

)
i=1,...,p

and
(

σ2
obs, j

)
j=1,...,M

, respectively. In practice,

the constants σ2
param control the confidence on the initial parameter estimate, while σ2

obs
can be interpreted as the confidence on the accuracy of the measurements. Set n = 0
and:

Lθ = I, LX = 0,U0 =
(

Pθ

)−1
.

� Until convergence, do

� Sampling:

Cn =

√
U−1

n (Cholesky factorization)

X+
n,(i) = X+

n +LX
n CT

n I(i), i = 1, . . . , p+1

θ
+
n,(i) = θ

+
n +Lθ

nCT
n I(i), i = 1, . . . , p+1
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� Forward propagation:

X−n+1,(i) = F (X+
n,(i),θn,(i)), i = 1, . . . , p+1

θ
−
n+1,(i) = θ

+
n,(i), i = 1, . . . , p+1

X−n+1 = E
[
X−n+1,(1,...,p+1)

]
θ
−
n+1 = E

[
θ
−
n+1,(1,...,p+1)

]
� Compute innovation:

Γn+1 = Zn+1−H (X−n+1)

� Update covariances:

LX
n+1 = X−n+1DI T

Lθ
n+1 = θ

−
n+1DI T

LΓ
n+1 = Γ

−
n+1DI T

Un+1 = I DI T +
(
LΓ

n+1
)T

PZLΓ
n+1

� Correction:
X+

n+1 = X−n+1−LX
n+1U−1

n+1

(
LΓ

n+1
)T

PZ E [Γn+1]

θ
+
n+1 = θ

−
n+1−Lθ

n+1U−1
n+1

(
LΓ

n+1
)T

PZ .

� Set n = n+1.

The stopping criterion was defined averaging the estimated parameters over each cardiac
cycle, and monitoring their RMS deviation.

2.2.2 Renormalization of measurement data

For the application of the Kalman filter, in order to compare the results obtained using mea-
surements of different nature (i.e., flow rates and pressures), the errors between the measure-
ments and the observations are renormalized when computing the innovation. Namely, when
considering pressure data, the errors are rescaled by the average pressure value over a cy-
cle, while, in the case of flow measurements, the errors are renormalized using the maximum
(absolute) value of flow.

2.2.3 Filter parameters

The algorithm described in Section 2.2.1 depends on two sets of user defined parameters,
denoted by σ2

param and σ2
obs, corresponding to a p-dimensional and M-dimensional arrays, re-

spectively. The vector σ2
param, defining the initial parameter covariance, determines in practice

the width of the initial sampling for the sigma-points, i.e., how much the particles will differ
from the initial condition. In our experience, this aspect might lead to stability issues in the
case of estimating several parameters (which yields a larger sigma-point sample), if the initial
parameter covariance is chosen too large. Especially in the presence of non-linearities, as
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the sampling does not uniformly affect the state and the parameters of the model, an exces-
sive sampling step might give rise to (non-physical) spatial and temporal discontinuities in the
model, which cannot always be handled numerically.

The array of parameters σ2
obs is theoretically related to the level of confidence of each mea-

surement, and, it depends on the intensity of noise. In practice, σ2
obs influences both the sam-

pling and the correction step (through the matrices U and PZ). Ideally (in the linear case),
if the measurements are noise-free, large values of σ2

obs might provide fast convergence to-
wards the exact parameter. However, we observed that large values of σ2

obs might yield stability
problems, especially in the initial phase of the filter, due to the discontinuities which might be
introduced by the filter during the correction and sampling steps.

A further variable, which plays a relevant role in our numerical tests, is the filter time step ∆tF ,
i.e., the time interval between two correction steps. In fact, when using a limited number of
measurements (e.g. observation located at midpoints of vessels), ∆tF is related to the covari-
ance between parameters and measures. This aspect might become particularly important if
the observed vessels are far from the sought parameters, as, after correcting the parameter,
the information needs a certain amount of time to reach the observed location. On the other
hand, increasing the filter time step reduces the number of corrections, but may result in a
slower convergence.

In practice, in order to define the parameters, we consider the following approach:

� Assuming that no a priori information is available concerning the parameters, the initial
covariances will be taken all equal. The value of the covariances will be smaller (order
of 10−2) when a large number of parameters has to be estimated, and larger (order of
10−1) when estimating few parameters.

� Independently of the number of available measurements, the initial measure covari-
ances will be defined equal for all measures as

σ
2
obs,i = γ

∆tF
T0

, i = 1, . . . ,M (15)

where T0 is the length of the cardiac cycle, and γ is a free parameter. With this definition,
the parameters σ2

obs,i take into account the fact that, varying ∆tF , also the number of filter
correction steps changes.

2.3 Identifiability analysis

Given a dynamical system and a set of uncertain parameters, the goal of identifiability analysis
is to understand which parameters can be more robustly estimated, whether there might be
difficulties in the estimation and in which case additional measurements could improve the
results.

2.3.1 Traditional sensitivity

One possible approach consists in considering the sensitivity of the observed system to pa-
rameter changes, i.e. how measurements are sensitive to small perturbations in the value of
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parameters. Formally, let p be the number of uncertain parameters. The sensitivity can be
quantified by the matrices (of size p×M)

S j
k(tn,θ0) =

θ̂0,k

ĥ j

∂H j(Xn)

∂θk
|θ0,k , with j = 1, . . . ,M, k = 1, . . . , p , (16)

defined at each time step tn for a p-dimensional element θ0 in the parameter space, given, e.g.,
by available initial estimates or reference values of the parameters of interest. Notice that, in
definition (16), the observations and parameters are rescaled by reference values (ĥ j) and
(θ̂0,k), in order to obtain a non-dimensional sensitivity (necessary when comparing different
types of parameters and different types of measures).

The relative magnitudes of the total system sensitivity with respect to parameters might be
used to characterize their identifiability over time. In particular, small sensitivity values (for a
certain time-interval) imply that the observed quantities are weakly sensitive to parameters.
In this case, the observations might not contain sufficient information about the parameters,
hence leading to potential identifiability complications [35]. It is worth noticing that the sen-
sitivity matrix (16) characterizes the observation in terms of changes in single parameters,
in order to quantify the identifiability of parameters. However, this does not provide any in-
formation about the correlation between parameters and how the identifiability would change
enlarging or reducing the set of parameters to be estimated.

2.3.2 Fischer information matrix

For time dependent problems, additional information about the parameter sensitivities is pro-
vided by a cumulative Fischer information matrix for the set of measures, defined, for the
whole time interval, by the p× p matrix

M =
N

∑
i=1

M

∑
j=1

1
σ2

j (ti)
S j(ti,θ0)

(
S j(ti,θ0)

)T
(17)

where N and M stand for the total number of time steps (at which the measurements are
available) and the total number of measurements, respectively, and S j(ti,θ0) is the j-th column
of the sensitivity matrix (16) calculated at time ti at a given point θ0 of the parameter space.
Moreover, the weight σ2

j (ti) is the confidence on the j-th measure at time ti.

In practice, with respect to the traditional sensitivity matrix, the matrix M provides not only
information about the sensitivity of each parameter (diagonal elements), but it quantifies also
the correlation between them (off-diagonal entries), according to the available measurements.

2.3.3 Generalized sensitivity function

An extension of the traditional sensitivity is represented by the so-called generalized sensi-
tivity function (GSF) [32, 35] which aims at characterizing the sensitivity of the parameter
estimations with respect to the available measurements. Moreover, the GSF quantifies how
the information content of the measurements with respect to individual parameters is dis-
tributed during the experiment, providing also insight into the degree of correlation between
model parameters. We refer, e.g., to [35] for a detailed derivation. At each time step tn (for
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which measurements are available), the GSF is a p-dimensional vector whose components
are defined by

gk(tn) =
n

∑
i=1

M

∑
j=1

(
1

σ2
j (ti)

(
M−1S j(ti,θ0)

)
k S j(ti,θ0)k

)
, k = 1, . . . , p. (18)

Notice that, if the parameters are strongly uncorrelated (i.e., M is strongly diagonal domi-
nant), each component of the GSF (18) can be seen as a weighted norm of the columns of
the traditional sensitivity. In this case, the largest components of the GSF also correspond to
the parameters with highest sensitivity. In general, the following information about parameter
identifiability can be drawn from the profile of the GSFs over time: (i) sharp increase in GSFs
implies high concentration of parameter information (in the corresponding time interval); (ii)
monotone non-decreasing GSFs imply that parameters are uncorrelated; (iii) large oscilla-
tions in GSFs imply large correlation between parameters, and hence potential identifiability
problems [32, 35].

Hence the GSF can be used, on the one hand, to preprocess the system in order to under-
stand whether a specific set of parameters might suffer from identifiability problems, and, on
the other hand, to decide whether the set of measures is sufficient for the estimation, and,
if not, whether including additional observations could be helpful. At the same time, together
with the Fischer information matrix, the GSF provides information about sensitivity and corre-
lation of parameters, allowing to decide – given the set of observations – whether to exclude
one or more parameters from the estimation algorithm. However, it is important to note that
the traditional sensitivity matrix (and therefore the GSF) can, in general, only be computed
in silico (i.e. computing the sensitivity matrix numerically from synthetic data, observing the
numerical results when varying the parameters), and an evaluation of the sensitivity based on
real measurements is not feasible a priori. As a consequence, in realistic situations, a GSF
which reveals no identifiability issues according to the above criteria (i)–(iii) does not neces-
sarily imply that the parameters will be correctly estimated.

2.4 An in vitro arterial model

For this study, we consider the in vitro model of the human arterial network described in [19, 1].
Figure 1 shows the vessel network, which is composed of 37 silicone tubes. The network inlet
is connected to a pump, mimicking the action of the heart, while terminal vessels are coupled
to purely resistive elements, i.e., using the lumped parameter model defined by (11).

This model has been extensively used for validation of numerical approaches (see, e.g.,
[1, 27]) and to compare results obtained by different numerical methods [7]. Here we use
this model because it offers the possibility of assessing the Kalman filter in a realistic – but
still highly controlled – in vitro setting. In fact, the uncertainty on model parameters is very
low as mechanical and geometrical properties of the vessels that compose the network were
carefully measured and reported in the above cited references. Moreover, experimentally mea-
sured flows and pressures at different locations, with a relatively detailed sampling (about 800
time instants per cardiac cycle), are available [7]1. It is worth noting that for this network, the

1The measurement data have been kindly provided by Dr. J. Alastruey and have recently been made available
as supplementary material in [7].
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Figure 1: Schematic representation of the in vitro model of the human arterial network pre-
sented in [19, 1] (left, center), reproduced with permission. Inflow boundary condition for ves-
sel 1 (right).

numerical method, which is based on an explicit local time stepping second-order finite vol-
ume scheme [25], needs approximately one second of wall clock time to solve a cycle using
OpenMP parallel computing on a Intel R© Xeon R© CPU E5-2650 v2 @ 2.60GHz processor.

2.5 Tests setup and evaluation

We will present two setups in order to explore the capability of the Kalman filter to estimate pa-
rameters in the above described in vitro setting. First, we investigate the estimation of terminal
resistances, i.e., the parameters defining the 0D boundary conditions (11). This case study is
chosen since terminal resistances are normally hard to estimate, and a rather standard proce-
dure is to assign their values in order to approximate given flow distribution pattern and mean
pressure. Hence, being able to estimate the resistances based on few measurements clearly
represents an improvement in the setting of a patient-specific simulation. Next, we focus on
the arterial wall properties, considering the estimation of Young’s modulus and wall thickness
of vessels. In this case, the estimation of these parameters is mainly motivated by the fact
that, unlike geometrical information, they can hardly be retrieved from medical images.

In the different tests, we will present estimation results obtained either with synthetic mea-
surements, i.e. observation obtained directly from the numerical model (possibly perturbed
with white noise) and with experimental measurements.

Furthermore, two different errors will be monitored. On the one hand, we consider the discrep-
ancy between the estimated parameter and the reference parameter provided in [1]. On the
other hand, since the scope of the Kalman filter is to minimize a given functional, depending on
the difference between numerical results and provided measurements, we will also consider
the quantity

ei =

√√√√ 1
N

N

∑
n=1

(
Hi(X̃n)−Zi,n

Ẑi

)2

, (19)

corresponding to the RMS deviation between the measurements and the observations ob-
tained when running the forward model with the estimated parameters for the i-th measure-
ment. In (19), N denotes the number of time steps per cardiac cycle, while Zi stands for the
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time-series of the i-th measurement (Zi,n is the i-th measurement at time tn) and X̃ is the state
vector obtained with the estimated parameters. Furthermore, the normalization factor Ẑi cor-
responds to the time average over a period (in the case of pressure measurements) or to the
maximum value (in the case of flow rate measurement), consistently with the renormalization
introduced in the Kalman filter for the i-th measurement time series (see Section 2.2.2).

3 Estimation of terminal resistances

Here we focus on the estimation of parameters that define 0D boundary conditions for the
mathematical model. This aspect has been recently investigated to assess the performance
of the ROUKF in 1D-0D models with in silico measurements [18] and in the context of calibrat-
ing 3-parameters (Windkessel) boundary condition models for 3D simulations (e.g., [3, 32]).
Notice, however, that in the present arterial network model, due to the experimental setup,
boundary conditions are purely resistive (one parameter per terminal vessel).

This test aims at investigating whether observations (mainly near the terminal branches) allow
accurate estimates of terminal resistances, and, if so, how robust the resulting estimation is
(e.g., with respect to noisy data and/or how the estimate differs using synthetic or experimental
data). We consider two situations: first the joint estimation of all terminal resistances, in order
to assess the robustness of the filter against a large number of uncertain parameters; next,
we focus on a single terminal branch, in order to study more closely how the estimation might
be affected by the lack of accurate measurements close to the terminals.

3.1 Estimation of multiple terminal resistances

The in vitro model contains 16 terminal resistances (see Figure 1), whose vessel indices and
reference values (given in [1]) are summarized in Table 1.

Vessel 3∗ 6 7∗ 9 13∗ 14∗ 16 20∗

Rref [109Pa s m−3] 2.67 3.92 3.24 3.11 3.74 3.77 2.59 3.54

Vessel 21 22 24∗ 26 34∗ 35∗ 36 37
Rref [109Pa s m−3] 4.24 3.75 3.46 3.45 5.16 5.65 4.59 3.16

Table 1: The indices of the terminal vessels (top rows) with the corresponding values of ref-
erence resistances (bottom rows). Additionally, the star indicates the branches where flow
measurements are available (either located on a terminal vessel or on neighboring ones).

In order to restrict the estimated parameters to positive values, we parametrize the value of
the i-th terminal resistance as Ri = Ri,ref2θi , where Ri,ref is the reference value [1], so that for
θi = 0, the estimated value corresponds to the reference parameters. This parameterization
holds for all tests presented in this work.

As initial condition, we randomly choose the (non-dimensional) parameters θi between -2 and
2. Then, we run the one-dimensional model for the in vitro setting until a periodic regime is
reached, in order to generate an initial state (to be used to start the Kalman filter) compatible
with the initial guesses of the parameters. An initial parameter covariance of σ2

param = 0.01
was used, while γ = 104 was selected for the measure covariances. Moreover, the filter was
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applied with a time step ∆tF = 0.01 for a simulation time of 300 s (corresponding to about 363
cardiac cycles of period 0.827 s). The required computational time was of about 20 minutes.

For the estimation of these parameters, we consider the measurements that are available at
the terminal vessels (3, 7, 14, 20, 24, 34) and the measurements on vessels 11, 29 and 30,
which are located close to three terminal bifurcations. Each measurement corresponds to one
datum per vessel, assumed to be acquired at the middle point.

In what follows, we compare the results of the estimation algorithm in two cases:

� in silico: feeding the filter with synthetic measurements, i.e., the numerical results of the
one-dimensional model with the reference parameters, perturbed with Gaussian noise,
and

� in vitro: employing the available experimental measurements.

In both cases, we first perform an identifiability analysis for the considered setting (16 terminal
parameters to be estimated and 9 observations) based on the Fischer information matrix and
on the GSF.

3.1.1 Estimation using flow measurements

From the Fischer information matrix (Figure 2, left), one can clearly distinguish the terminals
corresponding to measured flows (the darkest diagonal entries, with a lower correlation level
and hence a higher sensitivity), as well as the couple of terminals corresponding to the same
bifurcation (darker 2×2 blocks along the diagonal). On the other hand, blocks with similar grey
tone (e.g. vessel 6 and the branches 21-22 and 36–37) indicate that parameters are correlated
and hence that potential identifiability problems can occur. Similar conclusions can be drawn

Figure 2: Left: the Fischer information matrix for the set of terminal parameters and consider-
ing flow measurements on vessels 3, 7, 11, 14, 20, 24, 29, 30, and 34; the linear greyscale
goes from black (highest value) to white (lowest value). Right: the GSF for the terminal pa-
rameters and the considered flow measurements; for clarity, the most and less oscillatory
components are shown separately.

observing the profile of the GSF in time (Figure 2, right). In fact, one can easily recognize two
types of behavior. First, we observe a monotone increasing GSF for vessels 3, 7, 13, 14, 20,
24, 34 and 35, with small oscillations present only for vessels 13 and 16. These vessels cor-
respond to the branches where measurements are available, with the exception of vessel 16,
which, however, is a single-branch terminal and therefore possibly less correlated with other
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parameters. The GSFs of the remaining vessels (6, 9, 21, 22, 26, 36, 37) are characterized
by an oscillatory behavior, where an underlying monotone increase is only visible for vessels
6 (a measurement is available on vessel 7) and 9 (single-branch terminal).

The estimates resulting from the Kalman filter are shown in Figure 3, confirming the expec-
tations derived from the identifiability analysis. In particular, when in silico data is used, one
clearly sees that parameters characterized by a favorable GSFs (Figure 2, middle) are also
better estimated, reaching values which are very close to the reference ones. On the contrary,
the filter delivers poor estimates for the parameters whose GSFs have oscillating profiles (error
between 20% and 30% for terminals 6, 9, 16, 21, 22, 26, 36 and 37).

Figure 3: Estimated terminal resistances (with flow measurements), dividing upper (left), mid-
dle (center) and lower (right) body. The continuous line shows the estimated value over time
(divided by the corresponding reference values, so that 1 corresponds to the reference resis-
tance [1]). Top: Synthetic measuremets. Bottom: Experimental measurements.

The identifiability difficulties are more visible using experimental measurements. In this case,
the estimates for some of the terminal resistances with oscillating GSF tend to diverge from
the reference value (terminal 6, 21, 36 and 37), while in the other cases, when the estimation
converges, the relative error with respect to the reference parameter is close to 50% (terminals
9, 16 and 26). For the remaining parameters, values relatively close to the reference ones (with
an error of about 30%) are obtained. Hence, in general, less accurate estimation than the in
silico case is achieved. Also, the filter based on synthetic data needs less time to converge
(unless the estimates diverge). This is expected, and it is in line with the better conditioning of
the problem when using model-derived synthetic data.

Remark 1. Notice that, even in the in silico case, where the reference parameters minimize
the error with respect to the observations, the final estimates are rather different from the
reference values (up to 30% of error). This result might depend on the number of parameters
estimated at the same time (with a small set of measures). In fact, in this case, the sigma-point
sampling can spread the particles relatively far in the parameter space, making it difficult for
the filter to retrieve the correct solution.
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Finally, we monitor the errors (19) with respect to the experimental measurements obtained
running the one-dimensional model with the estimated parameters. This is important in order
to assess the outcome of the filter. In fact, in the in vitro case, although the estimated parame-
ters might differ from the reference values, the estimation results should allow to decrease the
discrepancies between data and observations. These errors are summarized in Figure 4, con-
sidering the forward simulations with the initial parameters, the reference values and the new
estimates. In this figure we show errors for all vessels for which measurements are available,
including thus not only measurements used for the estimation, but all available information.
One can see that, in all cases, the solution obtained using the estimated parameters always
features the smallest errors (errors for vessels denoted with grey bars). However, the negative
impact of the estimated parameters on other errors, especially for pressure, invalidates the
results of the estimation process. In fact, it is observed that, regardless the flow measurement
was available or not, there are very large discrepancies in the values of the pressure in all ves-
sels. In fact, since only flow measurements are used, the estimation process has no control
on pressure levels and this can clearly lead to an invalid estimation (see Figure 4 right).

Figure 4: Summary of the errors obtained running the one-dimensional model with the initial
values of the resistances (blue), with the reference values (yellow) and with the estimated
parameters (red), in the case of flow data. The x-axis indicates the observed vessel, while the
y-axis shows the corresponding error. Errors average (standard deviation) are shown for each
model setting in the legends. Left: errors with respect to flow data. Right: errors with respect to
pressure data. Grey bars denote vessels for which measurements of the quantity for which the
error is computed have been used in the estimation, whereas dashed lines indicate vessels
for which a measurement of the other quantity has been used for the estimation. For example,
a vessel with dashed lines in the pressure error plot indicates that the flow measurement in
this vessel was used for the estimation.

3.1.2 Estimation using pressure measurements

Figure 5 shows the Fisher information matrix (left) and the GSF (middle and right) for the case
in which pressure measurements are used. For the sake of clarity, the GSFs are divided in two
plots as in the previous Figure 2. However, unlike the case of flow measurement, one can see
a higher correlation between parameters and more complex GSF profiles, which reveals a less
overall sensitivity of the pressure measurements to the terminal resistances. In particular, in
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Figure 5: Left. The Fischer information matrix for the set of terminal parameters considering
pressure measurements on vessels 3, 7, 11, 14, 20, 24, 29, 30, and 34; the linear greyscale
goes from black (highest value) to white (lowest value). Right: The GSF for the terminal pa-
rameters and the considered pressure measurements.

this case it is rather difficult to distinguish between more and less identifiable parameters, as all
GSFs are mainly monotone, but affected by small amplitude oscillations (with the exception of
vessels 36 and 37, showing very large oscillations). Moreover, the behavior of the GSFs varies
during the cardiac cycle, due to the fact that the information contained in the measurements is
not uniformly distributed over time. Hence, one can conclude that all the parameters (except
vessels 36 and 37) can be estimated using pressure measurements, but, at the same time,
that the quality of the estimation might be worse than in the case of flow measurements, due
to the high correlation between terminal resistances.

The estimation results confirm to some extent these expectations. In the in silico case (Figure
6, top), all terminal resistances are estimated in relatively short time (between 100 and 200
cardiac cycles), with final errors less than 20% in several cases. The only exceptions are the
terminal resistances on vessels 13, 16, 21, 22 and 37 (with errors of up to 40%).

As for the case of experimental flow measurements, also in the case of in vitro pressure
data several potential identifiability issues emerge. As in the case in which experimental flow
measurements were used, several parameters do not reach a stationary state after more than
300 cardiac cycles. For the converged parameters, the difference with respect to reference
values stays around 20%, besides for vessels 13 and 16 (errors of 40%). The remaining
parameters, whose estimates do not reach a steady value, show errors above 50%. However,
unlike in the case of flow measurements, the maximum error is of the order of 60% for terminal
35 (against the 500% error of terminal 6 estimated with flow observations).

Finally, we monitor the errors (19) with respect to the experimental measurements obtained
running the one-dimensional model with the estimated parameters (Figure 7). In most of the
cases the new estimates result in smaller errors, or errors comparable with the ones obtained
using the reference values. Only for the observation in vessel 24, the error corresponding to
reference parameters is below the one obtained with the new set (0.06 against 0.075). This
aspect could be a consequence of the higher correlation (hence less sensitivity) of terminal
resistances when using pressure measurements (Figure 5), combined with the large number
of parameters to be estimated, resulting in a harder (worse conditioned) minimization problem
to be solved by the filter.

Considering errors with respect to flow measurements, we see that, as for the case of the
estimation performed using flow measurements, the impact of the estimation process on errors
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Figure 6: Estimated terminal resistances (with pressure measurements), dividing upper (left),
middle (center) and lower (right) body. The continuous line shows the estimated value over
time (divided by the corresponding reference values, so that 1 corresponds to the reference
resistance [1]). Top: Synthetic measurements. Bottom: Experimental measurements.

for non-monitored quantities is negative, with errors for flow measurements greater than the
ones obtained using initial guesses for parameters.

This aspect could be a consequence of the higher correlation (hence less sensitivity) of ter-
minal resistances when using pressure measurements (Figure 5), combined with the large
number of parameters to be estimated, resulting in a more difficult (worse conditioned) mini-
mization problem to be solved by the filter.

3.1.3 Estimation combining flow and pressure measurements

Based on the previous results, we performed the estimation of terminal resistances using flow
and pressure measurements. First we considered all flow and pressure measurements used
in Sections 3.1.1 and 3.1.2. Figure 8 shows the progress of the estimation procedure for syn-
thetic (top row) and experimental data (bottom row). It is evident that using a combination
of pressure and flow measurements has a positive impact on the velocity by which the pa-
rameters converge to a given value and on the agreement of the estimated parameters with
reference values. In fact, acceptable estimates for almost all parameters are reached after 100
cardiac cycles, for both, synthetic and experimental measurements. Moreover, in the case of
synthetic measurements final errors are of less than 50% of the reference values, whereas for
experimental measurements errors are below 60% of the reference values. The better perfor-
mance of the filter in this setting is also seen when one evaluates errors of forward simulations
performed with estimated parameters, as shown in Figure 9 (top row). In fact errors are smaller
than or similar to the ones obtained with reference parameters for both quantities, flow and
pressure. These results show that mixing flow and pressure measurements is beneficial for
the estimation of terminal resistances. However, it is unrealistic to assume that pressure mea-
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Figure 7: Summary of the errors obtained running the one-dimensional model with the initial
values of the resistances (blue), with the reference values (yellow) and with the estimated
parameters (red), in the case of pressure data. The x-axis indicates the observed vessel,
while the y-axis shows the corresponding error. Errors average (standard deviation) are shown
for each model setting in the legends. Left: errors with respect to flow data. Right: errors with
respect to pressure data. Grey bars denote vessels for which measurements of the quantity for
which the error is computed have been used in the estimation, whereas dashed lines indicate
vessels for which a measurement of the other quantity has been used for the estimation.
For example, a vessel with dashed lines in the flow error plot indicates that the pressure
measurement in this vessel was used for the estimation.

surements at several locations can be obtained from standard clinical monitoring procedures.
It is thus advisable to assess how the filter behaves in the case of using flow measurements,
which can be obtained with non-invasive procedures, and a single pressure measurement.
We have performed two tests, taking all flow measurements used in Section 3.1.1 and a sin-
gle pressure measurement. Moreover, we have performed the estimation using a peripheral
pressure measurement location (vessel 7, corresponding to the right ulnar artery) and a cen-
tral location (vessel 10, corresponding to the aortic arch). For the sake of brevity, only errors
of forward simulations are displayed. Figure 9 shows results for the case of a single pressure
measurement in the ulnar artery (middle row) and in the aortic arch (bottom row). It can be
seen that using a single pressure measurement, in combination with flow measurements, is
almost as beneficial as using many pressure measurements.

Furthermore, it is observed that the errors in the estimation of the flow are insensitive to the
location of the pressure measurement. Nevertheless, the errors in the pressure are sensitive
to the place where pressure is being monitored. This can be considered an expected result, in
fact, monitoring the pressure at central locations provides different systemic information than
the peripheral pressure. Remarkably, the errors in the pressure are smaller when considering
the measurement at the central location.
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Figure 8: Estimated terminal resistances (combining flow and pressure measurements), di-
viding upper (left), middle (center) and lower (right) body. The continuous line shows the
estimated value over time (divided by the corresponding reference values, so that 1 corre-
sponds to the reference resistance [1]). Top: Synthetic measurements. Bottom: Experimental
measurements.
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Figure 9: Summary of the errors obtained running the one-dimensional model with the initial
values of the resistances (blue), with the reference values (yellow) and with the estimated
parameters (red), in the case of using all flow data and pressure data at all flow measurement
locations (top row), at the right ulnar artery (vessel 7, middle row) and at the aortic arch
(vessel 10, bottom row). The x-axis indicates the observed vessel, while the y-axis shows the
corresponding error. Errors average (standard deviation) are shown for each model setting
in the legends. Left: errors with respect to flow data. Right: errors with respect to pressure
data. Grey bars denote vessels for which measurements of the quantity for which the error is
computed have been used in the estimation, whereas dashed lines indicate vessels for which
a measurement of the other quantity has been used for the estimation. For example, a vessel
with dashed lines in the pressure error plot indicates that the flow measurement in this vessel
was used for the estimation, and viceversa.
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3.2 Estimation of one terminal bifurcation

The previous benchmark evidenced the higher sensitivity of flow measurement to terminal
resistances, with respect to pressure measurements. The goal of the following test is to inves-
tigate more in detail how the accuracy of the estimate of terminal parameters depends on flow
measurements on the corresponding branches (the most sensitive and favorable scenario).
We focus on the terminal branch defined by the right anterior and right posterior tibial arteries
(vessels 34 and 35 in Figure 1). Among the available measured flows, we select the flow rate
in the right iliac-femoral artery III (vessel 30) and in the right posterior tibial artery (vessels 34).
Notice that, in previous studies concerning the ROUKF for estimation of terminal resistances
[32, 3, 18], the flow measurements in the corresponding branch were used. However, in our
case the data in the right anterior artery were not available. On the other hand, since the two
considered terminal branches are originated from the right iliac-femoral artery III (vessel 30),
the measurements in vessels 30 and 34 allow to characterize the flow through both terminals
34 and 35.

For this test, we generate a set of initial conditions, parameterizing the resistances as Ri = 2θi

(i = 34,35) and taking equally spaced values of θ34 and θ35 in the interval [−2,2]. For each
different initial guess pair (R34,R35), we first generate an initial state running the correspond-
ing forward model until reaching a periodic regime. Next, we apply the Kalman filter, using
either synthetic measurements or experimental observations. In all considered cases, the fil-
ter converged in about 150 cycles (around 120 s, corresponding to few minutes of wall clock
time).

Using synthetic measurements, both parameters rapidly approach the exact values (Figure
10, left), almost independently from the initial guess, yielding estimates R34 = 5.13±0.12 and
R35 = 5.61± 0.21 (i.e. errors below 1% with respect to the reference parameter). Employing

Figure 10: Estimated terminal resistance R34 and R35 using flow measurements in vessels 30
and 34. The plot shows the trajectory of the solution in the space (R34,R35) over time (running
the Kalman filter), depending on the different initial guesses (x- and y-axes). In each plot, the
red circle indicates the reference solution, while the green circle (right plot) shows the aver-
age of the estimated values using experimental measurements. Left: results with synthetic
flow measurements (mean values 5.15 and 5.67, respectively – superimposed to the refer-
ence ones). Right: results with experimental flow measurements (mean values 4.39 and 4.29,
respectively).

experimental measurements (Figure 10, right), we obtained mean estimated parameters R34 =
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4.68 and R35 = 4.53 (differences of 15% and 24% respect to reference values, respectively).

Running the forward one-dimensional model using the estimated resistances obtained from
the experimental flow measurements, one obtains a slight improvement in the error for the
measured vessels (Figure 11, left), while the errors with respect of the remaining flow data are
comparable with the discrepancies obtained with reference parameters. On the other hand,
errors with respect to pressure measurements slightly increase (Figure 11, right).

Figure 11: Summary of the errors obtained running the one-dimensional model with the ref-
erence values of the resistances of terminal vessels 34 and 35 (yellow) and with the mean of
estimated parameters (red), in the case of using flow data on vessel 30 and 34. The x-axis
indicates the observed vessel, while the y-axis shows the corresponding error. Errors average
(standard deviation) are shown for each model setting in the legends. Left: errors with respect
to flow data. Right: errors with respect to pressure data. Grey bars denote vessels for which
measurements of the quantity for which the error is computed have been used in the estima-
tion, whereas dashed lines indicate vessels for which a measurement of the other quantity has
been used for the estimation. For example, a vessel with dashed lines in the pressure error
plot indicates that the flow measurement in this vessel was used for the estimation.

Moreover, we also notice (not shown) that a relevant improvement is obtained for the mean
flow rates, for which the errors become extremely low (below 1%) using the parameters esti-
mated by the filter (with respect to original errors of 12% and 7% for the reference parameters).
This result is consistent with the fact that the major effect of a terminal resistance is seen in
the mean flow rate of the corresponding terminal branch, rather than in the flow profile over
time.

R34 R35 eQ30 eQmean
30 eQ34 eQmean

34

Reference values 5.16 5.65 20.3 12.4 10.2 7.4
Estimated values – Mean (RMS) 4.68 (0.06) 4.53 (0.08) 11.8 0.7 7 0.04

Table 2: Summary of results for the estimated terminal resistances R34 and R35 (in mmHg
ml s−1) and corresponding relative errors (%), using experimental measurements of flow in
vessels 30 and 34.

We now address the estimation of terminals 34 an 35 using a single experimental flow mea-
surement in vessel 30 (i.e., before the terminal bifurcation). The results (see Figure 12)
demonstrate that the filter is not able to correctly identify both parameters, and very differ-
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Figure 12: Estimated terminal resistances for different initial guesses (final values, red trian-

gles), compared with the curve
(

1
R34

+ 1
R35

)−1
= 2.70 (dashed blue line) defining the reference

equivalent resistance and with the curve
(

1
R34

+ 1
R35

)−1
= 2.03 (dashed red line).

ent estimations are obtained for different initial guesses. However, the values of the estimated
terminal resistances are such that the equivalent resistance lies close to the manifold defined
by the equivalent reference resistance of the two terminal branches(

1
R34

+
1

R35

)−1

= Req
34,35 = 2.70 mmHg ml s−1 .

More in detail, the average estimated value of the equivalent resistance is 2.03 mmHg ml s−1.

3.3 Discussion

In conclusion, concerning the estimation of terminal resistances, our results suggest that flow
measures (close to the terminal vessels) have in general higher sensitivity than pressure
measurements. However, pressure measures result more correlated with each other, yield-
ing more stable estimations (although less accurate) considering the whole parameter set.
The combination of flow measurements and at least one pressure measurement has shown
to be mandatory in order to obtain consistent parameter estimates in simultaneous relation
to both flow rate and pressure. Moreover, the results obtained here indicate that the pressure
estimation is more accurate when the single pressure measurement is acquired at a central
location, Comparing the results of the in silico and the in vitro estimations, the main outcome
is that employing in vitro measurements in general makes the identification problem more
visible, while, using synthetic measurements might yield satisfactory estimates also for the
less identifiable parameters. This last observation, even if rather obvious, should be taken into
account by practitioners that try to estimate parameters in more complex settings.

Finally, it is worth commenting on the sensitivity of the results with respect to the filter pa-
rameters σ2

param and σ2
obs (parameters and measure covariances). Our numerical study (not

reported here) showed that increasing the covariances tends to improve the estimates for the
more identifiable parameters, reducing at the same time the convergence time. In contrast, for
the parameters to which the measures are less sensitive, larger covariances produce unstable
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estimates (diverging in time), which eventually might lead to numerical instability in the forward
solver.

4 Estimation of arterial wall properties

The estimation of arterial wall properties strongly depends on modeling choices, i.e., on the
particular choice of tube law (2). For the one dimensional model of the in vitro arterial network
under consideration [1], the tube law has the form

p =
β

A0
(
√

A−
√

A0)+
Γ

a0
√

A
∂A
∂ t

, (20)

with
β =

4
3
√

πEh, Γ =
2
3
√

πΦh, (21)

where Φ is the viscosity of silicone, E is the vessel Young’s modulus, h is the vessel wall
thickness and A0 is the reference cross-sectional area of the vessel.

From a clinical point of view, we are interested in estimating the vessel stiffness, which can
be a relevant indicator in case of cardiovascular pathologies. For tube law (20) the stiffness
is mainly determined by the Young’s modulus (E) and the wall thickness (h). Moreover, since
(20) is linear in hE, from the point of view of the estimation it will be equivalent to consider
either h, or E, or the product hE as unknown parameter. In fact, any variation in one of these
parameters will have – up to a multiplicative factor – the same impact on model predictions.
However, for the considered problem, the substantial difference between h and E is that all
vessels have the same Young’s modulus E0 = 1.2 MPa, while thicknesses vary along the
network.

Remark 2. In particular, also the sensitivities of the model with respect to h or E (and hence
the corresponding GSFs) are equal up to a multiplicative factor.

4.1 Wall thickness along the aorta

First, in order to test the robustness of the filter, we consider the estimation of wall thicknesses
in the eight aortic segments. We consider the following relationship between thickness and
vessel radius [5] to define the initial guesses

h(R0) = R0

(
aebR0 + cedR0

)
, (22)

with a = 0.2802, b =−5.053 cm−1, c = 0.1324, d =−0.1114 cm−1 and R0 =
√

A0/π .

The initial values of thickness are summarized in Table 3, together with the reference values
[1]. Observe that these initial values are, in all cases, about three times larger than the refer-
ence ones. For the estimation, we consider the available measurements in three segments of
the aorta (vessels 10, 15 and 17 in Figure 1, right), two measurements in the abdominal region
(splenic and left renal arteries, vessels 20 and 24, respectively), two peripheral measurements
in the upper part of the body (left subclavian and right carotid arteries, vessel 3 and 11, re-
spectively) and a peripheral measurement in the upper part of the body (right iliac femoral
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Vessel 1 8 10 15 17 23 25 27
Initial [cm] 1.56 1.47 1.41 1.34 1.22 1.07 1.00 0.90

Reference [cm] 0.51 0.5 0.41 0.43 0.34 0.33 0.35 0.3
Initial

Reference 3.1 2.9 3.4 3.1 3.6 3.2 2.9 3.0

Table 3: The wall thicknesses obtained from (22) (second row) compared to the reference
values of [1] (third row).

artery, vessel 30). Concerning the filter parameters, we choose γ = 102 and σ2
param = 0.1.

Moreover, we observe an important impact of the sampling period ∆tF on the convergence of
the estimation procedure. In practice, ∆tF had to be sufficiently large to allow the information
of parameter correction to reach the measurement locations. The results shown in this section
have been obtained using ∆tF = 0.1 s and running the filter algorithm up to a time of 500 s
(about 600 cardiac cycles), yielding a computational time of about 40 minutes.

4.1.1 Estimation using flow measurements

We begin the study analyzing the Fischer information matrix and the generalized sensitivity
function of the set of parameters with respect to the selected set of observations. Considering
flow measurements, the Fischer information matrix (Figure 13, left) shows that 4 segments (1,
15, 17 and 27) have the least correlation with the others. This result is in accordance with the
fact that, one the one hand, the sensitivity of the measurements with respect to the thickness
of vessels 15 and 17 shall be higher (as these vessels are also under observation), while
vessel 27 might be more important for the flow measured downstream. Concerning vessel
1, notice that this is the first segment of the network, in which the (flow) boundary condition
is imposed. On the other hand, the segment 25 appears to be the less identifiable. Indeed,

Figure 13: Identifiability study for the thickness (h) of aorta segments (vessels 1, 8, 10, 15, 17,
23, 25, 27) using flow observations in vessels 3, 10, 11, 15, 17, 20, 24 and 30). Left: Fischer
information matrix. Center: GSF over a period. Right: zoom of the GSF profiles in the interval
[0,0.1]s.

notice that vessel 25 is quite short, with a length of 0.7cm, which reduces its contribution to
the sensitivity matrix. The profiles of the GSFs (Figure 13, center) reveal that the information
contained in the selected measurements is concentrated at the very beginning of the cycle
(before 0.4 seconds). This can reflect the fact that the system quickly perceives the change
in the thickness because the aorta is a central artery, close to all other vessels, and then no
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further information can be gained when time runs. All vessels have very similar GSF profiles.
However, considering closely the different profiles (Figure 13, right) one notices that the seg-
ments 8, 10, 15 and 25 have a slightly more oscillating behavior, which could indicate potential
identifiability problems.

The final estimates are depicted in Figure 14. Using synthetic measurements, the vessels 1,
15, 17 and 27 are close to reference values (consistently with the prediction of the identifiabil-
ity analysis), while, concerning the remaining parameters, we observe considerable improve-
ments for vessels 8, 10 and 23 (for which the difference from the reference thickness is almost
halved). On the other hand, the filter is not able to properly modify the thickness of vessel
25, as the sensitivity of the measurements with respect to this parameter is very low (Figure
13). In the in vitro case, the estimates are generally not that close to the reference values, but
one can clearly appreciate an overall improvement in the final estimated parameters, as the
differences with respect to the reference values are almost halved. The only exception is, as
before, vessel 25, which is hardly modified by the filter.

Hence, one can conclude that the combination of Fischer information matrix and GSF is once
more a useful indicator about the potential of the filter and on the feasibility of parameter
identification (specifically concerning the identifiability of vessel 25).

Figure 14: Estimated wall thicknesses using flow measurements (synthetic and experimental).
In all cases, the estimated thickness is compared with initial guesses (red line) and reference
values (crosses).

The fact that the estimated values are not precisely the reference ones deserves further anal-
ysis. When considering synthetic measurements, the discrepancy can be explained by the fact
that estimating 8 parameters at the same time yields a sigma-points stencil relatively far from
the initial condition. This aspect, combined with the non-linearity present in the model, might
prevent the filter from reaching the target solution. Concerning the in vitro case, one can also
consider the errors between the considered experimental measurements and the numerical
solution corresponding to the new parameters, compared to the discrepancies obtained using
the reference values [1]. These results are summarized in Figure 15, showing that estimated
parameters considerably reduce errors, performing even better than the reference values. An-
other conclusion that can be extracted from this figure is that the estimation of wall thickness
using flow data does not deteriorate the pressure values predicted by the model. Hence, even
if the values of the thickness differ from the reference ones, the error analysis reveals that the
filter might modify these parameters to improve a potential modeling deficiency. In fact, in the
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Figure 15: Summary of the errors obtained running the one-dimensional model with the initial
values of resistances (blue), with the reference values (yellow) and with the estimated param-
eters (red), in the case of flow data. The x-axis indicates the observed vessel, while the y-axis
shows the corresponding error. Errors average (standard deviation) are shown for each model
setting in the legends. Left: errors with respect to flow data. Right: errors with respect to pres-
sure data. Grey bars denote vessels for which measurements of the quantity for which the
error is computed have been used in the estimation, whereas dashed lines indicate vessels
for which a measurement of the other quantity has been used for the estimation. For example,
a vessel with dashed lines in the pressure error plot indicates that the flow measurement in
this vessel was used for the estimation.

case of experimental measurements, the estimation of the parameters also depends on how
close the mathematical model is to the real experiment.

4.1.2 Estimation using pressure measurements

The situation is slightly different considering pressure measurements. From the Fischer infor-
mation matrix (Figure 16, left) one can conclude that, while vessel 17 (which is also measured)
has very low correlations with the remaining ones (the vessel 17 is also observed), vessels
8 and 25 might suffer from identifiability problems. The profiles of the GSFs (Figure 16, right)
show that vessels 10 and 17 (both corresponding to measured vessels) are expected to be
the more identifiable, while the estimation of vessels 25 and 27, which have the most oscilla-
tory profiles (in particular, vessel 25 is the only one with GSF overshooting the interval [0,1]),
could result more difficult. The remaining GSFs are rather complex, showing small amplitude
oscillations up to time 0.4 s (as for the case of flow measurements), combined with an overall
monotone increasing behavior.

Also in this case, the theoretical expectations are reflected into the final estimates (Figure 17).
In the in silico case, a good agreement with reference parameters is obtained for vessels 1,
10, 15 and 17, while the estimates for vessels 8 and 25, which showed the higher correlations
with the rest of parameters, remain close to the initial value (hence about three times larger
than the reference thickness). The result is worse for vessel 27 (characterized by an oscil-
lating GSF) and vessel 23, which could suffer from the worse estimates in the downstream
segments 25 and 27. However, in these two cases the difference with respect to the reference
values is drastically reduced. The in vitro estimation appears even more consistent with the
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Figure 16: Identifiability study for the aorta thickness (h) (vessels 1, 8, 10, 15, 17, 23, 25,
27) using pressure observations in vessels 3, 10, 11, 15, 17, 20, 24 and 30). Left: Fischer
information matrix. Right: GSF over a period.

Figure 17: Estimated wall thickness using pressure measurements (synthetic and experimen-
tal). In all cases, the estimated values of thicknesses are compared with initial guesses (red
line) and reference values (crosses).

expectations of the identifiability analysis. In particular, vessels 10 and 17, the only segments
characterized by a monotone GSF, reach parameter values close to the reference ones, while
the remaining thicknesses decrease (except for vessel 25). Nevertheless, in general, the val-
ues remain closer to the initial guesses than in the case of flow measurements. Note that, in
the in silico case, also the intermediate vessel 15 (oscillatory GSF) is well estimated, while
this does not happen in the in vitro test. As a conclusion, the results of Figures 16–17 re-
veal that the estimation of arterial wall parameters using pressure data might be, in general,
complicated, and that the quality of the estimation is extremely sensitive to the location of the
measurements.

Finally, in Figure 18 we monitor the errors between the experimental measurements and the
numerical solution obtained using the new parameters or the reference ones. For all measured
vessels, both estimated and reference parameters achieve very similar errors (mainly below
0.1), and vessel 17 is the one showing the highest difference (error of 0.1 with the reference
parameters, lowered to about 0.08 with the new set). This confirms the above statement that
pressure data might be less sensitive than flow data to wall parameter changes. Moreover,
the reduction of errors for flow rate with respect to the ones obtained using initial guesses of
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parameters are satisfactory, as when flow measurements where used for the estimation.

Figure 18: Summary of the errors obtained running the one-dimensional model with the initial
values of wall thickness (blue), with the reference values (yellow) and with the estimated pa-
rameters (red), in the case of pressure data. The x-axis indicates the observed vessel, while
the y-axis shows the corresponding error. Errors average (standard deviation) are shown for
each model setting in the legends. Left: errors with respect to flow data. Right: errors with re-
spect to pressure data. Grey bars denote vessels for which measurements of the quantity for
which the error is computed have been used in the estimation, whereas dashed lines indicate
vessels for which a measurement of the other quantity has been used for the estimation. For
example, a vessel with dashed lines in the pressure error plot indicates that the flow measure-
ment in this vessel was used for the estimation. Notice that the data point of the error for initial
guess of vessel 17 (pressure), is outside the plot range.

Since errors of forward simulations performed using the estimated parameters obtained with
flow or pressure measurement are similar, we do not expect any benefit from combining pres-
sure and flow measurements in terms of error reduction. In fact, running tests similar to those
presented in Section 3, confirmed this statement (results not shown here).

4.2 Aorta stiffness

As next, we consider the estimation of the Young’s modulus of the aorta, considering a single
parameter for vessel segments 1,8, 10, 15, 17, 23, 25 and 27. The reference value (the same
for all vessels also in the experimental setup) is E = 1.2 MPa.

The aim of this test is to assess the accuracy of the filter, also depending on the particular
initial guess. To this purpose we consider several initial values for the parameter, regularly
spaced between 0.6MPa (50% of error) and 2.4 MPa (100% of error). For each initial guess
of the Young’s modulus, we run the forward one-dimensional model until a periodic regime is
reached, in order to generate a consistent initial state in the whole network. Next, we run the
Kalman filter up to 500 s, corresponding to about 600 cardiac cycles.

For the estimation, we consider the measurements in two segments of the aorta (vessels
10 and 17 in Figure 1, right), a peripheral measurement in the upper part of the body (left
subclavian artery – vessel 3) and a peripheral measurement in the lower part of the body
(right iliac femoral artery, vessel 30). The filter parameters are chosen as σ2

param = 0.4, γ = 104,
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∆tF = 0.1 s.

The results of the estimation algorithm are displayed in Figure 19, showing the values of
the parameters over time. In particular, using synthetic data, the filter always delivers very
accurate results, both in the case of flow and pressure measurements. The only exception is
the initial condition E = 0.6 MPa, for which the filter converges to a slightly lower value.

This effect is more pronounced using pressure measurements (for which the parameter ini-
tialized with 0.6MPa converges to 1 MPa). Moreover, flow measurements yield a faster filter
convergence. These facts confirm that pressure data might be less sensitive to mechanical
properties and that they are more affected by non-linear effects. In the case of experimental
measurements one can draw similar conclusions. However, the estimated Young’s moduli are
slightly lower (on average, 0.98 MPa for flow measurements and 1.03 MPa for pressure mea-
surements). The final results are independent from the initial conditions, with the exception of
the initial Young’s modulus of 0.6 MPa, yielding slightly lower estimates.

Finally, Figure 20 serves to verify that running the forward one dimensional model with the
provided estimates for the in vitro case, although lowering the Young’s modulus by about
16%, results in slightly smaller errors (than the reference parameters) with respect to the
considered measurements. As previously stated, this indicates that the filter tends to estimate
the parameters in order to compensate for modeling deficiencies.

4.3 Discussion

The estimation of arterial wall properties turned out to be a more difficult task for the filter
than the estimation of terminal resistances, in terms of convergence time. Also in this case we
observed that flow measurements allow in general a more robust estimation, while pressure
data yields a scenario which is less sensitive to parameter changes.

At the same time, it can be noticed that, especially for the study of mechanical properties, the
identifiability analysis based on combining Fischer information matrix and GSFs resulted in an
accurate tool to distinguish more robustly identifiable parameters as well predicting potential
problems in the in vitro estimation.

Concerning the sensitivity of the results with respect to the filter parameters σ2
param and σ2

obs
(parameters and measure covariances), we obtained similar results as in the case of terminal
resistances. Namely, larger covariances tend to affect more (in a negative way) the estimation
of less identifiable parameters, especially in the in vitro case.
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Figure 19: Estimated Young’s modulus in the aorta, using flow (top) or pressure (bottom)
observations. Left: results with synthetic measurements (perturbed with 5% of noise). Right:
results with experimental measurements.
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Figure 20: Summary of the errors obtained running the one-dimensional model with the refer-
ence and with the estimated Young’s moduli, The x-axis indicates the observed vessel, while
the y-axis shows the corresponding error, obtained using the average value estimated by the
Kalman filter with different initial conditions. Errors average (standard deviation) are shown for
each model setting in the legends. Left: flow data, using E = 0.98 MPa for the forward sim-
ulation. Right: pressure data, using E = 1.03 MPa for the forward simulation. The reference
errors are obtained with E = 1.2 MPa [1].
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5 Conclusion

We assessed the performance of the reduced order unscented Kalman filter applied to a one-
dimensional blood flow model in a realistic, though controlled, setting, by considering an in
vitro experiment [1] for which a set of flow and pressure measurements is available.

In particular, we considered (i) the estimation of the resistances of terminal vessels (used for
boundary conditions) and (ii) the estimation of arterial wall properties related to vessel me-
chanics (thickness and Young’s modulus). In both cases, we investigated the robustness of
the filter, by considering the joint estimation of several parameters, and its accuracy, focusing
on one or two parameters, but considering several initial conditions. Moreover, prior to the
estimation tests, we performed a detailed identifiability analysis based on the Fischer infor-
mation matrix (to quantify the covariances between the parameters) and on the generalized
sensitivity function (to assess the quantity of information contained in the measurements). For
each considered test, we compared the estimates obtained with in silico data (i.e., numerical
results perturbed with Gaussian noise) and in vitro measurements [1]. At the same time, we
considered both flow-driven and/or pressure-driven estimations.

The first outcome of our study is that the estimation based on in silico data resulted, in all
cases, more stable than the one based on in vitro data. In particular, some parameters fea-
turing a low identifiability (low sensitivity and/or high covariance) could be estimated in the in
synthetic (in silico) setup, but not in the experimental (in vitro) one. In the context of param-
eter identifiability, our results also show that a detailed identifiability analysis provides useful
information about the performance of the filter (especially when considering in vitro data). A
further aspect, which distinguished in silico from in vitro estimation, is the time needed by the
filter to reach convergence, which in the latter case resulted always longer.

Considering the difference of using flow or pressure measurements to feed the Kalman filter,
the numerical tests revealed that flow data have a higher sensitivity with respect to terminal
resistances, especially close to the vessel, hence yielding precise estimates in those cases.
However, the estimates might deteriorate if the observations are acquired far from the termi-
nal locations. Moreover, it should be noted that the use of combinations of flow and (some
or even a single) pressure measurements yielded better results for the estimation of terminal
resistances, when comparing the model outcomes in terms of flow rate and pressure values.
In the case of arterial wall properties, flow measurements seem to contain a larger amount
of information about the parameters. In fact, considering pressure data, only the parameters
located on (or close to) observed vessels could be accurately estimated. These conclusions
are in agreement with the fact that the pressure pulse is formed from the interaction of many
forward and backward running waves, and its characterization depends upon global and dis-
tributed features of the circulatory system. In turn, flow waveforms features are related to local
characteristics of the arterial network.

A final comment on the filter estimates is in order. The parameters may appear inaccurately
estimated when compared with reference values. Nevertheless, it is important to recall that the
error with respect to the measurements given by the estimated parameters is always smaller
than the one obtained with reference values. This highlights the presence of modeling errors
between the experimental setting and the model used in the simulations. In other words, the
reference parameters may have no direct relation with the optimal solution obtained by the
filter, because the filter is capable of compensating deficiencies of the model by choosing
parameters so that errors with respect to experimental measurements are further reduced.
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