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Abstract

In this paper we investigate and compare different gradient algorithms designed for the
domain expression of the shape derivative. Our main focus is to examine the usefulness of
kernel reproducing Hilbert spaces for PDE constrained shape optimisation problems. We show
that radial kernels provide convenient formulas for the shape gradient that can be efficiently
used in numerical simulations. The shape gradients associated with radial kernels depend on a
so called smoothing parameter that allows a smoothness adjustment of the shape during the
optimisation process. Besides, this smoothing parameter can be used to modify the movement
of the shape. The theoretical findings are verified in a number of numerical experiments.

1 Introduction

Optimal shape design questions naturally arise from problems in the engineering sciences and
industrial applications. For instance, it plays an important role in aircraft design, electrical impedance
tomography, cantilever designs, inductor coil design and many more. The main objective of shape
optimisation is to minimise a certain cost/shape function depending on one or many design variables.
A great challenge, relevant for applications, is to find fast and efficient algorithms providing as output
(locally) optimal shapes. One may define first and second order methods by means of the so called
shape derivative.

A central result of shape optimisation constitutes the structure theorem for shape functions defined
on open or closed subsets of the Euclidean space. As a consequence of the structure theorem
we can identify, in smooth situations, the shape derivative with a distribution on the boundary only
depending on normal perturbations. In many applications this distribution can be written as boundary
integral which is referred to as boundary expression. If the shape is not smooth enough one still can
conclude that the shape derivative is concentrated on the boundary, but it may not necessarily be a
distribution on the boundary anymore. However, for many application problems, a weaker form of
the shape derivative is usually available. This form can be referred to as volume/domain expression
or distributed shape derivative and it can be written in a convenient tensor form as detailed in [14].

By definition the shape gradient of the shape derivative depends on the choice of the Hilbert space
and inner product. It is nothing but the Riesz representation of the shape derivative in this Hilbert
space. Using the boundary expression of the shape derivative has the advantage that it allows
to resort to boundary spaces. For PDE constrained optimal design problems, many gradient-type
algorithms using the boundary expression in conjunction with boundary spaces have been proposed
by employing various explicit parametrisations such as Bézier splines, B-splines, NURBS; see
e.g. [13, 22, 8, 16, 11, 2]. While the boundary expression gives a relatively easy formula of the
shape derivative, it is not the first choice from the numerical point of view as recently pointed out in
[12, 14, 4]. It is noteworthy that the number of available gradient algorithms exploiting the special
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tensor structure of the shape derivative [14] is limited. By definition the shape gradient depends
on the choice of the Hilbert space where the shape derivative is represented. While some choices
using H1 metrics and finite elements have successfully been used [14, 9], the question arises if
there are better Hilbert spaces and metrics that are more controllable. At best, one might want to
change the metric during the optimisation process in order to escape stationary points that are no
global minima.

Reproducing kernel Hilbert spaces (RKHSs) were introduced in the beginning of the 19th century.
They play a crucial role in polynomial approximation and machine learning. We refer to [23] for an
introduction to RKHS and their application to scattered data approximation. RKHS can be extended
to vector valued reproducing kernel Hilbert spaces (vvRKHS). As shown in [24] they can also
efficiently be used to solve diffeomorhpic matching problems. A specific property of vvRKHS is
that the point evaluation on them is a continuous linear mapping. Conversely, the continuity of the
evaluation mapping in a Hilbert space implies that it is a vvRKHS. The continuity of the evaluation
mapping is also necessary to build complete metric groups of diffeomorphisms as demonstrated in
[7, Chap. 4]. This shows that there is a close relation between RKHS and shape design problems.
Therefore, it seems natural to combine and examine results from RKHS theory with problems from
PDE constrained shape optimisation.

In this paper we examine the usefulness of reproducing kernel Hilbert spaces in the context of
PDE constrained shape optimisation problems. We combine the generic tensor form of the domain
expression of the shape derivative with reproducing kernel Hilbert space methods. We provide
ready to use explicit formulas for the shape gradient in these kernel spaces and compare them with
previously used ones. Moreover, we study radial kernels that allow us to construct flows that can ef-
ficiently detect stationary points. Our theoretical results are verified by several numerical experiments.

Structure of the paper

In Section 2, we review basic results from shape calculus and recall the recently introduced tensor
representation of the shape derivative. We recall the definition of the gradient of the shape derivative
and define descent directions.

In Section 3, we introduce the theory of reproducing kernel Hilbert spaces and relate them to the
shape derivative. Explicit formulas of gradients in general reproducing kernel Hilbert spaces are
obtained that can be readily used in numerical algorithms. The general results are specialised to
radial kernels and the relation. At the end of the section, different approaches to obtain descent
directions are proposed and compared.

In Section 4, a transmission problem together with a tracking-type cost function is studied. We
give a detailed description of the discretisation of the PDE and of the shape derivative. In a general
tensor setting we compare the discrete domain and boundary expression.

In Section 5, the previously introduced methods are tested in a number of numerical experiments.
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2 Preliminaries

In this section, we recall some basics from shape calculus. For an in-depth treatment we refer the
reader to the monographs [7, 19, 10]. Numerous examples of PDE constrained shape functions and
their shape derivatives can be found in [21].

2.1 Flow of vector fields and shape derivative

Subsequently, let D ⊂ Rd, d ≥ 1, be an open and bounded set. Given a function X ∈
◦
C0,1(D,Rd), we denote by Φt the flow of X (short X-flow) given by Φt(x0) := x(t), where
x(·) solves

x′(t) = X(x(t)) in (0, τ ], x(0) = x0. (2.1)

The space
◦
C0,1(D,Rd) comprises all bounded and Lipschitz continuous functions on D vanishing

on ∂D. Note that by the chain rule ∂Φ−1(t,Φ(t, x)) = (∂Φ(t, x))−1 which we will often write as

(∂(Φ−1
t )) ◦ Φt = (∂Φt)

−1 =: ∂Φ−1
t . (2.2)

By
◦
Ck(D,Rd) we denote the subspace of k-times continuously differentiable functions onD vanish-

ing on ∂Ω. For open and bounded sets Ω ⊂ Rd and for all finite integers p ≥ 1 and k ≥ 1, we de-

fine the Sobolev space
◦
W k
p (Ω,Rd) = C∞c (Ω,Rd)

‖·‖
Wk

p (Ω,Rd) . Moreover, for all open and bounded

sets Ω ⊂ Rd with Lipschitz boundary ∂Ω, we define W k
p (Ω,Rd) = C∞(Ω,Rd)

‖·‖
Wk

p (Ω,Rd)
. As

usual in case p = 2 we set Hk(Ω,Rd) := W k
2 (Ω,Rd) and

◦
Hk(Ω,Rd) :=

◦
W k

2 (Ω,Rd).

Definition 2.1. Let D ⊂ Rd be an open set and J : Ξ ⊂ ℘(D) → R with power set ℘(D) a
shape function defined on subsets of D. Let Ω ∈ Ξ and X ∈ Ck(D,Rd), k ≥ 1, be such that
Φt(Ω) ∈ Ξ for all t > 0 sufficiently small. Then the Eulerian semi-derivative of J at Ω in direction
X is defined by

dJ(Ω)(X) := lim
t↘0

J(Φt(Ω))− J(Ω)

t
. (2.3)

(i) The function J is said to be shape differentiable at Ω if for some k ≥ 1 the Eulerian semi-
derivative dJ(Ω)(X) exists for all X ∈

◦
Ck(D,Rd) and X 7→ dJ(Ω)(X) is linear and

continuous on
◦
Ck(D,Rd).

(ii) The smallest integer k ≥ 0 for which X 7→ dJ(Ω)(X) is continuous with respect to the
C1(D,Rd)-topology is called the order of dJ(Ω).

An important result of shape optimisation constitutes the so-called structure theorem that gives
a characterisation of shape derivatives in open or closed sets Ω. When the boundary of Ω admits
some regularity and the shape derivative is a distribution of certain order, then the structure theorem
tells us that the derivative depends only on normal perturbations.

Theorem 2.2. Let J : Ξ ⊂ ℘(D)→ R be a shape function and Ω ⊂ Ξ open or closed with Ck+1

boundary Γ. Suppose that J is shape differentiable at Ω and that it is of order k. Then there exists
a scalar distribution g(Ω) ∈ (Ck(Γ))∗ such that

dJ(Ω)(X) = 〈g(Ω), X · ν〉(Ck(Γ))∗,Ck(Γ) for all X ∈ Ck
c (D,Rd). (2.4)
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For a proof of the previous theorem we refer the reader to [7].

2.2 Tensor representation of the shape derivative

In the recent work [14], a generic tensor form of the shape derivative was proposed. Our further
investigation benefits from this tensor form as it allows us to obtain convenient formulas of shape
gradients and it helps to distinguish the discretised and non-discretised shape derivative.

Definition 2.3. Let Ω ∈ ℘(D) be a set with C1 boundary. Assume J is shape differentiable at
Ω and that its shape derivative dJ(Ω) is of order k = 1. We say that the shape derivative of J
admits a tensor representation at Ω. If there exist tensors S1 ∈ L1(D,Rd,d), S0 ∈ L1(D,Rd)

and S1 ∈ L1(∂Ω;Rd,d), S0 ∈ L1(∂Ω,Rd) such that for X ∈
◦
C1(D,Rd),

dJ(Ω)(X) =

∫
D

S1 : ∂X + S0 ·X dx+

∫
∂Ω

S1 : ∂ΓX + S0 ·X ds, (2.5)

where ∂ΓX := ∂X − (∂Xn)⊗ n is the tangential derivative of X along ∂Ω.

Remark 2.4. � The functions S0,S1 and S0,S1 depend on the domain Ω. When necessary,
we explicitly express the dependence of S0,S1 and S0,S1 on Ω by writing S0(Ω),S1(Ω)
and S0(Ω),S1(Ω), respectively.

� The tensor representation (2.5) is not unique. In fact in Example 2.6 below we show that one
can obtain different tensor representations of the same shape derivative by choosing different
inner products under the assumption that dJ(Ω)(·) belongs to some Hilbert space.

� When dJ(Ω) admits a tensor representation of order one, then dJ(Ω)(X) naturally extends
to vector fields X ∈ W 1

∞(D,Rd) by means of the right hand side of (2.5).

Example 2.5. As an example we consider an open subset D ⊂ Rd and the shape function
J(Ω) :=

∫
D
fΩ dx with fΩ := f1χΩ + f2χD\Ω, f1, f2 ∈ C1

c (Rd,Rd). Then J is shape differen-

tiable in all measurable subsets Ω ⊂ D and the shape derivative in direction X ∈
◦
C1(D,Rd) is

given by

dJ(Ω)(X) =

∫
D

S1(Ω) : ∂X + S0(Ω) ·X dx, (2.6)

where
S1(Ω) := fΩI, S0(Ω) := χΩ∇f1 + χD\Ω∇f2.

Hence, in this case S0(Ω) = 0 and S1(Ω) = 0. We refer the reader to [14] for more examples of
shape derivatives admitting a tensor representation.

Example 2.6. Let J be a shape function such that dJ(Ω)(X) is well-defined for allX in
◦
C1(D,Rd)

and assume that it can be extended to a functional d̃J(Ω) on
◦
H1(D,Rd). Then Riesz representa-

tion theorem states that there is a unique gΩ ∈
◦
H1(D,Rd) such that

d̃J(Ω)(X) =

∫
D

∂gΩ : ∂X + gΩ ·X dx for all X ∈
◦
H1(D,Rd). (2.7)
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Restricting d̃J(Ω) to smooth vector fields in
◦
C1(D,Rd), we recover formula (2.5) with S1 :=

∂gΩ,S0 := gΩ, S0 = 0 and S1 = 0. Of course instead of using the inner product on the right
hand side of (2.7) one could alternatively solve: find g̃Ω ∈

◦
H1(D,Rd) so that

d̃J(Ω)(X) =

∫
D

∂g̃Ω : ∂X dx for all X ∈
◦
H1(D,Rd),

then we get a different tensor form with S1 := ∂g̃Ω,S0 := 0, S0 = 0 and S1 = 0.

Example 2.6 suggests to investigate shape functions with shape derivatives of order k = 1
having a tensor representation of the form

dJ(Ω)(X) =

∫
D

S1 : ∂X + S0 ·X dx, X ∈
◦
C1(D,Rd), (2.8)

where S1 ∈ L1(D,Rd,d) and S0 ∈ L1(D,Rd).

Under the assumption S1 ∈ W 1
1 (D,Rd,d) we readily recover (cf. [14, Prop. 3.3]) the so-called

boundary expression from (2.8)

dJ(Ω)(X) =

∫
∂Ω

[[S1ν · ν]]X · ν ds, X ∈
◦
C1(D,Rd), (2.9)

where [[S1ν · ν]] := (S+
1 −S−1 )ν · ν denotes the jump of S1 across Γ and ν is the outward-pointing

unit vector field along Γ. This formula is in accordance with (2.4) of Theorem 2.2. The ± indicates
the restriction of the function to Ω±, respectively, for example S±1 := (S1)|Ω± with Ω+ := Ω and
Ω− := D \ Ω. Here the involved tensor fields additionally satisfy the conservation equations

− div(S+
1 ) + S+

0 = 0 in Ω

− div(S−1 ) + S−0 = 0 in D \ Ω.
(2.10)

Note that if the boundary ∂Ω is irregular, say Ω is merely bounded and open, formula (2.8) and (2.9)
are not equivalent. In fact, in this case (2.9) is in general not well-defined.

It is important to notice that after discretisation the equality of (2.8) and (2.9) breaks down
as pointed out in [12]. For a numerical and theoretical comparison of the boundary and domain
expression we refer to [4, 12, 14].

2.3 Shape gradients and descent directions

Let D ⊂ Rd be an open set and Ξ ⊂ ℘(D) a subset of the powerset of D. Consider a shape
function J : Ξ → R that is shape differentiable at Ω ∈ Ξ. Suppose there is a Hilbert space
H(X ,Rd) of functions from X into Rd and assume dJ(Ω) ∈ H(X ,Rd)∗.

Definition 2.7. (i) The gradient of J at Ω with respect to the space H(X ,Rd) and the inner
product (·, ·)H(X ,Rd), denoted∇J(Ω), is defined by

dJ(Ω)(X) = (∇J(Ω), X)H(X ,Rd) for all X ∈ H(X ,Rd). (2.11)

We also call∇J(Ω) theH(X ,Rd)-gradient of J at Ω.
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Remark 2.8. The Hilbert spaceH(X ,Rd) may be equipped with different scalar products (·, ·)H(X ,Rd)

yielding the same topology onH(X ,Rd).

Example 2.9. Consider the shape function J from Example 2.5. Let Ω ∈ D be open and set
X := D. Then it is easy to see that dJ(Ω) belongs toH(D,Rd) := H1

0 (D,Rd). The gradient
∇J(Ω) with respect to the metric (ϕ, ψ) ◦

H1
:=
∫
D
∂ϕ : ∂ψ dx is then defined as the solution of

(∇J(Ω), X) ◦
H1

=

∫
D

S1(Ω) : ∂X + S0(Ω) ·X dx for all X ∈ H1
0 (D,Rd).

As shown by the next lemma, the negative gradient is nothing but the steepest descent direction
for the shape derivative.

Lemma 2.10. Let J andH = H(X ,Rd) be as in Definition 2.7 and suppose dJ(Ω) 6= 0. Then
there exists a unique gΩ ∈ H(X ,Rd) with norm equal to one, satisfying

min
v∈H
‖v‖H=1

dJ(Ω)(v) = dJ(Ω)(gΩ),

where gΩ is given by gΩ := −∇J(Ω)/‖∇J(Ω)‖H(X ,Rd).

Proof. By Cauchy Schwarz’s inequality, we get (∇J(Ω),−X)H(X ,Rd) ≤ ‖∇J(Ω)‖H(X ,Rd) for
all X ∈ H(X ,Rd) with ‖X‖H(X ,Rd) = 1, which is equivalent to (∇J(Ω),−gΩ)H(X ,Rd) ≤
(∇J(Ω), X)H(X ,Rd) for all X ∈ H(X ,Rd) with ‖X‖H(X ,Rd) = 1. This proves existence and
also uniqueness of the minimiser since the Cauchy-Schwarz inequality is an equality if and only if
the vectors are colinear.

Remark 2.11. Suppose that for all Ω ∈ Ξ there is a Hilbert spaceH(Ω,Rd) of functions from Ω
into Rd. Consider a shape function J : Ξ → R, Ω ∈ Ξ and assume that dJ(Ω) ∈ H(Ω,Rd)∗.
Then formally the gradient of J is a mapping ∇J : Ξ →

⋃
Ω∈ΞH(Ω,Rd) satisfying ∇J(Ω) ∈

H(Ω,Rd) for all Ω ∈ Ξ. If we regardsH(Ω,Rd) as the tangent space of Ξ in the point Ω, we can
interpret ∇J as a vector field. Of course at this stage Ξ has no differentiable structure turning it
into a manifold. However, there are several possibilities to do this. One way is to introduce spaces
of shapes via curves cf. [15], but there are several other ways to put some structure on Ξ; cf. [7,
Chapter 3-7].

Definition 2.12. We call a vector field X ∈ H(D,Rd) descent direction for J at Ω ∈ Ξ if
dJ(Ω)(X) exists and dJ(Ω)(X) < 0.

3 Reproducing kernel Hilbert spaces and the shape derivative

In this section we recall the definition of reproducing kernel Hilbert spaces (RKHSs) and their
basic properties. We give some examples of kernels that can be used in PDE constrained shape
optimisation. The aim is now to introduce certain Hilbert spaces H namely reproducing kernel
Hilbert spaces that allow explicit representations of the gradient∇J(Ω) of shape functions.
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3.1 Definition and basic properties of reproducing kernels

Let X ⊂ D be an arbitrary and given set. We denote by H = H(X ;Rd) a real Hilbert space
of vector valued functions f : X → Rd that will be specified later on. In case d = 1 we set
H := H(X ) := H(X ,R).

Definition 3.1. (a) A function k : X × X → R is called positive (semi)-definite and symmetric
scalar kernel if

(a1) ∀x, y ∈ X , k(x, y) = k(y, x)

(a2) for arbitrary pairwise distinct points {x1, . . . , xN} ⊂ X , N ≥ 1, the matrix kij :=
k(xi, xj) is positive (semi)-definite, i.e., for all α ∈ RN \ {0},

N∑
i,j=1

αiαjkij ≥ (>)0.

(b) A kernel k is called radial scalar kernel, if there exists a function γ : R→ R such that for all
x, y ∈ X , k(x, y) = γ(|x− y|).

(c) A function f : X → R is called positive (semi)-definite, if k(x, y) := f(x− y) is a positive
(semi)-definite kernel.

(d) A function k : X × X → R is called scalar reproducing kernel forH(X ) if

(d1) for all x ∈ X , k(x, ·) ∈ H(X )

(d2) for all f ∈ H(X ) and for all x ∈ X ,

(k(x, ·), f(·))H(X ) = f(x). (3.1)

In this case we callH(X ) reproducing kernel Hilbert space with kernel k.

It is readily seen that a reproducing kernel k : X × X → R is symmetric. Indeed, using the
reproducing property (d2), we obtain for all x, y ∈ X ,

(k(x, ·), k(y, ·))H(X ) = k(x, y). (3.2)

Hence, scalar reproducing kernels are always symmetric. But they are also positive semi-definite
since (3.2) shows for arbitrary pairwise distinct points {x1, . . . , xN} ⊂ X , N ≥ 1 that for all
α ∈ RN \ {0},

N∑
i,j=1

αiαjkij =
N∑

i,j=1

αiαj(k(xi, ·), k(xj, ·))H(X )

=

(
N∑
i=1

αik(xi, ·),
N∑
i=1

αik(xi, ·)

)
H(X )

≥ 0.

(3.3)

We conclude that reprodcuing kernels are symmetric and positive semi-definite. It also follows
from (3.3) that a reproducing kernel is positive definite if and only if the evaluation maps δy are
linearly independent in (H(X ))∗ for all y ∈ X . The Moore-Aronszajn theorem ensures that for
each symmetric and positive semi-definite kernel k there is a unique RKHS.
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Theorem 3.2. Suppose that k : X × X → R is a positive semi-definite and symmetric scalar
kernel. Then there exists a unique Hilbert space H(X ) of real valued functions f : X → R for
which k is the reproducing kernel.

Proof. We refer the reader to [3] and [23, p.138, Thm.10.10].

We refer to [23, Theorem 10.12, p.139] for a more explicit characterisation of RKHS generated
by scalar positive definite kernels in the case X = Rd.

Similarly to scalar kernels we define matrix-valued kernels:

Definition 3.3. (a) A function K : X × X → Rd,d is call a symmetric and positive (semi)-
definite matrix kernel if

(a1) ∀x, y ∈ X , K(x, y) = K(y, x)

(a2) for arbitrary distinct points {x1, . . . , xN} ⊂ X , N ≥ 1, the matrix Kij := K(xi, xj)
satisfies, for all α1, α2, . . . , αN ∈ Rd, not all of them identically zero,

N∑
i,j=1

Kijαi · αj > (≥)0.

(b) A kernel K is called radial scalar kernel if there exists a function γ : R→ Rd,d such that
K(x, y) = γ(|x− y|) for all x, y ∈ X .

(c) A function K : X × X → R is called matrix-valued reproducing kernel if

(c1) for every x ∈ X and every a ∈ Rd, K(x, ·)a ∈ H(X ,Rd)

(c2) for all f ∈ H(X ,Rd) and for all a ∈ Rd,

(K(x, ·)a, f)H(X ,Rd) = (a⊗ δx)f = a · f(x). (3.4)

Unlike scalar reproducing kernels, matrix-valued reproducing kernels are not necessarily sym-
metric. However, using the reproducing property (c2) repetively yields

K(x, y)a · b = (K(y, ·)b,K(x, ·)a)H(X ,Rd) = (K(x, ·)a,K(y, ·)b)H(X ,Rd) = K(y, x)b · a,
(3.5)

for all a, b ∈ Rd and all x, y ∈ X so that for all x, y ∈ X , we get K(x, y) = K(y, x)>.
Hence, assuming that K is symmetric, using (3.5) we obtain that for arbitrary distinct points
{x1, . . . , xN} ⊂ X , N ≥ 1, the matrix Kij := K(xi, xj) satisfies,

N∑
i,j=1

Kijαi · αj =
N∑

i,j=1

αi · αj(K(xi, ·)αi, K(xj, ·)αj)H(X ,Rd)

=

(
N∑
i=1

αiK(xi, ·)αi,
N∑
i=1

K(xi, ·)αi

)
H(X ,Rd)

≥ 0,

(3.6)

for all α1, α2, . . . , αN ∈ Rd, not all of them identically zero. Consequently, every symmetric
reproducing kernel K : X × X → R is also positive semi-definite.

Similarly to the scalar case it holds
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Theorem 3.4. For every matrix-valued symmetric and positive semi-definite kernel K : X × X →
R there exists a unique Hilbert space of vector valued functions H(X ,Rd) for which K is the
matrix-valued reproducing kernel.

Proof. We refer to Proposition 1 in [5].

Another special property of vvRKHSs is that for all a ∈ Rd and x ∈ X , the evaluation map

H(X ,Rd)→ R : f 7→ (a⊗ δx)f = f(x) · a

is continuous. In fact, we obtain from (c2) and Cauchy’s inequality that

|a · f(x)| = |(K(x, ·)a, f)H(X ,Rd)| ≤ ‖K(x, ·)a‖H(X ,Rd)‖f‖H(X ,Rd).

Conversely, for every Hilbert spaceH(X ,Rd) of vector valued functions f : X → Rd for which
the evaluation map f 7→ f(x) · a is continuous for all a ∈ Rd and x ∈ X , there is a unique kernel
K(x, y) satisfying (c1) and (c2); cf. [23, p.143, Thm. 10.2].

Example 3.5. As an example consider X = Rd and the Sobolev space Hk(Rd) with k, d being
non-negative integers satisfying k ≥ bd

2
c+ 1. Then, the Sobolev embedding yields

∀ϕ ∈ Hk(Rd), ‖ϕ‖C0(Rd) ≤ c‖ϕ‖Hk(Rd).

Thus, the point evaluation δy : Hk(Rd) → R, f 7→ f(y) is in fact continuous for all y ∈ Rd.
Hence there is a reproducing kernel k : Rd × Rd → R for which Hk(Rd) is the reproducing
kernel Hilbert space.

We depict some examples of positive semi-definite kernels in the following:

Example 3.6.

K1(x, y) := sinc(|x− y|) (kernel generating Paley-Wiener space), (3.7)

K2(x, y) := e−|x−y|
2

(Gauss kernel), (3.8)

K3(x, y) := e−|x−y| (Laplacian kernel), (3.9)

K4(x, y) := |x− y|k−d/2Bk−d/2(|x− y|) (kernel generating W k
2 (Rd)), (3.10)

K5(x, y) := (1− |x− y|)4
+(4|x− y|+ 1) (polynomial kernel with compact support),

(3.11)

where σ > 0. The function Bk−d/2 is called Hankel function and sinc(x) := sin(x)/x.

One special feature of RKHS/vvRKHS is that the convergence inH(X ,Rd) implies pointwise
converges on X ; cf. [23]. Another property is that the span of K(x, ·)a, a ∈ Rd, x ∈ X is dense
inH(X ,Rd) in case X is open. We recall both results in the following lemmas.

Lemma 3.7. Let X be a compact set and K a matrix-valued symmetric and positive definite kernel
on X andH(X ,Rd) the corresponding vvRKHS. Then the span of {K(x, ·)a : x ∈ X} is dense
inH(X ,Rd).

9



Proof. Let V denote the closure of span{K(x, ·)a : x ∈ X} inH(X ,Rd). SinceH(X ,Rd) is
a Hilbert space it holds H(X ,Rd) = V ⊕ V >. Let f ∈ V ⊥ be arbitrary. Then the reproducing
property yields (f,K(x, ·)ei) = fi(x) = 0 for all x ∈ X and i = 1, . . . , d. It follows f = 0 and
thus V > = ∅ and consequently V = H(X ,Rd).

Lemma 3.8. Suppose H(X ,Rd) is a vvRKHS with matrix-valued kernel K : X × X → Rd,d.
Then, if fn, f ∈ H(X ,Rd) with fn → f as n→∞ inH(X ,Rd), it follows

fn(x)→ f(x) for all x ∈ X .

Proof. For all ei with i ∈ {1 . . . , d} it holds

|(f(x)− fn(x)) · ei| = |(f − fn, K(x, ·)ei)H(X ,Rd)| ≤ ‖f − fn‖H(X ,Rd)‖K(x, ·)a‖H(X ,Rd).

3.2 Formulas of shape gradients in reproducing kernel Hilbert spaces

This section presents the central part of this paper. We give explicit formulas for shape gradients in
reproducing kernel Hilbert spaces and study special radial kernels. Moreover, we discuss methods
to approximate and discretise the domain expression of the shape derivative on various finite
dimensional reproducing kernel Hilbert spaces constructed by finite elements and kernels. It turns
out that the gradient of the shape derivative in a vvRKHS can be recovered by a sequence of vector
solved on these finite dimensional subproblems. In a number of recent articles [4, 12, 9, 14], the
volume expression has been used successfully by employing finite elements. Subsequently, we set
this finite element method in a broader context and relate it to reproducing kernel Hilbert spaces.

In this section we consider shape differentiable functions

J : Ξ ⊂ ℘(D)→ R, Ω 7→ J(Ω) (3.12)

for open and bounded D ⊂ Rd that admit for each Ω in Ξ a tensor representation of the form

dJ(Ω)(X) =

∫
X
S1 : ∂X + S0 ·X dx, (3.13)

where S1 ∈ L1(X ,Rd,d) and S0 ∈ L1(X ,Rd). This means the shape derivative is a linear
and continuous mapping dJ(Ω) : W 1

∞(X ,Rd) → R. Typically, the set X is either Ω or D; cf.
Example 2.5.

Shape gradients in vvRKHS

Reproducing kernel Hilbert spaces allow us to obtain explicit formulas for the Riesz representation
of functionals defined on them as shown by the following lemma.
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Lemma 3.9. Let X ⊂ D. SupposeH(X ,Rd) is a vvRKHS with matrix-valued kernel K(x, y) =
(K1(x, y), . . . , Kd(x, y)) and assume dJ(Ω) ∈ (H(X ,Rd))∗. Then the gradient ∇J(Ω) of J
at Ω with respect to theH(X ,Rd)-metric is given pointwise for all y ∈ X by

∇J(Ω)(y) =
d∑
i=1

(∫
X
S1(x) : ∂xKi(x, y) + S0(x) ·Ki(x, y) dx

)
ei, (3.14)

where ei denotes the standard basis of Rd.

Proof. Let ei ∈ Rd, i ∈ {1, 2, . . . , d}, denote the standard basis of Rd. By definition the gradient
∇J(Ω) inH(X ,Rd) satisfies

(∇J(Ω), ϕ)H(X ,Rd) = dJ(Ω)(ϕ) for all ϕ ∈ H(X ,Rd). (3.15)

By property (c1) we know that for all y ∈ X the function ϕyi (·) := K(y, ·)ei belongs toH(X ,Rd).
Therefore, plugging ϕyi into (3.15) and using the reproducing property (c2), we obtain

dJ(Ω)(ϕyi ) = (∇J(Ω), K(y, ·)ei)H = ∇J(Ω)(y) · ei

for i = 1, . . . , d. This shows

(∇J(Ω)(y))i =

∫
X
S1(x) : ∂xKi(x, y) + S0(x) ·Ki(x, y) dx

for i = 1, . . . , d and thus completes the proof.

Remark 3.10. � Equation (3.14) gives an explicit formula of the gradient∇J(Ω) without any
approximation. This is in contrast to the usual method using theH1 metric and finite elements;
cf. Section 3.3 and also [14, 18].

� For an efficient evaluation of the right-hand side of (3.14) we need to approximate the integral
over D in an efficient way. Of course, in practice, (3.14) has usually only to be evaluated on
the boundary ∂Ω and not on the whole domain.

� The assumption dJ(Ω) ∈ (H(X ,Rd))∗ is for instance satisfied when X is open and
H(X ,Rd) is continuously embedded into C1(X ,Rd), i.e., there is a constant c > 0, such
that

‖ϕ‖C1(X ,Rd) ≤ c‖ϕ‖H(X ,Rd) for all ϕ ∈ H(X ,Rd).

Similarly as in Example 3.5, in case X open, bounded and of class C1, one could consider
the Sobolev space Hk(X ) with integers k, d ≥ 1 satisfying k ≥ bd

2
c+ 2. Then the Sobolev

embedding shows
∀ϕ ∈ Hk(X ), ‖ϕ‖C1(X ) ≤ c‖ϕ‖Hk(X )

and consequently dJ(Ω) ∈ (H(X ,Rd))∗, whereH(X ,Rd) := [Hk(X )]d.
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Radial kernels

We now focus on radial kernels of the form

K(x, y) = φσ(|x− y|2)I, φσ(r) := φ(r/σ), σ > 0, (3.16)

where φ ∈ C1(Rd) is some given function.

Lemma 3.11. Assume k is a reproducing kernel on the set X ⊂ D with corresponding reproducing
kernel Hilbert spaceH(X ). Then K(x, y) := k(x, y)I is a matrix-valued reproducing kernel with
vector valued reproducing kernel Hilbert spaceH(X ;Rd) := [H(X )]d and inner product

(f, g)H(X ;Rd) := (f1, g1)H(X ) + · · ·+ (fd, gd)H(X ) (3.17)

for all f = (f1, . . . , fd) and g = (g1, . . . , gd) with f1, . . . , fd, g1, . . . , gd ∈ H(X ).

Proof. We have to show that K(x, y) is the reproducing kernel for the Hilbert space [H(X )]d

with inner producing given by (3.17). Clearly K(x, y) satisfies (c1), so it remains to show (c2). By
assumption, k is a scalar reproducing kernel satisfying

∀x ∈ X , ∀f ∈ H(X ), (k(x, ·)a, f)H(X ) = f(x). (3.18)

Then for all f = (f1, . . . , fd), f1, . . . , fd ∈ H(X ) and for all a = (a1, . . . , ad) ∈ Rd, we get

(K(x, ·)a, f)H(X ;Rd) = (a1k(x, ·), f)H(X ) + · · ·+ (adk(x, ·), fd)H(X )

(3.18)
= a1f1(x) + · · ·+ adfd(x)

= a · f(x) = a⊗ δxf
(3.19)

and this shows (c2).

Example 3.12. Let us return to Example 3.5 where X = Rd and H(X ) = Hk(Rd) with
k ≥ bd

2
c + 1. Let k(x, y) be the scalar reproducing kernel associated with Hk(Rd). Then

according to Lemma 3.11 the matrix-valued radial kernel K(x, y) := k(x, y)I is the reproducing
kernel forH(Rd,Rd) := [Hk(Rd)]d.

Lemma 3.13. Let φ ∈ C1(R) be such that k(x, y) := φσ(|x − y|2), σ > 0, is a reproducing
kernel on X ⊂ D with reproducing kernel Hilbert spaceH(X ). Let [H(X )]d be the vector valued
kernel Hilbert space for radial kernel K(x, y) given by (3.16) and assume dJ(Ω) ∈ ([H(X )]d)∗.
Then the gradient∇σJ(Ω) in [H(X )]d is given pointwise in X by

∇σJ(Ω)(y) =

∫
X

(
φσ(|x− y|2)S0(x) +

2

σ
φ′σ(|x− y|2)S1(x)(x− y)

)
dx, (3.20)

where φ′σ(r) := φ′(r/σ).

Proof. This follows directly from Lemma 3.9.
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Corollary 3.14. Let φ ∈ C2(R) be as in the previous lemma and suppose that X ⊂ D is open.
The gradient of∇σJ(Ω) is given pointwise in X by

∂y(∇σJ(Ω))(y) =−
∫
X

2

σ

(
φ′σ(|x− y|2)(S0(x)⊗ (x− y) + S1(x)

)
dx

−
∫
X

4

σ2
φ′′σ(|x− y|2)(S1(x)(x− y))⊗ (x− y) dx

(3.21)

and thus there is a constant c > 0, so that for all σ > 0,

‖∂y(∇σJ(Ω))‖L∞(X ) ≤
c

σ
. (3.22)

Proof. Equation (3.21) follows by direct computation from (3.20).

We now prove (3.22). Since φ is C2, it (and its first and second derivative) attains its maximum
on the closed unit ball B1(0) centered at the origin in Rd. Let r := diam(D) denote the (finite)
diameter of D. Then for all σ ≥ r and all x, y ∈ D we have

∣∣x−y
σ

∣∣ ≤ 1. Hence, there is a constant
C > 0 so that for all σ ≥ r,

sup
x,y∈D

|φσ(x− y)|+ sup
x,y∈D

|φ′σ(x− y)|+ sup
x,y∈D

|φ′′σ(x− y)| ≤ C.

Thus, we obtain (S1 and S0 are extended by zero outside of X )

| divy∇σJ(Ω)(y)| ≤
∫
D

2

σ

(
|φ′σ(|x− y|2)|(|S0(x)||x− y|+ |S1(x)|

)
dx

+

∫
D

4

σ2
φ′′σ(|x− y|2)|S1(x)||x− y|2 dx

≤
∫
D

2

σ
(|S0(x)||x− y|+ | tr(S1(x))|) +

4

σ2
|S1(x)||x− y|2 dx

≤C
σ

∫
D

(|S0(x)|+ | tr(S1(x))|) +
C

σ2

∫
D

|S1(x)| dx,

where the constant C only depends on r. Finally taking the supremum on both sides and passing to
the limit σ ↘ 0 gives the desired result (3.22).

Corollary 3.15. Let φ ∈ C2(R) be as in the previous lemma and suppose that X ⊂ D is open.
Then the divergence of∇σJ(Ω) is given pointwise in X by

divy(∇σJ(Ω))(y) =−
∫
X

2

σ

(
φ′σ(|x− y|2)(S0(x) · (x− y) + tr(S1(x))

)
dx

−
∫
X

4

σ2
φ′′σ(|x− y|2)S1(x)(x− y) · (x− y) dx.

(3.23)

Moreover, there is a constant c > 0, so that for all σ > 0,

‖ divy∇σJ(Ω)‖L∞(X ) ≤
c

σ
(3.24)

and
divy∇σJ(Ω)→ 0 in L∞(X ,Rd) as σ ↗∞. (3.25)
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Proof. Using the tensor relations A : b⊗ c = b ·Ac and (a⊗ b)c = a(b · c) for all A ∈ Rd,d and
a, b, c ∈ Rd and div(v) = ∂v : I , we infer formula (3.23) directly from (3.21). The rest of the proof
is obvious.

Remark 3.16. Formula (3.20) in conjunction with Corollary 3.14 allows us to interprete the terms
S0 and S1. The term S0 is responsible for "translations"while S1 allows for shape deformations.

We now consider the Gauss kernel for which (3.20) and (3.23) further simplify.

Corollary 3.17. For the Gauss kernel K(x, y) := e−(x−y)2/σI , σ > 0, the gradient of J(Ω) at Ω
is given pointwise by

∇σJ(Ω)(y) =

∫
D

e−|x−y|
2/σ

(
S0(x)− 2

σ
· S1(x)(x− y)

)
dx. (3.26)

Moreover, the divergence is given by

divy(∇σJ(Ω)) =

∫
D

2

σ
e−|x−y|

2/σ

(
S0(x) · (x− y)− 2

σ
S1(x)(x− y) · (x− y) + tr(S1(x))

)
dx.

3.3 Finite dimensional reproducing kernel Hilbert spaces

In this section, J is a shape function defined on a subset Ξ of ℘(D), D ⊂ R2, i.e., we now focus
on the two dimensional case d = 2. Recall our generic assumption that in an open subset Ω of D,
the shape derivative is given by (3.13). Subsequently, we want to discuss the relation between a
finite element space and RKHS and spaces generated by radial kernel functions. In the previous
section, we always started with a reproducing kernel. Here, we assume that a finite dimensional
Hilbert space is given and we seek the reproducing kernel.

Reproducing kernels associated with a finite dimensional space VN(X ,R2)

For a given setX ⊂ D, let VN(X ,R2) be some finite dimensional space of vector valued functions
defined on X and contained in C(D,Rd) ∩W 1

1 (D,Rd). We assume

{v1, v2, . . . , v2N} is a basis (not necessarily orthonormal) of VN(X ,R2).

Suppose an inner product (·, ·)VN (X ,R2) on VN(X ,R2). Then VN(X ,R2) is a reproducing kernel
Hilbert space with the ith raw Ki(x, y) = K(·, y)ei (for y fixed) of the kernel K(x, y) defined as
the solution of

(Ki(·, y), X)VN (X ,R2) = X(y) · ei, for all X ∈ VN(X ,R2).

Since K(x, y) = (K(x, y))>, it follows K>(y, ·)ei ∈ VN(X ,R2). Then the gradient∇J(Ω) ∈
VN(X ,R2) of J at Ω is given by

dJ(Ω)(X) = (∇J(Ω), X)VN (X ,R2) for all X ∈ VN(X ,R2).
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For the numerical realisation it is beneficial to have an explicit formula for the gradient in terms
of the basis elements: let AN := (vj, vi)VN (X ,R2), FN := (dJ(Ω)(v1), . . . , dJ(Ω)(v2N))> and
α := (α1, . . . , α2N)>, then

∇J(Ω) =
2N∑
k=1

αkv
k, α = A−1

N FN . (3.27)

Of course this formula gives the same gradient as (3.14), i.e.,

∇J(Ω)(y) =
2∑
i=1

(∫
X
S1(x) : ∂x(K(x, y)ei) + S0(x) · (K(x, y)ei) dx

)
ei, for i = 1, 2.

(3.28)

Metrics on VN(X ,R2)

Usually the space VN(X ,R2) is contained in some Hilbert spaceH(X ,Rd). Therefore it is natural
to equip the space VN(X ,R2) with the inner product (·, ·)H(X ,Rd) from the spaceH(X ,Rd) and
to compute the gradient∇J(Ω) with respect to this inner product,

(∇J(Ω), ϕ)H(X ,R2) =

∫
D

S1 : ∂ϕ+ S0 · ϕ dx for all ϕ ∈ VN(X ,R2). (3.29)

Example 3.18. For instance in case X = D ⊂ R2, the space VN(X ,R2) could comprise

conforming Lagrange finite elements contained in
◦
H1(D,R2); see also below. Then

(∇J(Ω), ϕ)H1(D,R2) =

∫
D

S1 : ∂ϕ+ S0 · ϕ dx for all ϕ ∈ VN(D,R2). (3.30)

In case dJ(Ω) is supported in Ω, i.e., if S0 = 0 and S1 = 0 on D \ Ω, then also X = Ω would
be an admissible choice. In this case it is sufficient to solve the above variational problem on the
domain Ω.

Given a space VN(X ,R2) as above, the simplest metric on it (not induced by the ambient
space) can be defined on the basis elements vi by

(vi, vj)VN (X ,R2) := δij, i, j ∈ {1, 2, . . . , 2N}. (3.31)

More generally, for arbitrary v, w ∈ VN(X ,R2) we find by definitionαi, βi inR, i, j = 1, 2, . . . , 2N ,

v =
2N∑
i=1

αiv
i, w =

2N∑
i=1

βiv
i. (3.32)

Then we set

(v, w)VN :=
2N∑
i,j=1

αiβjδij. (3.33)
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We will refer to this metric as Euclidean metric. The gradient of J with respect to this metric is given
by

∇J(Ω) =
2N∑
k=1

dJ(Ω)(vk)vk. (3.34)

It can be readily checked that with the Eulidean metric, the reproducing kernel has the form

K(x, y) =
2N∑
l=1

vl(y)⊗ vl(x). (3.35)

So K(x, y) is not radial kernel, but it is has only non-zero entries on the diagonal. An interesting
application of the choice “VN(D,R2) = linear Lagrange finite elements on D” equipped with the
Eulidean metric was proposed in [6]; see also the next section. The authors use as descent direction
the negative of the gradient defined in (3.34) to obtain optimal triangulations involving second order
elliptic PDEs.

Building space VN(X ,Rd) with finite element spaces

Maybe the easiest way to construct a basis for VN(X ,R2) is to use finite elements. For simplicity
we assume that X is a polygonal set. Let {Th}h>0 denote a family of simplicial triangulations
Th = {K} consisting of triangles K such that

X =
⋃
K∈Th

K, ∀h > 0. (3.36)

For every element K ∈ Th, h(K) denotes the diameter of K and ρ(K) is the diameter of the
largest ball contained in K. The maximal diameter of all elements is denoted by h, i.e., h :=
max{h(K) |K ∈ Th}. Each K ∈ Th consists of three nodes and three edges and we denote the
set of nodes and edges byNh and Eh, respectively. We assume that there exists a positive constant
% > 0, independent of h, such that

h(K)

ρ(K)
≤ % (3.37)

holds for all elements K ∈ Th and all h > 0. Then we may define Lagrange finite element functions
of order k ≥ 1 by

V k
h (X ) := {v ∈ C(X ) : v|K ∈ Pk(K), ∀K ∈ Th}. (3.38)

Recall that in the linear case k = 1 a basis vi ∈ C(X ) may be defined via

xj ∈ Nh, vi(xj) = δij, i, j = 1, . . . , Nh, (3.39)

where δij denotes the Kroenecker symbol. We can then define VNh
(X ,R2) := V k

h (X )× V k
h (X ),

that is,
VNh

(X ,R2) := span{v1e1, . . . , vNh
e1, v1e2, . . . , vNh

e2}. (3.40)
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Building space VN(D,Rd) using matrix valued kernels

Let {z1, z2, . . . , zN} be given points inX ⊂ D and letK(x, y) be a positive definite and symmetric
matrix-valued kernel on X . By Theorem 3.2, there exists a Hilbert spaceH(X ,R2) for which K is
the reproducing kernel. We define the functions

vi(z) := K(z, zi)e1 and vN+i(z) := K(z, zi)e2, (3.41)

where i = 1, . . . , N and {e1, e2} denotes the standard basis of R2. As prototype kernel we take
the scaled (radial) Gaussian kernel (see (3.7)-(3.10) for other choices)

K(x, y) := e−|x−y|
2/σI. (3.42)

Notice that K is positive definite as shown in [23, Thm. 6.10,p. 74]. By construction the functions vi

decay exponentially away from zi. The decay rate is determined by the smoothing parameter σ > 0.
We define the finite dimensional space

VN(X ,R2) := span{v1, v2, . . . , v2N−1, v2N}. (3.43)

In case X is open, VN(X ,R2) ⊂ C∞(X ,R2).

Recall that the Gauss kernel k(x, y) = e−|x−y|
2/σ is a positive reproducing kernel (which can

be seen by using Fourier transform). Hence, according to Lemma 3.11 K(x, y) = e−|x−y|
2/σI is a

matrix-valued symmetric and positive definite reproducing kernel. The elements of VN(X ,Rd) are
linearly independent and also vi ∈ H(X ,Rd).

Limiting case N →∞ for kernel spaces

Let VN(X ,R2) be the finite dimensional space defined in (3.40) andH(X ,Rd) the vvRKHS of
K(x, y). We are now interested in the behaviour of ∇VNJ(Ω) as N tends to infinity. Denote by
∇HJ(Ω) the solution of

(∇HJ(Ω), ϕ)H = dJ(Ω)(ϕ) for all ϕ ∈ H(X ,Rd), (3.44)

and by∇VNJ(Ω) the solution of

(∇VNJ(Ω), ϕ)H = dJ(Ω)(ϕ) for all ϕ ∈ VN(X ,R2). (3.45)

We have seen that∇HJ(Ω) is given by the explicit formula (3.14) while∇VNJ(Ω) can be computed
by (3.27).

Lemma 3.19. There holds

lim
N→∞

‖∇VNJ(Ω)−∇HJ(Ω)‖H(X ,R2) = 0 (3.46)

and thus in particular

∇VNJ(Ω)(x)→ ∇HJ(Ω)(x) for all x ∈ X as N →∞. (3.47)
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Proof. By definition of∇VNJ(Ω),

(∇VNJ(Ω), ϕ)H = dJ(Ω)(ϕ) for all ϕ ∈ VN(X ,Rd). (3.48)

On the one hand, the function ∇VNJ(Ω) is given by (3.27). Since by construction ∇VNJ(Ω) ∈
H(X ,Rd), we may use it as a test function in (3.48), i.e.,

‖∇VNJ(Ω)‖2
H(X ,Rd) = dJ(Ω)(∇VNJ(Ω)) ≤ c‖∇VNJ(Ω)‖H(X ,Rd), (3.49)

so that ‖∇VNJ(Ω)‖H(X ,Rd) ≤ c for all N . Hence there is a subsequence Nk and z ∈ H(X ,Rd)

such that ∇VNkJ(Ω) ⇀ z weakly inH(X ,Rd). This allows us to pass to the limit in (3.48) and
we obtain by uniqueness of∇HJ(Ω),

∇VNkJ(Ω) ⇀ ∇HJ(Ω) weakly inH(X ,Rd) as k →∞.

Since for every sequence N →∞ there is a subsequence Nk such that∇VNkJ(Ω) ⇀ z weakly
inH(X ,Rd), the whole sequence converges weakly. On the other hand, it follows from (3.48) that

‖∇VNJ(Ω)‖2
H(X ,Rd) = dJ(Ω)(∇VNJ(Ω)) −→ dJ(Ω)(∇HJ(Ω)) = ‖∇HJ(Ω)‖2

H(X ,Rd).
(3.50)

Now since weak convergence and norm convergence together imply the strong convergence, the
claim follows.

Remark 3.20. Let VN(D,Rd) be the Lagrange finite element space defined in (3.40) and suppose

VN(D,R2) ⊂
◦
H1(D,R2). It is clear from standard finite element analysis that under suitable

smoothness assumptions

lim
h↘0
‖∇H1

J(Ω)−∇VNhJ(Ω)‖H1(D,R2) = 0. (3.51)

For a proof of this claim for a specific problem we refer to [18].

4 A linear transmission problem

In this section we discuss a simple cost function constrained by a transmission problem. Transmission
problems are important for applications because they can be used to formulate inverse problems
such as electrical impedance problems; see [1, 14].

4.1 Problem formulation

We are interested in minimising the cost function

min
Ω
J(Ω) =

∫
D

|u− ud|2 dx over Ξ, (4.1)
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where Ξ ⊂ ℘(D) is some admissible set and u = u(Ω) is the (weak) solution of the transmission
problem

− div(β+∇u+) = f in Ω+,

− div(β−∇u−) = f in Ω−,

u = 0 on ∂D,

(4.2)

supplemented by the transmission conditions

β+∂nu
+ = β−∂nu

− and u+ = u− on Γ. (4.3)

The appearing data in the previous equation is specified by the following assumption.

Assumption 4.1. � the set D ⊂ Rd is a bounded domain with boundary ∂D

� for every open open subset Ω ⊂ D, we use the notation Ω+ := Ω and Ω− := D \ Ω

� the interface is defined by Γ = ∂Ω− ∩ ∂Ω+, so if Ω ⊂⊂ D, then Γ := ∂Ω

� the functions f, ud belong to H1(D)

� β+, β− > 0 are positive numbers

Finally let us recall the variational formulation of (4.2)-(4.3)∫
D

βχ∇u · ∇v dx =

∫
D

fϕ dx for all v ∈
◦
H1(D), (4.4)

where βχ := β+χ+ β−(1− χ).

Remark 4.2. The well-posedness of the optimisation problem (4.1) subject to (4.4) can be achieved
by adding a perimeter term or Sobolev perimeter. We will not discuss that issue any further here and
refer to [7] and also [22, 20]. Other methods to obtain well-posedness include to impose a volume
constraint; cf. [20, p. 225, Section 3.5].

4.2 Shape derivative

Let us now prove the shape differentiability of J given by (4.1) at all open sets Ω ⊂ D. At first we
need a lemma:

Lemma 4.3. Let D ⊆ Rd be open and bounded and suppose X ∈
◦
C1(D,Rd).

(i) We have

∂Φt − I
t

→ ∂X and
∂Φ−1

t − I
t

→ −∂X strongly in C(D,Rd,d)

det(∂Φt)− 1

t
→ div(X) strongly in C(D).
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(ii) For all open sets Ω ⊆ D and all ϕ ∈ W 1
µ(Ω), µ ≥ 1, we have

ϕ ◦ Φt − ϕ
t

→∇ϕ ·X strongly in Lµ(Ω). (4.5)

Now we can prove the shape differentiablity of J .

Theorem 4.4. Let X ∈
◦
C1(D,R2) be given and denote by Φt the X-flow. The shape derivative

of J given by (4.1) at a measurable subset Ω ⊂ D is given by

dJ(Ω)(X) =

∫
D

S1(Ω, u, p) : ∂X + S0(Ω, u, p) ·X dx, (4.6)

where u ∈
◦
H1(D,R2) solves the state (4.4) and p ∈

◦
H1(D,R2) solves the adjoint state equation∫

D

βχ∇v · ∇p dx = −
∫
D

2(u− ud)v dx for all v ∈
◦
H1(D). (4.7)

and

S1(Ω, u, p) = −βχ∇u⊗∇p− βχ∇p⊗∇u+ I(βχ∇u · ∇p− fp+ |u− ud|2)

S0(Ω, u, p) = −p∇f − 2(u− ud)∇ud.
(4.8)

If Γ ∈ C2, then u±, p± ∈ H2(Ω±),

− div(S1(Ω, u, p)) + S0(Ω, u, p) = 0 a.e. in Ω and a.e. in D \ Ω, (4.9)

and

dJ(Ω)(X) =

∫
Γ

[[S1(Ω, u, p)ν]] ·X ds =

∫
Γ

[[S1(Ω, u, p)ν · ν]] (X · ν) ds, (4.10)

where S±1 (Ω, u, p) := (S1(Ω, u, p))|Ω± .

Proof. The proof is an adaption of the proof of Proposition 5.2 in [14]. However, let us sketch
the ingredients of the proof. At first we consider equation (4.4) with characteristic function χΩt ,
Ωt := Φt(Ω), ∫

D

βχΩt
∇ut · ∇v dx =

∫
D

fv dx for all v ∈
◦
H1(D). (4.11)

Using χΩt = χ ◦ Φ−1
t and setting ut := ut ◦ Φt, a change of variables shows (4.11) is equivalent

to ∫
D

βχA(t)∇ut · ∇v dx =

∫
D

ξ(t)f tv dx for all v ∈
◦
H1(D), (4.12)

where ξ and A are defined in (4.14). Let us introduce the Lagrangian

G(t,X,w, v) =

∫
D

ξ(t)|w − utd|2 dx+

∫
D

βχA(t)∇w · ∇v dx−
∫
D

ξ(t)f tv dx (4.13)

with the definitions

ξ(t) := det(∂Φt), A(t) := ξ(t)∂Φ−1
t ∂Φ−>t , f t := f ◦ Φt, utd = ud ◦ Φt. (4.14)
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Thanks to Lemma 4.3 the derivatiev ∂tG(0, v, w) exists for all w, v ∈
◦
H1(D,R2) and is given by

∂tG(0, X, w, v) =

∫
D

βχA
′(0)∇w · ∇v + ξ′(0)(|w − ud|2 − fv)−∇f ·Xv dx. (4.15)

Now it can be shown that cf. [14, 21, 20]

dJ(Ω)(X) =
d

dt
G(t,X, ut, p)|t=0 = ∂tG(0, X, u, p), (4.16)

where p ∈
◦
H1(D) is the solution of (4.7). From this and (4.15) it can be inferred that

dJ(Ω)(X) =

∫
D

S1(Ω, u, p) : ∂X + S0(Ω, u, p) ·X dx (4.17)

with the definitions

S1(Ω, u, p) = −βχ∇u⊗∇p− βχ∇p⊗∇u+ I(βχ∇u · ∇p− fp+ |u− ud|2), (4.18)

S0(Ω, u, p) = −p∇f − 2(u− ud)∇ud. (4.19)

Now if Γ ∈ C2, then by standard regularity theory we obtain u±, p± ∈ H2(Ω±). Therefore
S±1 (Ω, u, p) ∈ W 1

1 (Ω±,R2,2). Thus, Proposition 3.3 in [14] shows

dJ(Ω)(X) =

∫
Γ

[[S1(Ω, u, p)ν]] ·X ds =

∫
Γ

[[S1(Ω, u, p)ν · ν]] (X · ν) ds (4.20)

and additionally

− div(S1(Ω, u, p)) + S0(Ω, u, p) = 0 a.e. in Ω and a.e. in D \ Ω. (4.21)

Corollary 4.5. Let X ∈
◦
C0,1(R2,R2) with X = 0 on ∂D. Then for all measurable Ω ⊂ D,

∂XJ(Ω) := lim
t↘0

J((id + tX)(Ω))− J(Ω)

t
=

∫
D

S1(Ω, u, p) : ∂X + S0(Ω, u, p) ·X dx,

(4.22)
where S0 and S1 are given by (4.8).

Proof. It is not difficult to check that for X ∈ C0,1(R2,R2) with X = 0 on ∂D the transformation
Tt(X) : R2 → R2, x 7→ x+ tX(x) is bi-Lipschitz for all t < 1/L, where L denotes the Lipschitz
constant of X . Then we notice that items (i) and (ii) of Lemma 4.3 also hold when we replace Φt

by Tt(X). As a consequence ∂tG(0, X, w, v) exists also in this case for all v, w ∈
◦
H1(D). Now

we can follow the lines of the proof of Theorem 4.4 only replacing the flow Φt by the transformation
Tt(X).

Remark 4.6. Notice that the transformation Tt(X) is the X̃-flow of the time-dependent vector field
X̃(x, t) := X ◦ (id+ tX)−1(x), that is, ΦX̃

t = Tt(X); cf. [7, Chapter 4]. It is important to note that

dJ(Ω)(X) may not be well-defined for all X ∈
◦
C0,1(R2,R2) with X = 0 on ∂D as t 7→ ∂ΦX

t is
not differentiable in C(D,R2,2) at t = 0.
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4.3 Discretised shape derivative

In the recent article [4] the relationship between the analytical and discretised shape derivative has
been studied for a specific model problem. The rigorous numerical analysis was carried out in [12].
Here we want to recast these results in terms of our tensor representation of the shape derivative.

Finite element approximation

Suppose that D is a polygonal set. Let V k
h , k ≥ 1, be the space defined in (3.38). Then the finite

element approximation of state equation (4.4) and the adjoint state equation (4.7) reads:∫
D

βχ∇uh · ∇ϕdx =

∫
D

fϕ dx for all ϕ ∈ V k
h∫

D

βχ∇ϕ · ∇ph dx = −
∫
D

2(uh − ud)ϕdx for all ϕ ∈ V k
h .

(4.23)

With the discretised state and adjoint state equation the discretised version of the shape derivative
given by (4.6) reads

dJvolh (Ω)(X) =

∫
D

Sh1 : ∂X + Sh0 ·X dx, (4.24)

with

Sh1 := S1(Ω, uh, ph) = −βχ∇uh⊗∇ph−βχ∇ph⊗∇uh+I(βχ∇uh ·∇ph−fph+|uh−ud|2),
(4.25)

Sh0 := S0(Ω, uh, ph) = −ph∇f − 2(uh − ud)∇ud. (4.26)

Comparison of discretised domain and boundary expression

At first we observe that the discretised volume expression dJvolh (Ω) given by (4.24) does not have
the nice property to be supported on the boundary Γ even for smooth vector fields: there exists
X ∈

◦
C0,1(D,R2) so that dJvolh (Ω)(X) 6= 0 and there exists at least one point x in Ω∪(D\Ω), so

that − div((Sh1)±) + (Sh0)± 6= 0. Therefore dJvolh (Ω) is not equivalent to its discretised boundary
counterpart

dJ bd,1h (Ω)(X) :=

∫
Γ

[[Sh1ν · ν]](ν ·X) ds (4.27)

for X ∈
◦
C1(D,R2). Recall that the boundary expression of dJ(Ω) in the continuous case was

computed in (4.10) and reads

dJ(Ω)(X) =

∫
Γ

[[S1ν]] · ν (X · ν) ds. (4.28)

Moreover, we have the following equivalence (cf. [14])∫
Γ

[[S1ν · ν]] (X · ν) ds =

∫
Γ

[[S1ν]] ·X ds, X ∈
◦
C1(D,R2). (4.29)
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Accordingly there is another possible way to discretise the boundary expression:

dJ bd,2h (Ω)(X) :=

∫
Γ

[[Sh1ν]] ·X ds, (4.30)

which neither conicides with dJ bd,1h (Ω)(X) nor with dJvolh (Ω)(X). In fact we can prove by partial
integration that the three previously introduced discretisations of the shape derivative are related.

Recall that Eh denotes the edges of the triangulation Th of D.

Lemma 4.7. Let Ω ⊂ D be a polygonal domain, so that, ∂Ω = ∪ E∈Eh
Eh∩Γ6=∅

{E} . We have for all

X ∈
◦
C1(D,R2)

dJvolh (Ω)(X) =dJ bd,2h (Ω)(X) +
∑
K∈Th

∫
K

(− div(Sh1) + Sh0) ·X dx (4.31)

+
∑
E∈Eh
E 6⊂Γ

∫
E

[[Sh1νE]] ·X ds, (4.32)

or equivalently

dJvolh (Ω)(X) =dJ bd,1h (Ω)(X) +
∑
K∈Th

∫
K

(− div(Sh1) + Sh0) ·X dx

+
∑
E∈Eh
E 6⊂Γ

∫
E

[[Sh1νE]] ·X ds+

∫
Γ

[[Sh1νΓ − Sh1νΓ · νΓ]] ·X ds.
(4.33)

Proof. At first notice that for all K ∈ Th we have (Sh1)|K ∈ C∞(K). Hence it follows by partial
integration on each element K ∈ Th,

dJvolh (Ω)(X) =

∫
D

Sh1 : ∂X + Sh0 ·X dx

=
∑
K∈Th

∫
K

Sh1 : ∂X + Sh0 ·X dx

=
∑
K∈Th

∫
K

(− div(Sh1) + Sh0) ·X dx+
∑
K∈Th

∫
∂K

Sh1νK ·X ds.

Now the result follows at once from∑
K∈Th

∫
∂K

Sh1νK ·X ds =
∑
E∈Eh
E 6⊂Γ

∫
E

[[Sh1νE]] ·X ds+

∫
Γ

[[Sh1ν]] ·X ds (4.34)

and by rearranging.

Finally we note that dJ bd,1h (Ω)(X) 6= dJ bd,2h (Ω)(X). It is clear that in some sense

dJ(Ω)(X) ≈ dJ bd,1h (Ω)(X) ≈ dJ bd,2h (Ω)(X) ≈ dJvolh (Ω)(X). (4.35)

For a rigorous error analysis and more details we refer to [12] and also [17].
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5 Numerics

This section is devoted to the practical demonstration of vvRKHS based shape optimisation. The
numerical experiments with two different kernels show that this approach is a very efficient and
robust numerical tool. We compare these kernel methods with two other typically used gradients,
the Euclidean gradient and the H1 gradient, both computed in the conforming P1 finite element
space. All methods are applied to the transmission problem (4.4).

5.1 Numerical setting and algorithm

The subsequent computations are carried out on the domain D = (0, 1)2 which is in accordance
with our assumption in the previous section. In all test cases the set Ω ⊂ D is assumed to be
polygonal. The initial mesh consists of 900 elements as shown in Figure 1 and the interface of the
initial circular shape is discretised with 100 equidistant vertices.

In the following, J is the shape function defined in (4.1) with shape derivative at Ω ⊂ D (cf.
(4.24)),

dJhvol(Ω)(X) =

∫
D

Sh1(Ω) : ∂X + Sh0(Ω) ·X dx. (5.1)

Here Sh0(Ω) = Sh0(Ω, uh, ph) and Sh1 = Sh1(Ω, uh, ph) are defined in (4.25) and (4.26), respec-
tively. They are approximations of S0(Ω, u, p) and S1(Ω, u, p) given by (4.8). The approximations
uh and ph of the adjoint state and the state are given by (4.23) where we choose k = 1.

Standard gradient algorithm

Suppose some Hilbert space VN(D,R2) ⊂ H1(D,R2). The gradient∇Jh(Ω) of J is computed
by

(∇Jh(Ω), X)VN (X ,R2) =

∫
D

Sh1 : ∂X + Sh0 ·X dx ∀X ∈ VN(X ,R2) (5.2)

The basic optimisation algorithm can be described as follows:
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Data: Let n = 0, γ > 0 and N ∈ N be given. Initialise domain Ω0 ⊂ D, time tn = 0.
initialization;
while n ≤ N do

1.) solve (5.2) to obtain∇J = ∇J(Ωn);
2.) decrease t > 0 until Jh((id− t∇Jh)(Ωn)) < Jh(Ωn)

and set Ωn+1 ← (id− t∇J)(Ωn);
if Jh(Ωn)− Jh(Ωn+1) ≥ γ(Jh(Ω0)− Jh(Ω1)) then

step accepted: continue program;
else

no sufficient decrease: quit;
end
increase n← n+ 1;

end
Algorithm 1: Standard algorithm

Variable metric gradient algorithm

LetHσ(D,R2) be the vvRKHS defined by the radial kernel K(x, y) = φσ(|x− y|2)I , where we
choose φ to be (recall φσ(r) := φ(r/σ))

1 φ1(r) := er

2 φ2(r) := (1− r)4
+(4r + 1).

Notice that the corresponding RKHS H(D,R2) is infinite dimensional, depends on σ and the
gradient∇σJ(Ω) of J , defined in (3.20), in this space also depends on σ. We define the discretised
gradient∇σJh(Ω) via

∇σJh(Ω)(y) :=

∫
D

(
φσ(|x− y|2)Sh0(x) +

2

σ
φ′σ(|x− y|2)Sh1(x)(x− y)

)
dx. (5.3)

Here, Sh0 and Sh1 are approximations of S0 and S1 and specified for our transmission problem below.
It should be emphasised that the gradient does not necessarily vanish on ∂D.

We now have gathered all ingredients to state the improved variable metric algorithm.
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Data: Let n = 0, γ > 0, σ > 0 and N ∈ N be given. Initialise domain Ω0 ⊂ D and time tn = 0.
initialization;
while n ≤ N do

1.) solve (5.2) to obtain∇σJh = ∇σJh(Ωn);
2.) decrease t > 0 until Jh((id− t∇σJh)(Ωn)) < Jh(Ωn)

and set Ωn+1 ← (id− t∇σJh)(Ωn);
if Jh(Ωn)− Jh(Ωn+1) ≥ γ(Jh(Ω0)− Jh(Ω1)) then

step accepted: continue program;
else

decrease σ ← qσ, q ∈ (0, 1);
end
increase n← n+ 1;

end
Algorithm 2: Variable metric algorithm.

Remark 5.1. Algorithm 2 represents a new type of algorithm for shape optimisation since it includes
a change of the metric during the optimisation process.

Numerical tests

In Figure 2, the results of Algorithm 2 with parameters σ = 10, γ = 10−2, q = 0.5 and the gradient
defined in (5.3) are depicted for some selected iteration steps. In the left picture the reproducing
kernel associated to φ1 is chosen and in the right picture, the kernel associated to φ2 is employed.
The inital shape is a circle with radius 0.1 located in the left lower corner with center (0.15,0.15), see
Figure 1. The optimal shapes are two discs located at (0.65,0.35) and (0.7,0.5) with radii 0.2 and 0.1,
respectively. They are thus located in the upper right corner of the domain and intersect each other.

The evolutions of the shapes are quite similar but a closer inspection reveals that they are in
fact not identical. As predicted, for initially large σ, the shape is only translated but not changed
otherwise. After several iterations, the location of the optimal shape is reached and σ is successively
reduced which enables the subsequent deformation of the shape. Eventually, the final shape is very
well reconstructed although the initial shape was place quite far away from the optimum. Additionally,
Figure 3 illustrates the computing mesh with φ2 for some iterations. The error progression for the
two examined kernels is depicted in Figure 4 (left).

In Figure 2 the results of algoritm 2 with the H1 metric (left) and the Euclidean metric (right) are
depicted. The gradient in the Euclidean metric is given by (cf. (3.34))

∇Jh(Ω) =
2N∑
k=1

dJhvol(Ω)(vk)vk (5.4)

and the H1 gradient is defined as the solution of the variational problem

(∇Jh(Ω), ϕ)H1 = dJhvol(Ω)(ϕ) for all ϕ ∈ VNh
(X ,R2). (5.5)

where the space VNh
(X ,R2) is given by (3.40) with X = D. The inital shape is now placed very

close to the optimal shape and even overlaps it. The reason is that both gradient methods, the
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Figure 1: Inital mesh (left) and domain setup (right) with initial shape (bottom right) and optimal
shape (top right).

Euclidean and the H1, are not able to perform large shape deformation and do do not converge
when the inital shape is too far away. For the Euclidean metric to converge, the initial shape actually
has to lie basically inside the optimal shape.

Opposite to this, it poses no problem for our novel variable metrics algorithm which proves to be
much more robust in practise as demonstrated before. We also point out that the reconstructions in
Figure 5 are not as good as the previous ones in Figure 2. The error progression for the H1 and the
Euclidean metric based optimisations is depicted in Figure 4 (right).

Conclusion

We examined the applicability of RKHS in PDE constrained shape optimization. In particular,
we showed that many previously used gradient algorithms can be identified as methods using
gradients computed in RKHS. We also investigated special radial kernels and proposed a new
variable metrics algorithm which exhibits very promising behaviour in our experimental setting. A
comparison with other common methods shows that our method is much more robust when used
with more complicated problems, namely when the distance to the optimal shape is large and its
regularity is reduced (examine the non-convex areas). With the presented derivation and numerical
demonstration of the new method, we only scratched the surface of this promising approach to
shape optimisation in RKHS and many highly interesting question remain open. For instance, the
“optimal choice” of the kernel for specific problems will be subject of future work.
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Figure 2: Shape progress for vvRKHS based optimisation with φ1 (left) and φ2 (right) for iterations 2,
5, 8, 11, 14, 17, 24, 30, 35, 50.
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Figure 3: Successive meshes for iteration steps 0, 10, 20, 35, 55, 75, 120, 200, 500 of vvRKHS
based optimisation with φ2.
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Figure 4: Error progress for vvRKHS based iterations (left), H1 and Euclidian metric (right).

References

[1] L. Afraites, M. Dambrine, and D. Kateb. Shape methods for the transmission problem with a
single measurement. Numer. Funct. Anal. Optim., 28(5-6):519–551, 2007.

[2] G. Allaire, F. Jouve, and A.-M. Toader. A level-set method for shape optimization. C. R. Math.
Acad. Sci. Paris, 334(12):1125–1130, 2002.

[3] N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 68:337–404, 1950.

[4] M. Berggren. A unified discrete-continuous sensitivity analysis method for shape optimization.
In Applied and numerical partial differential equations, volume 15 of Comput. Methods Appl.
Sci., pages 25–39. Springer, New York, 2010.

[5] C. Carmeli, E. De Vito, and A. Toigo. Vector valued reproducing kernel Hilbert spaces of
integrable functions and Mercer theorem. Anal. Appl. (Singap.), 4(4):377–408, 2006.

[6] M. Delfour, G. Payre, and J.-P. Zolésio. An optimal triangulation for second-order elliptic
problems. Comput. Methods Appl. Mech. Engrg., 50(3):231–261, 1985.

[7] M. C. Delfour and J.-P. Zolésio. Shapes and geometries, volume 22 of Advances in Design
and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second
edition, 2011. Metrics, analysis, differential calculus, and optimization.

[8] K. Eppler, H. Harbrecht, and R. Schneider. On convergence in elliptic shape optimization.
SIAM J. Control Optim., 46(1):61–83 (electronic), 2007.

[9] P. Gangl, U. Langer, A. Laurain, H. Meftahi, and K. Sturm. Shape Optimization of an Electric
Motor Subject to Nonlinear Magnetostatics. SIAM J. Sci. Comput., 37(6):B1002–B1025, 2015.

29



Figure 5: Shape progress for H1 and Euclidian metric based optimisation.

[10] A. Henrot and M. Pierre. Variation et optimisation de formes, volume 48 of Mathématiques
& Applications (Berlin) [Mathematics & Applications]. Springer, Berlin, 2005. Une analyse
géométrique. [A geometric analysis].

[11] M. Hintermüller. Fast level-set based algorithms using shape and topological sensitivity
information. Control and Cybernetics, 34(1):305–324, 2005.

[12] R. Hiptmair, A. Paganini, and S. Sargheini. Comparison of approximate shape gradients. BIT,
55(2):459–485, 2015.

[13] A. Laurain and Y. Privat. On a Bernoulli problem with geometric constraints. ESAIM Control
Optim. Calc. Var., 18(1):157–180, 2012.

[14] A. Laurain and K. Sturm. Distributed shape derivative via averaged adjoint method and
applications. accepted for publication in ESAIM:M2AN.

[15] P. W. Michor and D. Mumford. Riemannian geometries on spaces of plane curves. J. Eur. Math.
Soc. (JEMS), 8(1):1–48, 2006.

[16] S. Osher and R. Fedkiw. Level set methods and dynamic implicit surfaces, volume 153 of
Applied Mathematical Sciences. Springer-Verlag, New York, 2003.

[17] A. Paganini. Approximate shape gradients for interface problems. Technical Report 2014-12,
Seminar for Applied Mathematics, ETH Zürich, Switzerland, 2014.

[18] A. Paganini and R. Hiptmair. Approximate riesz representatives of shape gradients. Seminar
for Applied Mathematics, ETH Zurich (Technical Report).

[19] J. Sokołowski and J.-P. Zolésio. Introduction to shape optimization, volume 16 of Springer
Series in Computational Mathematics. Springer-Verlag, Berlin, 1992. Shape sensitivity analysis.

30



[20] K. Sturm. Minimax Lagrangian approach to the differentiability of nonlinear PDE constrained
shape functions without saddle point assumption. SIAM J. Control Optim., 53(4):2017–2039,
2015.

[21] K. Sturm. On shape optimization with non-linear partial differential equations. PhD thesis,
Berlin, Technische Universität Berlin, Diss., 2014, 2015.

[22] K. Sturm, D. Hömberg, and M. Hintermüller. Distortion compensation as a shape optimisation
problem for a sharp interface model. Comp. Optim. and Appl., pages 1–32, 2016.

[23] H. Wendland. Scattered data approximation, volume 17 of Cambridge Monographs on Applied
and Computational Mathematics. Cambridge University Press, Cambridge, 2005.

[24] L. Younes. Shapes and diffeomorphisms, volume 171 of Applied Mathematical Sciences.
Springer-Verlag, Berlin, 2010.

31


