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ABSTRACT. Let us consider Euclidean first-passage percolation on the Poisson-Delaunay triangulation. We prove
almost sure coalescence of any two semi-infinite geodesics with the same asymptotic direction. The proof is based
on an adapted Burton-Keane argument and makes use of the concentration property for shortest-path lengths in
the considered graphs. Moreover, by considering the specific example of the relative neighborhood graph, we
illustrate that our approach extends to further well-known graphs in computational geometry. As an application,
we show that the expected number of semi-infinite geodesics starting at a given vertex and leaving a disk of a
certain radius grows at most sublinearly in the radius.

1. INTRODUCTION AND MAIN RESULTS

1.1. Introduction. In the seminal papers [13, 14] Licea and Newman have shown coalescence of a large class
of geodesics with the same direction in the standard two-dimensional lattice first-passage percolation (FPP)
model. To be more precise, for Lebesgue-almost every direction, any two geodesics with this direction starting
from different initial points coalesce with probability 1. Later, Howard and Newman have investigated an isotropic
first-passage percolation model based on the homogeneous Poisson point process in the plane [9, 10]. Due to
the property of isotropy, they could derive an analogous coalescence statement for any fixed direction.

As of today, the coalescence of geodesics has been extended to further isotropic models of continuum perco-
lation. For instance, in [15] a Euclidean FPP model is considered on the Poisson-Delaunay triangulation, where
the edge weights are independent and identically distributed according to an absolutely continuous distribution
on [0,∞). In the present paper, we extend the coalescence result to the case where the edge weights are
dependent and given by the Euclidean length ν1(e) of the corresponding edge e. Due to the strong depen-
dence between edge weights and the underlying graph structure, local modification arguments that have been
successfully applied in [15] do not carry over to the setting of Euclidean edge weights. We therefore develop
a novel adaptation of the Burton-Keane argument. In our approach, a central role is played by a modified FPP
model, where geodesics are forbidden to backtrack behind certain vertical lines. Moreover, we show that our
general approach is not restricted to the Delaunay triangulation, but can also be applied to other graphs of in-
terest in computational geometry. As a specific example, we provide explicitly the adaptations that are needed
to deal with the Poisson relative neighborhood graph.

In order to state our main results precisely, we first recall the definitions of the Delaunay triangulation and the
relative neighborhood graph and refer the reader to [11] for further properties. Let us start with a set of vertices
in R2 given by a homogeneous Poisson point process X whose intensity is assumed to be equal to 1. Then,
the Delaunay triangulation Del(X) on X , is the geometric graph on the vertex set X , where an edge is drawn
between two vertices x, y ∈ X if and only if there exists a disk whose intersection with the vertex set X
consists precisely of the points x and y. The relative neighborhood graph Rng(X) on X , is the geometric
graph on the vertex set X where an edge is drawn between two vertices x, y ∈ X if and only if there does
not exist a vertex z ∈ X such that max{|x− z|, |y − z|} < |x− y|. In particular, almost surely, the relative
neighborhood graph is a subgraph of the Delaunay triangulation. In the following, many results hold for both
Del(X) and Rng(X). Hence, we write G(X) as notation to represent either of these graphs. Also, letters
x, x′, y, z will refer to elements of X .

Next, let us introduce a Euclidean FPP model on G(X) and explain the notion of geodesics. Let P, P ′ ∈ R2

be points that are contained on the edge set of G(X). Then, we denote by `(P, P ′) = `G(X)(P, P ′) the
Euclidean length ν1(γ) of the shortest Euclidean path γ on G(X) connecting P and P ′. That is,

`(P, P ′) = inf{ν1(γ) : γ is a path on G(X) connecting P and P ′} . (1)

For any path γ on G(X) and P, P ′ ∈ γ, we write γ[P, P ′] for the subpath of γ starting at P and ending at
P ′. When the (possibly infinite) path γ satisfies `(P, P ′) = ν1(γ[P, P ′]) for all P, P ′ ∈ γ, then γ is called
geodesic.

The present paper investigates geodesics γ on G(X) that are semi-infinite in the sense that γ emanates from
a certain starting point but consists of infinitely many vertices. Moreover, writing S1 = {P ∈ R2 : |P | = 1}
for the unit circle, we say that a semi-infinite path γ on G(X) admits an asymptotic direction û ∈ S1 if and
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only if

lim
|y|→∞
y∈γ

y

|y|
= û .

Let û ∈ S1 be an arbitrary direction. Based on the classical arguments developed in [9, 13], it is proved in [8]
that almost surely, for every point x ∈ X , there exists a unique semi-infinite geodesic starting at x and with
asymptotic direction û. Using the terminology of [13], this geodesic is called û-unigeodesic and will be denoted
by γx in the following. Note that, γx obviously depends on the direction û, but since in our paper this direction
will always be clear from the context, we adhere to the simplified notation.

1.2. Coalescence of geodesics. The first main result of our paper shows the coalescence of û-unigeodesics.

Theorem 1. Consider Euclidean FPP on G(X). Then, for any given direction û ∈ S1, with probability 1 any
two geodesics with asymptotic direction û eventually coalesce. That is, γx ∩ γx′ 6= ∅ for all x, x′ ∈ X .

On a very general level, the proof of Theorem 1 is based on the Burton-Keane technique that has emerged
as a powerful tool in the analysis of random planar trees [5, 9, 13, 15]. However, the implementation of the
Burton-Keane argument for Euclidean FPP on the Poisson-Delaunay triangulation Del(X) and the Poisson
relative neighborhood graph Rng(X) is markedly different from the examples that have been discussed in the
literature so far. Let us explain why.

The classical argument of Burton-Keane starts by assuming that there exist û-unigeodesics that do not coa-
lesce. Then, a local modification argument is used to show that each of these geodesics has a positive prob-
ability to be surrounded by a protective shield. This shield prevents that distant geodesics coalesce with it.
In particular, the expected number of shielded – and therefore non-coalescent – geodesics in a bounded box
grows as the box area. This contradicts the fact that the expected number of edges of G(X) crossing the
box boundary grows as the box perimeter, i.e., as the square root of the box area. In a given FPP model, the
difficulty of carrying out this program lies in the local modification step.

For instance, in the setting of iid edge weights [13, 15], a simple modification of edge weights makes it possible
to generate shields that are avoided by the geodesics starting outside such obstacles. Indeed, by choosing
sufficiently large weights, these geodesics are forced to circumvent the shielded area. Conversely, in Euclidean
FPP models such as the ones considered in [9] and the present paper, the weights are determined by the
locations of the vertices given by a Poisson point process. There is no additional source of randomness on
which one could rely. Hence, any local modification step must modify the Poisson point process itself. The
classical Euclidean FPP model considered in [9] is based on the complete graph on a Poisson point process
where weights are given by certain powers of the Euclidean distance. In particular, the absence of a graph
topology entails a powerful monotonicity property: removing Poisson points can only increase shortest-path
lengths. This makes it possible to create obstacles by deleting Poisson points in a large region without modifying
the geodesics.

The main challenge in analyzing Euclidean FPP on the Delaunay triangulation Del(X) and the relative neigh-
borhood graph Rng(X) lies in the lack of a related monotonicity property. Indeed, in both models, the removal
of Poisson points has two opposite effects. First, this invalidates paths passing through a deleted vertex, and
then increases shortest-path lengths (as in the previous Euclidean FPP models). Second, deleting vertices
also has the possibility of unblocking certain edges which can potentially decrease shortest-path lengths when
they appear. This self-healing property makes it much harder to describe the effect of removing points. There-
fore, Euclidean FPP on the Delaunay triangulation Del(X) and the relative neighborhood graph Rng(X) are
markedly different from the FPP models previously considered in the literature [9, 13, 15] and requires us to
give to the Burton-Keane approach of [9, 13] a new twist.

The key idea for the proof of Theorem 1 is to consider a modified Euclidean FPP model in which geodesics
are preserved under certain local modifications. More precisely, this modified FPP model forbids geodesics to
backtrack behind a given vertical line. This allows us to implement local modifications to the left of that line
without influencing geodesics to the right of it. Hence, we are able to construct in the modified FPP model a
family of non-coalescent geodesics whose mean number grows as the box area. However, in general these
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new geodesics are no longer geodesics in the original FPP model.

In order to illustrate the generality of our approach, we stress that shortest-path lengths on the Delaunay tri-
angulation may behave quite differently to shortest-path lengths on the relative neighborhood graph. Indeed,
it is known that the Delaunay triangulation is a spanner [7, 12]. That is, when constructing the Delaunay tri-
angulation from an arbitrary locally finite set, any two vertices can be connected by a path whose length is
at most 4

√
3π/9 times the Euclidean distance between these vertices. In contrast, starting from an arbitrary

infinite set, the relative neighborhood even need not necessarily be connected. Nevertheless, using a Poisson
point process as vertex set, Euclidean FPP both on the Delaunay triangulation and the relative neighborhood
graph are well-behaved asymptotically. More precisely, as a key tool in the proof of Theorem 1, we leverage
recently established results on concentration of shortest-path lengths on the Poisson-Delaunay triangulation
and the Poisson relative neighborhood graph [8]. Even if the spanner-property of the Delaunay triangulation
makes it impossible to punish the passage through obstacles by arbitrarily high costs, the strong concentration
of shortest-path lengths implies that creating obstacles with moderately high costs is sufficient for achieving the
desired shielding effect.

1.3. Sublinearity of the number of geodesics leaving large disks. Let x? be the closest Poisson point to the
origin o ∈ R2. We denote by Tx? the collection of geodesics γx?,x, for any x ∈ X , where γx?,x is the shortest
Euclidean path on G(X) connecting x? and x. The continuous nature of the underlying Poisson point process
X ensures the a.s. uniqueness of geodesics. Hence, Tx? is a.s. a tree rooted at x?, called the shortest-path
tree on the graph G(X) w.r.t. the root x?.

From the moderate deviations result obtained in [8, Theorem 2] for the geodesics γx,x′ (w.r.t. the straight
line segment connecting x and x′) and the general method developed in [10, Proposition 2.8], the following
statement holds with probability 1: for every direction û ∈ S1, there exists at least one semi-infinite geodesic in
Tx? starting from x? with asymptotic direction û. As a consequence, the tree Tx? a.s. admits an infinite number
of semi-infinite geodesics (in all the directions).

As the second main result of this paper, we show that this (expected) number is asymptotically sublinear. To
do it, let us denote by χr the number of semi-infinite geodesics in Tx? crossing the circle Sr(o) = rS1. Since
these geodesics may cross various times any given circle, we have to be more precise. Let us consider the
graph obtained from Tx? after deleting any geodesic (x?, x2, . . . , xn) with n ≥ 2 (except the endpoint xn)
such that the Poisson points x?, x2, . . . , xn−1 belong to the disk Br(o) = {P ∈ R2 : |P | ≤ 1} but not xn.
Then, χr counts the unbounded connected components of this graph. Thus, let us consider a direction û ∈ S1

and a real number c > 0. Among the previous unbounded connected components, the ones coming from an
edge (xn−1, xn) whose segment [xn−1;xn] crosses the arc of the circle Sr(o) centered at rû and with length
c, are counted by χr(û, c). Using this notation, we state:

Theorem 2. Let û ∈ S1 and c > 0. Then,

lim
r→∞

r−1Eχr = 0 and lim
r→∞

Eχr(û, c) = 0 . (2)

The first limit of (2) can be understood as follows. Among all the edges of Tx? crossing the circle Sr(o), whose
mean number is of order r, a very small number of them belong to semi-infinite geodesics.

The first limit r−1Eχr → 0 immediately follows from the directional result Eχr(û, c) → 0, since by isotropy
Eχr = rEχr(û, 2π), for any û ∈ S1. To state a null limit for the expectation of χr(û, 2π) we follow the
general method developed in [4]. This method essentially relies on two ingredients: a local approximation (in
distribution) of the tree Tx? far away from its root by a suitable directed forest and the a.s. absence of bi-
infinite geodesics in this directed forest. Actually, this absence of bi-infinite geodesics is a consequence of the
coalescence of all the semi-infinite geodesics having the same asymptotic direction, i.e., Theorem 1.

Observe that thanks to the translation invariance of the graph G(X), Theorem 2 remains true whatever the
Poisson point x of X at which the considered tree is rooted.
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Finally, although the product r−1χr is conjectured to converge to 0 almost surely, we can prove following ideas
of [4, Section 3.2] that χr(û, c) does not tend to 0 with probability 1. More precisely, for any û ∈ S1 and c > 0:

a.s. lim sup
r→∞

χr(û, c) ≥ 1 .

The rest of the paper is organized as follows. In Section 2.1, the modified Euclidean FPP model is defined.
Existence and uniqueness of its geodesics are discussed. Section 2.2 is devoted to the outline of the proof of
Theorem 1: the Burton-Keane argument is applied to the modified FPP model. But the heart of the proof, i.e.,
Proposition 4, is proved in Section 3. Finally, Section 4 provides a proof of Theorem 2.

2. THE ADAPTED BURTON-KEANE ARGUMENT

In this section, G(X) still denotes the Delaunay triangulation Del(X) and the relative neighborhood graph
Rng(X) defined on the Poisson point processX . Our goal is to apply the Burton-Keane argument to a modified
Euclidean FPP model defined as follows.

2.1. The modified Euclidean FPP model. Let r ∈ R and let us consider a modified FPP model on the graph
G(X) in which the length of an oriented path is given by its Euclidean length, unless it crosses the vertical line
lvr = {r}×R from right to left. In the latter case, its length is defined to be infinite. This is the reason why from
now on, we have to consider oriented paths.

Let γ = (x1, . . . , xk) be an oriented path in G(X) where x1, . . . , xk are Poisson points. We set

ν
(r)
1 (γ) =

{
∞ if π1(xj) ≥ r ≥ π1(xj+1) for some j ∈ {0, . . . , k − 1},
ν1(γ) otherwise,

where π1 : R2 → R denotes the projection onto the first coordinate. As before, an oriented path γ =
(xj)1≤j≤k with k ∈ N ∪ {∞} on G(X) is called geodesic with respect to ν

(r)
1 if

ν
(r)
1 (γ) = inf{ν(r)

1 (γ′) : γ′ is an oriented path on G(X) from x1 to xk} ,

where γ[xi, xj ] denotes the (oriented) sub-path of γ from xi to xj . We also make the convention that an
oriented path crossing the vertical line lvr from right to left cannot be a geodesic.

Let us remark that geodesics of the modified FPP model, that is, w.r.t. ν
(r)
1 , can be markedly different from the

ones of the original FPP model. To see it, let us consider x, x′ ∈ X such that π1(x) < r < π1(x′) and

let γ be the geodesic connecting x and x′ in the original FPP model. Then, the geodesic w.r.t. ν
(r)
1 from x to

x′ is equal to γ (up to the orientation) if and only if γ crosses the vertical line lvr only one time. Besides, the

geodesic w.r.t. ν
(r)
1 from x′ to x do not exist. Also, let us remark in the relative neighborhood graph Rng(X) it

can happen that the only edge starting from x crosses the vertical line lvr from right to left. In this case, there is
no (finite or not) geodesic starting at x in the modified FPP model. Such pathological situations do not occur in
the Delaunay triangulation Del(X). Besides, in the modified FPP model on Del(X), it should be possible to
prove existence of û-unigeodesics for any asymptotic direction û such that 〈û, e1〉 ≥ 0 and starting from any
vertex x, using [10, Proposition 2.8]. However, this would still require some effort and will not be needed in the
following.

Unlike existence, uniqueness of û-unigeodesics – when they exist – in the modified FPP model is established
fairly easily. Indeed, the classical argument due to Licea and Newman [13] shows that if û ∈ S1 is chosen suit-

ably, then for each vertex x ∈ G(X) there exists at most one semi-infinite geodesic w.r.t. ν
(r)
1 with asymptotic

direction û and starting point x. When it exists, it will be denoted γ
(r)
x .

To make the presentation self-contained, we reproduce from [13, Theorem 0] the original argument for the
uniqueness of û-unigeodesics. See also [9, Lemma 6] for another account. Let Dr(û) be the event that for

every x ∈ X there exists at most one û-unigeodesic w.r.t. ν
(r)
1 starting from x. By stationarity, the probability

of the event Dr(û) does not depend on the value of r ∈ R.
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Lemma 3. It holds that
∫
S1 P(D0(û)c)dû = 0 where dû denotes the Lebesgue measure on S1. In other

words, for almost every û ∈ S1, P(D0(û)) = 1.

Proof. If D0(û) does not occur, then there exists some point x ∈ X featuring two û-unigeodesics γ1 and
γ2 that have x as their only common point. Let x1, x2 be the respective successors of x in these geodesics.

Writing γ+(x), γ−(x) for the trigonometrically highest and lowest geodesics w.r.t. ν
(0)
1 in G(X) starting from

x ∈ X , we conclude from the planarity of G(X) that at least one of γ+(x1), γ+(x2), γ−(x1) and γ−(x2)
is trapped between γ1 and γ2. Hence, its asymptotic direction is also given by û. In other words, we have
D0(û)c ⊂ H(û), where H(û) denotes the event that there exists x ∈ X such that γ−(x) or γ+(x) has
asymptotic direction û. Since in each realization, the event H(û) can occur only for two directions of S1, we
deduce that

∫
S1 1{H(û)}dû = 0. Hence, by Fubini’s theorem,∫

S1

P(D0(û)c)dû ≤
∫
S1

P(H(û))dû = E
∫
S1

1{H(û)}dû = 0,

as required. �

In the following, we choose a direction û0 ∈ S1 such that P(D0(û0)) = 1 and the absolute value of the angle
of û0 with the x-axis is at most δ, where δ > 0 is assumed to be the inverse of a sufficiently large integer,
which is fixed in the entire manuscript.

2.2. Outline of the proof of Theorem 1. Next, we introduce an event FM to describe the existence of a
distinguished geodesic in the modified FPP model that is protected from coalescing with other distinguished
geodesics. To make this precise we require additional notations. Given a semi-infinite path γ of G(X) and a
point P ∈ γ, we denote by γ[P ] the semi-infinite subpath of γ starting at P . Let H− = (−∞, 0] × R and
H+ = [0,∞)×R be the negative and positive vertical half-plane, respectively. We also denote by Cδ(P ) the
cone with apex P ∈ R2, asymptotic direction û0 and opening angle δ.

We can now define the event FM asserting that there exist points x−m ∈ X ∩H− and x+
m ∈ X ∩H+ with

the following properties:

(i) [x−m, x
+
m] forms an edge in G(X) and is contained in BM/2(o),

(ii) γm = γ
(0)

x+
m

exists and is contained in the dilated coneCδ(Q)⊕BδM (o), where {Q} = [x−m, x
+
m]∩lv0,

(iii) if z ∈ 4Z × 2Z is such that z 6= o and π1(z) ≤ 0, and x− ∈ X ∩ (Mz + H−) as well as
x+ ∈ X ∩ (Mz +H+) are such that

(iii).1 [x−, x+] forms an edge in G(X) and is contained in BM/2(Mz),

(iii).2 γ = γ
(Mπ1(z))
x+ exists,

then γ[P ]∩ γm = ∅, where P denotes the last intersection point of γ and lv0. If such P does not exist,
we put γ[P ] = γ.

Figure 1 provides an illustration of the event FM . It is worth pointing out here that the geodesics involved in

FM are w.r.t. ν
(r)
1 for different values of r.

We now consider the family of û0-unigeodesics {γx}x∈X in the original FPP model on G(X). This family can
be used to define a forest F = Fû0 with vertex set X by drawing an edge from x to y if [x, y] is the first
edge in the geodesic γx. If N denotes the number of connected components in this forest, then Theorem 1
is equivalent to the assertion that P(N ≥ 2) = 0. Of course, by isotropy, we could choose û0 = e1, but for
our argument it will be notationally convenient to have a certain flexibility in the choice of the direction. We will
always assume that the angle between û0 and e1 is at most δ.

The heart of our paper is to show that the event FM occurs with positive probability if the event {N ≥ 2} does
so. Its proof is devoted to Section 3.

Proposition 4. If P(N ≥ 2) > 0, then P(FM ) > 0 for M large enough.
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g2

x1

b1

u

P

g1

o

b2
x2

FIGURE 1. This picture represents the event FM . The solid red curves are the geodesics

γm = γ
(0)

x+
m

and γ[P ] where γ = γ
(Mπ1(z))
x+ . They are both contained in the corresponding

dilated cones and they do not overlap. Let us remark that for clarity, this picture does not
respect the fact that z belongs to 4Z× 2Z.

The final part of the proof of Theorem 1 is to prove that P(FM ) = 0. In contrast to Proposition 4, the classical
argument [13, Theorem 1] applies without substantial further complications.

Proposition 5. It holds that P(FM ) = 0, for M large enough.

Proof of Proposition 5. By Lemma 4, we may fix M ≥ 1 such that P(FM ) > 0. For L ≥ 1 let f(L) denote
the number of z ∈ (4Z∩ [−4L, 4L])× (2Z∩ [−2L, 2L]) such that (X−Mz) ∈ FM . Then, by stationarity
ofG(X) and the choice ofM , the first moment of f(L) grows quadratically in L. On the other hand, let f ′(L)
denote the number of edges in G(X) intersecting the boundary of [−8LM, 8LM ]× [−4LM, 4LM ]. Then
Ef ′(L) grows linearly in L. Hence, it suffices to show that if L is sufficiently large, then f(L) ≤ f ′(L) holds
almost surely.

In order to prove this claim, let z, z′ ∈ (4Z ∩ [−4L, 4L]) × (2Z ∩ [−2L, 2L]) be such that z 6= z′,

(X −Mz) ∈ FM and (X −Mz′) ∈ FM . Furthermore, let γz,m = γ
(Mπ1(z))

x+
z,m

and γz′,m = γ
(Mπ1(z′))

x+
z′,m

denote the geodesics that are guaranteed by the events (X −Mz) ∈ FM and (X −Mz′) ∈ FM . Then, we
claim that γz,m and γz′,m do not leave the rectangle [−8LM, 8LM ] × [−4LM, 4LM ] via the same edge.
Indeed, without loss of generality, we may assume that π1(z) ≤ π1(z′). If π1(z) = π1(z′), then we know
from the definition of FM that γz,m and γz′,m are disjoint. Hence, we may assume that π1(z) < π1(z′). Since
X−Mz ∈ FM , the geodesic γz,m is contained in the coneCδ(Q)⊕BδM (o), where {Q} = [x−z,m, x

+
z,m]∩

lvMz . Hence, we conclude that the last intersection point P of γz,m with the vertical line lvMz′ is contained in
[−8LM, 8LM ]× [−4LM, 4LM ]. Now, the occurrence of the event FM implies that γz,m[P ] and γz′,m are
disjoint, so that they leave the rectangle [−8LM, 8LM ]× [−4LM, 4LM ] via different edges. �

3. PROOF OF PROPOSITION 4

Since the proof of Proposition 4 is rather long, we provide the reader with a brief outlook. We are going to define
three events EM , A′M and A′′M such that their intersection implies FM and occurs with positive probability,
therefore proving Proposition 4.

The event EM mainly ensures the existence of three disjoint geodesics γu, γm and γd, all starting from the
segment {0}× [−δM, δM ] and included inH+. As in the classic Burton-Keane argument, the role of γu and
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γd is to protect γm from above and below, respectively. In Lemma 6, it is proved that the event {X ∈ EM}
occurs with high probability whenever P(N ≥ 2) > 0.

To protect γm from the left, we turn the (4M × 2M)-box RM = [−4M, 0]× [−M,M ] into an obstacle. To
do it, we first assume that the Poisson point process X does not contain any points in the (3M × 2M)-
box R−M = [−4M,−M ] × [−M,M ]. This results in a structural change of the Delaunay triangulation
inside R−M , which is illustrated in Figure 2. To ensure that the sketch in Figure 2 is accurate, we need to
make some assumptions on the configuration of X outside R−M . This is the role of the event A′M . Let us set

X(1) = X \ R−M . Lemma 11 says that P(X(1) ∈ A′M ) tends to 1 as M → ∞. Moreover, under the event

{X(1) ∈ A′M}, the events {X(1) ∈ EM} and {X ∈ EM} are equivalent.

o

M3M

FIGURE 2. Edges in the Delaunay triangulation in the event {X ∩R−M = ∅} ∩ {X(1) ∈ A′M}.

Third, we need a certain control over lengths of geodesics in G(X). This property will be encoded in an event
A′′M that only depends on the configuration of X in R2 \ R−M . We will see in Lemma 13 that P(X(1) ∈ A′′M )
tends to 1 as M →∞.

Finally, we will show in Lemma 14 that X(1) ∈ EM ∩ A′M ∩ A′′M almost surely implies that X(1) ∈ FM .
Hence, the following computation proves Proposition 4:

0 < P(X(1) ∈ EM ∩A′M ∩A′′M )P(X ∩R−M = ∅)

= P(X(1) ∈ EM ∩A′M ∩A′′M , X ∩R−M = ∅)

≤ P(X(1) ∈ FM , X ∩R−M = ∅)
≤ P(X ∈ FM ).

3.1. The event EM . In this section, using the assumption that P(N ≥ 2) > 0, we explain how to protect the
geodesic γm from above and below by two semi-infinite geodesics γu and γd which do not coalesce with γm.

As the main result of this section, we can construct the desired distinguished geodesics. For M ≥ 1, we let
EM denote the event that there exist

Pu, Pm, Pd ∈ G(X) ∩ ({0} × [−δM, δM ]),

such that

(i) π2(Pu) > π2(Pm) > π2(Pd), and

(ii) γu, γm and γd exist and are disjoint, where we put γu = γ
(0)

x+
u

, γm = γ
(0)

x+
m

and γd = γ
(0)

x+
d

.

Now, we show that the event EM occurs with high probability.

Lemma 6. If P(N ≥ 2) > 0, then limM→∞ P(EM ) = 1.

Proof. As a first step, we consider geodesics that do not backtrack behind the vertical line lv0. More precisely,
we define the linear point process Y to consist of those P ∈ lv0 that can be represented as P = [x−, x+]∩ lv0,
where x−, x+ ∈ X are assumed to be connected by an edge in G(X). Moreover, we put γP = γx+ , where
we assume that x+ is chosen such that π1(x+) > 0. Then, we let Y ′ ⊂ Y denote the thinning of Y consisting
of all P ∈ Y for which the geodesic γP is contained in the positive half-planeH+. In the following, it will play an
important role that if γP is a geodesic inG(X) with respect to ν1 and P ∈ Y ′, then γP is also a geodesic with

respect to ν
(0)
1 , i.e., γP = γ

(0)
P . Identifying lv0 with the real line, we think of Y ′ as one-dimensional stationary
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and ergodic point process. Since γP has asymptotic direction û0, the intensity of Y ′ is positive when regarded
as one-dimensional point process.

In the following, it will be important to exert some control over the amount of fluctuation of the distinguished
geodesics. More precisely, the definition of asymptotic direction shows that for every P = [x−, x+] ∩ lv0 ∈ Y ′
there exists a random k > 0 such that |x− − x+| ≤ k and γP ⊂ Cδ(P )⊕Bk(o). In particular, there exists
a deterministic K0 > 0 such that the thinning Y ′′ of Y ′ consisting of all P = [x−, x+] ∩ lv0 ∈ Y ′ such that
|x− − x+| ≤ K0 and γP is contained in the dilated cone Cδ(P ) ⊕ BK0(o) forms a stationary and ergodic
point process with positive intensity. The retention condition for Y ′′ is illustrated in Figure 3.

P γP

K0

δ

FIGURE 3. Illustration of the retention condition for Y ′′

First, we claim that for every t ∈ R the probability that the geodesics γP coalesce for all P ∈ Y ′′ ∩ ({0} ×
[t,∞)) is equal to 0. Indeed, otherwise stationarity and planarity would imply that P(N ≥ 2) = 0. In particular,

lim
M→∞

P(E′M ) = 1,

where E′M denotes the event that there exist P, P ′, P ′′ ∈ Y ′′ ∩ ({0} × R) such that

(i) π2(P ) ∈ [34δM, δM ], π2(P ′) ∈ [−1
4δM, 1

4δM ] and π2(P ′′) ∈ [−δM,−3
4δM ], and

(ii) the geodesics γP , γP ′ and γP ′′ are pairwise non-coalescent.

Since E′M ⊂ EM , this completes the proof. �

The following result shows that Lemma 6 allows us to restrict our attention to potential coalescence of γm with
geodesics that cross the segment {0} × [−δM, δM ]. Recall that if γ is an arbitrary oriented path in G(X)
and P ∈ γ, then γ[P ] denotes the oriented subpath of γ starting at P .

Lemma 7. Let z ∈ 4Z × 2Z be such that z 6= o and π1(z) ≤ 0. Then, almost surely under the event EM ,
the following assertion holds. If x− ∈ X ∩ (Mz +H−) and x+ ∈ X ∩ (Mz +H+) are such that

(i) [x−, x+] forms an edge in G(X) that is contained in BM/2(Mz),

(ii) γ = γ
(Mπ1(z))
x+ exists, and

(iii) γ[P ] ∩ γm 6= ∅, where P denotes the last intersection point of γ and lv0,

then |π2(P )| ≤ δM .

Proof. In order to derive a contradiction, we assume that |π2(P )| > δM . Since γm is enclosed by the union
of {0} × [−δM, δM ], [x−u , x

+
u ] ∪ γu and [x−d , x

+
d ] ∪ γd, we deduce that γ[P ] has a common vertex with

γu or γd. We let x be the last such point and assume that it lies on γu. Then, γ[x] and γu[x] are two distinct

û0-geodesics in G(X) with respect to ν
(0)
1 , contradicting Lemma 3 and the choice of û0. �

Remark 1. Note that if π1(z) = 0, then it is impossible to obtain |π2(P )| ≤ δM . Hence, in this case the event
EM already suffices to ensure that γ[P ] ∩ γm = ∅.

3.2. The event A′M . The second part of the shield is obtained by changing the Poisson point process in
(3M×2M)-boxR−M = [−4M,−M ]×[−M,M ] so as to increase the cost of passing through the rectangle
RM . An important feature in our choice of the event EM is that it only involves geodesics in G(X) with

respect to ν
(0)
1 , but not ν1. Hence, if the modifications in R−M are organized such that they do not influence the
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configuration of G(X) in H+, then the occurrence of the event EM is not influenced by this modification. We

stress that the latter implication was false if we considered geodesics in G(X) with respect to ν1 and not ν
(0)
1 .

First, we introduce a family of events {A′M,1}M≥1 guaranteeing that changes of the Poisson point process

within R−M do not influence the Delaunay triangulation or the relative neighborhood graph outside the dilated

rectangle R−M ⊕ Q8εM (o). Here we put ε = ε(M) = M−31/32 and Q8εM (o) = [−4εM, 4εM ]2. To be
more precise, we subdivide (R−M ⊕QM (o)) \R−M into

KM = (4ε−1)(3ε−1)− (3ε−1)(2ε−1) = 6ε−2

congruent subsquares Qi = QεM (vi) of side length εM , where we assume that ε−1 is an integer. Then, we
write {X(1) ∈ A′M,1} if #(X(1) ∩ Qi) ∈ (0, 2ε2M2) holds for all 1 ≤ i ≤ KM . Since #(X(1) ∩ Qi)
is Poisson-distributed with parameter ε2M2, the probability of the event A′M,1 tends to 1 as M → ∞. Next,
we show that under {X ∈ A′M,1} the Delaunay triangulation and the relative neighborhood graph exhibit

stabilization outside R−M ⊕Q8εM (o).

Lemma 8. If X(1) ∈ A′M,1, then

G(X(1) ∪ ψ) \ (R−M ⊕Q8εM (o)) = G(X(1)) \ (R−M ⊕Q8εM (o))

holds for every finite subset ψ of R−M .

Proof. We only provide the proof for the Delaunay triangulation, since the case of the relative neighborhood
graph is similar but easier. In order to derive a contradiction, assume that we could find finite subsets ψ,ψ′ ⊂
R−M and an edge e in Del(X(1) ∪ψ) such that i) at least one end point of e is outside R−M ⊕Q8εM (o) and ii)

e is not an edge in Del(X(1) ∪ ψ′). Then, there exists a disk D containing e and no points of X(1) ∪ ψ in its
interior. Note that D does not intersect R−M , since otherwise it would cover one of the cubes Qi, contradicting

the assumption thatX(1)∩Qi 6= ∅. Hence,D∩R−M = ∅ and therefore e is also an edge in Del(X(1)∪ψ). �

Moreover, we show that under the event {A′M,1}M≥1 the sketch provided in Figure 2 is accurate.

Lemma 9. If X(1) ∈ A′M,1, then

(i) there exists an edge [x, y] in Del(X(1)) with max{|π1(x) + 2M |, |π1(y) + 2M |} ≤ 8
√
εM ,

π2(x) ≥M and π2(y) ≤ −M ,
(ii) for every ρ ∈ [8ε, 1− 8ε] there exists an edge [x, y] in Del(X(1)) such that

(ii).1 max{|π1(x)− (−1− ρ)M |, |π2(y)− (1− ρ)M |} ≤ 8
√
εM , and

(ii).2 0 ≤ π2(x)−M ≤ 8εM and 0 ≤ π1(y) +M ≤ 8εM .

Proof. Fix P0 = ((−2 − 8ε)M, 0) and consider the disk D = B(1+8ε)M (P0) of radius M + 8εM . First,

by the choice of the subsquares Qi, there exist x′, y′ ∈ X(1) ∩ D with π2(x′) ≥ M and π2(y′) ≤ −M .
Conversely, we claim that if x ∈ X(1) ∩D and |π2(x)| ≥M , then |π1(x) + 2M | ≤ 8

√
εM . Indeed,

8εM ≥ |x− P0| −M =
(π1(x)− (−2− 8ε)M)2 + π2(x)2 −M2√

(π1(x)− (−2− 8ε)M)2 + π2(x)2 +M
≥ (π1(x)− (−2− 8ε)M)2

3M
,

so that

|π1(x) + 2M | ≤ |π1(x)− (−2− 8ε)M |+ 8εM ≤ 2
√

6εM + 8εM,

which is smaller than 8
√
εM if M is sufficiently large. In particular, shrinking the disk D until it contains

precisely one x ∈ X(1) with π2(x) ≥M and one y ∈ X(1) with π2(y) ≤ −M proves the first claim.

For the second claim, we proceed similarly, but for the convenience of the reader, we provide some details. For
ρ ∈ [8ε, 1−8ε], we fix P0 = ((−1−ρ)M, (1−ρ)M) and consider the diskD = BρM+8εM (P0) of radius
ρM +8εM centered at P0. Again, the choice of the subsquaresQi implies that there exist x′, y′ ∈ X(1)∩D
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with π2(x′) ≥ M and π1(y′) ≥ −M . Conversely, we claim that if x ∈ X(1) ∩ D and π2(x) ≥ M , then
|π1(x) + (1 + ρ)M | ≤ 4

√
εM . Indeed, as before,

8εM ≥ (π1(x)− (−1− ρ)M)2 + (π2(x)− (1− ρ)M)2 − ρ2M2√
(π1(x)− (−1− ρ)M)2 + (π2(x)− (1− ρ)M)2 + ρM

≥ (π1(x)− (−1− ρ)M)2

2M
,

so that
|π1(x)− (−1− ρ)M | ≤ 4

√
εM.

By an analogous computation, we see that if y ∈ X(1) ∩D and π1(y) ≥ −M , then |π2(y)− (1− ρ)M | ≤
4
√
εM . Similar as in the previous case, shrinkingD until it contains precisely one x ∈ X(1) with π2(x) ≥M

and one y ∈ X(1) with π1(y) ≥ −M constructs the desired edge. �

Remark 2. In particular, under the event A′M,1, if γ is a path in G(X) that starts in H− \ RM , intersects the

segment {0} × [−δM, δM ] but does not intersect the area [−(1 + 8
√
ε)M, 0] × (R \ [−M,M ]), then γ

intersects the union of segments [(−2− 8
√
ε)M, (−1 + 8

√
ε)M ]× {±M}.

Moreover, we obtain very precise control over the behavior of edges in Del(X(1)) intersecting the horizontal
segment [−2M,−M ]× {M}.

Corollary 10. Assume X(1) ∈ A′M,1 and that e is an edge of Del(X(1)) intersecting the segment [(−2 +
δ)M, (−1− δ)M ]×{M} at some point P1 and write π1(P1) = (−1−ρ)M . Then, e intersects the vertical
segment

{−M} × [(1− ρ− 32
√
ε)M, (1− ρ+ 32

√
ε)M ],

and therefore the length of e is bounded below by (
√

2ρ− 32
√
ε)M .

Proof. By Lemma 9 there exist x, x′, y, y′ ∈ X such that [x, y] and [x′, y′] are edges in Del(X) with the
following properties.

(i) max{|π1(x)− (−1− ρ− 16
√
ε)M |, |π2(y)− (1− ρ− 16

√
ε)M |} ≤ 8

√
εM ,

(ii) max{|π1(x′)− (−1− ρ+ 16
√
ε)M |, |π2(y′)− (1− ρ+ 16

√
ε)M |} ≤ 8

√
εM ,

(iii) π2(x), π2(x′) ∈ [M, (1 + 8ε)M ] and π1(y), π1(y′) ∈ [−M, (−1 + 8ε)M ].

If we let P2 denote the intersection point of [x, y] with the horizontal segment [−2M,−M ]× {M}, then

|π1(P2)− (−1− ρ)M | ∈ [−26
√
εM,−6

√
εM ].

Similarly, if P ′2 denotes the intersection point of [x′, y′] with the horizontal segment [−2M,−M ], then

|π1(P ′2)− (−1− ρ)M | ∈ [6
√
εM, 26

√
εM ].

As similar relations can be obtained for the intersections P3, P ′3 of [x, y] and [x′, y′] with the vertical segment
{−M} × [0,M ], we see that e is trapped between [x, y] and [x′, y′]. In particular, e intersects the vertical
segment {−M} × (π2(P3), π2(P ′3)). Since,

(1− ρ− 26
√
ε)M ≤ π2(P3) ≤ π2(P ′3) ≤ (1− ρ+ 26

√
ε)M

this completes the proof. �

Remark 3. A similar result holds if e intersects the segment [(−2 − δ)M, (−2 + δ)M ] × {M}. However,
for those edges there are two options. Either they intersect the vertical segment {−M} ×R close to the point
(−M, 0) or they intersect the horizontal segment R× {−M} close to the point (−2M,−M).

Remark 4. Since the relative neighborhood graph is a subgraph of the Delaunay triangulation, Corollary 10
and the previous remark can be used to show that if X(1) ∈ A′M,1, then Rng(X(1)) does not contain an edge
intersecting the segment [(−2− δ)M, (−1− δ)M ]× {M}.

In addition to the stabilization property, it will also be important to know that shortest path-lengths of G(X(1))
in the annulus (R−M⊕QM (o))\R−M are not too long. Since shortest-path lengths in the relative neighborhood
graph are closely related to descending chains [1, Lemmas 10], we first recall the notion of descending chains
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from [6]. For b ≥ 1 we say that a sequence of distinct vertices Xi1 , . . . , Xin ∈ X(1) forms a b-bounded
descending chain if

b ≥ |Xi1 −Xi2 | ≥ · · · ≥ |Xin−1 −Xin |.
Now, we say that the event A′M,2 occurs if every 16εM -bounded descending chain of X(1) starting in R−M ⊕
QM (o) consists of at most 104ε2M2 hops. Finally, we put A′M = A′M,1 ∩ A′M,2. Using the results from [6],
we show that the events A′M occur with high probability.

Lemma 11. It holds that limM→∞ P(X(1) ∈ A′M ) = 1.

Proof. Since we have seen that P(A′M,1) tends to 1 asM →∞, it remains to show that limM→∞ P(A′M,2) =
1. First, monotonicity of descending chains allows us to prove this result whenX is replaced byX(1). But then
the computations in [6, Section 3.2] show that the probability of obtaining a 16εM -bounded descending chain
of X(1) starting in R−M ⊕QM (o) and consisting of more than 104ε2M2 hops is at most

ν2(R−M ⊕QM (o))
(162πε2M2)104ε2M2

(104ε2M2)!
.

By Stirling’s formula, this expression tends to 0 as M →∞. �

We show now that under the event A′M,2 shortest-path lengths in the annulus (R−M ⊕QM (o)) \R−M are not
too long.

Lemma 12. If X(1) ∈ A′M,2 and x, x′ ∈ X(1) ∩ (R−M ⊕QM/2(o)) are such that |x− x′| ≤ 16εM , then x

and x′ can be connected by a path in Rng(X(1)) of length at most
√
M .

Proof. Since X(1) ∈ AM , there does not exist a 16εM -bounded descending chain starting from x and
consisting of more than 104ε2M2 hops. Hence, proceeding as in [1, Lemmas 10], we see that x and x′

can be connected by a path in Rng(X(1)) that is contained in B106ε3M3(x). Since X(1) ∈ A′M , the total
number of Poisson points in B106ε3M3(x) is at most 1013ε6M6. Using that the maximum degree of the
relative neighborhood graph is at most 6, it follows that x and x′ can be connected by a path in Rng(X(1))
of length at most 1020ε9M9. By the choice of ε = ε(M), this quantity is less than

√
M , provided that M is

sufficiently large. �

3.3. The event A′′M . The event A′′M has to encode a certain control over shortest-path lengths on G(X).

For any P, P ′ ∈ G(X) recall that we let `(P, P ′) = `G(X)(P, P ′) denote the Euclidean length of the shortest
path on G(X) connecting P and P ′. It is shown in [2] for the Delaunay triangulation and in [1] for the relative
neighborhood graph that there exists a deterministic value µ ∈ [1, 4/π], called time constant, such that almost
surely

µ = lim
n→∞

n−1E`(o, ne1) .

If o or ne1 are not contained on G(X), then we put `(o, ne1) = `(q(o), q(ne1)), where q(o) and q(ne1)
denote the closest points of X to o and ne1, respectively. In the following, we put µ− = (1 − δ′)µ and
µ+ = (1 + δ′)µ, where δ′ ∈ (0, 1) is a small number that will be fixed in the proof of Lemma 14 below.
First, we construct a family of events {A′′M}M≥1 such that limM→∞ P(X(1) ∈ A′′M ) = 1 and, almost
surely, ifX(1) ∈ A′′M , then the following properties are satisfied, where we consider the subsquaresQεM (vi),
i ∈ {1, . . . ,KM} introduced in the paragraph preceding Lemma 8:

(D1) if QεM (vi) ∩ QεM (vj) 6= ∅, QεM (vi) ∩ (R−M ⊕ Q16εM (o)) = ∅ and QεM (vj) ∩ (R−M ⊕
Q16εM (o)) = ∅ then `G(X(1))(vi, vj) ≤ µ+|vi − vj |

(D2) if r ≥M and P, P ′ ∈ G(X(1)) ∩Br(o) are such that |P − P ′| ≥ δr, then the following properties
are satisfied:

(a) if ([P, P ′]⊕Br7/8(o)) ∩R
−
M = ∅, then `G(X(1))(P, P

′) ≤ µ+|P − P ′|,
(b) if the geodesic from P to P ′ in G(X(1)) does not hit the set R−M ⊕Q8εM (o), then µ−|P −

P ′| ≤ `G(X(1))(P, P
′),
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Lemma 13. There exists a family of events {A′′M}M≥1 such that limM→∞ P(X(1) ∈ A′′M ) = 1 and for
which conditions (D1) and (D2) are satisfied.

Proof. Suppose that we could construct a family of events {A∗M}M≥1 such that limM→∞ P(X ∈ A∗M ) = 1
and such that if X ∈ A∗M , then the following condition is satisfied:

(D1’) if QεM (vi) ∩ QεM (vj) 6= ∅, then q(vi) and q(vj) are connected by a path γ in G(X) such that
ν1(γ) ≤ µ+|vi − vj | and γ is contained in (QεM (vi) ∪QεM (vj))⊕B3εM (o).

(D2’) for all integers n ≥M and all P, P ′ ∈ G(X) ∩B2n(o) with |P − P ′| ≥ 1
2δn it holds that

(a) P and P ′ can be connected by a path γ in G(X) such that ν1(γ) ≤ µ+|P − P ′| and γ is
contained in [P, P ′]⊕Bn7/8/2(o).

(b) `G(X)(P, P ′) ≥ µ−|P − P ′|,

As in [9, Lemma 8], Fubini’s theorem produces a configuration ϕ ⊂ R−M such that P(ϕ ∪ X(1) ∈ A∗M ) ≥
P(X ∈ A∗M ). Then, we let {X(1) ∈ A′′M} denote the event that ϕ ∪ X(1) ∈ A∗M and X(1) ∈ A′M . In
particular, limM→∞ P(X(1) ∈ A′′M ) = 1. Moreover, we claim that if X(1) ∈ A′′M , then conditions (D1) and
(D2) are satisfied. Regarding condition (D1) let vi and vj be subsquare centers satisfying the desired conditions.
Then, by (D1’), q(vi) and q(vj) are connected by a path γ in G(X(1) ∪ ϕ) such that ν1(γ) ≤ µ+|vi − vj |
and γ is contained in (QεM (vi) ∪ QεM (vj)) ⊕ B3εM (o). Since we know that X(1) ∈ A′M,1, we conclude

from Lemma 8 that γ is also a path in G(X(1)), so that `G(X(1))(vi, vj) ≤ µ+|vi − vj |. For condition

(D2) we may argue similarly. Indeed, let r ≥ M and P, P ′ ∈ G(X(1)) ∩ Br(o) be as in condition (D2). If
([P, P ′]⊕Br7/8(o))∩R

−
M = ∅, then, by condition (D2’) for n = dre, the points P, P ′ can be connected by a

path γ inG(X(1)∪ϕ) such that ν1(γ) ≤ µ+|P −P ′| and γ is contained in [P, P ′]⊕Bn7/8/2(o). Moreover,

by Lemma 8, γ is also a path in G(X(1)). Next, we assume that the geodesic from P to P ′ in G(X(1)) does
not hit the setR−M ⊕Q8εM (o). In particular, again using Lemma 8, we deduce that this geodesic is also a path

in G(X(1) ∪ ϕ). Therefore, condition (D2’) implies that

`G(X(1))(P, P
′) ≥ `G(X(1)∪ϕ)(P, P

′) ≥ µ−|P − P ′|.

Hence, it remains to construct the family {A∗M}M≥1 with the desired properties. Let z, z′ ∈ Z2 ∩ B3n(o) be
arbitrary. Then, it is shown in [8, Theorems 1 and 2] that the probability that there exist P ∈ G(X) ∩ Q1(z)
and P ′ ∈ G(X) ∩Q1(z′) such that

(i) P and P ′ cannot be connected by a path γ in G(X) such that ν1(γ) ≤ µ+|P − P ′| and γ is
contained in [P, P ′]⊕Bn7/8/2(o), or

(ii) `G(X)(P, P ′) < µ−|P − P ′|

decays at stretched exponential speed in |z − z′|. Since the total number of z, z′ ∈ Z2 such that Q1(z) ∩
B2n(o) 6= ∅ and Q1(z′) ∩B2n(o) 6= ∅ grows polynomially in n, this completes the proof. �

3.4. HowA′M∩A′′M∩EM impliesFM . Now, we putAM = A′M∩A′′M∩EM and provide a key deterministic
argument which shows that X(1) ∈ AM implies X(1) ∈ FM .

Lemma 14. LetAM = A′M ∩A′′M ∩EM . Then {X(1) ∈ FM} holds almost surely under the event {X(1) ∈
AM}.

As noted in the beginning of this section, once Lemma 14 is established, the proof of Proposition 4 is complete.

To prove Lemma 14, we proceed by contradiction. Hence, using Lemma 7, we assume that there exists z ∈
4Z× 2Z, x− ∈ X(1) ∩ (Mz +H−) and x+ ∈ X(1) ∩ (Mz +H+) such that

(i) n = π1(z) < 0 and [x−, x+] forms an edge in G(X(1)) that is contained in BM/2(Mz),

(ii) γ = γ
(nM)
x+ exists, γ[P ] coalesces with γm and |π2(P )| ≤ δM , whereP denotes the last intersection

point of γ and lv0.
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Note that the reduction to the case n < 0 is a consequence of the remark after Lemma 7.

Now, we distinguish several cases. First, assume that there exists ξ ∈ [0, 1−δ] such that γ intersects the union
of rays {−ξM}× (R\ [−M,M ]) at some point P1. Without loss of generality, we assume that π2(P1) ≥M
and that P1 is the last such intersection point. Furthermore, let Q denote a point of γ[P ] satisfying π1(Q) =
mπ2(P1)−ξM . Here,m ≥ 2 is a sufficiently large integer that will be fixed in the course of the proof. Figure 4
provides a rough illustration. In particular, it does not show edges crossing R−M .

P1

P2
Q

P

γu

γd

γ

mπ2(P1)− ξMξM

FIGURE 4. Illustration of the event A
(1)
M

Let A
(1)
M denote the event that AM ∩ F cM occurs and that a point P1 as described above exists. Under

the event A
(1)
M we derive upper and lower bounds on the shortest-path length `(−M)(P1, Q) that cannot be

satisfied simultaneously.

Lemma 15. Almost surely under the event A
(1)
M ,

`(−M)(P1, Q) ≤ µ+((m+m−1)π2(P1) + 16δmπ2(P1)).

Lemma 16. Almost surely under the event A
(1)
M ,

`(nM)(P,Q) ≥ µ−(mπ2(P1)− ξM − 17δmπ2(P1)).

In order to derive lower bounds for `(nM)(P1, P ) we need to further decompose the eventA
(1)
M . More precisely,

letA
(1,a)
M denote the event thatA

(1)
M occurs and that γ[P1] stays within the vertical half-plane [−ξM,∞)×R.

Then, we have the following lower bounds for `(nM)(P1, P ).

Lemma 17. Almost surely under the event A
(1,a)
M ,

`(nM)(P1, P ) ≥ µ−((
√

2− 1)π2(P1) + (ξ − δ)M).

Conversely, we put A
(1,b)
M = A

(1)
M \ A

(1,a)
M and observe that under A

(1,b)
M the path γ[P1, P ] intersects the

segment {−ξM} × [−M,M ]. We let P2 = (−ξM, ηM) denote the last such intersection point.

Lemma 18. Almost surely under the event A
(1,b)
M ,

`(nM)(P1, P ) ≥ µ−(π2(P1) + (ξ − 2)M +
√

1 + η2M − 2δM) + (1− η)M.

Before we provide proofs of Lemmas 15–18, we show to deduce from them a contradiction.

Lemma 19. There exists m0 ≥ 1 such that for all m ≥ m0, all sufficiently small δ, δ′ ∈ (0, 1) and all

sufficiently large M ≥ 1 it holds that P
(
A

(1)
M

)
= 0.

Proof. We start by showing P
(
A

(1,a)
M

)
= 0. First, we recall that γ is a geodesic in G(X(1)) with respect to

ν
(nM)
1 , so that

`(−M)(P1, Q) ≥ `(nM)(P1, Q) = `(nM)(P1, P ) + `(nM)(P,Q).
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Hence, Lemmas 15, 16 and 17 give that

µ−π2(P1)(m+
√

2− 1− 18δm) ≤ µ+((m+m−1)π2(P1) + 16δmπ2(P1)),

so that
µ−(
√

2− 1) ≤ m(34µ+δ + µ+ − µ−) +m−1µ+.

Since
√

2 > 1 this yields a contradiction if first m ≥ 1 is chosen sufficiently large and then δ, δ′ ∈ (0, 1) are
chosen sufficiently small.

To show P(A(1,b)
M ) = 0, we proceed similarly. Using Lemmas 15, 16 and 18, we obtain that

µ−((m+ 1)π2(P1)− 2M +
√

1 + η2M) + (1− η)M
≤ µ+((m+m−1)π2(P1) + 35δmπ2(P1)),

which gives that(
35µ+δm+ µ+(m+m−1)− µ−m

)
≥ µ− +

Mµ−
π2(P1)

(1− η
µ−

+
√

1 + η2 − 2
)
.

First, the left-hand side becomes arbitrarily small if first m ≥ 1 is chosen sufficiently large and then δ, δ′ ∈
(0, 1) are chosen sufficiently small. Moreover, the right-hand side is bounded below by

µ−

(
1− M

π2(P1)

(
1− 1− η

µ−
−
√

1 + η2 + 1
))
≥ µ−min

{
1,

1− η
µ−

+
√

1 + η2 − 1
}
.

Now a quick computation shows that the right-hand side is bounded below by 1/4, which gives the desired
contradiction. �

Now, we prove Lemmas 15–18.

Proof of Lemma 15. Condition (D2) gives the upper bound `(−M)(P1, Q) ≤ µ+|P1 − Q|, so that we obtain
that

`(−M)(P1, Q) ≤ µ+(
√
m2 + 1π2(P1) + |π2(Q)|)

≤ µ+

(
mπ2(P1) +

1
m+

√
m2 + 1

π2(P1) + |π2(Q)|
)

≤ µ+((m+m−1)π2(P1) + |π2(Q)|).

Now, by uniqueness of û0-geodesics in G(X(1)) with respect to ν
(0)
1 , the geodesic γ[P ] is trapped between

γu and γd. Therefore, an argument based on elementary geometry shows that

|π2(Q)| ≤ tan(4δ)mπ2(P1) +
2δM

cos(4δ)
≤ 16δmπ2(P1),

so that
`(−M)(P1, Q) ≤ µ+(m+m−1)π2(P1) + 16δmµ+π2(P1),

as required. �

Proof of Lemma 16. LetQ′ denote the point with coordinates (mπ2(P1)−ξM, 0). Then, condition (D2) gives
that

`(nM)(P,Q) ≥ µ−|P −Q| ≥ µ−(|Q′| − |P | − π2(Q)) ≥ µ−(mπ2(P1)− ξM − 17δmπ2(P1)),

as required. �

Proof of Lemma 17. Since γ[P1] is contained in [−ξM,∞)× R, condition (D2) shows that

`(nM)(P1, P ) ≥ µ−(|P1| − |P |) ≥ µ−(
√
π2(P1)2 + ξ2M2−δM) ≥ µ−((

√
2−1)π2(P1)+(ξ−δ)M),

where the last inequality follows from the observation that the function x 7→
√
π2(P1)2 + x2−x is decreasing.

�
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Proof of Lemma 18. Let P ′2 denote the first point on γ[P1, P ] with π2(P ′2) = (1+δ)M . If π2(P1) ≤ (1+δ),
we put P ′2 = P1. Now, condition (D2) allows us to conclude that

`(nM)(P1, P2) ≥ µ−|P1 − P ′2|+ |P ′2 − P2| ≥ µ−(π2(P1)−M − δM) + (1− η)M.

Similarly,
`(nM)(P2, P ) ≥ µ−|P2 − P | ≥ µ−(|P2| − δM).

In particular, combining the lower bounds above yields

`(nM)(P1, P ) ≥ µ−(π2(P1)−M +
√
ξ2 + η2M − 2δM) + (1− η)M

≥ µ−(π2(P1) + (ξ − 2)M +
√

1 + η2M − 2δM) + (1− η)M,

as required. �

Hence, in the following we may assume that γ does not hit the area [(−1 + δ)M, 0] × (R \ [−M,M ]). In
particular, it crosses the union of segments [(−2−δ)M, (−1+δ)M ]×{±M}. We letP1 = (−ξM, π2(P1))
denote the last such intersection point and assume that π2(P1) = M . Next, we let Q denote a point on γ[P ]
satisfying π1(Q) = (m− 1)M , where m ≥ 3 will again be a sufficiently large integer. We refer the reader to
Figure 5 for an illustration.

γu

γdP
Q

P1

FIGURE 5. Illustration of the second case

The proof of Lemma 14 in the current setting is similar to what we have seen above, but for the convenience of

the reader, we include some details. More precisely, putting A
(2)
M = AM ∩ F cM \A

(1)
M we derive contradictory

upper and lower bounds on the shortest-path length `(−M)(P1, Q).

Lemma 20. Almost surely under the event A
(2)
M it holds that

`(−M)(P1, Q) ≤ µ+(m+m−1 + ξ − 1 + 20δm)M.

To derive the lower bounds we introduce a further auxiliary point P2 = (π1(P2), ηM) as last point of γ[P1]
satisfying π1(P2) = −(1− δ)M . First, we provide lower bounds for `(nM)(P1, P2) and `(nM)(P2, Q).

Lemma 21. Almost surely under the event A
(2)
M it holds that

`(nM)(P1, P2) ≥ (1− η)M,

and
`(nM)(P2, Q) ≥ µ−(m− 1 +

√
η2 + 1− 20δm)M.

If we letA
(2,a)
M denote the event thatA

(2)
M occurs and ξ ≤ 1+4δ, then the lower bounds derived in Lemma 21

are sufficient to arrive at the desired contradiction. However, if the event A
(2,b)
M = A

(2)
M \ A

(2,a)
M occurs, then

a more refined reasoning is necessary. It is important to observe that by Remark 4 this case cannot occur if
G(X(1)) = Rng(X(1)), so that we may assume G(X(1)) = Del(X(1)).

Lemma 22. Almost surely under the event A
(2,b)
M it holds that

`(nM)(P1, P2) ≥ (
√

2(ξ − 1) + |2− ξ − η| − 2δ)M.

Before we provide proofs of Lemmas 20–22, we show how to deduce from them a contradiction.
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Lemma 23. There exists m′0 ≥ 1 such that for all m ≥ m′0, all sufficiently small δ, δ′ ∈ (0, 1) and all

sufficiently large M ≥ 1 it holds that P
(
A

(2)
M

)
= 0.

Proof. We start by showing P(A(2,a)
M ) = 0. Under the event A

(2,a)
M we have ξ ≤ 1 + 4δ, so that Lemmas 20

and 21 give that

µ+(m+m−1 + 24δm) ≥ 1− η + µ−(m− 1 +
√
η2 + 1− 20δm).

Hence,

m(µ+ − µ−) + µ+(m−1 + 44δm) ≥ 1− η + µ−(
√
η2 + 1− 1) ≥ 1

4 ,

as required.

Next, we prove P(A(2,b)
M ) = 0. Again, using Lemmas 20, 21 and 22 shows that

µ+

(
m+ ξ − 1 +m−1 + 42mδ

)
≥ µ−(m− 1 +

√
η2 + 1) +

√
2(ξ − 1) + |2− ξ − η|.

After rearranging terms, we arrive at

m(µ+µ
−1
− − 1) + µ+µ

−1
−
(
m−1 + 42mδ

)
≥ −1 +

√
η2 + 1 +

√
2−µ+

µ−
(ξ − 1) + 1

µ−
|2− ξ − η|.

First, the left-hand side becomes arbitrarily small if first m is chosen sufficiently large and then δ, δ′ ∈ (0, 1)
are chosen sufficiently small. Next, it is shown in [3] that µ ≤ 35

3π2 <
√

2 holds in the Delaunay case, so that

the coefficient (
√

2 − µ+)/µ− is bounded away from 0. Now, we can distinguish between the three cases i)
|η| ≥ 1/4 ii) ξ ≥ 5/4 and iii) |η| ≤ 1/4 and ξ ≤ 5/4 to see that the right-hand side remains bounded away
from 0. �

Finally, we provide the proofs of Lemmas 20–22.

Proof of Lemma 20. Choose a subsquare center vi such that π2(vi) = M + 5.5εM and |π1(vi) + ξM | ≤
εM . Then, by Lemma 12, we obtain that `(−M)(P1, P

′
1) ≤

√
M , where P ′1 = q(vi). Next, choose a sub-

square center vj such that π2(vj) = π2(vi) and

|π1(vj)− (−1 + δ)M | ≤ εM.

Then putting P3 = q(vj), condition (D1) implies that `(−M)(P ′1, P3) ≤ µ+(ξ − 1 + δ + 2ε)M . Finally, an
application of (D2) results in

`(−M)(P3, Q) ≤ µ+(
√
m2 + 1 + 18δ)M ≤ µ+(m+m−1 + 18δ)M,

as required. �

Proof of Lemma 21. First, note that η ≤ 1 as γ does not hit the set [−(1 − δ)M, 0] × (R \ [−M,M ]). In
particular,

`(nM)(P1, P2) ≥ (1− η)M,

which proves the first claim.

Second, proceeding as in Lemma 16, condition (D2) implies that

`(nM)(P2, P ) ≥ µ−(
√
η2 + 1− 2δ)M

and

`(nM)(P,Q) ≥ µ−(m− 1− 18δm)M.

Hence,

`(nM)(P2, Q) = `(nM)(P2, P ) + `(nM)(P,Q) ≥ µ−(m− 1 +
√
η2 + 1− 20δm)M,

as required. �
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Proof of Lemma 22. First, Corollary 10 and Remark 3 show that the first edge in γ[P1] is one of the diagonal
edges shown in Figure 2. Hence by Corollary 10, writing P ′1 for intersection point of this edge with the vertical
line lv−M , we arrive at

`(nM)(P1, P2) ≥ `(nM)(P1, P
′
1) + `(nM)(P ′1, P2) ≥

√
2(ξ − 1)M + |π2(P ′1)− π2(P2)| − δM.

Since the right-hand side is at least (
√

2(ξ − 1) + |2− ξ − η| − 2δ)M , we conclude the proof. �

4. PROOF OF THEOREM 2

The proof of Theorem 2 follows the method developed in [4]. In order to make the paper self-contained, we recall
the main steps of the method and insist on the new parts which are proper to the context G(X) = Del(X) or
Rng(X).

To begin with, we provide an overview for the proof of Theorem 2. Let û ∈ S1 be a given direction. By isotropy,
it suffices to prove that the expectation of χr(û, 2π) tends to 0 as r tends to infinity. The proof works as well
when 2π is replaced with any c > 0.

The spirit of the proof of Theorem 2 is the following. First, a uniform moment condition reduces the proof to
the convergence in probability of χr(û, 2π) to 0. Thus, far away from the origin, the radial character of the
geodesics of tree Tx? vanishes. In other words, when r is large, with high probability, the shortest-path tree Tx?
locally looks like to a directed forest around rû. This directed forest is in fact made up of all the semi-infinite
geodesics γx with direction −û starting from all the Poisson points x ∈ X . Let us denote this forest by F−û.
Henceforth, to a semi-infinite geodesic in Tx? crossing the arc of Sr(o) centered at rû and with length 2π, it
corresponds a bi-infinite geodesic in the directed forest F−û. Now, Theorem 1 states that this event should not
occur.

STEP 1: A classical use of Fubini’s theorem– see [9, Lemma 6], [13, Theorem 0] or Lemma 3 above –ensures
the existence with probability 1 of exactly one semi-infinite geodesic, say γx, with direction −û starting from
every Poisson point x ∈ X . The collection of these semi-infinite geodesics provides a directed forest F−û.
The goal of this first step is to approximate the shortest-path tree Tx? inside the disk BL(rû) by the directed
forest F−û: see (3) below.

Let us remark that the graphs Tx? and F−û can be built simultaneously on the same vertex set X . Except for
the root x? in Tx? , all their vertices are with outdegree 1. A measurable function F is said local if there exists
a deterministic real number L > 0 such that, for any z ∈ R2, the quantities F (z, Tx?) and F (z,F−û) are
equal whenever each Poisson point x ∈ X ∩ BL(z) admits the same outgoing vertex in Tx? and F−û. Our
local approximation result is written through the use of local functions: for any local function F ,

lim
r→∞

dTV

(
F (rû, Tx?), F (rû,F−û)

)
= 0 , (3)

where dTV denotes the total variation distance.

Let F be a local function with local parameter L. Then, by translation invariance of the directed forest F−û,

dTV (F (rû, Tx?), F (rû,F−û)) = dTV (F (rû, Tx?), F (rû,F−û))
≤ P (F (rû, Tx?) 6= F (rû,F−û)) . (4)

The event F (rû, Tx?) 6= F (rû,F−û) implies the existence of a Poisson point x in BL(rû) whose outgoing
vertices in Tx? and F−û are different. So, by uniqueness, the geodesics γx?,x (in Tx? ) and γx (in F−û) have
only x in common. Hence, for ε ∈ (0; 1),

dTV (F (rû, Tx?), F (rû,F−û)) ≤ P
(

∃x ∈ X ∩BL(rû) such that
γx?,x ∩ γx = {x} and x? ∈ Brε(o)

)
+ o(1) .

Thus, due to translation invariance and the identity γx?,x = γx,x? , the distance dTV(F (rû, Tx?), F (rû,F−û))
is bounded by

P
(
∃x ∈ X ∩BL(o), ∃x′ ∈ X ∩Brε(−rû)

such that γx,x′ ∩ γx = {x}

)
+ o(1) . (5)

17



b1

x1x2

g1

g2

b

FIGURE 6. This picture represents the event appearing in (5) with û = (1, 0). Poisson points
x and x′ respectively belong to the disks BL(o) and Brε(−rû). The shortest-path tree Tx
contains a semi-infinite geodesic γx with asymptotic direction−û and a geodesic γx,x′ whose
endpoint is in Brε(−rû). Furthermore, γx and γx,x′ have only the vertex x in common.

Besides, we can require that the geodesics γx and γx,x′ belong to a thin cone with direction −rû. For η > 0
and z ∈ R2, let C(z, η) be the cone with apex o, direction the vector z and opening angle η: C(z, η) =
{z′ ∈ R2, θ(z, z′) ≤ η} where θ(z, z′) is the absolute value of the angle (in [0;π]) between vectors z and z′.
On the one hand, the semi-infinite geodesic γx has asymptotic direction −û. So, with high probability, for any
η > 0 and M large enough, its restriction to the outside of the disk BM (o) is included in the cone C(−û, η).
See [4, Lemma 13] for details. On the other hand, the same statement holds for the geodesic γx,x′ using the
moderate deviations result [8, Theorem 2]. See [4, Lemma 14] for details. Consequently, for any η > 0 and
M, r large enough, the term dTV(F (rû, Tx?), F (o,F−û)) is bounded by

P

 ∃x ∈ X ∩BL(o), ∃x′ ∈ X ∩Brε(−rû)
such that γx,x′ ∩ γx = {x} and

(γx,x′ ∪ γx) ∩BM (o)c ⊂ C(−û, η)

 + o(1) . (6)

On the event described in (6), the shortest-path tree Tx contains two disjoint (except the root x) geodesics with
direction −û which are as long as we want. However, with probability 1, Tx contains at most one semi-infinite
geodesic with (deterministic) asymptotic direction −û. So (6) is a o(1) which leads to (3).

STEP 2: The goal of this second step is to state that the directed forest F−û does not contain any bi-infinite
geodesic with probability 1. This is a consequence of coalescence of semi-infinite geodesics (i.e. Theorem 1).

Let v̂ ∈ S1 be orthogonal to û. Let ` be the line spanned by the vector v̂ and, for anym > 0, let `m = `−mû.
For x < y, we also denote by `m(x, y) the subset of `m defined by

`m(x, y) = {−mû+ bv̂ ∈ R2;x ≤ b < y} .
Thus, we denote by K[`0(x, y)] the number of elements P ∈ `0(x, y) which are defined as the last intersec-
tion point between a bi-infinite geodesic of the directed forest F−û and the line `0. In the same way, we denote
byK[`0(x, y), `m] the number of elements P ∈ `m which are defined as the last intersection point between a
bi-infinite geodesic γ of F−û and the line `m, and whose the last intersection point between γ and `0 belongs
to `0(x, y).

However only the inequality K[`0(0, L)] ≥ K[`0(0, L), `m] holds a.s. (see Figure 7), by stationarity of the
directed forest F−û, it is possible to prove the identity

EK[`0(0, L)] = EK[`0(0, L), `m] (7)

for any integers L,m > 0. See [4, Section 6] for details. Now, thanks to the coalescence of the semi-infinite
geodesics of F−û, the non-increasing sequence (K[`0(0, L), `m])m≥0 a.s. converges to a limit smaller than
1. By the Lebesgue’s Dominated Convergence Theorem, we get for any integer L > 0:

LEK[`0(0, 1)] = EK[`0(0, L)] = lim
m→∞

EK[`0(0, L), `m] ≤ 1 .

This forces EK[`0(0, 1)] to be null. So, a.s. there is no bi-infinite geodesic crossing the vertical segment
`0(0, 1). We conclude by stationarity.
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c

a

FIGURE 7. The thick segment on the line `0 represents `0(x, y). The two black points on `m
are elements counted byK[`0(x, y), `m]. On this picture,K[`0(x, y), `m] equals 2 whereas
K[`0(x, y)] equals 3: two bi-infinite geodesics counted byK[`0(x, y)] merge before the line
`m.

STEP 3: This third step consists in combining the results of the two previous ones in order to establish the
convergence in probability of χr(û, 2π) to 0.

Let a(r) be the arc of the circle Sr(o) centered at rû and with length 2π. When r is large, a(r) becomes close
(for the Hausdorff distance) to the segment I(r) centered at rû and with length 2π which is orthogonal to û.
With high probability, the event χr(û, 2π) ≥ 1 implies the existence of a geodesic in the shortest-path tree
Tx? crossing I(r) and exiting the disk BR(rû), for any R– when one walks away from the root x?. Precisely,
for any R > 0, P(χr(û, 2π) ≥ 1) is smaller than

P

 ∃x1, x2, x3 ∈ X such that
γx1,x2 ∩ I(r) 6= ∅ , γx1,x2 ⊂ BR(rû) ,

γx1,x3 = γx1,x2 ∪ {(x2, x3)} , x3 ∈ B2R(rû) \BR(rû)

+ o(1) , (8)

as r tends to infinity. This latter inequality relies on the fact that, with high probability whenR tends to infinity, the
graphG(X) contains no edge whose endpoints respectively belong toBR(rû) and the outside ofB2R(rû). In
both cases G(X) = Rng(X) or G(X) = Del(X), this would imply the existence of a random disk avoiding
the Poisson point process X , overlapping BR(rû) and with diameter larger than R. Let κ = b6πc+ 1. There
exists a deterministic sequence u1, . . . , uκ of points of the circle S3R/2(rû) such that |ui − ui+1| ≤ R/2
for i = 1, . . . , κ (where the index i is taken modulo κ). Then, at least one of the deterministic disks BR/2(ui)
would avoid the Poisson point process X . Such an event should not occur with high probability as R tend to
infinity (uniformly in r).

Since the geodesic γx1,x3 is included in B2R(rû) then the event written in (8) can be described using a local
function with local parameter 2R. So, we can apply the result of Step 1. Let I(0) be the segment centered at
the origin o and with length 2π which is orthogonal to û. For any R > 0, the probability P(χr(û, 2π) ≥ 1) is
bounded by

P

 ∃x ∈ X with x /∈ BR(o)
whose semi-infinite geodesic γx in F−û

crosses the segment I(0).

+ o(1) , (9)

as r tends to infinity. Now, thanks to Step 2, there is no bi-infinite geodesic in the directed forest F−û with
probability 1. So we can choose the radius R large enough so that the probability in (9) is as small as we want.
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STEP 4: It then remains to state the following uniform moment condition to strengthen the convergence of
χr(û, 2π) to 0 in the L1 sense:

∃r0 > 0, sup
r≥r0

Eχr(û, 2π)2 < ∞ . (10)

See [4, Section 3.1] for details. Let ψr be the number of edges of the shortest-path tree Tx? crossing the arc
a(r). Of course, χr(û, 2π) is smaller than ψr and it suffices– to get (10) –to prove that P(ψr > n) decreases
fast enough and uniformly on r.

First, the number of Poisson points inside the diskBR(rû) is controlled by [16, Lemma 11.1.1]: for any n, r,R,

P(#(X ∩BR(rû)) > n) ≤ e−n ln
“

n
eπR2

”
. (11)

[Note that (11) can also be obtained from Stirling’s formula when R and n are large.] From now on, we assume
that there are no more than n Poisson points inside BR(rû). Since, the tree Tx? admits more than n edges
crossing the arc a(r), i.e. ψr > n, then necessarily one of these edges has (at least) one of its endpoints
outside BR(rû). In both cases G(X) = Rng(X) or G(X) = Del(X), this implies the existence of a
random disk avoiding the Poisson point process X , overlapping the arc a(r) and with diameter larger than
R− 2π. It is not difficult to prove that the probability of such an event decreases exponentially fast with R and
uniformly on r and û. That is to say there exist positive constants c, c′ such that for R large enough,

P(#(X ∩BR(rû)) ≤ n , ψr > n) ≤ ce−c′R . (12)

The searched result follows from (11) and (12) by taking for example R = n1/4.
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