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Abstract

Let n ≥ 5 and let u1, . . . , un be nonnegative real n-vectors such that the indices of their positive
elements form the sets {1, 2, . . . , n− 2}, {2, 3, . . . , n− 1}, . . . , {n, 1, . . . , n− 3}, respectively.
Here each index set is obtained from the previous one by a circular shift. The set of copositive forms
which vanish on the vectors u1, . . . , un is a face of the copositive cone Cn. We give an explicit
semi-definite description of this face and of its subface consisting of positive semi-definite matrices,
and study their properties. If the vectors u1, . . . , un and their positive multiples exhaust the zero
set of an exceptional copositive form belonging to this face, then we call this form regular, otherwise
degenerate. We show that degenerate forms are always extremal, and regular forms can be extremal
only if n is odd. We construct explicit examples of extremal degenerate forms for any order n ≥ 5,
and examples of extremal regular forms for any odd order n ≥ 5. The set of all degenerate forms,
i.e., defined by different collections u1, . . . , un of zeros, is a submanifold of codimension 2n, the
set of all regular forms a submanifold of codimension n.

1 Introduction

Let Sn be the vector space of real symmetric n × n matrices. In this space, we may define the cone
N n of element-wise nonnegative matrices, the cone Sn+ of positive semi-definite matrices, and the cone
Cn of copositive matrices, i.e., matrices A ∈ Sn such that xTAx ≥ 0 for all x ∈ Rn

+. Obviously
we have Sn+ + N n ⊂ Cn, but the converse inclusion holds only for n ≤ 4 [6, Theorem 2]. Copositive
matrices which are not elements of the sum Sn++N n are called exceptional. Copositive matrices play an
important role in non-convex and combinatorial optimization, see, e.g., [5] or the surveys [10],[17],[4],[8].
Of particular interest are the exceptional extreme rays of Cn.

A fruitful concept in the study of copositive matrices is that of zeros and their supports, initiated in the
works of Baumert [2],[3], see also [16],[7], and [19] for further developments and applications. A non-zero
vector u ∈ Rn

+ is called a zero of a copositive matrix A ∈ Cn if uTAu = 0. The support suppu of a
zero u is the index set of its positive elements.

Note that each of the cones N n, Sn+, Cn is invariant with respect to a simultaneous permutation of the
row and column indices, and with respect to a simultaneous pre- and post-multiplication with a positive
definite diagonal matrix. These operations generate a group of linear transformations of Sn, which we
shall call Gn.

Exceptional copositive matrices first appear at order n = 5. The Horn matrix

H =


1 −1 1 1 −1
−1 1 −1 1 1

1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1

 , (1)

named after its discoverer Alfred Horn, and the other matrices in its G5-orbit have been the first examples
of exceptional extremal copositive matrices [14]. Any other exceptional extremal matrix in C5 lies in the
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G5-orbit of a matrix

T (θ) =


1 − cos θ1 cos(θ1 + θ2) cos(θ4 + θ5) − cos θ5

− cos θ1 1 − cos θ2 cos(θ2 + θ3) cos(θ5 + θ1)
cos(θ1 + θ2) − cos θ2 1 − cos θ3 cos(θ3 + θ4)
cos(θ4 + θ5) cos(θ2 + θ3) − cos θ3 1 − cos θ4

− cos θ5 cos(θ5 + θ1) cos(θ3 + θ4) − cos θ4 1

 (2)

for some angles θk ∈ (0, π) satisfying
∑5

k=1 θk < π [15, Theorem 3.1]. Both the Horn matrix H
and the matrices T (θ) possess zeros with supports {1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 1}, {5, 1, 2},
respectively. Note that these supports are exactly the vertex subsets obtained by removing the vertices
of a single edge in the cycle graph C5.

In this contribution we shall generalize the exceptional extremal elements of C5 to arbitrary order n ≥ 5
by taking the above property of the supports as our point of departure. Fix a set u = {u1, . . . , un} ⊂
Rn

+ of nonnegative vectors with supports {1, 2, . . . , n−2}, {2, 3, . . . , n−1}, . . . , {n, 1, . . . , n−3},
respectively, i.e., the supports of the vectors uj are the vertex subsets obtained by removing the vertices
of a single edge in the cycle graph Cn. We then consider the faces

Fu = {A ∈ Cn | (uj)TAuj = 0 ∀ j = 1, . . . , n},
Pu = {A ∈ Sn+ | (uj)TAuj = 0 ∀ j = 1, . . . , n}

of the copositive cone and the positive semi-definite cone, respectively. Note that Pu ⊂ Fu.

One of our main results is an explicit semi-definite description of the faces Fu and Pu (Theorem 2). In
order to obtain this description, we associate the set u to a discrete-time linear dynamical system Su

of order d = n − 3 and with time-dependent coefficients having period n. If Lu is the d-dimensional
solution space of this system, then there exists a canonical bijective linear map between Fu and the
set of positive semi-definite symmetric bilinear forms on the dual space L∗u satisfying certain additional
homogeneous linear equalities and inequalities. For an arbitrary collection u in general only the zero
form satisfies the corresponding linear matrix inequality (LMI) and the face Fu consists of the zero matrix
only. However, for every n ≥ 5 there exist collections u for which the LMI has non-trivial feasible sets.

The properties of the copositive matrices in Fu are closely linked to the properties of the periodic linear
dynamical system Su. Such systems are the subject of Floquet theory, see, e.g., [11, Section 3.4]. We
need only the concept of the monodromy matrix and its eigenvalues, the Floquet multipliers, which we
shall review in Section 3. We show that the face Pu is isomorphic to Sd1+ , where d1 is the geometric mul-
tiplicity of the Floquet multiplier 1, or equivalently, the dimension of the subspace of n-periodic solutions
of Su. For the existence of exceptional copositive matrices in Fu it is necessary that all or all but one
Floquet multiplier are located on the unit circle (Corollary 7).

We are able to describe the structure of Fu explicitly in general. Exceptional matrices A ∈ Fu can be
divided in two categories. If every zero of A is proportional to one of the zeros u1, . . . , un, then we call
the copositive matrix A regular, otherwise we call it degenerate1. We show that degenerate matrices are
always extremal, while regular matrices can be extremal only for odd n. For even n a regular matrix can
be represented as a non-trivial sum of a degenerate matrix and a positive semi-definite rank 1 matrix,
the corresponding face Fu is then isomorphic to R2

+. For odd n a sufficient condition for extremality
of a regular matrix is that −1 does not appear among the Floquet multipliers (Theorem 3). For every

1The terms regular and degenerate are used in this very specific sense in this paper. The motivation is that whether an
exceptional matrix A ∈ Fu is regular or degenerate depends on whether certain principal submatrices of A of size n− 3 are
regular or degenerate in the ordinary sense.
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n ≥ 5 the degenerate matrices constitute an algebraic submanifold of Sn of codimension 2n (Theorem
6), while the regular matrices form an algebraic submanifold of codimension n (Theorem 4), in which the
extremal matrices form an open subset (Theorem 5).

Finally, in Section 7.2 we construct explicit examples of circulant (i.e., invariant with respect to simultane-
ous circular shifts of row and column indices) exceptional extremal copositive matrices, both degenerate
and regular. We also give an exhaustive description of all degenerate exceptional matrices for order
n = 6 in Section 8. Some auxiliary results whose proofs would interrupt the flow of exposition are
collected in two appendices.

1.1 Further notations

For n ≥ 5 an integer, define the ordered index sets I1 = (1, 2, . . . , n − 2), I2 = (2, 3, . . . , n −
1), . . . , In = (n, 1, . . . , n− 3) of cardinality n− 2, each obtained by a circular shift of the indices from
the previous one. We will need also the index sets I ′1 = (1, 2, . . . , n− 3), . . . , I ′n = (n, 1, . . . , n− 4)
defined similarly.

Let k > 0 be an integer. For a vector u ∈ Rk, a k × k matrix M , and an ordered index set I ⊂
{1, . . . , k} of cardinality |I|, we shall denote by ui the i-th entry of u, by uI the subvector (ui)i∈I ∈ R|I|
of u composed of the elements with index in the ordered set I , by Mij the (i, j)-th entry of M , and by
MI the principal submatrix (Mij)i,j∈I ∈ R|I|×|I| of M composed of the elements having row and
column index in I .

In order to distinguish it from the index sets I1, . . . , In defined above, we shall denote the identity matrix
or the identity operator by Id or Idk if it is necessary to indicate the size of the matrix. Denote by
Eij ∈ N n the matrix which has ones at the positions (i, j) and (j, i) and zeros elsewhere. For a real
number r, we denote by brc the largest integer not exceeding r and by dre the smallest integer not
smaller than r.

Definition 1. LetA ∈ Cn be an exceptional copositive matrix possessing zeros u1, . . . , un ∈ Rn
+ such

that suppuj = Ij , j = 1, . . . , n. We call the matrix A regular if every zero v of A is proportional to
one of the zeros u1, . . . , un, and we call it degenerate otherwise.

2 Conditions for copositivity

In this section we consider matrices A ∈ Sn such that the submatrices AI1 , . . . , AIn are all positive
semi-definite and possess element-wise positive kernel vectors. We derive necessary and sufficient con-
ditions for such a matrix to be copositive. The goal of the section is to prove Theorem 1 below. We start
with a few simple auxiliary lemmas.

Lemma 1. [9, Lemma 2.4] Let A ∈ Cn and let u be a zero of A. Then the principal submatrix Asuppu is
positive semi-definite.

Lemma 2. [2, p.200] Let A ∈ Cn and let u be a zero of A. Then Au ≥ 0 element-wise.

Lemma 3. Let n ≥ 5, and let i, j ∈ {1, . . . , n} be arbitrary indices. Then there exists k ∈ {1, . . . , n}
such that i, j ∈ Ik.

Proof. For every index i ∈ {1, . . . , n}, there exist exactly two indices k such that i 6∈ Ik. The assertion
of the lemma then follows from the Dirichlet principle.
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Corollary 1. Let n ≥ 5 and let A ∈ Cn have zeros u1, . . . , un with supports I1, . . . , In, respectively.
Then for every pair of indices i, j ∈ {1, . . . , n}, the matrix A− εEij is not copositive for every ε > 0.

Proof. Let i, j ∈ {1, . . . , n}. By Lemma 3 there exists a zero uk of A such that i, j ∈ suppuk. The
assertion then follows by (uk)T (A− εEij)uk < 0 for every ε > 0, see [3, p. 10].

Corollary 2. [2, Corollary 3.7] Let A ∈ Cn be such that A− εEij is not copositive for every ε > 0 and
all i, j = 1, . . . , n. If A has a zero with support of cardinality n− 1, then A is positive semi-definite.

A zero u ∈ Rn
+ of A is called minimal if there is no other zero v ∈ Rn

+ of A such that the inclusion
supp v ⊂ suppu is strict. For a fixed copositive matrix, the number of its minimal zeros whose elements
sum up to 1 is finite [16, Corollary 3.6]. The next result furnishes a criterion involving minimal zeros to
check whether a copositive matrix is extremal.

Lemma 4. [7, Theorem 17] Let A ∈ Cn, and let u1, . . . , um be its minimal zeros whose elements sum
up to 1. Then A is extremal if and only if the solution space of the linear system of equations on the
matrix X ∈ Sn given by

(Xuj)i = 0 ∀ i, j : (Auj)i = 0

is one-dimensional (and hence generated by A).

Lemma 5. [16, Lemma 4.3] LetA ∈ Cn be a copositive matrix and letw ∈ Rn. Then there exists ε > 0
such that A− εwwT is copositive if and only if 〈w, u〉 = 0 for all zeros u of A.

These results allow us to prove the following theorem on matricesA ∈ Sn having zeros u1, . . . , un with
supports I1, . . . , In, respectively.

Theorem 1. Let n ≥ 5 and let A ∈ Sn be such that for every j = 1, . . . , n there exists a nonnegative
vector uj with suppuj = Ij satisfying (uj)TAuj = 0. Then the following are equivalent:

(i) A is copositive;

(ii) every principal submatrix of A of size n− 1 is copositive;

(iii) every principal submatrix of A of size n− 1 is in Sn−1
+ +N n−1;

(iv) AIj is positive semi-definite for j = 1, . . . , n, (un)TAu1 ≥ 0, and (uj)TAuj+1 ≥ 0 for
j = 1, . . . , n− 1.

Moreover, given above conditions (i)—(iv), the following are equivalent:

(a) A is positive semi-definite;

(b) at least one of the n numbers (un)TAu1 and (uj)TAuj+1, j = 1, . . . , n− 1, is zero;

(c) all n numbers (un)TAu1 and (uj)TAuj+1, j = 1, . . . , n− 1, are zero;

(d) A is not exceptional.

Proof. (i)⇒ (iv) is a consequence of Lemmas 1 and 2.

(iv)⇒ (iii) is a consequence of Lemma 29 in the Appendix, applied to the (n − 1) × (n − 1) principal
submatrices of A.

(iii)⇒ (ii) is trivial.
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(ii)⇒ (i): Let ∆ = {v = (v1, . . . , vn)T ∈ Rn
+ |
∑n

j=1 vj = 1} be the standard simplex. By (ii) the
quadratic form A is nonnegative on ∂∆. On ∂∆ it then reaches its global minimum 0 at appropriate
positive multiples αjuj ∈ ∆ of the zeros uj for all j = 1, . . . , n. Since the line segment connecting
α1u

1 and α2u
2 still lies in ∂∆, the quadratic function Q(v) = vTAv cannot be strictly convex on ∆.

But then it reaches its global minimum over ∆ on the boundary ∂∆. This minimum over ∆ then also
equals 0, which proves the copositivity of A.

We have shown the equivalence of conditions (i)—(iv). Let us now assume that A satisfies (i)—(iv) and
pass to the second part of the theorem.

(a)⇒ (c): If A � 0, then all vectors uj , j = 1, . . . , n, are in the kernel of A. This implies (c).

(c)⇒ (b) is trivial.

(b)⇒ (a): Without loss of generality, let (u1)TAu2 = 0. It then follows that u+ = u1 +u2 is also a zero
of A, with suppu+ = {1, . . . , n − 1}. By Corollaries 1 and 2 A is then positive semi-definite, which
proves (a).

(a)⇒ (d) holds by definition.

(d) ⇒ (a): Assume that A can be written as a sum A = P + N with P ∈ Sn+ and N ∈ N n. By
Corollary 1 none of the elements of N can be positive and hence A = P , implying (a).

Let us comment on Theorem 1. It states that the presence of n zeros with supports Ij , j = 1, . . . , n
place stringent constraints on a copositive matrix A ∈ Cn. Such a matrix must either be exceptional
or positive semi-definite. Which of these two cases arises is determined by any of the n numbers in
condition (iv) of the theorem, which are either simultaneously positive or simultaneously zero.

3 Linear systems with periodic coefficients

In this section we investigate the solution spaces of linear periodic dynamical systems and perform some
linear algebraic constructions on them. These will be later put in correspondence to copositive forms.
First we shall introduce the monodromy and the Floquet multipliers associated with such systems, for
further reading about these and related concepts see, e.g., [11, Section 3.4].

We consider real scalar discrete-time homogeneous linear dynamical systems governed by the equation

xt+d +
d−1∑
i=0

ctixt+i =
d∑
i=0

ctixt+i = 0, t = 1, 2, . . . . (3)

Here xt ∈ R is the value of the solution x at time instant t, d > 0 is the order, and ct = (ct0, . . . , c
t
d)
T ∈

Rd+1, t ≥ 1, are the coefficient vectors of the system. For convenience we have set ctd = 1 for all t ≥ 1.
We assume that the coefficients are periodic with period n > d, i.e., ct+n = ct for all t ≥ 1. Denote by
L the linear space of all solutions x = (xt)t≥1. This space has dimension d and can be parameterized,
e.g., by the vector (x1, . . . , xd) ∈ Rd of initial conditions.

If x = (xt)t≥1 is a solution of the system, then y = (xt+n)t≥1 is also a solution by the periodicity
of the coefficients. The corresponding linear map M : L → L taking x to y is called the monodromy
of the periodic system. Its eigenvalues are called Floquet multipliers. The following result is a trivial
consequence of this definition.
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Lemma 6. Let Lper ⊂ L be the subspace of n-periodic solutions of system (3). Then x ∈ Lper if
and only if x is an eigenvector of the monodromy operator M with eigenvalue 1. In particular, dimLper
equals the geometric multiplicity of the eigenvalue 1 of M.

System (3) is time-reversible if and only if ct0 6= 0 for all t = 1, . . . , n, in this case we may express xt
as a function of xt+1, . . . , xt+d. In fact, the following result holds.

Lemma 7. The determinant of the monodromy matrix is given by det M = (−1)nd
∏n
t=1 c

t
0.

Proof. From (3) it follows that the determinant of the linear map taking the vector (xt, xt+1, . . . , xt+d−1)
to (xt+1, . . . , xt+d) equals (−1)dct0. Iterating this map for t = 1, . . . , n, we get that the determinant of
the linear map taking the vector (x1, . . . , xd) to (xn+1, . . . , xn+d) equals (−1)nd

∏n
t=1 c

t
0. The claim

now follows from the fact that the vector (x1, . . . , xd) parameterizes the solution space L.

Let us now consider the space L∗ of linear functionals on the solution space L. For every t ≥ 1, the
map taking a solution x = (xs)s≥1 to its value xt at time instant t is such a linear functional. We shall
denote this evaluation functional by et ∈ L∗. By definition of the monodromy we have et+n = M∗et for
all t ≥ 1, where M∗ : L∗ → L∗ is the adjoint of M. Moreover,

d∑
i=0

ctiet+i = 0 ∀ t ≥ 1 (4)

as a consequence of (3).

Our main tool in the study of copositive forms in this paper are positive semi-definite symmetric bilinear
forms B on L∗ which are invariant with respect to a time shift by the period n, i.e.,

B(et+n, es+n) = B(et, es) ∀ t, s ≥ 1. (5)

Definition 2. We call a symmetric bilinear form B on L∗ satisfying relation (5) a shift-invariant form.

Lemma 8. Assume above notations. A symmetric bilinear form B on L∗ is shift-invariant if and only if it
is preserved by the adjoint of the monodromy, i.e., B(w,w′) = B(M∗w,M∗w′) for all w,w′ ∈ L∗.
An equivalent set of conditions is given by B(et+n, es+n) = B(et, es) for all t, s ∈ {1, . . . , d}.

Proof. The assertions hold because the evaluation functionals e1, . . . , ed form a basis of L∗ and
et+n = M∗et for all t ≥ 1.

The shift-invariant forms are hence determined by a finite number of linear homogeneous equations and
constitute a linear subspace of the space of symmetric bilinear forms on L∗.

The space of symmetric bilinear forms on L∗ can be viewed as the space of symmetric contra-variant
second order tensors over L, i.e., it is the linear hull of tensor products of the form x ⊗ x, x ∈ L.
It is well-known that a symmetric bilinear form can be diagonalized, i.e., represented as a finite sum
B =

∑r
k=1 σkx

k ⊗ xk with σk ∈ {−1,+1}, xk ∈ L, k = 1, . . . , r, the vectors xk being linearly
independent. The vectors xk in this decomposition are not unique, but their number r and their linear
hull depend only on B and are called the rank rk B and the image ImB of B, respectively. The form
is positive semi-definite if all coefficients σk in its decomposition equal 1.

Lemma 9. Let B be a shift-invariant symmetric positive semi-definite bilinear form B on L∗, of rank r.
Then there exist at least r (possibly complex) linearly independent eigenvectors of M with eigenvalues
on the unit circle.
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Proof. Let B =
∑r

k=1 x
k ⊗ xk be a decomposition of B as above and complete the linearly inde-

pendent set {x1, . . . , xr} to a basis {x1, . . . , xn} of L. In the coordinates defined by this basis and
its dual basis in L∗ the form B is then given by the diagonal matrix diag(Idr, 0, . . . , 0). Let M be
the coefficient matrix of M in this basis, partitioned into submatrices M11,M12,M21,M22 correspond-
ing to the partition of the basis into subsets {x1, . . . , xr} and {xr+1, . . . , xn}. Then by Lemma 8 the
shift-invariance of B is equivalent to the condition(

Idr 0
0 0

)
=
(
M11 M12

M21 M22

)(
Idr 0
0 0

)(
M11 M12

M21 M22

)T
=
(
M11M

T
11 M11M

T
21

M21M
T
11 M21M

T
21

)
.

It follows thatM21 = 0 andM11 is an r×r orthogonal matrix. However, it is well-known that orthogonal
matrices possess a full basis of eigenvectors with eigenvalues on the unit circle. The assertion of the
lemma now readily follows.

4 Copositive matrices and linear periodic systems

In this section we establish a relation between the objects considered in the preceding two sections.
Throughout this and the next section, we fix a collection u = {u1, . . . , un} ⊂ Rn

+ of nonnegative
vectors such that suppuj = Ij , j = 1, . . . , n. Moreover, we assume these vectors are normalized

such that the last elements of their positive subvectors ujIj all equal 1. To the collection u we associate
a discrete-time linear periodic system Su of order d = n − 3 and with period n, given by (3) with
coefficient vectors ct = utIt , t = 1, . . . , n. The coefficient vectors ct for all other time instants t > n
are then determined by the periodicity relation ct+n = ct. Equivalently, the dynamics of Su is given by
the equations

d∑
i=0

ut
′
s xt+i = 0, t ≥ 1, (6)

where t′, s ∈ {1, . . . , n} are the unique indices such that t ≡ t′ and t+ i ≡ s modulo n. Relation (4)
then becomes

d∑
i=0

ut
′
s et+i = 0, ∀ t ≥ 1, (7)

with t′, s defined as above.

By Lemma 7 the monodromy of Su then satisfies

det M =
n∏
j=1

ujj > 0. (8)

In particular, the system Su is time-reversible. Denote by Lu the space of solutions of Su.

LetAu ⊂ Sn be the linear subspace of matricesA satisfyingAIju
j
Ij

= AIjc
j = 0 for all j = 1, . . . , n.

ToA ∈ Au we associate a symmetric bilinear formB on the dual spaceL∗u by settingB(et, es) = Ats
for every t, s = 1, . . . , d and defining the value of B on arbitrary vectors in L∗u by linear extension. In
other words, in the basis {e1, . . . , ed} of L∗u the coefficient matrix of B is given by the submatrix AI′1 .
Let Λ : A 7→ B be the so-defined linear map from Au into the space of symmetric bilinear forms on
L∗u. Our first step will be to describe the image of Λ. To this end, we need the following lemma.
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Lemma 10. Let A ∈ Au and B = Λ(A). Then for every integer r ≥ 1, the (n− 2)× (n− 2)-matrix
Br = (B(et+r, es+r))t,s=0,...,d equals the submatrix AIr′ , where r′ ∈ {1, . . . , n} is the unique index
satisfying r ≡ r′ modulo n. Equivalently,

B(et, es) = At′s′ ∀ t, s ≥ 1 : |t− s| ≤ n− 3, (9)

where t′, s′ ∈ {1, . . . , n} are the unique indices such that t ≡ t′, s′ ≡ s modulo n.

Proof. We proceed by induction over r. By definition of Λ the upper left (n − 3) × (n − 3) submatrix
of B1 equals the corresponding submatrix of AI1 . However, we have AI1c

1 = 0 by virtue of A ∈ Au

and B1c
1 = 0 by virtue of (4) for t = 1. Hence the difference AI1 − B1 is a symmetric matrix, with

possibly non-zero elements only in the last row or in the last column, which possesses a kernel vector
with all elements positive. It is easily seen that this difference must then be the zero matrix, proving the
assertion of the lemma for r = 1.

The induction step from r−1 to r proceeds in a similar manner, with equality of the upper left (n−3)×
(n− 3) submatrices of Br and AIr′ now guaranteed by the induction hypothesis.

The lemma asserts that the submatrices AI1 , . . . , AIn are all of the form (B(et, es))t,s∈I for certain
index sets I . Some of their properties are hence determined by the corresponding properties of B.

Corollary 3. Let A ∈ Au and B = Λ(A). Then the ranks of the matrices AIj , j = 1, . . . , n, and of
all their submatrices of size (n− 3)× (n− 3), are equal to the rank of the symmetric bilinear form B.

Proof. Since the system Su is time-reversible, the evaluation operators et, . . . , et+d−1 form a basis
of L∗u for every t ≥ 1. On the other hand, the operators et, . . . , et+d are linearly dependent for all
t ≥ 1, the dependence being given by (7). All coefficients in this relation are non-zero, hence any
of the operators et, . . . , et+d can be expressed as a linear combination of the d other operators. It
follows that every subset of {et, . . . , et+d} of cardinality d is a basis of L∗u. Therefore the d× d matrix
(B(es, es′))s∈I,s′∈I′ , where I, I ′ are such subsets, has rank equal to rk B. The same holds for the
matrices (B(es, es′))s,s′=t,...,t+d for all t ≥ 1. The corollary now follows from Lemma 10.

Corollary 4. Let A ∈ Au and B = Λ(A). Then the symmetric bilinear form B is shift-invariant and
satisfies the linear relations

B(et, es) = B(et+n, es) ∀ t, s ≥ 1 : 3 ≤ s− t ≤ n− 3. (10)

Proof. By (9) we have B(et, es) = Ats = B(et+n, es+n) for all t, s = 1, . . . , d. This in turn implies
the shift-invariance of B by Lemma 8.

The inequalities 3 ≤ s− t ≤ n− 3 imply |t− s| ≤ n− 3, |t+ n− s| ≤ n− 3. Relations (10) then
follow from (9) in a similar way as the shift-invariance.

Now we are ready to describe the image of the map Λ.

Lemma 11. Suppose that n ≥ 5. Then the linear map Λ is injective, and its image consists of those
shift-invariant symmetric bilinear forms B on L∗u which satisfy relations (10).
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Proof. In view of Corollary 4 it suffices to show that for every shift-invariant symmetric bilinear form B
satisfying (10) there exists a unique matrix A ∈ Au such that B = Λ(A).

Let B be such a form. We define the corresponding matrix A as follows. Let i, j ∈ {1, . . . , n} be
arbitrary indices such that i ≤ j. Put

Aij = Aji =
{

B(ei, ej), j − i ≤ n− 3;
B(ei+n, ej), j − i > n− 3.

(11)

The shift-invariance ofB and relations (10) then imply (9). This givesBr = (B(et+r, es+r))t,s=0,...,d =
AIr for every r = 1, . . . , n. Now Brc

r = 0 by virtue of (4), which implies AIrc
r = 0 and hence

A ∈ Au. Moreover, Λ(A) = B by construction of A.

Uniqueness of A follows from Lemmas 10 and 3.

Now we shall investigate which symmetric bilinear formsB in the image of Λ are the images of copositive
matrices. First we consider positive semi-definite bilinear symmetric forms B.

Lemma 12. Suppose n ≥ 5 and let A ∈ Au and B = Λ(A). Then the following are equivalent:

(i) the form B is positive semi-definite;

(ii) the submatrices AIj are positive semi-definite for all j = 1, . . . , n;

(iii) any of the submatrices AIj , j = 1, . . . , n, is positive semi-definite.

Moreover, given above conditions (i)—(iii), the following holds:

(a) the difference B(en, en−2)−B(en, e2n−2) has the same sign as (un)TAu1;

(b) the difference B(ej+n, ej+n−2)−B(ej+n, ej+2n−2) has the same sign as (uj)TAuj+1, j =
1, 2;

(c) the differenceB(ej , ej−2)−B(ej , ej+n−2) has the same sign as (uj)TAuj+1, j = 3, . . . , n−
1.

Proof. The first part of the lemma is a direct consequence of Lemma 10 and of the fact that the set
{et, . . . , et+d} spans the whole space L∗u for all t ≥ 1.

Let us prove the second part and assume conditions (i)—(iii). Consider the (n − 1) × (n − 1) matrix
A(1,...,n−1). By Lemma 10 its upper left and its lower right principal submatrix of size n−2 coincides with
the matrix (B(et, es))t,s∈I with I = {1, . . . , n − 2} and I = {2, . . . , n − 1}, respectively. Hence it
can be written as a sum (B(et, es))t,s=1,...,n−1 +δE1,n−1 for some real δ. Note that the first summand
is positive semi-definite by condition (i). On the other hand, A1,n−1 = B(en+1, en−1) by (9). Hence
δ = B(en+1, en−1)−B(e1, en−1) = B(en+1, en−1)−B(en+1, e2n−1), where the second equality
follows from the shift-invariance of B which is in turn a consequence of Lemma 11. By virtue of Lemma
29 we then get (b) for j = 1.

The other assertions of the second part are proven in a similar way by starting with the remaining (n −
1)× (n− 1) principal submatrices of A.

Lemma 13. Let n ≥ 5, and let A ∈ Cn be such that (uj)TAuj = 0 for all j = 1, . . . , n. Then
A ∈ Au, and B = Λ(A) is positive semi-definite and satisfies the inequalities

B(et, et+2) ≥ B(et+n, et+2) ∀t ≥ 1. (12)
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Moreover, either B satisfies all inequalities (12) with equality, namely when A is positive semi-definite,
or all inequalities (12) are strict, namely when A is exceptional.

Proof. Let A ∈ Cn such that (uj)TAuj = 0 for all j = 1, . . . , n. Then AIj � 0 for j = 1, . . . , n by
Lemma 1. The relation (cj)TAIjc

j = (uj)TAuj = 0 then implies AIjc
j = 0 for all j = 1, . . . , n,

and we get indeed A ∈ Au. By Lemma 12 we then have B � 0. From Theorem 1 and Lemma 12 we
obtain (12) for t = 1, . . . , n, with equality or strict inequality for positive semi-definite or exceptional A,
respectively. For all other t > n these relations follow by the shift-invariance ofB which in turn is implied
by Corollary 4.

Lemma 14. Let B be a positive semi-definite symmetric bilinear form in the image of Λ which satisfies
inequalities (12). Then its pre-image A = Λ−1(B) is copositive and satisfies (uj)TAuj = 0 for all
j = 1, . . . , n.

Proof. Let B be as required, and let A be its pre-image, which is well-defined by Lemma 11. By Lemma
12 the submatrices AIj are positive semi-definite for all j = 1, . . . , n. From A ∈ Au it follows that
(uj)TAuj = 0 for all j = 1, . . . , n. Finally, by Lemma 12 (12) implies the inequalities (un)TAu1 ≥ 0
and (uj)TAuj+1 ≥ 0, j = 1, . . . , n− 1. Therefore A ∈ Cn by Theorem 1.

Now we are in a position to describe the faces Fu = {A ∈ Cn | (uj)TAuj = 0 ∀ j = 1, . . . , n} of
the copositive cone and Pu = {A ∈ Sn+ | (uj)TAuj = 0 ∀ j = 1, . . . , n} of the positive semi-definite
cone which are defined by the zeros uj , by linear matrix inequalities.

Theorem 2. Let n ≥ 5, and let Fu be the set of positive semi-definite symmetric bilinear forms B on
L∗u satisfying the linear equality relations

B(et, es) = B(M∗et,M∗es), t, s = 1, . . . , n− 3;
B(et, es) = B(M∗et, es), 1 ≤ t < s ≤ n : 3 ≤ s− t ≤ n− 3

and the linear inequalities

B(et, et+2) ≥ B(M∗et, et+2), t = 1, . . . , n.

Let Pu ⊂ Fu be the subset of forms B which satisfy all linear inequalities with equality.

Then the face of Cn defined by the zeros uj , j = 1, . . . , n, is given by Fu = Λ−1[Fu], and the face of
Sn+ defined by these zeros is given by Pu = Λ−1[Pu]. Moreover, for all forms B ∈ Fu \ Pu the linear
inequalities are satisfied strictly, and Fu \ Pu consists of exceptional matrices.

Proof. By virtue of Lemmas 11, 13, and 14 we have only to show that the finite number of equalities
and inequalities stated in the formulation of the theorem are necessary and sufficient to ensure the
infinite number of equalities and inequalities in (5),(10),(12). Necessity is evident, since the relations in
the theorem are a subset of relations (5),(10),(12).

Sufficiency of the first set of equalities in the theorem to ensure (5) follows from Lemma 8. By the resulting
shift-invariance of B it is also sufficient to constrain the index t to 1, . . . , n in (10). Now suppose that
t ∈ {1, . . . , n}, s > n, and 3 ≤ s−t ≤ n−3. We then haveB(et, es) = B(es, et),B(et+n, es) =
B(et, es−n) = B(es−n, et). Relation (10) for the index pair (t, s) is hence equivalent to the same
relation for the index pair (t′, s′) = (s−n, t), which also satisfies 1 ≤ t′ ≤ n and 3 ≤ s′− t′ ≤ n−3.
For the latter index pair we now have s′ ≤ n, however. Thus (10) also follows from the linear equalities
in the theorem. Finally, the set of inequalities in the theorem implies (12) by the shift-invariance ofB.
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Corollary 5. Let rmax be the rank achieved by the forms in the (relative) interior of Fu. Then for every
B ∈ ∂Fu \ Pu we have rk B < rmax.

Proof. Let B ∈ ∂Fu \ Pu, and let B′ be a form in the relative interior of Fu. Let l be the line segment
connecting B with B′. When we reach the boundary point B by moving along l, either a rank drop must
occur or one of the linear inequalities must become active. However, the second case cannot happen,
because B 6∈ Pu.

If the vectors in the collection u are in generic position, then the set Fu defined in Theorem 2 consists
of the zero form only. In the next section we investigate the consequences of a non-trivial set Fu.

5 Structure of the cones Fu and Pu

As was mentioned in the introduction, the eigenvalues of the monodromy M, the Floquet multipliers,
largely determine the properties of the matrices in the face Fu of Cn. In this section we shall investigate
these connections in detail. In particular, we will be interested in the structure of the cones Pu and
Pu = Λ[Pu] defined by the positive semi-definite matrices in the face Fu ⊂ Cn and its connections
to the periodic solutions of the system Su. We also investigate the properties of the regular and the
degenerate exceptional copositive matrices as defined in Definition 1.

Denote by Lper ⊂ Lu the subspace of n-periodic solutions. We have the following characterization of
Lper.

Lemma 15. An n-periodic infinite sequence x = (x1, x2, . . . ) is a solution of Su if and only if the vector
(x1, . . . , xn)T ∈ Rn is orthogonal to all vectors uj , j = 1, . . . , n. In particular, the dimension of Lper
equals the corank of the n× n matrix U composed of the column vectors u1, . . . , un.

Proof. From the n-periodicity of x it follows that (6) are exactly the orthogonality relations between
(x1, . . . , xn)T and uj . The lemma now readily follows.

We are now in a position to describe the set Pu in terms of the subspace Lper.

Lemma 16. Suppose that n ≥ 5. ThenPu equals the convex hull of all tensor products x⊗x, x ∈ Lper.
In particular, Pu ' S

dimLper
+ , and for every B ∈ Pu we have ImB ⊂ Lper. Moreover, for every

B ∈ Pu the preimage A = Λ−1(B) is given by A = (B(et, es))t,s=1,...,n.

Proof. Assume x ∈ Lper and setB = x⊗x. The n-periodicity of the solution x implies that xt+n = xt
for all t ≥ 1. For every t, s ≥ 1 we then have B(et, es) = xtxs = xt+nxs = B(et+n, es), which
yields (10) and (12) with equality. In a similar way we obtain (5), and hence B ∈ Pu. Moreover, (11)
yields A = Λ−1(B) = (B(et, es))t,s=1,...,n.

By convexity of Pu it follows that the convex hull of the set {x ⊗ x |x ∈ Lper} is a subset of Pu, and
by linearity the above expression for A = Λ−1(B) holds also for every B in this convex hull.

Let us prove the converse inclusion. Let B ∈ Pu be arbitrary and set A = Λ−1(B). Then A ∈ Pu by
Theorem 2. Since A � 0 and (uj)TAuj = 0, it follows that Auj = 0 for all j = 1, . . . , n. Therefore
A is in the convex hull of the set {vvT | 〈v, uj〉 = 0 ∀ j = 1, . . . , n}. It hence suffices to show that for
every v ∈ Rn such that 〈v, uj〉 = 0, j = 1, . . . , n, we have Λ(vvT ) = x⊗ x for some x ∈ Lper.
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Let v ∈ Rn be orthogonal to all zeros uj . By Lemma 15 the n-periodic sequence x = (x1, x2, . . . )
defined by the initial conditions xi = vi, i = 1, . . . , n, is an n-periodic solution of Su, x ∈ Lper. But
Λ(vvT ) = x⊗ x by construction. This completes the proof.

We now consider the ranks of the forms in Fu and Pu. Let rmax be the maximal rank achieved by forms
in Fu, and rPSD the maximal rank achieved by forms in Pu.

Corollary 6. Suppose n ≥ 5. Then rPSD equals the geometric multiplicity of the eigenvalue 1 of the
monodromy operator M of the dynamical system Su.

Proof. The corollary follows from Lemmas 6 and 16.

Lemma 17. Let n ≥ 5, and let B ∈ Fu \ Pu. Then for every k ≥ 1 the matrix

Mk = (B(et+k − et+n+k, es+k))t=0,...,n−5;s=2,...,n−3

= (B((Id−M∗)et+k, es+k))t=0,...,n−5;s=2,...,n−3

has full rank n− 4.

Proof. By Lemma 13 the formB satisfies inequalities (12) strictly, which implies thatMk has all diagonal
elements positive. By (10) Mk is lower-triangular, and hence has full rank n− 4.

Corollary 7. Let n ≥ 5, and let B ∈ Fu \ Pu. Then the bilinear form on L∗u given by (w,w′) 7→
B((Id−M∗)w,w′) has corank at most 1. In particular, both B and Id−M∗ have corank at most 1.
Moreover, M has at least n− 4 linearly independent eigenvectors with eigenvalues on the unit circle.

Proof. The bilinear form in the statement of the lemma has at least the same rank, namely n− 4, as the
matrices Mk in Lemma 17. Hence it has corank at most 1. It follows that B has corank at most 1, and
the proof is concluded by application of Lemma 9.

Corollary 8. Suppose n ≥ 5. If Fu 6= Pu, then rmax − rPSD ≥ n − 4. In particular, in this case
rPSD ≤ 1 and either rmax = n− 4 or rmax = n− 3.

Proof. Let B ∈ Fu \ Pu. Suppose there exists B′ ∈ Pu such that B � B′. Then also B − B′ ∈
Fu \ Pu. Therefore we may assume without loss of generality that there does not exist a non-zero
B′ ∈ Pu such that B − B′ � 0. By Lemma 16 we then have ImB ∩ Lper = {0}, and hence for
every B′ ∈ Pu we get rk(B +B′) = rk B + rk B′, again by Lemma 16.

Let now B′ ∈ Pu such that rk B′ = rPSD. By Corollary 7 we have rk B ≥ n − 4, and hence
rmax ≥ rk B + rk B′ = n− 4 + rPSD. This completes the proof.

These results allow us to completely characterize the face Fu in the case when Fu does not contain
positive definite forms.

Lemma 18. Suppose n ≥ 5 and assume rmax = n − 4. Then either Fu consists of positive semi-
definite matrices only, or Fu is 1-dimensional and generated by an extremal exceptional copositive matrix
A. In the latter case the submatrices AIj of this exceptional matrix have corank 2 for all j = 1, . . . , n.

Proof. By Corollaries 5 and 7 we have the inclusion ∂Fu ⊂ Pu. Therefore either Fu = Pu, or Fu is
1-dimensional and Pu = {0}. The first claim of the lemma now follows from Theorem 2. The second
claim then follows from Corollary 3.
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We shall now concentrate on the case when Fu contains positive definite forms, i.e., the maximal rank
achieved by matrices in Fu equals rmax = d = n− 3.

Lemma 19. Let n ≥ 5. Then the following are equivalent:

(i) the set Fu contains a positive definite form and Fu = Pu;

(ii) the monodromy operator M of the system Su equals the identity;

(iii) the rank of the n× n matrix U with columns u1, . . . , un equals 3.

Proof. Assume (ii). The LMIs in Theorem 2 reduce to the condition B � 0, and hence Fu = Pu =
Sn−3

+ , implying (i).

Assume (i). We have rmax = rPSD = n− 3, and (ii) follows from Corollary 6.

By Lemma 6 we have M = Id if and only if dimLper = n− 3. By Lemma 15 this is equivalent to the
condition rkU = 3, which proves (ii)⇔ (iii).

In order to treat the case rmax = n − 3 and Fu 6= Pu we shall distinguish between odd and even
orders n.

Lemma 20. Let n > 5 be even, and suppose rmax = n − 3 and Fu 6= Pu. Then Fu is linearly
isomorphic to R2

+, where one boundary ray of Fu is generated by a rank 1 positive semi-definite matrix,
and the other boundary ray is generated by an extremal exceptional copositive matrixA. The submatrices
AIj of this exceptional matrix have corank 2 for all j = 1, . . . , n.

Proof. By Lemma 9 all eigenvalues of the monodromy M of the system Su lie on the unit circle and their
geometric and algebraic multiplicities coincide. However, since M is real, its complex eigenvalues are
grouped into complex-conjugate pairs. Since the dimension d = n−3 ofL∗u is odd, there must be exactly
one real eigenvalue with an odd multiplicity. By (8) this eigenvalue equals 1. Hence rPSD is odd by
Corollary 6, but cannot exceed 1 by Corollary 8. Therefore dimLper = 1 and dimPu = dimPu = 1,
and Pu is generated by a rank 1 positive semi-definite matrix AP .

Denote the 1-dimensional eigenspace of M∗ to the eigenvalue 1 by W1, and let L⊥per ⊂ L∗u be the

orthogonal complement of Lper. Then L⊥per is an invariant subspace of M∗ and L∗u = W1 + L⊥per.
Let now w1 ∈ W1 and w ∈ L⊥per be arbitrary vectors. Then for every B ∈ Fu we get by the shift-
invarianceB(w1, w) = B(M∗w1,M∗w) = B(w1,M∗w), and henceB(w1, (Id−M∗)w) = 0 for
all w ∈ L⊥per. But (Id−M∗)[L⊥per] = L⊥per, because L⊥per is an invariant subspace of Id−M∗ and

it has a zero intersection with the kernel W1 of Id −M∗. It follows that W1 and L⊥per are orthogonal
under B.

This implies that everyB ∈ Fu can in a unique way be decomposed into a sumB = B′+P of positive
semi-definite forms, with P ∈ Pu and W1 ⊂ kerB′. Moreover, for every B ∈ Fu the corresponding
summand B′ is also in Fu, because P satisfies inequalities (12) with equality. Thus the cone Fu splits
into a direct sum F ′u + Pu, where F ′u = {B ∈ Fu |W1 ⊂ kerB}.

By assumption F ′u 6= {0}. Any non-zero form in F ′u lies in ∂Fu \ Pu and hence must be rank deficient
by Corollary 5. On the other hand, any such form has corank at most 1 by Corollary 7, and hence its rank
equals n − 4. Thus the rank is constant over all forms in F ′u \ {0} and inequalities (12) are satisfied
strictly. Hence F ′u \ {0} must be contained in the relative interior of F ′u, which implies that F ′u is a ray
generated by a single form B′. By Theorem 2 A′ = Λ−1(B′) is then an exceptional extremal copositive
matrix, and Fu ' R2

+ is generated by A′ and AP . Since rkB′ = n − 4, the submatrices A′Ij also
have rank n− 4 by Corollary 3, and hence corank 2.
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Lemma 21. Let n ≥ 5 be odd, and suppose rmax = n− 3 and Fu 6= Pu. Then Fu does not contain
non-zero positive semi-definite matrices.

If Fu is 1-dimensional, then it is generated by an extremal exceptional copositive matrix A such that the
submatrices AIj have corank 1 for all j = 1, . . . , n.

If dimFu > 1, then the monodromy M of the system Su possesses the eigenvalue−1, and all bound-
ary rays of Fu are generated by extremal exceptional copositive matrices. For any such boundary matrix
A, its submatrices AIj have corank 2 for all j = 1, . . . , n.

Proof. As in the proof of the previous lemma, M has all eigenvalues on the unit circle, with equal geomet-
ric and algebraic multiplicities. However, now dimL∗u = n − 3 is even, and by (8) the real eigenvalues
±1, if they appear, have even multiplicity. By Corollaries 6 and 8 the multiplicity of the eigenvalue 1 can-
not exceed 1 and this eigenvalue does not appear. By Lemma 16 we get Pu = {0} and by Theorem 2
the face Fu does not contain non-zero positive semi-definite matrices.

Suppose now that Fu is not 1-dimensional. Then ∂Fu \Pu = ∂Fu \{0} is not empty and by Corollary
5 consists of rank deficient forms. On the other hand, the rank can drop at most by 1 by virtue of Corollary
7. Hence dim kerB = 1 for allB ∈ ∂Fu \{0}. This kernel must be a real eigenspace of M∗, because
M∗ preserves the formB by shift-invariance. Therefore M∗ must have a real eigenvalue, which can only
be equal to−1. Moreover, since the boundary subset ∂Fu\{0} consists of forms of corank 1, it must be
smooth and every boundary ray is extremal. Indeed, if ∂Fu would contain a face of dimension exceeding
1, then the boundary of this face would be different from {0}, but no further rank drop could occur there.
Hence the pre-image Λ−1[∂Fu\{0}] consists of extremal exceptional copositive matrices. By Corollary
3 the submatrices AIj of such a matrix A have rank n− 4, or corank 2, for all j = 1, . . . , n.

If, on the contrary, dimFu = 1, then Fu is generated by an extremal exceptional copositive matrixA. By
assumption the form B = Λ(A) is positive definite and has rank n− 3. By Corollary 3 the submatrices
AIj also have rank n− 3 for all j = 1, . . . , n.

Finally, we shall investigate the zero set of exceptional copositive matrices A ∈ Fu.

Lemma 22. Suppose n ≥ 5, and let A ∈ Fu be an exceptional copositive matrix. If v ∈ Rn
+ is a zero

of A, then there exists an index j ∈ {1, . . . , n} such that supp v ⊂ Ij .

Proof. Since A is exceptional, we cannot have supp v = {1, . . . , n} by Lemma 1. Therefore supp v
is a subset of {1, . . . , n} \ {k} for some k ∈ {1, . . . , n}. Without loss of generality, assume that
supp v ⊂ {1, . . . , n − 1}. By Theorem 1 we have (u1)TAu2 > 0, and hence by Lemma 29 we
have A(1,...,n−1) = P + δE1,n−1 for some positive semi-definite matrix P ∈ Sn−1

+ and some δ > 0.

Since v is a zero of A, we get that the subvector v(1,...,n−1) ∈ Rn−1
+ is a zero of both P and E1,n−1.

It follows that the first and the last element of this subvector cannot be simultaneously positive, which
implies supp v ⊂ I1 or supp v ⊂ I2.

Theorem 3. Let A ∈ Fu be an exceptional copositive matrix and set B = Λ(A). Then either

(i.a) A is regular;

(i.b) B is positive definite;

(i.c) the corank of the submatrices AIj equals 1, j = 1, . . . , n;

(i.d) the minimal zero pattern of A is {I1, . . . , In}, with minimal zeros u1, . . . , un;
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(i.e) for even n the matrix A is the sum of a degenerate exceptional copositive matrix and a rank 1
positive semi-definite matrix;

(i.f) if n is odd and the monodromy operator M has no eigenvalue equal to −1, then A is extremal;

or

(ii.a) A is degenerate;

(ii.b) the corank of B equals 1;

(ii.c) the corank of the submatrices AIj equals 2, j = 1, . . . , n;

(ii.d) the support of any minimal zero of A is a strict subset of one of the index sets I1, . . . , In, and
every index set Ij has exactly two subsets which are supports of minimal zeros of A;

(ii.e) every non-minimal zero of A has support equal to Ij for some j = 1, . . . , n and is a sum of two
minimal zeros;

(ii.f) A is extremal.

Proof. By Corollary 7 the formB is either positive definite or has corank 1. By Corollary 3 the submatrices
AIj have corank 1 in the first case and corank 2 in the second case, for all j = 1, . . . , n. Hence the
zeros uj are minimal in the first case and not minimal in the second case, for all j = 1, . . . , n. By
Lemma 22 A is regular in the first case, and there are no index sets other than I1, . . . , In which are
supports of minimal zeros of A. Thus either (i.a)—(i.d) or (ii.a)—(ii.c) hold.

Assume the second case. By Lemma 22 every support of a minimal zero of A is then a strict subset
of one of the sets I1, . . . , In. The set of zeros v of A satisfying supp v ⊂ Ij is determined by the
intersection of the two-dimensional kernel of AIj with the nonnegative orthant. However, every two-
dimensional convex cone is linearly isomorphic to R2

+ and is hence the convex hull of two extreme rays.
Assertions (ii.d),(ii.e) then readily follow. The maximal rank achieved by forms in Fu equals either n− 4
or n− 3 by Corollary 8. In the first case (ii.f) follows from Lemma 18, in the second case from Lemma 20
or 21, dependent on the parity of n.

Assume (i.a)—(i.d). Then (i.e) and (i.f) follow from Lemmas 20 and 21, respectively.

The prototype of exceptional copositive matrices satisfying conditions (i.a)—(i.f) are the T -matrices (2),
while the prototype of those satisfying (ii.a)—(ii.f) is the Horn matrix (1).

6 Submanifolds of extremal exceptional copositive matrices

In the previous two sections we considered the face Fu ⊂ Cn for a fixed collection u of zeros. In
Theorem 3 we have shown that there are two potential possibilities for an exceptional copositive matrix
A in such a face Fu. Namely, either A is regular, or A is degenerate, either imposing its own set of
conditions on A. In this section we show that in each of these cases, the matrix A is embedded in a
submanifold of codimension n or 2n, respectively, which consists of exceptional copositive matrices with
similar properties. However, different matrices in this submanifold may belong to faces Fu corresponding
to different collections u. Recall that regular and degenerate are understood in the sense of Definition 1.

Theorem 4. Let n ≥ 5, and let Â ∈ Cn be a regular exceptional matrix with zeros û1, . . . , ûn ∈ Rn
+

such that supp ûj = Ij . Then there exists a neighbourhood U ⊂ Sn of Â with the following properties:

(i) if A ∈ U and detAIj = 0 for all j = 1, . . . , n, then A is a regular exceptional copositive matrix;
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(ii) the set of matrices A ∈ U satisfying the conditions in (i) is an algebraic submanifold of codimen-
sion n in Sn.

Proof. By Theorem 3 the submatrices ÂIj have rank n − 3 for j = 1, . . . , n. Let A be sufficiently

close to Â and such that detAIj = 0 for all j = 1, . . . , n. The submatrix AIj has n − 3 positive
eigenvalues by continuity and one zero eigenvalue by assumption, and hence is positive semi-definite for
all j = 1, . . . , n. Moreover, the kernel of AIj is close to the kernel of ÂIj and hence is generated by
an element-wise positive vector for all j = 1, . . . , n. We then find vectors u1, . . . , un ∈ Rn

+, close to

û1, . . . , ûn, such that suppuj = Ij and the subvector ujIj is in the kernel ofAIj . Then (uj)TAuj = 0

for all j = 1, . . . , n, and (uj)TAuk is close to (ûj)T Âûk for all j, k = 1, . . . , n. By Theorem 1
we have (ûn)T Âû1 > 0, (ûj)T Âûj+1 > 0, j = 1, . . . , n − 1, and hence also (un)TAu1 > 0,
(uj)TAuj+1 > 0, j = 1, . . . , n − 1. By Theorem 1 we then get that A is a copositive exceptional
matrix. By Theorem 3 the matrix A is regular, which proves (i).

Consider the set M = {X ∈ Sn | detXIj = 0 ∀ j = 1, . . . , n}. It is defined by n polynomial

equations, and Â ∈ M. By virtue of Lemma 30 the gradient of the function detXIj at X = Â is
proportional to the rank 1 matrix ûj(ûj)T . By Lemmas 15, 16, and Corollary 8 the linear span of the
zeros ûj has dimension at least n − 1. Since no two of these zeros are proportional, the gradients of
the functions detXIj are linearly independent at X = Â by Lemma 31. It follows thatM is a smooth

algebraic submanifold of codimension n in a neighbourhood of Â. This proves (ii).

Theorem 5. The extremal regular exceptional copositive matrices form an open subset of the manifold
of all regular exceptional matrices.

Proof. Assume the notations in the proof of the previous theorem, and suppose that Â is extremal. The
inequalities (un)TAu1 > 0, (uj)TAuj+1 > 0, j = 1, . . . , n − 1 imply that the element (Auj)i
vanishes if and only if i ∈ Ij . Thus by Lemma 4 the matrix A is extremal if and only if the linear system
of equations on the matrix X ∈ Sn given by

(Xuj)i = 0 ∀ i ∈ Ij , j = 1, . . . , n (13)

has a 1-dimensional solution space. The coefficients of this system depend linearly on the entries of
the zeros uj . Moreover, since Â is extremal, system (13) has a 1-dimensional solution space for uj =
ûj . But the rank of a matrix is a lower semi-continuous function, hence the solution space of (13) has
dimension at most 1 if the zeros uj are sufficiently close to ûj . However, X = A is always a solution,
and therefore A is an extremal copositive matrix.

The simplest manifold of the type described in Theorem 5 is the 10-dimensional union of the G5-orbits
of the T -matrices (2). Matrices (2) themselves depend on 5 parameters, while the action of G5 adds
another 5 parameters.

Theorem 6. Let n ≥ 5, and let Â ∈ Cn be a degenerate exceptional matrix having zeros û1, . . . , ûn ∈
Rn

+ such that supp ûj = Ij . Then there exists a neighbourhood U ⊂ Sn of Â with the following
properties:

(i) if A ∈ U and rkAIj = n− 4 for all j = 1, . . . , n, then A is a degenerate exceptional extremal
copositive matrix;

(ii) the set of matrices A ∈ U satisfying the conditions in (i) is an algebraic submanifold of codimen-
sion 2n in Sn.
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Proof. By Theorem 3 the submatrices ÂIj have rank n− 4 for j = 1, . . . , n. LetA be sufficiently close

to Â and suppose that rkAIj = n−4 for all j = 1, . . . , n. By continuity the n−4 largest eigenvalues of
AI1 are then positive. However, the remaining two eigenvalues ofAI1 are zero by assumption, and hence
AI1 � 0. Now the kernel ofAI1 is close to that of ÂI1 , hence kerAI1 contains a positive vector close to
û1
I1

. Then there exists a vector u1 ∈ Rn
+, close to û1, such that suppu1 = I1 and (u1)TAu1 = 0. In

a similar way we construct vectors uj ∈ Rn
+, close to ûj , such that suppuj = Ij and (uj)TAuj = 0,

for all j = 1, . . . , n. By virtue of Theorem 1 we have (ûn)T Âû1 > 0 and (ûj)T Âûj+1 > 0 for all j =
1, . . . , n−1. By continuity we then get (un)TAu1 > 0 and (uj)TAuj+1 > 0 for all j = 1, . . . , n−1.
Again by Theorem 1 it then follows that A is an exceptional copositive matrix. By Theorem 3 the matrix
A is also degenerate and extremal, which proves (i).

The proof of (ii) is a bit more complicated. Set û = {û1, . . . , ûn}. By Lemma 13 we have Â ∈ Aû. Let
B̂ = Λ(Â) be the positive semi-definite symmetric bilinear form corresponding to Â.

By Corollary 3 each of the principal submatrices ÂI′j has a 1-dimensional kernel. For every j = 1, . . . , n,

we define a vector v̂j ∈ Rn such that v̂ji = 0 for all i 6∈ I ′j and the subvector v̂j
I′j

generates the kernel

of ÂI′j . We now claim the following:

(a) for every j = 1, . . . , n−1 we have ker ÂIj = span{v̂j , v̂j+1}, and ker ÂIn = span{v̂n, v̂1};
(b) the first and the last element of the subvector v̂j

I′j
is non-zero for all j = 1, . . . , n;

(c) the vectors v̂1, . . . , v̂n are linearly independent.

Since the positive semi-definite quadratic form ÂI2 vanishes on the subvectors v̂2
I2
, v̂3
I2

, we have that

v̂2
I2
, v̂3
I2
∈ ker ÂI2 . Now dim ker ÂI2 = 2, and hence either ker ÂI2 = span{v̂2

I2
, v̂3
I2
}, or v̂2, v̂3 are

linearly dependent.

Assume the latter for the sake of contradiction. Then the non-zero elements of v̂2 have indices in the inter-
section I ′2∩I ′3 = {3, . . . , n−2}. The relation ÂI2 v̂

2
I2

= 0 together with (9) yields
∑n−2

s=3 v̂
2
sB̂(et, es) =

0 for all t = 2, . . . , n − 1. The evaluation functionals e2, . . . , en−1 span the whole space L∗û, and

therefore we must have
∑n−2

s=3 v̂
2
sB̂(et, es) = 0 for all t ≥ 1. In particular, we get

∑n−2
s=3 v̂

2
sB̂(et −

et+n, es) = 0 for all t = 1, . . . , n − 4. Since Â is exceptional, by virtue of Lemma 17 the coefficient
matrix of this linear homogeneous system on the elements of v̂2 is regular. Therefore v̂2 = 0, leading to
a contradiction.

It follows that ker ÂI2 = span{v̂2
I2
, v̂3
I2
}, and by repeating the argument after circular shifts of the

indices we obtain (a). Since û1 ∈ ker ÂI1 , we have û1 = αv̂1 + βv̂2 for some coefficients α, β. In
particular, we have û1

1 = αv̂1
1 > 0, implying v̂1

1 6= 0. Similarly, û1
n−2 = βv̂2

n−2 > 0 implies v̂2
n−2 6= 0.

Repeating the argument after circular shifts of the indices we obtain (b).

Finally, let w ∈ Rn be such that 〈v̂j , w〉 = 0 for all j = 1, . . . , n. By (a) and by Lemma 22 we have
that every zero of Â is a linear combination of the vectors v̂j . It follows that w is orthogonal to all zeros
of Â. By Lemma 5 there exists ε > 0 such that Â − εwwT ∈ Cn. But by Theorem 3 Â is extremal.
Therefore we must have w = 0, which yields (c).

We now prove (ii). Consider the set

M =

{
X ∈ Sn

∣∣∣∣∣ detXI′j
= 0 ∀j = 1, . . . , n;

det(Xik)i∈I′j ;k∈I′j+1
= 0 ∀j = 1, . . . , n− 1; det(Xik)i∈I′n;k∈I′1 = 0

}
.

17



It is defined by 2n polynomial equations, and Â ∈ M. By Lemma 32 in a neighbourhood of Â the
manifoldM coincides with the set of matrices A satisfying condition (i).

Now by virtue of Lemma 30 the gradient of the function detXI′j
at X = Â is proportional to the rank

1 matrix v̂j(v̂j)T , the gradient of det(Xik)i∈I′j ;k∈I′j+1
is proportional to the rank 1 matrix v̂j(v̂j+1)T ,

and the gradient of det(Xik)i∈I′n;k∈I′1 is proportional to v̂n(v̂1)T . By (c) the vectors v̂j are linearly
independent, hence these 2n gradients are also linearly independent. It follows that M is a smooth
algebraic submanifold of codimension 2n in a neighbourhood of Â. This proves (ii).

The simplest manifold of the type described in Theorem 6 is the 5-dimensional G5-orbit of the Horn matrix
(1).

7 Existence of non-trivial faces

So far we have always supposed that the feasible sets Fu or Pu of the LMIs in Theorem 2 contain
non-zero forms. In this section we shall explicitly construct non-zero facesFu and Pu for arbitrary matrix
sizes n ≥ 5.

7.1 Faces consisting of positive semi-definite matrices

In this subsection we construct non-zero faces Fu of Cn which contain only positive semi-definite matri-
ces, i.e., which satisfy Fu = Pu.

We shall need the following concept of a slack matrix, which has been introduced in [20] for convex
polytopes. Let K ⊂ Rm be a polyhedral convex cone, and let K∗ = {f ∈ Rm | 〈f, x〉 ≥ 0 ∀ x ∈ K}
be its dual cone, where Rm is the space of linear functionals on Rm. ThenK∗ is also a convex polyhedral
cone. Let x1, . . . , xr be generators of the extreme rays of K , and f1, . . . , fs generators of the extreme
rays of K∗.

Definition 3. Assume the notations of the previous paragraph. The slack matrix ofK is the nonnegative
s× r matrix (〈fi, xj〉)i=1,...,s;j=1,...,r.

Theorem 7. Assume n ≥ 5, and let u = {u1, . . . , un} ⊂ Rn
+ be such that suppuj = Ij for all

j = 1, . . . , n. Let U be the n × n matrix with columns u1, . . . , un. Then the face Fu consists of
positive semi-definite matrices up to rank n− 3 inclusively if and only if U is the slack matrix of a convex
polyhedral cone K ⊂ R3 with n extreme rays.

Proof. By Theorem 2 and Lemma 19 we have Fu = Pu ' Sn−3
+ if and only if rkU = 3.

Assume rkU = 3. Choose a factorization U = ULU
T
R , with UL, UR being rank 3 matrices of size

n× 3. No two columns of U and hence no two rows of UR are proportional, because Ij 6⊂ Ik for every
j 6= k. Denote the convex conic hull of the rows of UR by K . Row n of UL is orthogonal to rows 1 and
2 of UR and has a positive scalar product with the other rows of UR. Therefore row n of UL defines a
supporting hyperplane to K , and the two-dimensional convex conic hull of row 1 and row 2 of UR is a
subset of the boundary of K . By a circular shift of the indices and by repeating the argument we extend
the construction of the boundary of K until it closes in on itself. We obtain that K is a polyhedral cone
with n extreme rays generated by the rows of UR. On the other hand, the rows of UL define exactly the
supporting hyperplanes to K which intersect K in its two-dimensional faces. Therefore the dual cone
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K∗ is given by the convex conic hull of the rows of UL. The relation U = ULU
T
R then reveals that U is

the slack matrix of K .

On the other hand, a convex polyhedral cone K ⊂ R3 with n ≥ 3 extreme rays as well as its dual K∗

have a linear span of dimension 3. Therefore the slack matrix of such a cone has rank 3. This completes
the proof.

Theorem 7 provides a way to construct all collections u ⊂ Rn
+ of vectors u1, . . . , un with supports

suppuj = Ij , j = 1, . . . , n, such that the face Fu of Cn consists of positive semi-definite matrices
only and is linearly isomorphic to Sn−3

+ . By perturbing some of the zeros uj in such a collection, we
obtain faces Fu for which the subset Pu of positive semi-definite matrices is isomorphic to Sk+ with
arbitrary rank k = 0, . . . , n− 3. For k ≥ 2 we have by Corollary 8 that Fu = Pu.

7.2 Circulant matrices

In this section we consider faces Fu defined by special collections u. Let u ∈ Rn−2
+ be palindromic,

i.e., invariant with respect to inversion of the order of its entries, and with positive entries. Define u =
{u1, . . . , un} ⊂ Rn

+ such that suppuj = Ij and ujIj = u for all j = 1, . . . , n. By construction,
the linear dynamical system Su defined by u has constant coefficients, namely the entries of u. Let
p(x) =

∑n−3
k=0 uk+1x

k be the characteristic polynomial of Su.

We provide necessary and sufficient conditions on u such that the corresponding face Fu ⊂ Cn con-
tains exceptional copositive matrices, and construct explicit collections u which satisfy these conditions.
We show that the copositive matrices in these faces must be circulant, i.e., invariant with respect to
simultaneous circular shifts of its row and column indices.

Lemma 23. Suppose the collection u is as in the first paragraph of this section. If Fu 6= Pu, then Fu

contains exceptional circulant matrices.

Proof. LetA1 ∈ Fu be exceptional. By simultaneous circular shifts of the row and column indices of A1

we obtain copositive matricesA2, . . . , An which are also elements of Fu. ThenA = 1
n

∑n
j=1A

j ∈ Fu

is a copositive circulant matrix. By Theorem 1 it is also exceptional.

Lemma 24. Suppose the collection u is as above, let n ≥ 5, and let A ∈ Fu be a circulant matrix.
Then the symmetric bilinear form B = Λ(A) satisfies B(et, es) = B(et+l, es+l) for all t, s, l ≥ 1.

Proof. Define matrices Br,l = (B(er+t, er+s))t,s=0,...,l of size (l + 1) × (l + 1), r ≥ 1, l ≥ d. By
Lemma 10 for l = d the matrices Br,l are equal to a single matrix Bl for all r ≥ 1, and this matrix Bl is
Toeplitz, rank-deficient, and has an element-wise positive kernel vector. We now show by induction that
this holds also for all l > d.

Indeed, the entries of the positive semi-definite matrices Br,l+1 are all determined by the matrix Bl,
except the upper right (and lower left) corner element. Since Bl has a kernel vector with positive el-
ements, Lemma 29 is applicable and these corner elements are unique and hence all equal for all
r ≥ 1. It follows that the matrices Br,l+1 are all equal to a single matrix Bl+1. By construction
this matrix is also Toeplitz and rank-deficient. Moreover, if w ∈ kerBl is element-wise positive, then
(wT , 0)T + (0, wT )T ∈ kerBl+1 is also element-wise positive.

The claim of the lemma now easily follows.
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Corollary 9. Assume the conditions of the previous lemma and set r = b rkB
2 c. Then there exist distinct

angles ϕ0 = π, ϕ1, . . . , ϕr ∈ (0, π) and positive numbers λ0, . . . , λr such that

B(et, es) =
{ ∑r

j=0 λj cos(|t− s|ϕj), rkB odd;∑r
j=1 λj cos(|t− s|ϕj), rkB even

for all t, s ≥ 1. Moreover, e±iϕj are roots of p(x) for all j = 1, . . . , r. In addition, if rkB is odd, then
−1 is also a root of p(x).

Proof. By Theorem 2 we have B ∈ Fu. Hence the Toeplitz matrix T = (B(ei, ej))i,j=1,...,n−2 is
positive semi-definite, rank-deficient and of the same rank as B, and has the element-wise positive
kernel vector u. The corollary follows by application of Lemma 33 to T and by Lemma 24.

With the representation for B(et, es) given by Corollary 9 relations (10) become∑r
j=0 λj(cos((n− k)ϕj)− cos(kϕj)) = 0, rkB odd,∑r
j=1 λj(cos((n− k)ϕj)− cos(kϕj)) = 0, rkB even,

3 ≤ k < n

2
, (14)

where k takes integer values, and inequalities (12) become∑r
j=0 λj(cos((n− 2)ϕj)− cos(2ϕj)) ≤ 0, rkB odd,∑r
j=1 λj(cos((n− 2)ϕj)− cos(2ϕj)) ≤ 0, rkB even.

(15)

Note that (14) is a linear homogeneous system of equations on the weights λj .

Lemma 25. Let n > 5 be even, let u be as above, and letA ∈ Fu be an exceptional copositive circulant
matrix. Then there exist m = n

2 − 2 distinct angles ζ1, . . . , ζm ∈ (0, π), arranged in increasing order,
with the following properties:

(a) the fractional part of
nζj
4π is in (0, 1

2) for odd j and in (1
2 , 1) for even j;

(b) the polynomial p(x) is proportional to the polynomial (x+ 1) ·
∏m
j=1(x2 − 2x cos ζj + 1);

(c) there exist c > 0, λ ≥ 0 such that for all k = 1, . . . , n2 + 1 we have

A1k = (−1)k−1λ+ c ·
m∑
j=1

cos(k − 1)ζj
sin ζj sin nζj

2

∏
l 6=j(cos ζj − cos ζl)

. (16)

If λ = 0, then A is degenerate and extremal. If λ > 0, then A is regular and not extremal.

Proof. Let B = Λ(A) and apply Corollary 9. By Corollary 7 we have either rkB = n − 4 or rkB =
n− 3 and hence m = r. Define ζ1, . . . , ζm to be the angles ϕ1, . . . , ϕr, arranged in increasing order.
Then e±iζj are roots of p(x) by Corollary 9, and p(x) is of the formα·(x−β)·

∏m
j=1(x2−2x cos ζj+1)

for some α > 0 and real β. Since the coefficient vector u of p(x) is palindromic, we must have β = −1,
which proves (b).

By (9) we have A1k = B(e1, ek), k = 1, . . . , n+1
2 , which in turn is given by Corollary 9. Here the

weights λj satisfy relations (14),(15), the inequality being strict by Lemma 13. We have ϕ0 = π and
hence cos((n − k)ϕ0) = cos(kϕ0) for all integers k. Therefore (14),(15) do not impose any condi-
tions on the coefficient λ0, and these m relations can be considered as conditions on λ1, . . . , λm only.
By Corollary 10 there are no multiples of 2π

n among the angles ζ1, . . . , ζm, and the coefficient vector
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(λ1, . . . , λm) is proportional to solution (27) in this corollary. This yields (c) with c > 0, with λ = 0 if
rkB = n− 4, and with λ = λ0 > 0 if rkB = n− 3.

The last assertions of the lemma now follow from Theorem 3.

Finally, the weights λ1, . . . , λm are positive by Corollary 9, and their explicit expression from Corollary 10
yields sin ζj sin nζj

2

∏
l 6=j(cos ζj−cos ζl) > 0. Since the cosine function is strictly decreasing on (0, π)

and the ζj are arranged in increasing order, it follows that sgn sin nζj
2 = sgn

∏
l 6=j(cos ζj − cos ζl) =

(−1)j+1, which implies (a).

Lemma 26. Let n ≥ 5 be odd, let u be as above, and letA ∈ Fu be an exceptional copositive circulant
matrix. Then there exist m = n−3

2 distinct angles ζ1, . . . , ζm ∈ (0, π], arranged in increasing order,
with the following properties:

(a) the fractional part of
nζj
4π is in (0, 1

2) for odd j and in (1
2 , 1) for even j;

(b) the polynomial p(x) is proportional to the polynomial
∏m
j=1(x2 − 2x cos ζj + 1);

(c) there exists c > 0 such that for all k = 1, . . . , n+1
2 we have

A1k = c ·
m∑
j=1

cos(k − 1)ζj
sin ζj

2 sin nζj
2

∏
l 6=j(cos ζj − cos ζl)

. (17)

The matrix A is degenerate if ζm = π and regular if ζm < π. In both cases A is extremal.

Proof. Let B = Λ(A) and apply Corollary 9. By Corollary 7 we have either rkB = n − 4 or rkB =
n− 3, which gives m = r + 1 or m = r, respectively. Define ζ1, . . . , ζm to be the angles ϕ0, . . . , ϕr
in the first case and ϕ1, . . . , ϕr in the second case, arranged in increasing order. Then ζm = π if
rkB = n − 4 and ζm < π if rkB = n − 3. By Corollary 9 the numbers e±iζj are roots of p(x),
and p(x) is of the form α · (x + 1) · (x − β) ·

∏m−1
j=1 (x2 − 2x cos ζj + 1) if ζm = π and p(x) =

α ·
∏m
j=1(x2 − 2x cos ζj + 1) if ζm < π, for some α > 0 and real β. Since the coefficient vector u of

p(x) is palindromic, we must have β = −1, which proves (b).

By Theorem 3 the matrix A is degenerate and extremal if ζm = π, and regular if ζm < π.

By (9) we have A1k = B(e1, ek), k = 1, . . . , n+1
2 , which in turn is given by Corollary 9. Here the m

coefficients λj satisfy the m relations (14),(15), the inequality being strict by Lemma 13. By Corollary 10
there are no multiples of 2π

n among the angles ζ1, . . . , ζm, and the coefficient vector (λ1, . . . , λm) is
proportional to solution (27) in this corollary. This yields (c) with c > 0.

Assertion (a) is obtained in the same way as in the proof of Lemma 25.

It remains to show the extremality of A for ζm < π. By Lemma 38 in Appendix B the dimension of the
space Au cannot exceed 1, otherwise we obtain a contradiction with the nonnegativity of u. It follows
that dimFu = 1 and A is extremal in Cn.

Note that the elementsA1k, k = 1, . . . , dn+1
2 e, determine the matrixA completely by its circulant prop-

erty. We obtain the following characterization of collections u defining facesFu which contain exceptional
matrices.

Theorem 8. Let n > 5 be even, m = n
2 − 2, and let u and p(x) be as in the first paragraph of

this section. Then Fu 6= Pu if and only if there exist distinct angles ζ1, . . . , ζm ∈ (0, π), arranged
in increasing order, such that conditions (a),(b) of Lemma 25 hold. In this case the face Fu is linearly
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isomorphic to R2
+ and consists of the circulant matricesA with entriesA1k, k = 1, . . . , n2 + 1, given by

(16) with c, λ ≥ 0. The subset Pu ⊂ Fu is given by those A with c = 0.

Proof. Suppose Fu 6= Pu. Then by Lemma 23 there exists a circulant matrix A ∈ Fu \ Pu. Hence
Lemma 25 applies and conditions (a),(b) hold.

Let now ζ1, . . . , ζm ∈ (0, π) be an increasing sequence of angles satisfying conditions (a),(b) of Lemma
25. Define weights λ1, . . . , λm by (27). By condition (a) these weights are positive, and by Corollary 10
they satisfy system (26). Let A ∈ Sn be the circulant matrix satisfying A1k =

∑m
j=1 λj cos(k − 1)ζj

for k = 1, . . . , n2 + 1. By (26) the last relation actually holds for k = 1, . . . , n − 2, and A1,n−1 >∑m
j=1 λj cos(n − 2)ζj . By construction the submatrices AIj are positive semi-definite of rank 2m =

n − 4 and by condition (b) they possess the kernel vector u = ujIj . Moreover, the preceding inequality

implies that (un)TAu1 > 0 and (uj)TAuj+1 > 0 for j = 1, . . . , n− 1. By Theorem 1 we then have
A ∈ Fu \ Pu, proving the equivalence claimed in the theorem.

Let P ∈ Sn+ be the positive semi-definite circulant rank 1 matrix given element-wise by Pkl = (−1)k−l.
Since the subvectors ujIj are palindromic and have an even number of entries, we get that (uj)TPuj =
0 for all j = 1, . . . , n. Hence P ∈ Pu and rPSD ≥ 1, where rPSD is the maximal rank achieved by
matrices in Pu. But then rPSD = 1 and rmax = n − 3 by Corollary 8, and the last assertion of the
theorem follows.

By Lemma 20 we have Fu ' R2
+. However, the matrices A and P constructed above are linearly

independent elements of Fu, and therefore Fu ⊂ span{A,P} consists of circulant matrices only. The
remaining assertions now follow from Lemma 25.

Theorem 9. Let n ≥ 5 be odd, m = n−3
2 , and let u and p(x) be as in the first paragraph of this

section. Then Fu 6= Pu if and only if there exist distinct angles ζ1, . . . , ζm ∈ (0, π], arranged in
increasing order, such that conditions (a),(b) of Lemma 26 hold. In this case the face Fu is an extreme
ray of Cn and consists of the circulant matrices A with entries A1k, k = 1, . . . , n+1

2 , given by (17) with
c ≥ 0.

Proof. The proof of the theorem is similar to the proof of Theorem 8, with obvious modifications.

The question which collections u, of the type described at the beginning of this subsection, yield faces
Fu containing exceptional copositive matrices hence reduces to the characterization of real polynomials
of the form given in (b) of Lemmas 25 or 26, with positive coefficients and satisfying condition (a) of these
lemmas. This is seemingly a difficult question, and only limited results are known. However, the existence
of faces Fu containing exceptional copositive matrices is guaranteed for every n ≥ 5 by the following
result on polynomials with equally spaced roots on the unit circle.

Lemma 27. [12, Theorem 2] Let m ≥ 1 be an integer, and let α > 0, θ ≥ 0 be such that π2 ≤
θ+ (m−1)α

2 ≤ π and 0 < α < π
m . Then the polynomial q(x) =

∏m
j=1(x2−2x cos(θ+(j−1)α)+1)

has positive coefficients.

Indeed, the lemma allows to construct the following explicit examples.

Degenerate extremal matrices. Let n ≥ 5,m = dn2 e−2, and p(x) = (xn+1)(x+1)

(x2−2x cos π
n

+1)(x2−2x cos 3π
n

+1)
.

Then p(x) is a palindromic polynomial of degree n−3. Set also q(x) = p(x) for odd n and q(x) = p(x)
x+1

for even n. Then q(x) is of degree 2m and has positive coefficients by virtue of Lemma 27 with α = 2π
n ,
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θ = 5π
n . It follows that also p(x) has positive coefficients. Let u ∈ Rn−2

+ be the vector of its coefficients,
and let u be the collection of nonnegative vectors constructed from u as in the first paragraph of this
section. Then the angles ζj = (2j+3)π

n , j = 1, . . . ,m, satisfy conditions (a),(b) of Lemmas 25 and
26, for even and odd n, respectively. By Theorems 8 and 9 we obtain that Fu ' R2

+ for even n and
Fu ' R+ for odd n, their elements being circulant matrices given by (16) and (17), respectively. One
extreme ray of Fu is then generated by an extremal degenerate copositive circulant matrix A. For even
n the other extreme ray is generated by a circulant positive semi-definite rank 1 matrix P . Their elements
are given by Pij = (−1)i−j and

Aij =


2(1 + 2 cos πn cos 3π

n ), i = j,
−2(cos πn + cos 3π

n ), |i− j| ∈ {1, n− 1},
1, |i− j| ∈ {2, n− 2},
0, |i− j| ∈ {3, . . . , n− 3},

(18)

i, j = 1, . . . , n.

Regular extremal matrices. Let n ≥ 5 be odd, and set m = n−3
2 . Then the polynomial p(x) =

xn+1+1
(x2−2x cos π

n+1
+1)(x2−2x cos 3π

n+1
+1)

is palindromic of degree 2m = n − 3, and it has positive coef-

ficients by virtue of Lemma 27 with α = 2π
n+1 , θ = 5π

n+1 . Construct u ∈ Rn−2
+ and u ⊂ Rn

+ as

above from the coefficients of p(x). Then the angles ζj = (2j+3)π
n+1 , j = 1, . . . ,m, satisfy conditions

(a),(b) of Lemma 26. By Theorem 9 Fu is one-dimensional and generated by a circulant regular extremal
copositive matrix whose elements are given by (17). Explicitly this gives

Aij =


2(1 + 2 cos π

n+1 cos 3π
n+1), i = j,

−2(cos π
n+1 + cos 3π

n+1), |i− j| ∈ {1, n− 1},
1, |i− j| ∈ {2, n− 2},
0, |i− j| ∈ {3, . . . , n− 3},

(19)

i, j = 1, . . . , n.

However, Lemma 27 allows also for other choices of regularly spaced angles ζ1, . . . , ζm or regularly
spaced angles ζ1, . . . , ζm−1, 2π − ζm. The following result guarantees the positivity of the coefficients
of p(x) also in the case when only ζ2, . . . , ζm (or ζ2, . . . , ζm−1, 2π − ζm) are regularly spaced, and
the spacing between ζ1 and ζ2 is inferior to the spacing between the other angles.

Lemma 28. [1, Corollary 1.1] Let p(x) be a real polynomial with nonnegative coefficients, and let x0

be the root of p(x) which has the smallest argument among all roots of p(x) in the upper half-plane. If
x1 is any number such that |x1| ≥ |x0| and Rex1 ≤ Rex0, then the coefficients of the polynomial

p(x) (x−x1)(x−x̄1)
(x−x0)(x−x̄0) are not smaller than the corresponding coefficients of p(x).

As to the general case, we establish the following conjecture.

Conjecture 1. Let n ≥ 5 be an integer, and set m = dn2 e − 2. Let ζ1, . . . , ζm ∈ (0, π] be an

increasing sequence of angles such that the fractional part of
nζj
4π is in (0, 1

2) for odd j and in (1
2 , 1)

for even j. Define the polynomial q(x) =
∏m
j=1(x2 − 2x cos ζj + 1), and set p(x) = q(x) for odd

n and p(x) = (x + 1)q(x) for even n. Then the coefficients of p(x) are all positive if and only if

ζj ∈ ( (2j+2)π
n , (2j+4)π

n ) for all j = 1, . . . ,m.

We have verified this conjecture for n ≤ 8.
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8 Matrices of order 6

In this section we compute all exceptional extremal copositive matricesA of size 6× 6 which have zeros
uj with suppuj = Ij , j = 1, . . . , 6. We assume without loss of generality that diagA = (1, . . . , 1),
because every other such matrix lies in the G6-orbit of a matrix normalized in this way.

Let A ∈ C6 be exceptional and extremal, diagA = (1, . . . , 1), and let u = {u1, . . . , u6} ⊂ R6
+ be

zeros of A satisfying suppuj = Ij . By Theorem 3 the matrix A is degenerate, and rkAIj = 2 for all
j = 1, . . . , 6. Therefore B = Λ(A) has rank 2 by Corollary 3, and B = x ⊗ x + y ⊗ y for some
solutions x = (x1, x2, . . . ), y = (y1, y2, . . . ) ∈ Lu. Extremality of A implies that the linear span of
{x, y} does not contain non-zero periodic solutions. Indeed, let v ∈ span{x, y} be such a solution.
Then v ⊗ v ∈ Pu, and B ± ε · v ⊗ v ∈ Fu for ε small enough. Hence A can be represented as a
non-trivial convex combination of the elements Λ−1(B ± εv ⊗ v) ∈ Fu, contradicting extremality.

Shift-invariance of B implies that the monodromy M of the system Su acts on x, y ∈ Lu by(
Mx
My

)
= M

(
x
y

)
,

where M is an orthogonal 2× 2 matrix. If M is a reflection, then M has an eigenvector with eigenvalue
1 in the span of {x, y}, leading to a contradiction by Lemma 6. Hence M is a rotation by an angle
ζ ∈ (0, 2π), i.e.,

Mx = cos ζ · x− sin ζ · y, My = sin ζ · x+ cos ζ · y. (20)

By (9) and by the normalization adopted above we have x2
k + y2

k = 1 for all k ≥ 1. Without loss of
generality we may assume that x1 = 1, y1 = 0, otherwise we rotate the basis {x, y} of span{x, y}
appropriately by redefining x, y. Then we have

xk = cos
k−1∑
j=1

(π − ϕj), yk = sin
k−1∑
j=1

(π − ϕj)

for some angles ϕ1, ϕ2, · · · ∈ [0, 2π), for all k ≥ 1. By virtue of (20) we get

k+5∑
j=k

(π − ϕj) ≡ −
k+5∑
j=k

ϕj ≡ ζ mod 2π ∀ k ≥ 1.

It follows that ϕk ≡ ϕk+6 modulo 2π for all k ≥ 1, and the sequence {ϕk} is 6-periodic.

We have

B(et, es) = xtxs + ytys = (−1)s−t cos
max(t,s)−1∑
j=min(t,s)

ϕj , ∀ t, s ≥ 1. (21)

Conditions (10) reduce to B(et, et+3) = B(et+3, et+6) for all t ≥ 1, which yields

cos(ϕt+ϕt+1+ϕt+2) = cos(ϕt+3+ϕt+4+ϕt+5) = cos(ζ+ϕt+ϕt+1+ϕt+2) ∀ t ≥ 1. (22)

By virtue of ζ 6= 0 it follows that ϕt + ϕt+1 + ϕt+2 ≡ −(ζ + ϕt + ϕt+1 + ϕt+2) modulo 2π, or
equivalently,

ϕt + ϕt+1 + ϕt+2 ≡ −
ζ

2
mod π ∀ t ≥ 1.
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This yields ϕt ≡ ϕt+3 modulo π, or ϕt+3 = ϕt + δt with δt ∈ {−π, 0, π}, for all t ≥ 1.

By Lemma 13 inequalities (12) hold strictly, which yields

cos(ϕt + ϕt+1) > cos(ϕt+2 + ϕt+3 + ϕt+4 + ϕt+5) = cos(ζ + ϕt + ϕt+1) ∀ t ≥ 1. (23)

Equivalently, ϕt + ϕt+1 ∈ 2πlt + (− ζ
2 , π −

ζ
2) for some lt ∈ {0, 1, 2}, for all t ≥ 1. Replacing t

by t + 3, we get ϕt+3 + ϕt+4 = ϕt + ϕt+1 + δt + δt+1 ∈ 2πlt+3 + (− ζ
2 , π −

ζ
2), and therefore

δt + δt+1 ≡ 0 modulo 2π, for all t ≥ 1. It follows that either δt = 0 for all t, or δt ∈ {−π, π} for all t.

Assume the second case, for the sake of contradiction. Then cos(ϕt+3 +ϕt+4 +ϕt+5) = − cos(ϕt +
ϕt+1 +ϕt+2), which together with (22) gives ϕt+ϕt+1 +ϕt+2 ≡ π

2 modulo π for all t ≥ 1, and ζ = π.
Inequality (23) yields cos(ϕt + ϕt+1) > 0 for all t ≥ 1. We then get x1 = 1, x3 > 0, x4 = 0. But x
is the solution of a 3-rd order linear system with positive coefficients. Hence x2 < 0, and ϕ1 6∈ [π2 ,

3π
2 ].

By a similar argument, this has to be true for all ϕt, t ≥ 1, contradicting δt ∈ {−π, π}.

Therefore ϕt+3 = ϕt for all t ≥ 1. Set σ = ϕ1 + ϕ2 + ϕ3. Then (23) reduces to cos(σ − ϕj) >
cos(σ + ϕj), or equivalently sinσ sinϕj > 0 for j = 1, 2, 3. Therefore sinϕj and sinσ have the
same sign for all j = 1, 2, 3. By possibly replacing the solution y by −y, we may assume without
loss of generality that sinϕ1 > 0 and hence ϕj ∈ (0, π), π − ϕj ∈ (0, π) for all j = 1, 2, 3. If
σ ∈ (2π, 3π), then

∑3
j=1(π − ϕj) ∈ (0, π), and yk > 0 for k = 2, 3, 4. Since also y1 = 0,

this contradicts the condition that y is a solution of a linear 3-rd order system with positive coefficients.
Therefore ϕ1 + ϕ2 + ϕ3 < π. By (9),(21) the matrix A is then given by

1 − cosϕ1 cos(ϕ1+ϕ2) − cos(ϕ1+ϕ2+ϕ3) cos(ϕ2+ϕ3) − cosϕ3

− cosϕ1 1 − cosϕ2 cos(ϕ2+ϕ3) − cos(ϕ1+ϕ2+ϕ3) cos(ϕ1+ϕ3)

cos(ϕ1+ϕ2) − cosϕ2 1 − cosϕ3 cos(ϕ1+ϕ3) − cos(ϕ1+ϕ2+ϕ3)

− cos(ϕ1+ϕ2+ϕ3) cos(ϕ2+ϕ3) − cosϕ3 1 − cosϕ1 cos(ϕ1+ϕ2)

cos(ϕ2+ϕ3) − cos(ϕ1+ϕ2+ϕ3) cos(ϕ1+ϕ3) − cosϕ1 1 − cosϕ2

− cosϕ3 cos(ϕ1+ϕ3) − cos(ϕ1+ϕ2+ϕ3) cos(ϕ1+ϕ2) − cosϕ2 1

.
(24)

On the other hand, let ϕ1, ϕ2, ϕ3 > 0 such that ϕ1 + ϕ2 + ϕ3 < π, and consider the matrix A given
by (24). Let v1, . . . , v6 ∈ R6

+ be the columns of the matrix

V =



sinϕ2 0 0 0 sinϕ2 sin(ϕ1+ϕ3)

sin(ϕ1+ϕ2) sinϕ3 0 0 0 sinϕ3

sinϕ1 sin(ϕ2+ϕ3) sinϕ1 0 0 0

0 sinϕ2 sin(ϕ1+ϕ3) sinϕ2 0 0

0 0 sinϕ3 sin(ϕ1+ϕ2) sinϕ3 0

0 0 0 sinϕ1 sin(ϕ2+ϕ3) sinϕ1

 , (25)

and define uj = vj + vj+1, j = 1, . . . , 5, u6 = v6 + v1. By construction the submatrices AIj are
positive semi-definite and of rank 2, and (uj)TAuj = 0, suppuj = Ij for all j = 1, . . . , 6. Moreover,
(uj)TAuj+1 > 0 for all j = 1, . . . , 5 and (u6)TAu1 > 0. HenceA is an exceptional copositive matrix
by Theorem 1, and it is degenerate and extremal by Theorem 3. By (ii.d) of Theorem 3 the columns of
V are minimal zeros of A, and every minimal zero of A is a positive multiple of some column of V . We
have proven the following result.

Theorem 10. Let A ∈ C6 be exceptional and extremal with zeros u1, . . . , un satisfying suppuj = Ij
for all j = 1, . . . , 6. Then A is in the G6-orbit of some matrix of the form (24), with ϕ1, ϕ2, ϕ3 > 0 and
ϕ1 + ϕ2 + ϕ3 < π. The minimal zero pattern of A is given by
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{{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}, {1, 5, 6}, {1, 2, 6}}. On the other hand, every matrixA of the
form (24) with ϕ1, ϕ2, ϕ3 > 0 and ϕ1 + ϕ2 + ϕ3 < π is exceptional and extremal, and every minimal
zero of A is proportional to one of the columns of the matrix (25).

Remark 1. We do not claim that every extremal exceptional copositive matrix in C6 with diagA =
(1, . . . , 1) and with this minimal zero pattern has to be of the form (24).

9 Conclusions

In this contribution we considered copositive matrices with zeros u1, . . . , un ∈ Rn
+ having supports

suppuj = Ij . Exceptional copositive matrices with this property exist for all matrix sizes n ≥ 5 and
are of two types, in dependence on whether the zeros uj are minimal or not. The matrices of each type
make up an algebraic submanifold of Sn, of codimensions n and 2n, respectively. The prototypes of
these matrices are the T -matrices and the Horn matrix, respectively. Explicit examples of such matri-
ces have been given in (19) and (18), respectively. We show that if the zeros uj are not minimal, then
the corresponding exceptional copositive matrices are extremal. If the zeros uj are minimal, then the
corresponding matrices can be extremal only for odd n.

Some open questions within this framework remain:

� Do regular non-extremal matrices exist for odd matrix size?

� Do degenerate matrices with minimal zero pattern different from {I ′1, . . . , I ′n} exist?

� Which types of extremal copositive matrices can appear on the boundary of the submanifolds of
regular and degenerate matrices, respectively?

� What is the global topology of these submanifolds?

A Auxiliary results

In this section we collect a few auxiliary results of general nature.

Lemma 29. Let A ∈ Sn and define the ordered index subsets I = (1, . . . , n − 1), I ′ = (2, . . . , n).
Suppose that the principal submatrices AI , AI′ are positive semi-definite, and that there exist vectors
u, v ∈ Rn such that u1, vn > 0, v1 = un = 0, and uTAu = vTAv = 0. Then there exists a unique
real number δ such that A− δ ·E1n is positive semi-definite, and this number has the same sign as the
product uTAv.

Proof. Consider the matrix-valued function P (δ) = A − δE1n. All elements of P (δ) except the upper
right (and correspondingly lower left) corner element coincide with the corresponding elements of A.
Therefore the posed problem on the unknown δ can be considered as a positive semi-definite matrix
completion problem. Namely, we wish to modify the corner elements of A to make it positive semi-
definite. By a standard result on positive semi-definite matrix completions [13] there exists a solution δ
such that P (δ) � 0.

On the other hand, for every solution δ we have uTP (δ)u = vTP (δ)v = 0 and therefore must have

uTP (δ)v = 0. Uniqueness of the solution follows and we have the explicit expression δ = uTAv
uTE1nv

.

The assertion of the lemma now follows from the strict inequality uTE1nv > 0.
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Lemma 30. Define the setM = {M ∈ Rn×n | detM = 0}, and let M ∈ M be a matrix of corank
1. Let the vectors u, v ∈ Rn be generators of the left and the right kernel of M , respectively. Then the
orthogonal complement under the Frobenius scalar product 〈A,B〉 = tr(ABT ) of the tangent space
toM at M is generated by the rank 1 matrix uvT .

Proof. Let M = F 0
L(F 0

R)T be a factorization of M , where F 0
L, F

0
R are full column rank n × (n − 1)

matrices. The setM can be written as {FLF TR |FL, FR ∈ Rn×(n−1)}. Therefore the tangent space to
M atM is given by all matrices of the form F 0

L∆T
R+∆L(F 0

R)T , where ∆L,∆R ∈ Rn×(n−1) are arbi-
trary. Therefore a matrixH ∈ Rn×n is orthogonal toM atM if and only if 〈F 0

L∆T
R+∆L(F 0

R)T , H〉 =
tr(∆L(F 0

R)THT + ∆R(F 0
L)TH) = 0 for all ∆L,∆R ∈ Rn×(n−1). Equivalently, HF 0

R = HTF 0
L =

0, or HMT = HTM = 0. The assertion of the lemma now readily follows.

Lemma 31. Let u1, . . . , un ∈ Rn be non-zero vectors, such that no two of these are proportional and
the dimension of the linear span span{u1, . . . , un} has corank at most 1. Then the rank 1 matrices
uj(uj)T , j = 1, . . . , n, are linearly independent.

Proof. Without loss of generality we may assume that u1, . . . , un−1 are linearly independent. In an
appropriate coordinate system these vectors then equal the corresponding canonical basis vectors. Then
uj(uj)T = Ejj for j = 1, . . . , n− 1. Hence the rank 1 matrices uj(uj)T are linearly dependent only
if un(un)T is diagonal with at least two non-zero entries, which leads to a contradiction.

Lemma 32. Define the set

M = {S ∈ Sn | detS(1,...,n−1) = detS(2,...,n) = det(Sij)i=1,...,n−1;j=2,...,n = 0},

and let S ∈M be a positive semi-definite matrix of corank 2. Suppose there exists a basis {u, v} ⊂ Rn

of kerS such that u1 6= 0, vn 6= 0, un = v1 = 0. Then there exists a neighbourhood U ⊂ Sn of S
such that a matrix S′ ∈ U is positive semi-definite of corank 2 if and only if S′ ∈ U ∩M.

Proof. By un = 0 the subvector u(1,...,n−1) is in the kernel of S(1,...,n−1). Hence S(1,...,n−1) is of corank

at least 1. If w ∈ kerS(1,...,n−1) is another kernel vector, then w′ = (wT , 0)T ∈ Rn is in the kernel of
S and must therefore be proportional to u, because v cannot be in span{u,w} by vn 6= 0. Therefore
S(1,...,n−1) is positive semi-definite of corank 1. Similarly, the submatrix S(2,...,n) is positive semi-definite
of corank 1.

Let S′ ∈M be close to S. Then by continuity the n− 2 largest eigenvalues of S′(1,...,n−1) are positive,

and the remaining eigenvalue is zero by definition ofM. Therefore S′(1,...,n−1) � 0 and rkS′ ≥ n− 2.

The kernel of S′(1,...,n−1) is close to that of S(1,...,n−1), hence there exists a vector u′, close to u, such

that (u′)TS′u′ = 0 and u′1 6= 0, u′n = 0. Similarly, S′(2,...,n) is positive semi-definite and there exists a

vector v′, close to v, such that (v′)TS′v′ = 0 and v′n 6= 0, v′1 = 0.

By u′1 6= 0 the first column of the submatrix S′(1,...,n−1) is a linear combination of the other columns.

These n− 2 columns must therefore be linearly independent. It follows that the submatrix S′(2,...,n−1) is

positive definite. Therefore the (n− 2)× (n− 1) submatrix (S′ij)i=2,...,n−1;j=2,...,n has full row rank,
and every vector in its right kernel must be proportional to v′(2,...,n). Hence the right kernel of the singular

submatrix (S′ij)i=1,...,n−1;j=2,...,n must also be generated by v′(2,...,n). Similarly, the left kernel of this

submatrix is generated by u′(1,...,n−1), and we get that (u′)TS′v′ = 0.
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By possibly replacing u′ by −u′ or v′ by −v′, we may enforce u′1 > 0, v′n > 0. By Lemma 29 we then
have that S′ is positive semi-definite. Now both u′ and v′ are in the kernel of S′, and these vectors are
linearly independent. Therefore rkS′ ≤ n− 2, and S′ is of corank 2.

On the other hand, every matrix S′ of corank 2 is inM. This completes the proof.

Lemma 33. Let T be a singular real symmetric positive semi-definite Toeplitz matrix of rank k and
with an element-wise nonnegative non-zero kernel vector u. Then there exist distinct angles ζ0 = π,
ζ1, . . . , ζm ∈ (0, π) and positive numbers λ0, . . . , λm, wherem = bk2c, such that T =

∑m
j=0 λjT (ζj)

for odd k and T =
∑m

j=1 λjT (ζj) for even k, where T (ζ) is the symmetric Toeplitz matrix with first
row (1, cos ζ, cos 2ζ, . . . ). Moreover, if p(x) is the polynomial whose coefficients equal the entries of
u, then e±iζj are roots of p(x) for j = 1, . . . ,m, and −1 is a root of p(x) if k is odd.

Proof. Any positive semi-definite Toeplitz matrix T of rank k can be represented as a weighted sum of
k rank 1 positive semi-definite Toeplitz matrices with positive weights. Each of these rank 1 matrices is
complex Hermitian with first row (1, eiζ , e2iζ , . . . ) for some ζ ∈ [0, 2π), and the angles ζ are pairwise
distinct. If T is singular, then the weights and the angles are determined uniquely [21, Chapter 3]. For
real T the complex rank 1 matrices appear in complex conjugate pairs, each of which sums to a Toeplitz
matrix of the form T (ζ) with ζ ∈ (0, π).

The kernel of T equals the intersection of the kernels of the rank 1 summands. The angle ζ = 0 then
cannot appear in the sum due to the presence of an element-wise nonnegative non-zero kernel vector.
Hence the angle ζ = π, which corresponds to the only remaining real rank 1 Toeplitz matrix, appears in
the sum if and only if k is odd.

Finally, u is in the kernel of every rank 1 summand in the decomposition of T . This directly yields the last
assertion of the lemma.

Lemma 34. Assume the notations and conditions of the previous lemma and let v ∈ Rk+1 be a non-
zero kernel vector of the upper left principal submatrix of T of size k + 1. Then v is proportional to the
coefficient vector of the polynomial p(x) =

∏m
j=1(x2−2x cos ζj +1) if k is even and of the polynomial

p(x) = (x+ 1)
∏m
j=1(x2 − 2x cos ζj + 1) if k is odd.

Proof. Let v = (v0, . . . , vk)T . Since v is also in the kernel of the principal submatrix of each rank 1
component in the decomposition of T from the proof of the previous lemma, we have

∑k
l=0 vle

ilζj = 0
for all j = 0, . . . ,m if k is odd, and for all j = 1, . . . ,m if k is even. This means that e±iζj are the
roots of the polynomial pv(x) =

∑k
l=0 vlx

l for all j. Since these are already k distinct roots, these must
be all roots of pv . Noting that (x−eiζ)(x−e−iζ) = x2−2x cos ζ+1 and x−eiπ = x+1 completes
the proof.

Lemma 35. Let n ≥ 5, r, s be positive integers, γ ∈ R arbitrary, and ζ1, . . . , ζs ∈ [0, π]. Then the
system of r linear equations

s∑
j=1

λj(cos(n− k)ζj − cos kζj) = 0, k = dn
2
e+ 1− r, . . . , dn

2
e − 1,

s∑
j=1

λj(cos(n− (dn
2
e − r))ζj − cos(dn

2
e − r)ζj) = γ
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on the unknowns λ1, . . . , λs is equivalent to the system
1 · · · 1

cos ζ1 · · · cos ζs
...

...
cosr−1 ζ1 · · · cosr−1 ζs


λ1 sin ζ1

2 sin nζ1
2

...

λs sin ζs
2 sin nζs

2

 =


0
...
0

−2−rγ


for odd n and 

1 · · · 1
cos ζ1 · · · cos ζs

...
...

cosr−1 ζ1 · · · cosr−1 ζs


λ1 sin ζ1 sin nζ1

2
...

λs sin ζs sin nζs
2

 =


0
...
0

−2−rγ


for even n.

Proof. Due to the identity cos(2α− β)− cosβ = −2 sinα sin(α− β) the system is equivalent to

sin(n2 − d
n
2 e+ 1)ζ1 · · · sin(n2 − d

n
2 e+ 1)ζs

...
...

sin(n2 − d
n
2 e+ r)ζ1 · · · sin(n2 − d

n
2 e+ r)ζs


λ1 sin nζ1

2
...

λs sin nζs
2

 =


0
...
0
−γ

2

 .

Column j of the coefficient matrix above is given by (sin ζj
2 , sin

3ζj
2 , . . . , sin

(2r−1)ζj
2 )T for odd n and

by (sin ζj , sin 2ζj , . . . , sin rζj)T for even n. Apply the formula sin kϕ = sinϕ(e(k−1)iϕ+e(k−3)iϕ+
· · ·+ e−(k−1)iϕ) to the coefficients in column j with ϕ = ζj

2 for odd n and ϕ = ζj for even n.

By adding to each row of the coefficient matrix appropriate multiples of the rows above it, we may obtain
a matrix whose column j is given by sin ζj

2 (1, eiζj + e−iζj , . . . , (eiζj + e−iζj )r−1)T for odd n and by
sin ζj(1, eiζj + e−iζj , . . . , (eiζj + e−iζj )r−1)T for even n. The right-hand side of the system does not
change under this operation. Recalling that eiζ + e−iζ = 2 cos ζ , we obtain the equivalent systems in
the formulation of the lemma.

Corollary 10. Let n ≥ 5 be an integer, and set m = dn2 e − 2. Let ζ1, . . . , ζm ∈ (0, π] be distinct
angles. Then the inhomogeneous linear system of the m equations

m∑
j=1

λj(cos(n− k)ζj − cos kζj) = 0, 3 ≤ k ≤ m+ 1, (26)

m∑
j=1

λj(cos(n− 2)ζj − cos 2ζj) = −1

on the unknowns λ1, . . . , λm has a solution if and only if among the angles ζj there are no multiples of
2π
n , and this solution is unique and given by

λj =


(

2m sin ζj
2 sin nζj

2

∏
l 6=j(cos ζj − cos ζl)

)−1
, n odd,(

2m sin ζj sin nζj
2

∏
l 6=j(cos ζj − cos ζl)

)−1
, n even.

(27)
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Proof. Apply Lemma 35 with r = s = m. Since the cosine function is strictly monotonous on (0, π],
the Vandermonde matrix in the equations in this lemma is non-singular. Using explicit formulas for the
inverse of the Vandermonde matrix [18], we obtain for every j = 1, . . . ,m that λj sin ζj

2 sin nζj
2 =

1
2m

Q
l 6=j(cos ζj−cos ζl)

for odd n and λj sin ζj sin nζj
2 = 1

2m
Q
l 6=j(cos ζj−cos ζl)

for even n. The claim of

the corollary now easily follows.

B Extremality of exceptional circulant matrices

In this section we provide Lemma 38, which is the technically most difficult part of the proof of Lemma 26.
Its proof uses a bit more advanced mathematical concepts, in particular, linear group representations.

Let LC ⊂ Sn be the subspace of circulant matrices, i.e., matrices which are invariant with respect
to simultaneous circular shifts of the row and column indices. Let PS : Sn → Sn be the linear map
which corresponds to a circular shift by one entry. Then PnS is the identity map Id, and PS generates
a symmetry group which is isomorphic to the cyclic group Cn. However, symmetric circulant matrices
possess yet another symmetry. Namely, they are persymmetric, i.e., invariant with respect to reflection
about the main skew diagonal. Denote this reflection by PP : Sn → Sn. The symmetry group generated
by PS and PP is isomorphic to the dihedral group Dn, which has 2n elements. The action of Dn on Sn
defines a linear unitary representation RSn of Dn of dimension n(n+1)

2 , which decomposes into a direct
sum of irreducible representations. This decomposition corresponds to an orthogonal decomposition of
Sn into a direct sum of invariant subspaces.

In this section we suppose n ≥ 5 to be an odd number. Then the groupDn has two irreducible represen-
tations of dimension 1. Both of these send PS to the identity Id. The element PP is sent to Id by the triv-
ial representation and to−Id by the other 1-dimensional representation. The n+1

2 -dimensional subspace
LC is exactly the invariant subspace corresponding to the trivial representation. The other 1-dimensional
representation does not participate in RSn , because there is no non-zero matrix A ∈ Sn such that
PS(A) = A and PP (A) = −A. Besides the 1-dimensional representations, Dn possesses n−1

2
2-dimensional representations R1, . . . , Rn−1

2
. Here Rk sends PS to the rotation of the 2-dimensional

representing subspace by the angle 2πk
n , and PP to a reflection of this subspace.

Set m = n−3
2 and let ζ1, . . . , ζm ∈ (0, π) be distinct angles in increasing order. Define the polynomial

p(x) =
∏m
j=1(x2 − 2x cos ζj + 1), which has roots e±iζj , and let u ∈ Rn−2 be its coefficient vector.

Note that p is palindromic, i.e., u does not change if the order of its entries in inverted. For j = 1, . . . , n,
define vectors uj ∈ Rn such that ujIj = u and uji = 0 for all i 6∈ Ij . We do not make further

assumptions on the collection u = {u1, . . . , un}, in particular, we do not demand u to be positive.

For every k = 1, . . . , n−1
2 we also define the polynomial pk(x) =

∏m
j=1(x2−2xe−πik(n−1)/n cos ζj+

e−2πik(n−1)/n) and denote by vk ∈ Rn−2 its coefficient vector, with vk1 = 1 being the coefficient at
x2m. Then the roots of pk all lie on the unit circle and equal ei(±ζj−πk(n−1)/n), j = 1, . . . ,m, and the
elements of vk are given by vkl = eπik(n+1−l)(n−1)/nul, l = 1, . . . , n− 2.

For given u, defined by angles ζ1, . . . , ζm as above, we are interested in the linear subspace Lu ⊂
Sn of symmetric matrices A such that AIju = 0 for all j = 1, . . . , n. If A ∈ Lu is a solution of

the corresponding linear system of equations, then the matrices P kS (A) obtained from A by circular
shifts of the row and column indices are also solutions. Moreover, since u is palindromic, PP (A) is a
solution too. Therefore Lu is an invariant subspace under the action of the group Dn, and this action
defines a linear representation Ru of Dn on Lu. This representation decomposes into a direct sum of
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irreducible representations and induces an orthogonal decomposition of Lu into a direct sum of invariant
subspaces Lu,Id, Lu,k, k = 1, . . . , n−1

2 , corresponding to the trivial irreducible representation and the
representations Rk of Dn. As noticed above, the non-trivial 1-dimensional representation of Dn does
not contribute to RSn and hence neither to Ru.

The subspaceLu,Id then consists exactly of those matricesA which are circulant and satisfyAI1u = 0.
The next result characterizes the subspaces Lu,k.

Lemma 36. Let A ∈ Lu,k be a non-zero matrix. Then there exists a complex symmetric matrix B
such that ReB, ImB ∈ Lu,k, A ∈ span{ReB, ImB}, and B can be represented as a Hadamard
productB = C ◦H of a non-zero real symmetric circulant matrixC and a Hankel rank 1 matrixH given
element-wise by Hjl = eπik(n+1−j−l)(n−1)/n. Moreover, we have CI1v

k = 0.

Proof. Let L be a 2-dimensional subspace which is invariant under the action of Dn and such that
A ∈ L ⊂ Lu,k. Then the action of Dn on L is given by the representation Rk, i.e., there exists a basis
{B1, B2} of L such that(

PS(B1)
PS(B2)

)
=
(

cos 2πk
n sin 2πk

n

− sin 2πk
n cos 2πk

n

)(
B1

B2

)
,

(
PP (B1)
PP (B2)

)
=
(

1 0
0 −1

)(
B1

B2

)
.

Setting B = B1 + iB2, we obtain that PS(B) = e−2πik/nB, PP (B) = B.

The first condition is equivalent to the condition Bjl = e2πik/nBj−l− for all j, l = 1, . . . , n, where
j−, l− ∈ {1, . . . , n} are the unique indices satisfying j− ≡ j − 1 and l− ≡ l− 1 modulo n. For every
j, l = 1, . . . , n we then have

Bjl =


exp

(
2πik
n

j+l−n−1
2

)
·B

j− j+l−n−1
2

,l− j+l−n−1
2

, (j + l) even;

exp
(

2πik
n

j+l−1
2

)
·B

j+n− j+l−1
2

,l− j+l−1
2
, j < l, (j + l) odd;

exp
(

2πik
n

j+l−1
2

)
·B

j− j+l−1
2

,l+n− j+l−1
2
, j > l, (j + l) odd.

Since n is odd, the first factors in this representation of the elements of B form the Hankel matrix H ,
while the second factors form a circulant matrix C which coincides with B on the main skew-diagonal.
However, the condition PP (B) = B implies that the elements on the main skew diagonal of B are real.
Hence C is also real. This yields the claimed representation B = C ◦H . Since B 6= 0, we also have
C 6= 0.

Since B1, B2 ∈ Lu, we have that BI1u = 0. However, for all l = 1, . . . , n − 2 we have (BI1u)l =
e−πikl(n−1)/n(CI1v

k)l by definition of vk, and hence also CI1v
k = 0. This completes the proof.

Recall that for a circulant matrix A, the submatrix AI1 is Toeplitz. The next result shows that the condi-
tions Tu = 0 or Tvk = 0 impose stringent constraints on a real symmetric Toeplitz matrix T .

Lemma 37. Let ϕ1, . . . , ϕd ∈ (−π, π] be distinct angles, and letw ∈ Rd+1 be the coefficient vector of
the polynomial p(x) =

∏d
k=1(x− eiϕk), with w1 = 1 being the coefficient at xd. Let Ξ ⊂ [0, π] be the

set of angles ξ such that either both±ξ appear among the angles ϕk, k = 1, . . . , d, or ξ = ϕj = π for
some j. Let T be a real symmetric Toeplitz matrix satisfying Tw = 0. Then T ∈ span{Tξ}ξ∈Ξ, where
Tξ is the symmetric Toeplitz matrix with first row (1, cos ξ, . . . , cos dξ).

Proof. Let ϕd+1, . . . , ϕ2d+1 ∈ (−π, π] be such that ϕj are mutually distinct for j = 1, . . . , 2d + 1.
For any ϕ ∈ (−π, π], let hϕ = (eikϕ)k=0,...,d ∈ Cd+1 be a column vector and Hϕ = hϕh

∗
ϕ the cor-

responding complex Hermitian rank 1 Toeplitz matrix. Then Hϕ1 , . . . ,Hϕ2d+1
are linearly independent
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over the complex numbers, and hence also over the reals. Indeed, the matrixHϕ contains 2d+1 distinct
elements e−idϕ, . . . , eidϕ. However, the vectors (e−idϕj , . . . , eidϕj ), j = 1, . . . , 2d + 1, are linearly
independent, because suitable multiples of these vectors can be arranged into a Vandermonde matrix.
Therefore Hϕ1 , . . . ,Hϕ2d+1

form a basis of the (2d + 1)-dimensional real vector space of complex
Hermitian (d+ 1)× (d+ 1) Toeplitz matrices.

The real symmetric Toeplitz matrix T is also complex Hermitian and can hence be written as a linear
combination T =

∑2d+1
j=1 αjHϕj , αj ∈ R. Now h∗ϕjw = 0 for j = 1, . . . , d by construction of

w, and therefore Tw =
∑2d+1

j=d+1 αj(h
∗
ϕjw)hϕj = 0. But the vectors hϕd+1

, . . . , hϕ2d+1
again form a

Vandermonde matrix and are hence linearly independent. Moreover, we have h∗ϕjw = e−idϕjp(eiϕj ) 6=
0 for all j = d + 1, . . . , 2d + 1. It follows that αj = 0 for all j = d + 1, . . . , 2d + 1, and T =∑d

j=1 αjHϕj .

Now the first column of the imaginary part ImHϕj is given by Imhϕj = (0, sinϕj , . . . , sin dϕj)T ,

and hence
∑d

j=1 αj sin lϕj = 0 for all l = 1, . . . , d. As in the proof of Lemma 35, we may use the

formula sin lϕ = sinϕ(e(l−1)iϕ+e(l−3)iϕ+ · · ·+e−(l−1)iϕ) to rewrite this system of linear equations
on the coefficients αj as

1 · · · 1
cosϕ1 · · · cosϕd

...
...

cosd−1 ϕ1 · · · cosd−1 ϕd


α1 sinϕ1

...
αd sinϕd

 = 0.

It follows that a coefficient αj can only be non-zero if either sinϕj = 0, in which case ϕj ∈ Ξ and
Hϕj = Tϕj , or there exists another index j′ ∈ {1, . . . , d} such that ϕj′ = −ϕj and αj′ = αj , and
therefore |ϕj | ∈ Ξ and αjHϕj + αj′Hϕj′ = 2αjT|ϕj |. This completes the proof.

The restrictions on the Toeplitz matrices translate into the following restrictions on matrices A ∈ Lu,Id

and on the circulant factor in Lemma 36.

Corollary 11. Let n ≥ 5 be an odd integer, set m = n−3
2 , and let ϕ1, . . . , ϕ2m ∈ (−π, π] be distinct

angles, such that there are no multiples of 2π
n among them. Define the vector w ∈ Rn−2 and the set

Ξ ⊂ [0, π] as in Lemma 37, with d = 2m.

Let Lw ⊂ LC be the linear subspace of real symmetric circulant matrices C such that CI1w = 0.
Then dimLw ≤ 1. If dimLw = 1, then Ξ has m elements. In particular, for dimLw = 1 either the
values eiϕj group into m complex-conjugate pairs, or they group into m − 1 complex conjugate pairs
and among the two remaining values one equals −1.

Proof. Since ϕj 6= 0 for all j = 1, . . . , 2m, the set Ξ can have at most m elements. Set r = |Ξ|.

Let C ∈ Lw be non-zero. By Lemma 37 the Toeplitz matrix T = CI1 can be written as a non-zero linear
combination of {Tξ}ξ∈Ξ, T =

∑r
j=1 λjTξj , ξj ∈ Ξ for all j = 1, . . . , r. Since the elements of CI1

determine the circulant matrix C completely by Lemma 3, we also have dimLw ≤ r. Since C 6= 0, the
set Ξ contains at least one element.

For n = 5 we then get r = m = 1, which proves the assertion in this case.

Suppose that n ≥ 7. We have C1k = C1,n+2−k for all k = 2, . . . , n. It follows that T1k = T1,n+2−k
for all k = 4, . . . , n+1

2 . This yields the linear homogeneous system of equations
∑r

j=1 λj cos kξj =
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∑r
j=1 λj cos(n−k)ξj , k = 3, . . . , n−1

2 , on the coefficients λj . By Lemma 35 this system is equivalent
to the system 

1 · · · 1
cos ξ1 · · · cos ξr

...
...

cosm−2 ξ1 · · · cosm−2 ξr


λ1 sin ξ1

2 sin nξ1
2

...

λr sin ξr
2 sin nξr

2

 = 0.

Since there are no multiples of 2π
n among the angles ϕj , there are no multiples of 2π

n among the ξj

neither, and hence sin ξj
2 sin nξj

2 6= 0 for all j = 1, . . . , r. It follows that the coefficient matrix in the
system above has a non-trivial kernel, implying r > m− 1 and hence r = m.

However, the coefficient matrix has full row rank m− 1, and therefore the solution λ1, . . . , λm is deter-
mined by the angles ξ1, . . . , ξm up to multiplication by a common scalar. Hence CI1 and by Lemma 3
also C is determined up to a scalar factor, and dimLw ≤ 1.

We are now in a position to prove the result we need for Lemma 26.

Lemma 38. Let n ≥ 5 be odd. Set m = n−3
2 and let ζ1, . . . , ζm ∈ (0, π) be distinct angles in

increasing order such that the fractional part of
nζj
4π is in (0, 1

2) for odd j and in (1
2 , 1) for even j. Let

u ∈ Rn−2 be the coefficient vector of the polynomial p(x) =
∏m
j=1(x2 − 2x cos ζj + 1) and let

Lu ⊂ Sn be the subspace of all matrices A satisfying AIju = 0 for all j = 1, . . . , n. Then the

condition dimLu > 1 implies that ζj = (2j−1)π
n for all j = 1, . . . ,m. In particular, the vector u has

negative elements.

Proof. By assumption there are no multiples of 2π
n among the angles±ζj and, since n−1 is even, also

among the angles±ζj − πk(n−1)
n for all j = 1, . . . ,m and k = 1, . . . , n−1

2 . Note also that πk(n−1)
n is

not a multiple of 2π for these values of k, and hence the angles ±ζj − πk(n−1)
n are obtained from the

angles ±ζj by a shift by a non-zero value modulo 2π.

The solution spaceLu is a direct sum of the subspacesLu,Id andLu,k, k = 1, . . . , n−1
2 corresponding

to the irreducible representations of the groupDn. By Corollary 11 withw = u we have dimLu,Id ≤ 1.
Therefore dimLu > 1 implies that Lu,k is non-zero for some k.

Let A ∈ Lu,k be a non-zero matrix. Then by Lemma 36 there exists a non-zero real symmetric circulant
matrix C satisfying CI1v

k = 0. By Corollary 11 with w = vk the roots ei(±ζj−πk(n−1)/n), j =
1, . . . ,m, of pk(x) either group into m complex-conjugate pairs, or they group into m − 1 complex
conjugate pairs and among the two remaining roots one equals−1. We shall now show that this condition
uniquely determines the angles ζj .

For l = 1, . . . , n, define open arcs al = {eiϕ |ϕ ∈ (2π(l−1)
n , 2πl

n )} of length 2π
n on the unit circle.

Then e±iζj , ei(±ζj−πk(n−1)/n) ∈
⋃n
l=1 al for all j = 1, . . . ,m, k = 1, . . . , n−1

2 . Moreover, by the
assumptions on ζj we can have eiζj ∈ al only if the parity condition l ≡ j modulo 2 holds. Since
ζ1, . . . , ζm is an increasing sequence, we also have that each interval al contains at most one of the
values eiζ1 , . . . , eiζm . We consider two cases.

1. ζm > (n−1)π
n . Then e±iζm ∈ a(n+1)/2. Any other arc al contains at most one of the values e±iζj .

Hence there are exactly 4 of these arcs containing no such value, and these are located symmetrically
about the real axis. Now consider how the rotated values ei(±ζj−πk(n−1)/n), j = 1, . . . ,m, are dis-
tributed over the arcs al. In a similar way there must be 4 arcs, call them α1, α2, α3, α4, containing
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no value and one arc, call it β, containing two values, but β 6= a(n+1)/2. We distinguish again two
possibilities.

1.1. If the complex conjugate arc to β is one of the arcs α1, . . . , α4, then the two complex values
contained in β are not matched by complex conjugate values.

1.2. If none of the arcs α1, . . . , α4 is complex conjugate to β, then at least one of these arcs, let it be α1,
is matched by a complex conjugate arc containing exactly one value. Hence at least one of the values in
β and the value in the complex conjugate arc to α1 are not matched by complex conjugate values.

It follows in both cases that there are at least two complex values among ei(±ζj−πk(n−1)/n) which are
not matched by a complex conjugate, leading to a contradiction.

2. ζm < (n−1)π
n . Since eiζm 6∈ am+1 by the parity condition, we must have eiζj ∈ aj , e−iζj ∈ an+1−j

for all j = 1, . . . ,m. Consider again the distribution of the values ei(±ζj−πk(n−1)/n), j = 1, . . . ,m.
There are 3 consecutively located arcs which do not contain any of the values ei(±ζj−πk(n−1)/n), call
them α1, α2, α3. The remaining arcs contain exactly one value each. The arcs α1, α2, α3 are obtained
from the arcs a(n−1)/2, a(n+1)/2, a(n+3)/2 by multiplication with e−iπk(n−1)/n and are not located sym-

metrically about the real axis. Hence at least one value among ei(±ζj−πk(n−1)/n), j = 1, . . . ,m, is not
matched by a complex conjugate. It follows that among these values the value −1 must appear, and
two of the arcs α1, α2, α3 must be complex conjugate to each other. The second condition is only pos-
sible if these two arcs border the point z = 1 on the unit circle. Equivalently, eiπk(n−1)/n must lie
on the boundary of the arc a(n+1)/2, implying k = 1. Recall that the value among ei(±ζj−π(n−1)/n),

j = 1, . . . ,m which lies in the interval a(n+1)/2 must equal −1. This is the value ei(−ζ1−π(n−1)/n),

and hence ζ1 = π
n . Finally, using that the values ei(ζj−π(n−1)/n) and ei(−ζj+1−π(n−1)/n) are mutually

complex conjugate for all j = 1, . . . ,m− 1, we obtain the values ζj = (2j−1)π
n for all j = 1, . . . ,m.

Thus we have p(x) =
∏m
j=1(x2 − 2x cos (2j−1)π

n + 1). The coefficient at the linear term is given by

u1 = −2
∑m

j=1 cos (2j−1)π
n < 0, which concludes the proof.
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