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to two types of problems: the obstacle- and the gradient-type constrained problem.
While the first one studies problems where the state (or solution) to the QVI has
to satisfy pointwise constraints on a given subset of the domain, the second type
of problem determines a pointwise bound on the norm of the gradient of such a
solution. The different constraint structure in these two problems developed into
two completely different mathematical approaches: obstacle-type problems have been
attacked by means of increasing monotonicity techniques (fixed point type results
for increasingly monotonic mappings such as Birkhoff, Tartar or Kolodner fixed point
theorems) for the solution mapping with respect to the obstacle (see [4, 12, 13, 24, 38]);
problems with gradient-type constraints have been treated by means of compactness
results. This was done either by the direct combination of continuity of the solution
mapping with respect to the upper bound on the gradient constraint in composition
with some completely continuous operator such as in [23, 16] or by fine properties
of compactness in Lesbesgue-Bochner spaces as in [35, 2]. An alternative approach
to gradient constrained problems is based on generalized equations, with the QVI
problem becoming a particular case; see [18, 21]. For finite dimensional problems,
recently a technique based on generalized KKT conditions was pursued in [10]. The
latter approach, however, seems unlikely to be applicable in infinite dimensions for
the problem class under investigation in our paper.

Although existence of solutions to QVIs in function space may be obtained by
a variety of fixed point type theorems (e.g., Schauder in [23], Leray-Schauder in [29]
and see [3] for diverse applications for monotonically increasing mappings), uniqueness
results for QVI problems seem to be more difficult to obtain. In the obstacle-type QVI,
uniqueness under assumptions which are rather straightforward to verify was obtained
by Laetsch in [24] and a contraction type result was obtained by Hanouzet and Joly
in [13]. For the gradient-type problem a result of uniqueness based on contraction
was given in [16] together with the numerical implementation of a newly developed
solution algorithm. The difficulty in obtaining uniqueness results for QVIs comes from
a variety of sources: for example, using Schauder’s fixed point theorem, uniqueness
results usually require differentiability (see [20]) of the mapping under investigation
(differentiability properties, however, are usually difficult, if not impossible, to obtain
for the mappings involved in QVIs) and in the case of some gradient constrained
problems (see for example [33]) it is known that the physical system does not posses
a unique steady state or fixed point.

In [17], the pseudomonotonicity and C0-semigroup approach of Brézis was ap-
plied to parabolic QVIs in combination with approximation methods for infinitesimal
generators (similar to the analytical forms of the Trotter-Kato theorem). The result
is an approximation theorem that is suitable for numerical implementation when the
constraint set mapping is of gradient-type and the set is causal, i.e., the solution to
the QVI at time t, u(t), can be obtained as a solution to a QVI where the constraint
set depends only on the set {v : v = u(τ) for 0 ≤ τ ≤ t}. However, this approach
cannot be applied to non-causal sets. The present paper addresses such non-causal
problems.

In this paper we study an abstract version of a parabolic QVI which contains
both, the obstacle- and gradient-type constrained problems, respectively. Within a
unified framework we provide existence and uniqueness results based on a contraction
type property. The result can be considered as an extension of the one obtained in
[16] for elliptic QVIs. We also provide a proof of convergence in function space of
a semi-discrete scheme that is suitable for numerical implementation. The result is



QVIs with gradient constraints 3

based on monotone operator theory, the previous contraction result and semismooth
Newton methods for solving the associated subproblems. We end this paper by pro-
viding numerical tests involving the Laplace and the p-Laplace (for p = 3) operator,
respectively, and for gradient constrained problems.

The rest of the paper is organized as follows. In §2 we state the class of QVI prob-
lems under consideration, how this framework includes both problems with obstacle-
and gradient-type constraints, and how QVIs arise in the modeling of many physical
phenomena. Since solutions to QVIs can be considered as fixed points of a certain
mapping S, in Theorem 3.2 of §3 we show that the mapping under investigation is
contractive given small data or given a small Lipschitz constant of the nonlinear map-
ping associated with the bound in the constraint. Also in §3, a class of examples
with obstacle and gradient constraints is addressed and it is shown how the previous
contraction result applies to these cases. In §4 we state an abstract framework to
deal with approximating problems to the QVI of interest. We show in detail that the
scheme includes the semi-discrete version of the parabolic QVI under investigation
with either the obstacle- or gradient-type constraint. Theorem 4.5 in §4 states how
the mapping S (whose fixed point are solutions to the QVI) and its discretized ver-
sion are related through the weak topology on the state space. Theorem 4.5 together
with Proposition 4.1 are used in Corollary 3.3 to show that the algorithm used in the
numerical implementation is convergent. Numerical tests are carried out in §5 and a
discussion of the results, as well as, an outlook on future research directions are given
in §6.

1.1. Notation. Throughout this paper, for a Banach space X its norm is written
as | · |X and for f ∈ X ′ (the topological dual of X) we denote f(x) := (f, x)X′,X for
x ∈ X, unless X = V with V the state space selected for the problems. In the latter
case, for the sake of brevity and simplicity, we write (f, v) for f ∈ V ′ and v ∈ V as
duality pairing. If H is a Hilbert space and we identify it with its dual H∗, then we
denote the duality pairing as 〈f, x〉H for f ∈ H∗ and x ∈ H.

The natural and real numbers are denoted by N and R, respectively, and by R+

we denote the set of positive real numbers and R+
0 = R+ ∪ {0}.

For v0 ∈ X and R > 0 we use BR(v0) := {v ∈ X : |v− v0|X < R} (or BR(v0;X))
and its closure in X by B̄R(v0) (or B̄R(v0;X)). We denote the strong convergence of
a sequence {un} ⊂ X to u ∈ X by un → u. Weak convergence is written as un ⇀ u.
The Lebesgue measure of a measurable set Ω is denoted as |Ω|, and we say that a
property holds “a.e. in Ω”, if it is true in Ω except for a subset Ω0 ⊂ Ω such that
|Ω0| = 0. For a real-valued function v, we define v+ = max(0, v) in the pointwise
sense, that is, v+ = v if v is nonnegative and zero otherwise.

Let I = (0, T ), with 0 < T ≤ ∞, and X be a Banach space. A function f : I→ X
is Bochner measurable, if there is a sequence {fn} of simple X-valued functions such
that limn→∞ fn(t) = f(t) a.e. in I (see [15]). We denote by Lp(I;X) the (Lebesgue-
Bochner) space of Bochner measurable X-valued mappings with domain I such that∫

I
|f(t)|pX dt <∞ and the integral is taken in the sense of Lebesgue.

Let Ω ⊂ RN , with N ≥ 2, be a bounded and open domain. We write Lp(Ω)
(or Lp(Ω;R)) for the usual Lebesgue spaces of real-valued functions, and L∞ν (Ω) :=
{v ∈ L∞(Ω) : v(x) ≥ ν > 0 a.e. x ∈ Ω}. We denote by W 1,p

0 (Ω) for 1 < p < ∞
the Sobolev space of weakly differentiable functions in Lp(Ω) with zero value at the
boundary ∂Ω (in the sense of the trace), whose weak derivatives also belong to Lp(Ω)
(see [1] for a definition of the Sobolev space). It is endowed with the norm |v|W 1,p

0
=

(
∫

Ω
|∇v(x)|p dx)1/p.
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Since we will deal with convergence of closed and convex subsets of reflexive
Banach spaces, we make use of Mosco convergence (see [30, 34]).

Definition 1.1 (Mosco convergence). Let K and Kn, for each n ∈ N, be
non-empty, closed and convex subsets of X, a reflexive Banach space. We say that
the sequence {Kn} converges to K in the sense of Mosco as n→∞ if:
i. ∀v ∈ K,∃vn ∈ Kn : vn → v in X.
ii. If vn ∈ Kn and vn ⇀ v in X with n ∈ N′ ⊂ N, then v ∈ K.

2. Problem Formulation. Let V be a reflexive separable Banach space and H
be a separable Hilbert space so that (V ,H ,V ′) is a Gelfand triple, i.e., the embedding
V ↪→ H is dense and continuous, H is identified with its dual H ′ and hence the
embedding H ′ = H ↪→ V ′ is also continuous (see [8]). For f ∈ V ′ and v ∈ V the
duality pairing (f, v) is supposed to be the continuous extension of 〈·, ·〉H on H ×V ;
so that there is a sequence {hn} ⊂H for which (f, v)V = limn→∞〈hn, v〉H uniformly
on bounded sets of V .

Unless stated otherwise, V = Lp(I;V ) and H = L2(I;H), where p ≥ 2, I = (0, T )
for 0 < T < ∞ and (V,H, V ′) a Gelfand triple with V a separable reflexive Banach
space and H a separable Hilbert space. Also, if T = ∞, then we take V = L2(I;V )
and H = L2(I;H). In this case, since I = (0, T ) is σ-finite, there is a concrete
characterization of the dual of V as V ′ = Lp

′
(I;V ′) by the Phillips Theorem (see [37]

or [15]).
We assume that the (usually nonlinear) map A : V → V ′ is

H1. uniformly monotone, i.e., there are constants c > 0 and r > 1 such that,

(A(u)−A(v), u− v) ≥ c|u− v|rV , for all u, v ∈ V ;

H2. hemicontinuous, i.e., the real-valued function ζ 7→ (A(u + ζv), w) is continuous
for ζ ∈ [0, 1] for all u, v, w ∈ V ;

H3. bounded, i.e., it maps bounded sets in V into bounded sets in V ′.
Since V is assumed to be reflexive, then H1 together with H2 imply that A is

pseudomonotone (see [37]), i.e., if un ⇀ u and limn→∞(A(un), un − u)V ≤ 0, then
(A(u), u − v)V ≤ limn→∞(A(un), un − v), for all v ∈ V , and demicontinuous, i.e., if
un → u in V , then A(un)→ A(u) in the weak-star topology and hence A(un) ⇀ A(u)
in V ′ (due to the reflexivity of V ).

In order to introduce some form of “time derivative”, we make use of C0-semigroup
theory. To the best of our knowledge, this approach was pioneered (for variational
problems associated with monotone operators) by Brézis (see [7]). For that matter,
we assume in the following that −L be the infinitesimal generator of a C0-semigroup
S(τ) in V ,H and V ′ with domains D(L; V ),D(L; H ) and D(L; V ′), respectively
(see [32] for the concept of a C0-semigroup). Additionally, we assume that S(τ) is a
C0-semigroup of contractions in H . Summarising, we suppose that for τ ∈ [0,∞),
S(τ) belongs L (V ),L (H ) and L (V ′), such that |S(τ)|L (H ) ≤ 1 for all τ ≥ 0 and
in addition

a. S(0) = I = id, the identity operator in V ,H and V ′;
b. S(τ + ρ) = S(τ)S(ρ) for all τ, ρ ≥ 0;
c. ∀v ∈ V , limτ↓0 S(τ)v = v in V and the same holds true whenV is exchanged

for H and V ′.
The domain D(L; V ) is defined as

D(L; V ) :=
{
v ∈ V : lim

τ↓0
S(τ)v − v

τ
exists in V

}
,
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where D(L; H ) and D(L; V ′) are defined similarly. The perhaps most common ex-
ample is stated next

Example 2.1. Let V = Lp(I;X), for I = (0, T ) with 0 < T ≤ ∞, with X a
Banach space. For f ∈ V , let S(τ) be defined by

(S(τ)f)(t) =
{
f(t− τ), τ < t < T ;
0, otherwise.

Clearly S(0) = I = id, S(τ1 + τ2) = S(τ1)S(τ2) and limτ↓0 S(τ)f = f in V . Hence
S(τ) is a C0-semigroup over V . Moreover, S(τ) is a C0-semigroup of contractions
(since |S(τ)f |V ≤ |f |V ) which is not uniformly continuous. Its domain is determined
by

D(L; V ) = {v ∈ V : v is absolutely continuous, v′ ∈ V and v(0) = 0},

where v′ is the pointwise strong derivative; for a proof see [17] or [25].
Suppose that C is a closed and convex subset of V , 0 ∈ C , and that there exist

r > 0 such that B̄r(0; V ) ⊂ C . Consider the (usually nonlinear) map Φ : C → Eν ⊂ E
where

E := L∞(I;L∞(Ω))M , Eν := L∞(I;L∞(Ω))M−1 × L∞(I;L∞ν (Ω)) and
L∞ν (Ω) := {ϕ ∈ L∞(Ω) : ϕ(x) ≥ ν > 0 a.e. in Ω},

where M ∈ N. If ϕ = {ϕm}Mm=1 ∈ E , then we define |ϕ|E :=
∑M
m=1 |ϕm|L∞(I;L∞(Ω))

as its norm. It should be noted that for ϕ ∈ Eν we have |ϕ|E ≥ ν > 0.
Also, consider the set-valued map K : E → 2V such that the map K (Φ(·)) :

C → 2V satisfies that K (Φ(v)) is a closed and convex subset of V and 0 ∈ K (Φ(v)),
for each v ∈ C . Let f ∈ V ′ and A : V → V ′, then we define the problem (P) as the
following parabolic QVI.

Problem (P)

Find u ∈ K (Φ(u)) ∩D(L; V ′) : (Lu+A(u)− f, v − u) ≥ 0, ∀v ∈ K (Φ(u)). (P)

The space V is considered to be a Banach space of mappings of the type f : I→ V
where I = (0, T ) with 0 < T ≤ ∞ and V is a separable reflexive Banach space. Then
a general form of K (·) is given by

K (Φ(v)) = {w ∈ V : w(t) ∈ K(Φ(v), t) a.e. t ∈ I}, (2.1)

where K : E × I → 2V and, for each w ∈ V and t ∈ I, K(Φ(w), t) is a closed and
convex subset of V with 0 ∈ K(Φ(w), t).

The following problem will be called the weak form of problem (P).

Problem (wP)

Find u ∈ K (Φ(u)) : (Lv+A(u)−f, v−u)V ≥ 0, ∀v ∈ K (Φ(u))∩D(L; V ′). (wP)

If u is a solution to (P), then it is also a solution (wP) and if u solves (wP) and
u ∈ D(L; V ′) then it also solves (P) (see [25]).
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2.1. Popular Constraint Sets. The two most important forms for the con-
straint set K are the following ones.

Gradient-type. Let G ∈ L (V,W ), a bounded linear operator with domain in
V and image in W , a Banach space of functions over some domain Ω ⊂ RN and range
in Rl be given. In this case, Φ : V → Eν with Eν = L∞(I;L∞ν (Ω)) and

Kgrad(v, t) := {y ∈ V : |(Gy)(x)|Rl ≤ (Φ(v)(t))(x) a.e. in Ω}.

Obstacle-type. Let K ∈ L (V,X), where X is a Banach space of functions
with domain in Ω and range in R. Consider in this case Φ : V → Eν with Eν =
L∞(I;L∞(Ω))×L∞(I;L∞ν (Ω)), such that Φ(v) = (Φ1(v),Φ2(v)), with (Φ1(v)(t))(x) ≤
(Φ2(v)(t))(x) a.e. for t ∈ I and x ∈ Ω and with

Kobs(v, t) := {y ∈ V : (Φ1(v)(t))(x) ≤ (Ky)(x) ≤ (Φ2(v)(t))(x) a.e. in Ω}. (2.2)

The most common operators for the previous two types of constraint sets are given
by G = ∇ and K = I = id. Hence, the condition Φ(C ) ⊂ Eν ⊂ E determines that
ν ≤ Φ(v) a.e. in the gradient constrained case, and ν ≤ Φ2(v) a.e. for Φ = (Φ1,Φ2)
(with Φ1 ≤ 0 ≤ Φ2 a.e.) in the obstacle-type constraint. This implies that we are
ruling out the possibility of zero gradients and the possibility of obstacles in contact,
i.e., Φ1(x) = u(x) = Φ2(x) on a set of nonzero measure. Both of these situations,
although perhaps not critical with respect to the proof of existence of solutions, create
difficulties in the numerical approximation approach and the uniqueness of solutions
to QVIs under consideration.

2.2. Practical Applications. Several practical applications of parabolic QVIs
of the type considered here are discussed next.

2.2.1. The magnetization of superconductors. The magnetization of type-
II superconductors has been studied by means of Bean’s critical-state model. Prigozhin
(in [33]) has shown that Bean’s critical state model is equivalent to a QVI with gra-
dient constraints. In the case of a stationary model with longitudinal geometry (Ω is
a domain in R2), the main unknown hz is the z-component of the magnetic field (see
[35] or [23] for the elliptic case). In this case, the constraint set is determined as

K(v) := {y ∈W 1,p
0 (Ω) : |(∇y)(x)|RN ≤ jc(|v + he|) a.e. in Ω},

where p ≥ 2, he is related to the density of external currents and jc is an operator
associated with the critical current density value. Defining u = h− he, the pertinent
QVI problem is given by: Find u ∈ K (u) such that

(
u′ − ρ0

µ
∆p(u)− f, v − u

)
≥ 0 ∀v ∈ K (u),

with K (v) := {w ∈ V : w(t) ∈ K(v)}, ρ0 > 0 a constant related to the scalar
resistivity, µ > 0, ∆p is the p-Laplacian, i.e.,

(−∆p(w), v) :=
∫

Ω

|∇w|p−2∇w · ∇v dx,

with u′ ∈ V ′ and u(0) = u0 ∈ W 1,p
0 (Ω), and where f is also related to external

currents.
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2.2.2. Elastic membrane with compliant obstacles. Let Ω be some domain
in RN with N = 1 or N = 2. Consider an elastic homogeneous membrane, whose
displacement is denoted by u and which is zero at t = 0, that occupies the entire
domain Ω and that has zero displacement on the boundary, i.e., u|∂Ω = 0. Suppose
that the membrane is loaded by the uniformly distributed force f and that there are
two obstacles Φ1 ≤ 0 ≤ Φ2 a.e. such that Φ1 ≤ u ≤ Φ2 a.e. on Ω constraining
the deflection of the membrane. In this case, consider V = L2(I;V ) and H =
L2(I;H), where (V,H, V ′) ≡ (H1

0 (Ω), L2(Ω), H−1(Ω)). Also, we have K ≡ id ∈
L (H1

0 (Ω), H1
0 (Ω)) (where K is as in (2.2)) leading to

K = {y ∈ H1
0 (Ω) : Φ1(x) ≤ y(x) ≤ Φ2(x) a.e. in Ω}.

Then a simplified model for the evolutionary dynamics of the problem is given by:
Find u ∈ K := {v ∈ V : v(t) ∈ K} with u′ ∈ V ′ and u(0) = 0 such that

(u′ −∆(u)− f, v − u) ≥ 0, ∀v ∈ K .

The associated QVI version of the above parabolic VI modeling the dynamic
obstacle problem can be considered as the problem where the obstacles Φ1,Φ2 are not
“fixed” but rather depend on the displacement of the membrane u (for example, this
situation would consider that when the membrane is in contact with some obstacle,
the latter suffers a force exerted by the membrane that determines its movement). In
this case we also have K ≡ id ∈ L (H1

0 (Ω), H1
0 (Ω)). However, for v ∈ V , let Φ(v) :=

(Φ1(v),Φ2(v)) with (Φ1(v),Φ2(v)) ∈ L∞(Ω) × L∞ν (Ω) such that Φ1(v) ≤ 0 ≤ Φ2(v)
a.e. for all v ∈ V . Hence, we obtain

K(v) := {y ∈ H1
0 (Ω) : (Φ1(v))(x) ≤ y(x) ≤ (Φ2(v))(x) a.e. in Ω}.

Then, the QVI problem amounts to finding u ∈ K (Φ(u)) with u′ ∈ V ′ and u(0) = 0
such that

(u′ −∆(u)− f, v − u) ≥ 0, ∀v ∈ K (Φ(u)).

3. Conditions for u 7→ S(A, f,K (Φ(u))) to be contractive. Let f , K and
S(τ), the C0-semigroup that is generated by −L, satisfy conditions so that S(A, f,K )
is well defined as the unique solution to

Find u ∈ D(L; V ) ∩K : (Lu+A(u)− f, v − u) ≥ 0, ∀v ∈ K . (3.1)

Conditions for this to hold are for example given by f ∈ D(L; V ′), K = {v ∈ V :
v(t) ∈ K a.e.} with K some closed, convex set in V with 0 ∈ K and S(τ) given by
Example 2.1 (see for example [25, 7]). When K is not constant, we assume that each
evaluation K (v) satisfies the previous condition. If t 7→ K(t) is not constant, and
K(t) is of the obstacle- or gradient-type, then regularity and growth conditions on the
obstacle or gradient bounds are required in order to ensure existence and uniqueness
of the solution to (3.1) (see, for example, section 5.2 in [17]). In the setting of Theorem
3.2 below, for the gradient constraint case, this would require second-order in time
regularity and more stringent growth conditions on the function φ.

Note, however, that weaker forms of solutions could be considered in (3.1). Then
analogous results to the ones developed subsequently hold true for the appropriate
QVI formulation. In fact, if there is a unique solution S̃(A, f,K ) to:

Find u ∈ V ∩K , ∂tu ∈ V ′ : (∂tu+A(u)− f, v − u) ≥ 0, ∀v ∈ K , (3.2)
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with u(0) = 0, where ∂tu denotes the weak partial derivative in time of u, and where
K = K (Φ(v)) for any v ∈ C , then Theorem 3.2 and Corollary 3.3 also hold for S̃.

In this section we establish conditions for contractibility of the solution mapping
u 7→ S(A, f,K (Φ(u))). We start with some preliminary results of stability and
continuity of A 7→ S(A, f,K ).

Proposition 3.1. Let A1 and A2 satisfy H1 (with c1 > 0, r1 > 1 and c2 >
0, r2 > 1, respectively), H2 and H3, then

|S(A2, f,K )− S(A1, f,K )|V ≤M (δ(A2,A1))
1
r̄−1 ,

where r̄ = min(r1, r2), for some M > 0, and

δ(A2,A1) := sup
v∈B̄R(0;V )

|A2(v)−A1(v)|V ′ ,

with R := max((|f |V ′/c1)1/(r1−1), (|f |V ′/c2)1/(r2−1)).
Proof. Without loss of generality suppose that r2 ≤ r1. Define ui = S(Ai, f,K )

for i = 1, 2. Since ui solves (P), it also solves (wP). Let v = 0 in (wP), then
(Ai(ui), ui) ≤ (f, ui) and hence |ui|V ≤ R (by the uniform monotonicity of Ai for
i = 1, 2). Since u1, u2 ∈ K , we have

(Lu1 +A1(u1)− f, u2 − u1) ≥ 0 and (Lu2 +A2(u2)− f, u1 − u2) ≥ 0.

Hence, from these two inequalities, we infer

(L(u2−u1), u2−u1)V + (A2(u2)−A2(u1), u2−u1)V ≤ (A1(u1)−A2(u1), u2−u1)V .

If w ∈ D(L; V ′) ∩K , then (Lw,w) = limτ↓0 1
τ (I − S(τ)w,w)V = limτ↓0 1

τ (|w|2H −
〈S(τ)w,w〉H ) ≥ 0, since S(τ) is a C0-semigroup of contractions over H .

Then, due to the uniform monotonicity of A2, we have

c2|u2 − u1|r2V ≤ (A2(u2)−A2(u1), u2 − u1) ≤ (A1(u1)−A2(u1), u2 − u1).

Since |ui|V ≤ R, we find (A1(u1) − A2(u1), u2 − u1) ≤ δ(A2,A1)|u2 − u1|V , which
implies

|u2 − u1|V ≤ (2R/c2)1/(r2−1)(δ(A2,A1))1/(r2−1).

We now state the main result of the paper which guarantees the contractivity of
the map u 7→ S(A, f,K (Φ(u))) under certain conditions. The result can be seen as
the extension of the one in [16] for elliptic QVIs to the parabolic case.

Theorem 3.2. Let V ≡ Lp(I;V ) with I = (0, T ), where (V,H, V ′) is a Gelfand
triple and 1 < p <∞ if |I| <∞ (and p = 2 if |I| =∞). In addition, suppose
i. A : V → V ′ satisfies H1 with min(2, p) ≥ r > 1 if |I| <∞ (and r = 2 if |I| =∞),

H2, H3 and is homogeneous of order β ≥ 1, i.e., for fixed s > 0, we have
sβA(v) = A(sv) for all v ∈ V .

ii. f ∈ Lr′(I;V ′) ⊂ Lp
′
(I;V ′), such that (f, v) =

∫
I
(f(t), v(t))V dt for all v ∈ V ≡

Lp(I;V ), where 1/r + 1/r′ = 1 and 1/p+ 1/p′ = 1.
iii. K : E → 2V , satisfies that if ϕ ∈ Eν ⊂ E , then αK (ϕ) = K (αϕ) for all α > 0.
iv. Φ : C ⊂ V → Eν ⊂ E is defined as Φ(u) = Γ(u)φ with φ = {φm}Mm=1 ∈ E ≡

L∞(I;L∞(Ω))M and Γ : C → R such that there exists
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a. γ > 0 with

γ ≤ Γ(u), ∀u ∈ B̄R(0; V );

where R := (|f |Lr′ (I;V ′))1/(r−1).
b. LΓ > 0 for which

|Γ(v)− Γ(w)| ≤ LΓ|v − w|V , ∀v, w ∈ B̄R(0; V ).

Then, the map u 7→ S(A, f,K (Φ(u))) satisfies S(A, f,K (Φ(·))) : B̄R(0; V ) →
B̄R(0; V ) and

|S(A, f,K (Φ(u2)))− S(A, f,K (Φ(u1)))|V ≤ LS(f)|u2 − u1|V ,

for all u1, u2 ∈ B̄R(0; V ) and some LS(f) > 0 such that lim|f |
Lr
′ (I;V ′)→0 LS(f) = 0.

Moreover, LS(f) = O(LΓ) implying limLΓ→0 LS(f) = 0.
Proof. First, note that S(A, f,K (Φ(v))) ∈ D(L; V ) ∩ K (Φ(v)), for each v ∈

B̄R(0; V ) ⊂ C , is well defined as the unique solution to (3.1) (with K = K (Φ(v)))
by the initial hypotheses and the first paragraph of this section.

Let ϕ ∈ Eν , ϕ ∈ Range Φ, and denote K ≡ K (ϕ). Also, define ui = S(A, fi,K )
for i = 1, 2. Then,

(L(u2 − u1) +A(u2)−A(u1), u2 − u1) ≤ (f2 − f1, u2 − u1).

The uniform monotonicity of A and (Lw,w) ≥ 0,∀w ∈ D(L; V ′) ∩K imply (as in
the proof of Proposition 3.1) that

c|u2 − u1|rV ≤ (f2 − f1, u2 − u1).

Young’s inequality states
∫

Ω
|gv|dx ≤ εr

′

r′
∫

Ω
|g|r′ dx+ 1

rεr

∫
Ω
|v|r dx, for all g ∈ Lr′(Ω),

v ∈ Lr(Ω), and all ε > 0. Now, since p ≥ r, we obtain by Young’s and Hölder’s (when
p > r) inequalities

c|u2 − u1|rV ≤ (f2 − f1, u2 − u1) =
∫

I

((f2 − f1)(t), (u2 − u1)(t))V dt

≤ εr
′

r′

∫

I

|(f1 − f2)(t)|r′V ′ dt+
1
rεr

∫

I

|(u1 − u2)(t)|rV dt

≤ εr
′

r′

∫

I

|(f1 − f2)(t)|r′V ′ dt+
|I|(p−r)/p
rεr

(∫

I

|(u1 − u2)(t)|pV dt
)r/p

.

Hence for a sufficiently large ε > 0

|u2 − u1|V ≤




εr
′

r′(
c− |I|(p−r)/prεr

)




1/r (∫

I

|(f1 − f2)(t)|r′V ′ dt
)1/r

.

In the case when |I| = ∞ (and then p = r = 2 by the initial hypotheses), we
similarly have

c|u2 − u1|2V ≤
ε2

2

∫

I

|(f1 − f2)(t)|2V ′ dt+
1

2ε2

(∫

I

|(u1 − u2)(t)|2V dt
)
,
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and again for ε > 0 large enough,

|u2 − u1|V ≤
(

ε2

2(
c− 1

2ε2

)
)1/2(∫

I

|(f1 − f2)(t)|2V ′ dt
)1/2

.

Therefore,

|S(A, f1,K )− S(A, f2,K )|V ≤M1|f2 − f1|r
′/r
Lr′ (I;V ′)

, (3.3)

where M1 > 0 depends on c, p, r and |I| if the latter is finite, otherwise it depends
only on c (given that p = r = 2 if |I| =∞).

Suppose that µ > 0, then µ1−βA (for β ≥ 1) satisfies H1, H2 and H3, µf ∈ V ′

and µK is closed, convex and 0 ∈ µK . Hence, we find

S(A, f,K )− S(A, f, µK ) =
(
S(A, f,K )− S(µ1−βA, µf, µK )

)
+ (3.4)

(
S(µ1−βA, µf, µK )− S(A, µf, µK )

)
+ (S(A, µf, µK )− S(A, f, µK ))

= I + II + III.

(where all evaluations of the mapping S are well defined).
Consider I. Let u = S(A, f,K ), then (Lu+A(u)− f, v− u) ≥ 0,∀v ∈ K . Since

L is a linear operator, and A is homogeneous of order β ≥ 1, for µ > 0 we have
(L(µu) + µ1−βA(µu) − µf,w − µu) ≥ 0,∀w ∈ µK , i.e., µu = S(µ1−βA, µf, µK ).
Then,

|I|V ≤ ΘI(f)|1− µ|,

where ΘI(f) = |S(A, f,K )|V , and as argued before (see the proof of Proposition 3.1)
|S(A, f,K )|V ≤ (|f |V ′/c)1/(r−1). Since p ≥ r > 1, we infer r′ ≥ p′ > 1, and hence
Lr
′
(I;V ′) ↪→ V ′ ≡ Lp

′
(I;V ′), where the embedding is continuous. Consequently, we

obtain lim|f |
Lr
′ (I;V ′)→0 ΘI(f) = 0.

In order to find a bound on II, we apply Proposition 3.1. In this case A and
µ1−βA satisfy H1 with the same r and with c and µ1−βc, respectively. Then,

|II|V ≤ ΘII(f)|1− µβ−1| 1
r−1 , ΘII(f) :=

(
2R
c

sup
w∈B̄R(0;V )

|A(w)|V ′
) 1
r−1

,

with R ≤ (µ1/(r−1) + µβ/(r−1))(|f |V ′/c)1/(r−1) (where R is the one in Proposition
3.1). Since A maps bounded sets in V into bounded sets in V ′ (Hypothesis H3),
arguing as in the previous paragraph, we have lim|f |

Lr
′ (I;V ′)→0 ΘII(f) = 0.

We now use (3.3) to bound III. This yields (note that 1
r−1 = r′

r )

|III|V ≤ ΘIII(f)|1− µ| 1
r−1 ,

where ΘIII(f) = M1|f |r
′/r
Lr′ (I;V ′)

and hence lim|f |
Lr
′ (I;V ′)→0 ΘIII(f) = 0.

Suppose that µ ∈ (0, µ̄] for some fixed µ̄ > 0. Since 2 ≥ r > 1 and β ≥ 1, it holds
that |1− µβ−1|1/(r−1) ≤ δ1|1− µ| and |1− µ|1/(r−1) ≤ δ2|1− µ| for some δ1 > 0 and
δ2 > 0 (depending only on µ̄) for all µ ∈ (0, µ̄]. Then, from (3.4), we observe that

|S(A, f,K )− S(A, f, µK )|V ≤ Θ(f)|1− µ|,
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where Θ(f) := ΘI(f) + δ1ΘII(f) + δ2ΘIII(f).
We have that K ≡ K (ϕ) for some ϕ ∈ Eν and that µK (ϕ) = K (µϕ), and we

write, for the sake of brevity, S(ϕ) := S(A, f,K ) and S(µϕ) := S(A, f, µK ). Since
ϕ ∈ Eν , we have |ϕ|E ≥ ν > 0, and hence

|S(ϕ)− S(µϕ)|V ≤
Θ(f)
ν
|1− µ||ϕ|E ≤

Θ(f)
ν
|ϕ− µϕ|E .

Finally, let ϕ = Γ(u2)φ and µ = Γ(u1)/Γ(u2). Since u1, u2 ∈ C , and hence, since
u 7→ Γ(u) is Lipschitz on C (with Lipschitz constant LΓ by assumption), we have

|S(Γ(u2)φ)− S(Γ(u1)φ)|V ≤
Θ(f)
ν
|Γ(u2)φ− Γ(u1)φ|E ≤

Θ(f)|φ|ELΓ

ν
|u2 − u2|V .

Therefore u 7→ S(A, f,K (Φ(u))) is Lipschitz continuous and contractive for all suffi-
ciently small f . Moreover, the Lipschitz constant of S, LS(f), is proportional to LΓ.

Remark 1. It should be noted that the map u 7→ S(A, f,K (Φ(u))) is nonlinear
(even in the case when A is linear, due to the constraints) and hence the contractive
behavior (and consequently the existence of a unique solution) should be expected
only for small data, i.e., small f in the Lr

′
(I;V ′)-sense. Given the structure of the

constraint mapping v 7→ K (Φ(v)) required for the previous theorem, one might think
that small f forces the system into “inactivity”, i.e., that u = S(A, f,K (Φ(u)))
belongs to the interior of K (Φ(u)) and, hence, the problem being dealt with is no
longer a proper QVI but satisfies Lu + A(u) − f = 0. This, however, is not the
case! Indeed, for any f , one can choose a small enough LΓ to obtain the contractive
behavior of the map S (and hence uniqueness).

Remark 2. The Lipschitz constant of Γ, LΓ, controls how much v 7→ Φ(v) = Γ(v)φ
changes on the ball B̄R(0; V ). If LΓ = 0, then the QVI problem reduces to a VI, which
has a unique solution. In this sense, as LΓ ↓ 0, it is expected that the properties of
(P) resemble more and more the ones of a VI. The previous theorem is evidence of
such a behavior. In addition, the Lipschitz behavior of Γ implies the same for S.
On the other hand, differentiability properties of S are in general not implied by
differentiability of Γ.

The following corollary is a direct consequence of the previous result and deter-
mines a direct and natural way for approximating solutions to the QVI of interest.
The proof is simply an application of Theorem 3.2 and Banach’s fixed point principle.

Corollary 3.3. Suppose the hypotheses of Theorem 3.2 are satisfied and that
|f |Lr′ (I;V ′) is small enough. Define

T (v) := S(A, f,K (Φ(v))),

and consider un = T (un−1) for n ∈ N and u0 ∈ B̄R(0; V ). Then, the sequence {un}
converges (at least, linearly) in the strong topology of V to u∗, the unique solution
u = T (u).

Remark. Note that even though the approach of the paper is not concentrated on
existence results for QVIs, the result in Corollary 3.3 neither contains nor is contained
in general existence results like the ones in [18].

Theorem 3.2 and Corollary 3.3 now allow to establish the existence and uniqueness
of solutions to certain classes of parabolic QVIs, and they provide a way of approxi-
mating these. Furthermore, note that the two aforementioned results also hold for S̃



12 M. HINTERMÜLLER AND C. N. RAUTENBERG

as defined in (3.2) under minor changes, provided S̃(A, f,K (Φ(w))) is well defined
for each w ∈ B̄R(0; V ). In this case, we observe that there is a unique solution to
u = S̃(A, f,K (Φ(u))), i.e., u satisfies the QVI:

u ∈ V ∩K (Φ(u)), ∂tu ∈ V ′ : (∂tu+A(u)− f, v − u) ≥ 0, ∀ ∈ K (Φ(u)).

A class of examples for the gradient type and obstacle type constrained are given
in the following.

Example 3.1. Let p = 2, V = L2(I;V ) with I = (0, T ) and (V,H, V ′) =
(H1

0 (Ω), L2(Ω), H−1(Ω). Let A : V → V ′ be the time realization of the Laplacian,
i.e., A(v)(t) = A(v(t)) with A = −∆ for all v ∈ V , which satisfies H1 (with r = 2
and c = 1), H2 and H3 and is homogeneous of order β = 1. Let f ∈ L2(I;V ′) so
that (f, v)V =

∫
I
(f(t), v(t))V dt.

Consider K : Eν ⊂ E → 2V where Eν = L∞(I;L∞ν (Ω)), E = L∞(I;L∞(Ω)) and

K (ϕ) = {v ∈ L2(I;H1
0 (Ω)) : |(∇v(t))(x)|Rl ≤ (ϕ(t))(x) a.e. for t ∈ I,x ∈ Ω},

which satisfies that αK (ϕ) = K (αϕ) for all α > 0, ϕ ∈ Eν . Let

Γ(u) = k|Ψ(u)|+ ν, with Ψ ∈ V ′ and ∀u ∈ V ,

k > 0 and φ ≡ 1 such that Φ(u) = Γ(u)φ = Γ(u). In this case, we observe that for all
u ∈ L2(I;H1

0 (Ω)), the set K (Φ(u)) is a closed and non-empty subset of L2(I;H1
0 (Ω))

and contains 0. Then, by Theorem 3.2, the mapping u 7→ S(A, f,K (Φ(u))) is Lips-
chitz continuous and contractive on some ball provided that |f |L2(I;V ′) (or k > 0) is
small enough.

Example 3.2. Consider again p = 2, V = L2(I;V ) with I = (0, T ) and
(V,H, V ′) = (H1

0 (Ω), L2(Ω), H−1(Ω). Let A : V → V ′ be A(v)(t) = A(v(t)) with A =
−∆ as in the previous example and let f ∈ L2(I;V ′) with (f, v)V =

∫
I
(f(t), v(t))V dt.

Determine K : Eν ⊂ E → 2V where Eν = L∞(I;L∞(Ω)) × L∞(I;L∞ν (Ω)),
E = L∞(I;L∞(Ω))× L∞(I;L∞(Ω)) and

K (ϕ1, ϕ2) = {v ∈ V : (ϕ1(t))(x) ≤ (v(t))(x) ≤ (ϕ2(t))(x) a.e. for t ∈ I,x ∈ Ω},

which satisfies that αK (ϕ) = K (αϕ) for all α > 0, ϕ = (ϕ1, ϕ2) ∈ Eν . Consider Φ(·)
defined as

Φ(v) = Γ(v)(−|ψ2|, |ψ1|+ ε),

with ψi ∈ L∞(I;L∞(Ω)), ε > 0 and

Γ(v) = k|Ψ(u)|+ δ, with Ψ ∈ V ′ and ∀u ∈ V ,

k > 0 and εδ ≥ ν > 0. Hence, we have Φ : V → Eν ⊂ E . Also, by Theorem 3.2, the
mapping u 7→ S(A, f,K (Φ(u))) is Lipschitz continuous and contractive on some ball
provided that |f |L2(I;V ′) (or k > 0) is small enough.

3.1. Approximations in a General Setting. The previous result may also
be useful when the constraint map Φ has a different structure compared to the one
required in Theorem 3.2. In fact, in some cases it is possible to construct a sequence
of approximating problems for which the theory still applies. Indeed, we sketch such
an approximation procedure in what follows. For this purpose we confine ourselves to
the obstacle type example with Φ(v) := (0,Φ2(v)) and where Φ2 : H1

0 (Ω)→ (ν,+∞)
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is Lipschitz continuous with constant LΦ and a forcing term f(t) = f ∈ L2(Ω), for all
t ∈ [0, T ].

Let In = [tn−1, tn) for n = 1, 2, . . . , N , tn := nT/N , and consider the se-
quence of maps {Λn} with Λn : L2(In;H1

0 (Ω)) → (ν,+∞) defined by Λn(v) :=
1
|In|

∫
In

Φ2(v(t))dt. Note that each Λn is Lipschitz continuous with constant LΦ. Also,

if w ∈ L2((0, T );H1
0 (Ω)), then standard integration results yield that 1

h

∫ s+h
s

Φ2(v(t))dt→
Φ2(v(s)) as h ↓ 0 for almost all s ∈ (0, T ). Since |f |L2(In;L2(Ω)) = |In|1/2|f |L2(Ω),
then for sufficiently large N , |f |L2(In;L2(Ω)) gets arbitrarily small. Then, Theorem
3.2 and Corollary 3.3 can be applied to T (v) := S(A, f,K (Λn(v))) (or T̃ (v) :=
S̃(A, f,K (Λn(v)))) on V := L2(In;H1

0 (Ω)), for n = 1. Provided the maps S and S̃
are also uniquely defined for non-zero initial conditions (under certain assumptions
on u0), the same procedure can be repeated for n > 1, provided that |f |L2(Ω) and
|u0|H1

0 (Ω) are sufficiently small. In this way one approximates the solution to the
original problem.

Note, however, that the well-posedness of the maps S (and S̃) with non-zero
boundary conditions u(0) = u0 6= 0 may be a challenging problem in its own right
(see [21], section 5.4 in [17] and [25]), which requires additional studies as N →∞.

In the gradient constrained case of magnetization of superconductors, the upper
bound of the gradient constraint operator jc is in general a superposition (or Ne-
mytskii) operator such that the scheme above is not directly applicable. However,
an approximation of the magnetization problem for p = 2 can be obtained when
jc : H1

0 (Ω) → L2(Ω) is replaced by ĵc(v) = jc(Sv) with Sv = 1
|Ω|
∫
v(x) dx. In this

case, the above procedure can be applied with the obvious changes.

4. A Semi-Discrete Scheme. Let {Xn} be a sequence of Banach spaces related
to a Banach space X by the following extension and projection operators.

Assumption 1. For n ∈ N, there are Pn ∈ L (X,Xn) and En ∈ L (Xn, X) such
that

A1. For all n ∈ N, we have |Pn|L (X,Xn) ≤ 1 and |En|L (Xn,X) ≤ 1.
A2. |EnPnv − v|V → 0 as n→∞ for all v ∈ X.
A3. PnEn is the identity operator in Xn.
Theorem 4.1. Let X and Xn for n ∈ N0 be Banach spaces related by projection

and extension operators Pn and En that satisfy A1 and A3. Let T : X → X and
Tn : Xn → Xn be a sequence of contractive operators such that

|Tn(x)− Tn(y)|Xn ≤ ηn|x− y|Xn with η̄ := sup
n∈N

ηn < 1. (4.1)

Consider the sequence of operators T̂n : X → X defined as T̂n(x) = EnTn(Pnx) for
each x ∈ X.

If there exists x0 ∈ X with |Tn(Pnx0)|Xn ≤ K for all n ∈ N and T̂n satisfies

lim
n→∞

T̂n(xn) = T (x), in X if xn ⇀ x in X, (4.2)

then the sequence of fixed points

yn = Tn(yn),

satisfies that {Enyn} converges strongly to the unique fixed point of T .
Proof. First we prove that T has a unique fixed point. By the definition of T̂n,

and the fact that the norms of En ∈ L (Xn, X) and Pn ∈ L (X,Xn) are uniformly
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bounded by 1, we have that

|T̂n(x)− T̂n(y)|X ≤ |Tn(Pnx)− Tn(Pny)|Xn ≤ ηn|Pnx− Pny|Xn ≤ η̄|x− y|X .
Then we infer from (4.2)

|T (x)− T (y)|X = lim
n→∞

|T̂n(x)− T̂n(y)|X ≤ η̄|x− y|X ,

i.e., T : X → X is contractive and hence has a unique fixed point.
Consider the sequence of fixed points yn = Tn(yn). Since PnEn is the identity,

we have that Enyn = EnTn(PnEnyn). Then defining ŷn := Enyn, we have that
ŷn = T̂n(ŷn). The sequence {ŷn} is uniformly bounded. Indeed, we have

|ŷn|X − |T̂n(x0)|X ≤ |T̂n(ŷn)− T̂n(x0)|X ≤ η̄|ŷn − x0|X ≤ η̄|ŷn|X + η̄|x0|X ,
and hence

(1− η̄)|ŷn|X ≤ |T̂n(x0)|X + η̄|x0|X ≤ |Tn(Pnx0)|Xn + η̄|x0|X ≤ K + η̄|x0|X .

Therefore, ŷni ⇀ y∗ in X and T̂ni(ŷni) → T (y∗) by (4.2). Since ŷni = T̂ni(ŷni), we
obtain y∗ = T (y∗).

Suppose that there is a subsequence of ŷn = T̂n(ŷn) that does not converge to
y∗. Then there exists a sequence {ŷnj} such that ŷnj = T̂nj (ŷnj ) and ε > 0 for which
|y∗ − ŷnj |X ≥ ε > 0 for j ∈ N. However, the argument at the beginning of the proof
also applies to {ŷnj}. Thus, there is a subsequence that converges to some fixed point
ȳ of the map T . As there is only one fixed point for T , we have ȳ = y∗. Consequently,
all subsequences converge to y∗.

We consider now a semi-discretization scheme that makes the previous extension
of Banach’s fixed point principle useful in the study of parabolic QVIs. The abstract
framework of this section is suitable for numerical methods computing approximate
solutions to (P).

Let V = Lp(I;V ) (with p ≥ 2) where I = (0, T ) with 0 < T <∞ and Vn = V n :=
V × V × · · · × V (n copies of V ) with norm |w|Vn = (h

∑n
m=1 |wm|

p
V )1/p, h = T

n , and
where w = {wm}nm=1 ∈ Vn. We assume that (V,H, V ′) is a Gelfand triple and hence
(V ,H ,V ′) and (Vn,Hn,V ′n) are as well, with H = L2(I;H) and Hn = Hn. Then,
consider Pn ∈ L (V ,Vn) and En ∈ L (Vn,V ) defined as

Pnv :=
{

1
h

∫

Im

v(t) dt
}n

m=1

, (Enw)(t) :=
n∑

m=1

wmχIm(t), (4.3)

where v ∈ V , w = {wm}nm=1 ∈ Vn and Im = ((m − 1)h,mh) for m = 1, . . . , n (we
also extend the latter to m ∈ Z). We refer to Pn and En as the “projection” and
“extension” operators, respectively.

Proposition 4.2. Let Pn : V → Vn and En : Vn → V be as defined in (4.3),
then A1,A2 and A3 of Assumption 1 are satisfied.

Proof. It follows from the definition of En and Pn that A3 is satisfied. In
order to prove A1, observe that from the definition of En and the norm | · |Vn that
|Enw|V = |w|Vn for w ∈ Vn and by Hölder’s inequality we obtain

|Pnv|pVn = h
n∑

m=1

∣∣∣∣
1
h

∫

Im

v(t) dt
∣∣∣∣
p

V

≤ h1−p
n∑

m=1

(∫

Im

|v(t)|V dt
)p

≤
n∑

m=1

∫

Im

|v(t)|pV dt = |v|pV .
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Hence, |En|L (Vn,V ), |Pn|L (V ,Vn) ≤ 1 and A1 holds. Now, we consider A2 and sup-
pose that v ∈ V is of the form v = aχ[tα,tβ) with a ∈ V , 0 ≤ tα < tβ and [tα, tβ) ∈ I.
Then it is elementary to check that EnPnv → v as n→∞ in V . Since EnPn is linear,
then it also holds for step functions v =

∑N
k=1 akχ[tαk ,tβk ) with ak ∈ V . Since step

functions are dense in V = Lp(I;V ), given v ∈ V there is a step function vε such that
|v − vε| ≤ ε

3 . Let n ≥ N(ε) so that |EnPnvε − vε|V ≤ ε
3 . Then, we have

|EnPnv − v|V ≤ |EnPn(v − vε)|V + |EnPnvε − vε|V + |vε − v|V ≤ ε,
given that |EnPn|L (V ,V ) ≤ |En|L (Vn,V )|Pn|L (V ,Vn) ≤ 1. Since ε > 0 was arbitrary,
the assertion is proven and A2 holds. Hence, Assumption 1 holds true for our semi-
discrete scheme.

Also, it is useful to note that from the definition of Pn and En, we observe that
the restriction of the adjoints P ′n (to Vn) and E′n (to V ) are given by P ′n|Vn = En and
E′n|V = Pn.

The semi-discrete problem approximating (P) is given as follows.
Problem (Pn) :

Find u ∈ Kn(Φn(u)) : (Lnu+An(u)− fn, v−u)V ′n,Vn ≥ 0, ∀v ∈ Kn(Φn(u)), (Pn)

where {Kn,Φn, Ln,An, fn} approximate their counterparts {K ,Φ, L,A, f} in (P) as
described in the following paragraphs. We assume throughout this section that the
conditions for the solution mapping u 7→ S(A, f,K (Φ(u))) to be contractive from
Theorem 3.2 are satisfied and conditions for S(A, f,K (Φ(v))) ∈ D(L; V ) ⊂ D(L; V ′)
also hold. Further conditions on (P) and (Pn) are stated next.

Assumption 2. The following statements are assumed to hold true.
B1. The operator L is the infinitesimal generator of the semigroup of translations

on V and V ′ (and of contractions on H ) defined in Example 2.1. Therefore,

D(L;X) = {v ∈ X : v is absolutely continuous, v′ ∈ X and v(0) = 0},
where X is V ,H or V ′. The approximated sequence {Ln} is defined as Ln =
I−F (1/n)

1/n , where F (1/n)w = {0, w1, w2, . . . , wn−1} ∈ Vn for w = {wi}ni=1 ∈
Vn, i.e., Lnw = {(Lnw)i}ni=1 with

(Lnw)i =

{
w1
1/n , i = 1;
wi−wi−1

1/n , 2 ≤ i ≤ n.

B2. f ∈ D(L; V ) ⊂ D(L; V ′) and fn = Pnf .
B3. A is the time realization of a linear uniformly monotone operator A in V ,

i.e., A(y)(t) = A(y(t)) for t ∈ I where A : V → V ′ satisfies H1, H2 and H3.
An : Vn → V ′n is defined as An(w) = {A(wi)}ni=1 where w = {wi}ni=1 ∈ Vn.
In this sense, An ≡ A.

B4. Suppose that φ ∈ (L∞(Ω))M−1×L∞ν (Ω) so that φ(t) = φ for all t ∈ I satisfies
φ ∈ Eν ⊂ E with E = L∞(I;L∞(Ω))M , and Eν = L∞(I;L∞(Ω))M−1 ×
L∞(I;L∞ν (Ω)). Then, we define

Φ(v) = Γ(v)φ and Φn(v) = Γn(v)φ for all v ∈ V .

Consider g ∈ V ⊂ V ′, Γ : V → R and Γn : Vn → R defined as

Γ(v) =

∣∣∣∣∣

∫ T

0

(g(t), v(t))V ′,V dt

∣∣∣∣∣+ γ Γn(w) =

∣∣∣∣∣

∫ T

0

(g(t), (Enw)(t))V ′,V dt

∣∣∣∣∣+ γ,

(4.4)
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with γ > 0.
B5. The set-valued mappings K (·) and Kn(·) are defined as

K (Φ(y)) = {w ∈ V : w(t) ∈ K(Φ(y)) a.e. t ∈ I},
Kn(Φn(z)) = {{wm}nm=1 ∈ Vn : wm ∈ K(Φn(z)) for m = 1, . . . , n},

where y ∈ V and zn ∈ Vn. We assume the following type of convergence
(i) If vn ∈ Kn(Φn(Pnwn)), wn ⇀ w in V and Envn ⇀ v in V for n ∈ N′ ⊂

N, then v ∈ K (Φ(w))
(ii) If wn ⇀ w in V for n ∈ N′ ⊂ N and v ∈ K (Φ(w)), then there exists a

sequence {ηn} ⊂ R+ such limn→∞ ηn = 1 and ηnPnv ∈ Kn(Φn(Pnwn))
for n ∈ N′ ⊂ N.

Conditions B1 and B2 in Assumption 2 determine that we approximate the time
derivative “L” by a forward difference and invoke a more regular forcing term f
(when compared to the existence proof, but the additional regularity is needed for
the approximation results) and its approximate fn. These assumptions are appropri-
ate for the kind of convergence needed in Theorem 4.5: If v ∈ D(L; V ′) ∩ V then
limn→∞ P ′nLnPnv = Lv in V ′ (see Proposition 1 in [17]) and Enfn = EnPnf → f
by A2, Assumption 1. Condition B3 is clearly satisfied by A being the time realiza-
tion of A = −∆ where ∆ is the Laplacian, i.e., it is satisfied for the operator that
arises in most applications. Assumptions B4 and B5 state the general form for the
mappings Φ and Φn as well as the type of convergence needed for Kn towards K . In
particular, B5 is analogous to Mosco convergence of sets but written here in a form,
which is more suitable for our approximation scheme. In the following paragraphs we
study the implications of B4 and we show that the gradient-type and obstacle-type
problems satisfy B5, respectively.

We start by considering the relationship between Γ (the nonlinear functional in
Theorem 3.2) and Γn (the counterpart of Γ in the approximate problem). By invoking
B4 above, we assume that Γ and Γn satisfy the conditions necessary for Theorem 3.2
to hold true. Hence, the solution mapping of the original problem and its semi-
discretized version are Lipschitz continuous and become contractive for small enough
g in the sense of V . The following result relates the weak convergence in V and the
functionals Γ and Γn.

Proposition 4.3. Let vn ⇀ v in V . Then Γn(Pnvn)→ Γ(v).
Proof. Denote (g, w) =

∫ T
0

(g(t), w(t)) dt for w ∈ V . Hence, since P ′n|Vn = En,
E′n|V = Pn and g ∈ V we have that

(g,EnPnw) = (Png, Pnw)V ′n,Vn = (EnPng, w).

But EnPn converges strongly to the identity by A2 in Assumption 1. Thus, EnPng →
g in V as n→∞. Then, (g,EnPnvn) = (EnPng, vn)→ (g, v) and hence Γn(Pnvn)→
Γ(v) follows.

In the case of the gradient constraint we have that Kn(Φn(v)) ∈ 2Vn for v ∈ Vn
and K (Φ(z)) for z ∈ V are given by

K (Φ(z)) = {w ∈ V : |∇w(t)|Rl ≤ Γ(z)φ a.e. on Ω, t ∈ I}. (4.5)
Kn(Φn(v)) = {{wm}nm=1 ∈ Vn : |∇wm|Rl ≤ Γn(v)φ a.e. on Ω, for 1 ≤ m ≤ n},

and in the case of the obstacle-type problem by

K (Φ(z)) = {w ∈ V : Γ(z)φ1 ≤ w(t) ≤ Γ(z)φ2 a.e. on Ω, t ∈ I}. (4.6)
Kn(Φn(v)) = {{wm}nm=1 ∈ Vn : Γn(v)φ1 ≤ wm ≤ Γn(v)φ2 a.e. on Ω, for 1 ≤ m ≤ n},
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where “(x)” is suppressed for the sake of clarity and brevity.
The following proposition shows that for the gradient-type and obstacle-type

problems, the assumptions B5(i) and B5(ii) hold for the scheme already described
above.

Proposition 4.4. Let Kn(Φn(·)) : Vn → 2Vn and K (Φ(·)) : V → 2V be as in
(4.5) or (4.6). Then, B5(i) and B5(ii) hold.

Proof. Consider B5(i) for the gradient constrained case. Clearly, if vn ∈ Kn(Φn(Pnwn)),
then Envn ∈ K (Φ(EnPnwn)). Since wn ⇀ w in V , then by Proposition 4.3,
Φ(EnPnwn) = Φn(Pnwn) → Φ(w) in E = L∞(I;L∞(Ω)). This implies that
K (Φ(EnPnwn)) → K (Φ(w)) in the sense of Mosco (see [17, 36]) and hence that
v ∈ K (Φ(w)).

For the case of the obstacle-type problem, we have that

Γ(EnPnwn)φ1(x) ≤ Envn(t)(x) ≤ Γ(EnPnwn)φ2(x),

a.e. for x ∈ Ω, t ∈ I. Since Envn ⇀ v in V , by Mazur’s Lemma there exists a convex
combination ṽn =

∑N(n)
i=1 λi(n)Eivi such ṽn → v in V . Then the above inequality

implies that Γ(EnPnwn)φ1(x) ≤ ṽn(t)(x) ≤ Γ(EnPnwn)φ2(x). Since Γ(EnPnwn) →
Γ(w) by Proposition 4.3, we have Γ(w)φ1(x) ≤ v(t)(x) ≤ Γ(w)φ2(x) (since strong
convergence in V implies a.e. pointwise convergence (along a subsequence) in the
strong topology of V , for t ∈ I, and in turn pointwise convergence in Ω along another
subsequence). Hence v ∈ K (Φ(w)) also for the obstacle-type constraint, and B5(i)
holds.

We turn our attention to the gradient constrained case. Since wn ⇀ v, then
due to the definition of Φ, we have that Φn(Pnwn) = Φ(EnPnwn) → Φ(w) in E =
L∞(I;L∞(Ω)) (and actually in L∞(Ω) since Φ(v) = Γ(v)φ with φ ∈ L∞(Ω) and
similarly for Φn) and also Φ(EnPnwn),Φ(w) ≥ ν > 0 for n ∈ N′ ⊂ N. Then, it is
possible to prove (see [16]) that there is a sequence ηn ↑ 1 such ηnΦ(w) ≤ Φ(EnPnwn)
for n ∈ N′ ⊂ N. Since v ∈ K (Φ(w)), we have |(∇v(t))(x)| ≤ Φ(w) a.e. on t ∈ I,
x ∈ Ω. As Φ(w) is constant in time, we have Pnv ∈ Kn(Φ(w)). Hence vn := ηnPnv
belongs to Kn(Φn(Pnwn)), i.e., B5(ii) holds.

Consider now B5(ii) in the obstacle-type case. As before, we have Γn(Pnwn) =
Γ(EnPnwn) → Γ(w). Hence Γ(EnPnwn)φi → Γ(w)φi in L∞(Ω) for i = 1, 2. Since
Γ(EnPnwn)φ1 ≤ 0 ≤ ν ≤ Γ(EnPnwn)φ2, similarly with the paragraph above, there
exists {ηn} such ηn ↑ 1 with

Γ(EnPnwn)φ1 ≤ ηnΓ(w)φ1 ≤ 0 ≤ ηnΓ(w)φ2 ≤ Γ(EnPnwn)φ2.

Again, as v ∈ K (Φ(w)), we have Pnv ∈ Kn(Φ(w)), and vn := ηnPnv belongs to
Kn(Φn(Pnwn)).

We are now in the position to state how the solution mappings of (P) and (Pn)
are related by means of the weak topology on V .

Theorem 4.5. Given w ∈ V , let u = T (w) ∈ D(L; V ) ∩K (Φ(w)), where T (w)
is defined as the solution to

(Lu+A(u)− f, v − u) ≥ 0, ∀v ∈ K (Φ(w)), (4.7)

and, similarly, un = Tn(z) ∈ Kn(Φn(z)), with z ∈ Vn, where Tn(z) denotes the
solution to

(Lnun +A(un)− fn, v − un)V ′n,Vn ≥ 0, ∀v ∈ Kn(Φn(z)). (4.8)
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Then, if wn ⇀ w in V ,

EnTn(Pnwn)→ T (w) in V .

Proof. Both maps T : V → V and Tn : Vn → Vn are well-defined and single valued
since K (Φ(w)) and Kn(Φn(Pnwn)) are closed, convex (in V and Vn, respectively)
and contain 0, respectively.

By definition, un := Tn(Pnwn) ∈ Kn(Φn(Pnwn)) and the usual monotonicity
trick gives |un|Vn ≤ (|fn|V ′n/c)1/(r−1). By assumption B2 we have fn = Pnf , and,
thus, the sequence {|fn|}V ′n is uniformly bounded. Indeed, it holds that |fn|V ′n =
|fn|Vn ≤ |Pn|L (V ,Vn)|f |V ≤ |f |V . Then the sequence {|un|Vn} is bounded uniformly,
as well. Since we have the uniform bound |En|L (Vn,V ) ≤ 1, the sequence {Enun} is
uniformly bounded in V . By the reflexivity of V , there exists a weakly convergent
subsequence, i.e., Enun ⇀ u in V for n ∈ N′ ⊂ N. This and B5(i) now imply that
u ∈ K (Φ(w)).

Next, define Ãn(·) := P ′nA(Pn·) and f̃n = P ′nfn, where P ′n : V ′n → V ′. Minty’s
Lemma yields that (4.8) holds when “Lun” is exchanged by “Lv” with v ∈ Kn(Φn(Pnwn)).
Since PnEn = I = id in Vn for all n ∈ N, (4.8) implies that

(P ′nLnv + Ã(Enun)− f̃n, Env − Enun) ≥ 0, ∀v ∈ Kn(Φn(Pnwn)). (4.9)

Let v ∈ D(L; V ′)∩K (Φ(w)), then by B5(ii) there exists a real-valued sequence {ηn}
such limn→∞ ηn = 1 for which ηnPnv ∈ Kn(Φn(Pnwn)). Define vn = ηnPnv. Since
EnPn converges strongly to the identity (A2, Assumption 1) and ηn → 1, we have
Envn → v in V as n→∞. Using v = vn in (4.9), we obtain

(Ãn(Enun), Enun − u) ≤ (ηnP ′nLnPnv − f̃n, Envn − Enun) + (Ãn(Enun), Envn − u).
(4.10)

From the first paragraph of the proof, we have that {Enun} is bounded in V . Since
A maps bounded sets into bounded sets and the norms of Pn and P ′n are uniformly
bounded in n ∈ N (|Pn|L (V ,Vn) ≤ 1 and hence also |P ′n|L (V ′n,V

′) ≤ 1), we have
that {Ãn(Enun)} is bounded. By the reflexivity of V ′, there exists a subsequence
converging weakly to some g ∈ V ′. Also, we have that P ′nLnPnv → Lv since v ∈
D(L; V ′) (see Proposition 1 in [17]) and hence ηnP ′nLnPnv → Lv as n→∞. By our
hypotheses, we further have f̃n = P ′nfn = P ′nPnf = EnPnf → f in V ′ (actually in
V ) as n→∞. Summarising , we have the following relations:

Ãn(Enun) ⇀ g, f̃n → f, ηnP
′
nLnPnv → Lv in V ′ and Enun ⇀ u, Envn → v in V .

Henceforth, taking “lim” in (4.10), we obtain

lim
n→∞

(Ãn(Enun), Enun − u) ≤ (Lv − f + g, v − u). (4.11)

Let v = vα ∈ D(L; V ′)∩K (Φ(w)) with limα→0 vα = u and (Lvα, vα − u) ≤ 0 (which
is possible due to the compatibility of S(τ) and K (Φ(w)), see [25, 7]). This choice
implies limn→∞(Ãn(Enun), Enun − u) ≤ 0. Here we also have assumed that A is the
time realization of a linear uniformly monotone operator A in V (B3 of Assumption
2), i.e., A(y)(t) = A(y(t)) for t ∈ I and y ∈ V = Lp(I;V ). Consequently, we have
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P ′nA(Pnv) = P ′nA(Pnv(t)) and hence

(P ′nA(Pny), z) =
∫ T

0

n∑

m=1

(
A

(
1
h

∫

Im

y(t) dt
)
, z(t)

)

V ′,V

χIm(t) dt =

=
∫ T

0

(
A

(
n∑

m=1

1
h

∫

Im

y(t) dtχIm(t)

)
, z(t)

)

V ′,V

dt =

= (A(EnPny), z).

The relation PnEn = I thus yields P ′nA(Pn(Enun)) = A(Enun). This and (4.11)
imply

lim
n→∞

(A(Enun), Enun − u) ≤ 0. (4.12)

Since the operator A is pseudomonotone (it satisfies H1 and H3 which imply pseu-
domonotinicity, see the paragraph that follows the definition of H1-H3 and see [37]
for a proof) and Ãn(Enun) = P ′nA(Pn(Enun)) = A(Enun), we observe

(A(u), u− z) ≤ lim
n→∞

(A(Enun), Enun − z) = lim
n→∞

(Ãn(Enun), Enun − zn), (4.13)

for all z ∈ V and {zn} such zn → z in V .
Let z ∈ D(L; V ′) ∩ K (Φ(w)) be arbitrary. Then by B5(ii) there exists a

real-valued sequence {ηn} with limn→∞ ηn = 1. We next define zn := ηnPnz ∈
Kn(Φn(Pnwn)) and have Enzn → z in V . Assigning v = zn in (4.9), we observe that

lim
n→∞

(Ãn(Enun), Enun − Enzn) ≤ (f − Lz, u− z).

The above, together with (4.13), yields that u ∈ K (Φ(w)) satisfies

(Lz +A(u)− f, z − u) ≥ 0, for all z ∈ D(L; V ′) ∩K (Φ(w)),

i.e., u solves (wP). The increased regularity of f , the uniform monotonicity of A and
the S(τ)-invariance of K (Φ(w)) yield u ∈ D(L; V ) (see [25, 7]). Hence u also solves
(P).

Finally, from (4.12), the uniform monotonicity of A and the fact that Enun ⇀ u,
we have

c lim
n→∞

|Enun − u|rV ≤ lim
n→∞

(A(Enun)−A(u), Enun − u) ≤ 0,

i.e., Enun → u in V , along a subsequence.
Suppose that there exists a subsequence of {un} := {Tn(Pnwn)} which does

not converge to the solution u determined above. Hence, there is ε > 0 such that
|uni − u| ≥ ε for i ∈ N. On the other hand, we can apply the same reasoning as
above to {uni} which yields the existence of a subsequence of {uni} converging to
u∗ that solves Problem (P). Theorem 3.2 and Corollary 3.3 establish uniqueness of
the solution, which implies that u∗ = u. Thus, the entire sequence {un} satisfies
Enun → u.
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Finally we state the result required for the numerical approximation of the parabolic
QVI of interest.

Corollary 4.6. Let fn = Pnf = {fm}nm=1, and let, for each n ∈ N, un =
{um}nm=1 ∈ Vn be the unique solution to

um ∈ K(Φn(un)) :
(
um − um−1

h
+A(um)− fm, vm − um

)

V

≥ 0, ∀vm ∈ K(Φn(un));

u1 = 0,

(NQVI)

for m = 2, . . . , n and with h = T/n. Then,

Enun → u∗, in V as n→∞,

where u∗ solves (P).
Proof. Combining Theorem 4.1 and Theorem 4.5 proves the assertion.

4.1. Solution Algorithm. The previous results yield Algorithm 1 below for
computing the solution to (NQVI). In its statement the term “Suitable Conver-
gence Criteria” refers to a stopping rule associated with the fixed point equation
u = Sn(A, fn,Kn(Φn(u))). In our case, and following [17], we use a criterion based
on the linear convergence of the approximate sequence defined in Step 3 of Algorithm
1; see (SPconv.) below.

Algorithm 1
Require: n ∈ N, fn ∈ V ′n, A : Vn → V ′n and Kn(Φn(·)) : Vn × {1, 2, . . . , n} → 2Vn

1: Initialization. Set ` := 1 and v1 := 0.
2: while Suitable Convergence Criteria have not been met do
3: Compute v`+1 = Sn(A, fn,Kn(Φn(v`))).
4: Set ` := `+ 1.
5: end while
6: Set un := v`+1.

5. Numerics. In this section we are concerned with computing an approximate
solution to (P) by means of solving the approximating problem (NQVI), where the
operator A is the time realization of the p-Laplacian, with p = 2 or p = 3. We use
I = (0, 1) and Ω = (0, 1) × (0, 1) in all examples below. The state space is given
by V = Lp(I;V ) with V = W 1,p

0 (Ω) with the Gelfand triple structures (V ,H ,V ′)
and (V,H, V ′) with H = L2(I;H) and H = L2(Ω). All our test examples are of
gradient-type.

The discretization in time is realised by considering (NQVI) where the uniform
mesh size is given by h = T/n on I = (0, 1). Our finite difference approximation
scheme in space has M2 uniformly distributed nodes implying the mesh size k =
1/(M + 1) in each coordinate direction. At a node xij = (xi, xj), with xi = ik and
xj = jk for 1 ≤ i, j ≤ M , we approximate w(xij), for w ∈ V , by wij = w(xi, xj)
and denote by wk the corresponding discrete approximation of w on the given mesh.
We approximate the V -norm by |wk|pV :=

∑M
i,j=1 |(D−wk)|pijk2 with (D−wk)ij =

1
k (wij − w(i−1)j , wij − wi(j−1))> and |(uk, vk)>|2ij = u2

ij + v2
ij . The approximation of

the V -norm is given by |v|pVn =
∑n
j=1 h|vkj |

p
V with v =

∑
j v

k
j χIj . The discretization of
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the second order elliptic operator −∆p : W 1,p
0 (Ω)→ W−1,p′(Ω) is based on a second

order accurate five-point centered difference scheme. More details on this scheme can
be found in [19, 16].

In all the examples, we have f(t) = g(t)ψ, where g ∈ C1(̄I) with g(0) = 1 and
ψ ∈W 1,p

0 (Ω)∩C∞(Ω). In particular, we choose ψ(x, y) = N(xy(x− 1)(y− 1))2 with
N a normalization constant such that ψ(1/2, 1/2) = 1. The forcing term is then given
by

f(t, x, y) = r1(1− e−r3tr2 )ψ(x, y),

where r1, r2, r3 > 0 are chosen differently for each example.
For the sequence {v`} generated as in Step 3 of Algorithm 1, we define the linear

convergence coefficient sequence {µ`} by µ` := |v`+2 − v`+1|Vn/|v`+1 − v`|Vn . The
convergence criteria of Algorithm 1 are considered satisfied as soon as for some ` > `0

max`−`0≤r,s≤` |µr − µs| < ε1,

|v2−v1|V
1−µ`

∏`
i=1 µ

i < ε2,



 (SPconv.)

with some prescribed `0 ∈ N, ε1 > 0 and ε2 > 0. Then, Algorithm 1 is stopped. In our
numerical tests, using `0 = 4, ε1 = 1e-2 and ε2 = 1e-4, the conditions in (SPconv.)
are satisfied for ` = 8 in Examples 1 and 2, and ` = 14 for Example 3. For a detailed
explanation of these convergence criteria we refer to [16]. The values of the linear
convergence coefficients {µ`} satisfy µ` ≤ 0.15 in the first example and µ` ≤ 0.13
in the second one for ` ≤ 8. The behavior of these coefficients is stable under mesh
refinements for h = 2−n for n = 5, 6, 7 (i.e., there are no substantial differences on
the bounds for {µ`} under mesh refinements). Although Example 3 does not fall into
the scope of Theorem 3.2 (the p-Laplacian for p = 3 does not satisfies the necessary
hypothesis for the theorem to hold) the algorithm nevertheless exhibits linear conver-
gence. On the other hand, this behavior appears unstable under perturbations of the
forcing term. In fact (slight) variations of f (for example considering Example 3 with
the forcing term of Examples 2 and 1) make the algorithm non-convergent. This is
substantially different for elliptic QVIs; compare [16].

The computation in Step 3 of Algorithm 1 is based on a penalty-method com-
bined with a semismooth Newton iteration. This approach was successfully applied
in [16] and [17] and the reader is referred to these references for further details. In
our examples, we stop the Newton iteration when the norm of the distance between
two successive iterates is below NewtonTol=1e-5. The total number of iterations for
the semismooth Newton algorithm, using the continuation technique for the penalty
parameter described in [16], remained stable under mesh refinements. The behavior
in each time step is analogous to the one reported in [16].

The computational domain consists of M2 uniformly distributed nodes in Ω =
(0, 1)× (0, 1), where M = 128 and the mesh size is k = 1/(M+1)). The time interval
I = (0, 1) is discretized uniformly with mesh size h = 1/100

5.1. Example 1. Let A = −∆, with r1 = 0.1, r2 = 2 and r3 = 10 and with
Φ(v)(t) determined by

Φ(v) =

(∣∣∣
∫ 1

0

(∫

Ω

v(s,x) dx
)

ds
∣∣∣+ 0.001

)
(0.2 + 0.8ψ(x, y))
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The forcing term t 7→ f(t) at t = 0.01, 0.12, 1 is shown in Figures 5.1(a), 5.1(b) and
5.1(c), and the approximate solution, t 7→ u(t), to the QVI is depicted at the same
time steps in Figures 5.1(d), 5.1(e) and 5.1(f). The behavior of the norm of the
gradient t 7→ |∇u(t)| is shown in Figures 5.1(g), 5.1(h) and 5.1(i), also at the same
time steps, and finally the approximation of the active set t 7→ A(t) = {x ∈ Ω :
|∇u(t,x)| −Φ(u)(x) = 0} at times t = 0.12, 1 is depicted in Figures 5.1(j) and 5.1(k).

The spatial part of the gradient bound Φ(v) is proportional to (0.2 + 0.8ψ) with
the latter being a concave function with maximum in the center of the square and
minimum on the sides of the square. We also note that the finite difference scheme is
an implicit one. Therefore whenever the solution at a time step is inactive in Ω, it is
the solution of an elliptic problem where the second order operator is the Laplacian.
Since solutions of such problems satisfy maximum principles for the gradient (i.e. the
supremum of the norm of the gradient is obtained at the boundary) it is expected
that the solution hits activity starting from regions on the sides of the square (this
is observed in Figure 5.1(j)). On the other hand, f forces the norm of the gradient
of the solution to keep growing (in the inactive parts) as time evolves such that the
solution at t = 1 has a large active set as can be seen in Figure 5.1(k). Finally, due
to the constraint, the maximum of the norm of the gradient is no longer found on the
boundaries as it would be expected in the unconstrained version of the problem.

5.2. Example 2. Let A = −∆, with r1 = 0.1, r2 = 2 and r3 = 10 and with
Φ(v)(t) determined by

Φ(v)(t) =

(∣∣∣
∫ 1

0

(∫

Ω

v(s,x) dx
)

ds
∣∣∣+ 0.001

)
(1− 0.2ψ(x, y)).

The forcing term t 7→ f(t) is the same as in Example 1. The approximated
solution, t 7→ u(t), to the QVI at the time steps t = 0.01, 0.12, 1 is shown in Figures
5.2(a), 5.2(b) and 5.2(c). The behavior of the norm of the gradient t 7→ |∇u(t)| is
displayed in Figures 5.2(d), 5.2(e) and 5.2(f), also at the same time steps. Finally,
the approximation of the active set t 7→ A(t) = {x ∈ Ω : |∇u(t,x)| −Φ(u)(x) = 0} at
times t = 0.12, 1 can be observed in Figures 5.2(g) and 5.2(h).

In this example, the spatial part of the gradient bound Φ(v) is proportional to
(1−0.2ψ), which is a convex function with a minimum in the center of the square and
maximum on the boundary of the square. As discussed in the previous example, in
each time step without activity, the maximum of the norm of the gradient is expected
at the boundaries. However, given the convexity of the constraint, the approximate
solution to the QVI hits activity in a region inside the domain as can be seen in
Figures 5.2(g).

5.3. Example 3. Let A = −∆p, with p = 3, with r1 = 0.01, r2 = 2 and
r3 = 0.15 and with Φ(v)(t) determined by

Φ(v)(t) =

(∣∣∣
∫ 1

0

(∫

Ω

v(s,x) dx
)

ds
∣∣∣+ 0.001

)

The forcing term t 7→ f(t) at t = 0.01, 0.12, 1 is shown in Figures 5.3(a), 5.3(b)
and 5.3(c), and the approximate solution, t 7→ u(t), to the QVI is depicted at the
same time steps in Figures 5.3(d), 5.3(e) and 5.3(f). The behavior of the norm of
the gradient t 7→ |∇u(t)| is shown in Figures 5.3(g), 5.3(h) and 5.3(i), also at the
same time steps, and finally the approximation of the active set t 7→ A(t) = {x ∈ Ω :
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Fig. 5.1. x 7→ f(t, x) for t = 0.01, t = 0.12 and t = 1 in 5.1(a), 5.1(b) and 5.1(c), respectively.
x 7→ u(t, x) for t = 0.01, t = 0.12 and t = 1 in 5.1(d), 5.1(e) and 5.1(f), respectively. x 7→ |∇u(t, x)|
for t = 0.01, t = 0.12 and t = 1 in 5.1(g), 5.1(h) and 5.1(i), respectively. 5.1(j) Active set at time
t = 0.12. 5.1(k) Active set at time t = 1

|∇u(t,x)| − Φ(u)(x) = 0} at times t = 0.89, 0.94 can be observed in Figures 5.3(j)
and 5.3(k).

6. Discussion and Further Research. In Theorem 3.2 a contraction result
for the mapping v 7→ S(A, f,K (Φ(v))) is provided, when Φ(v) = Γ(v)φ for some
φ and Γ a Lipschitz continuous functional. Given the structure of the proof of the
aforementioned theorem, it is not trivial to extend the result to operators of higher
rank, as for example when Φ(v) =

∑n
i Γi(v)φi. Another open question is wether the

class of operators A, under which a contractive behavior is observed, can be extended
to operators such as the p-Laplacian. Theorem 3.2 is an extension of a result in [16]
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 5.2. x 7→ u(t, x) for t = 0.01, t = 0.15 and t = 1 in 5.2(a), 5.2(b) and 5.2(c), respectively.
|∇u(t, x)| for t = 0.01, t = 0.15 and t = 1 in 5.2(d), 5.2(e) and 5.2(f), respectively.5.2(g) Active set
at time t = 0.15. 5.2(h) Active set at time t = 1

for elliptic QVIs where several numerical tests show the linear convergence behavior
for the p-Laplacian case, when p = 3. Such a good convergence behavior seems much
more delicate to obtain in the parabolic case as stated in §5.

The structure of the constraint sets K (Φ(v)) = {w ∈ V : w(t) ∈ K(Φ(v)) a.e. t ∈
I} under the hypothesis of Theorem 3.2, i.e., with Φ(v) = Γ(v)φ and Γ a nonlinear
Lipschitz continuous functional, implies at time t that the information on the bound
Φ(v) of the state variable u(t) comes from the entire interval I. A scheme for causal
sets, i.e., when the solution to the QVI at time t, u(t), can be obtained as a solution to
a QVI where the constraint set depends only on the set {v : v = u(τ) for 0 ≤ τ ≤ t}
was developed on [17]. However, it is not known under what conditions on these
types of constraints solutions are unique. An answer to this question is of paramount
importance.

The axiomatic approximation scheme developed in §4 appears to be suitable to be
extended to a fully discretized scheme. For parabolic VIs, such a path was followed by
Glowinski, Lions and Trémolières in [12]. However, in the QVI case the discretization
of the constraint set mapping v 7→ K (Φ(v)) requires special attention, and conditions
for this discretization to be useful for approximation methods are currently unkwown.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Fig. 5.3. x 7→ f(t, x) for t = 0.01, t = 0.89 and t = 0.94 in 5.3(a), 5.3(b) and 5.3(c),
respectively. x 7→ u(t, x) for t = 0.01, t = 0.89 and t = 0.94 in 5.3(d), 5.3(e) and 5.3(f), respectively.
|∇u(t, x)| for t = 0.01, t = 0.89 and t = 0.94 in 5.3(g), 5.3(h) and 5.3(i), respectively. 5.3(j) Active
set at time t = 0.89. 5.3(k) Active set at time t = 0.94
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[8] Z. Denkowski, S. Migórski, and N. S. Papageorgiou. Introduction to Nonlinear Analysis: Ap-
plications. Kluwer, 2003.

[9] G. Duvaut and J.-P. Lions. Les Inéquations en Mécanique et en Physique. Dunod, Paris, 1972.
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