
Weierstraß-Institut
für Angewandte Analysis und Stochastik
Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Optimal selection of the regularization function in a

generalized total variation model. Part I: Modelling and theory

Michael Hintermüller1,2 Carlos N. Rautenberg2

submitted: March 3, 2016

1 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: michael.hintermueller@wias-berlin.de

2 Department of Mathematics
Humboldt-Universität zu Berlin
Unter den Linden 6
10099 Berlin, Germany
E-Mail: rautenberg@math.hu-berlin.de
hint@math.hu-berlin.de

No. 2235

Berlin 2016

2010 Mathematics Subject Classification. 94A08, 68U10, 49K20, 49K30, 49K40, 49M37, 65K15.

Key words and phrases. Image restoration, generalized total variation regularization, spatially distributed regular-
ization weight, Fenchel predual, bilevel optimization, variance corridor.

This research was carried out in the framework of MATHEON supported by the Einstein Foundation Berlin within the
ECMath projects OT1, SE5 and SE15 as well as by the DFG under grant no. HI 1466/7-1 “Free Boundary Problems
and Level Set Methods".



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/





2 M. Hintermüller and C. N. Rautenberg

For the choice of α we propose a duality-based bilevel optimization framework,
where, for a suitably chosen upper-level objective J , (D(α)) acts as a constraint which
is parametrized by the function α, i.e., we seek to solve the problem

minimize J(p, α) over (p, α) ∈ H0(div)×Aad

subject to (s.t.) p solves (D(α)).
(P)

Here, Aad denotes the set of admissible filtering weights.
While the classical TV-model, i.e. (P) with α ≡ const. > 0, has received a con-

siderable amount of attention in image processing (see, e.g., [1, 13–15, 31, 42] as well
as the monograph [46] and the many references therein, to mention only a few), the
literature on the generalized version with a distributed regularization weight is very
scarce. The few available contributions include the PhD thesis [35, Section 2.4.4] and
the associated report [36], as well as [6] where a weighted TV-regularization for vortex
density models is considered.

When it comes to automated choice rules for the regularization function α :
Ω → R, the literature is essentially void. We note, however, that distributed data
fidelity weights have been considered in [16, 17] for restoring gray-scale and color
images subject to blur and Gaussian noise, respectively, and in [30] for problems
involving random-valued impulse or salt-and-pepper noise. In these contributions,
the adjustment of the fidelity weight is based on local statistical estimators and the
statistics of the extremes. In finite dimensions, a technique based on a statistical
multiresolution criterion can be found in [21,34], and in [3] a statistical approach with
variance estimators different from the ones in [16] is pursued. Finally, we mention [10]
where a deterministic choice rule utilizing a pre-segmentation of the image and a
piecewice constant fidelity weight is considered.

Besides studying (P) from a Fenchel-duality point of view, the motivation for this
work is twofold: (i) Considering a choice rule for the regularization weight α : Ω→ R
rather than for a data fidelity weight as in [3, 16, 17, 21, 34] allows for a large variety
of data spaces including Fourier or wavelet domains; and (ii) our desire to utilize
a bilevel optimization framework for the choice of α (compare (P)) stems from the
fact that such a formulation provides a unifying variational approach to both the
restoration of u as well as the optimal choice of the regularization parameter. These
aspects contrast the available literature.

Obviously, the quality of the obtained α (and consequently of u) depends signifi-
cantly on the upper-level objective J in our bilevel approach. In this paper we select
J motivated by the statistics of the extremes (in a discrete setting) and an associated
acceptable local variance corridor.

From an optimization theoretic point of view, bilevel optimization falls into the
realm of mathematical programming with equilibrium constraints (or MPEC, for short).
This problem class typically suffers from notoriously degenerate constraints and re-
quires sophisticated (non-smooth) analysis tools–other than classical Karush-Kuhn-
Tucker (KKT) theory–for the derivation of stationarity conditions. For a rather
general account of this problem class in finite dimensions we refer to the mono-
graphs [38,40], and to the selected works and monographs [8,26,32] for infinite dimen-
sional settings. In mathematical image processing, bilevel problems have been used
recently in [37, 43] for parameter learning, and in [33] for calibrating point spread
functions in blind deconvolution.

The rest of the paper is organized as follows. In the next section we fix notation
and preliminaries. Properties of (P) and its Fenchel pre-dual (D) are studied in the
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following section 3. Section 4 contains the formulation of the bilevel problem for the
optimal choice of α : Ω→ R and an existence proof. A regularized version of the lower-
level problem (D) along with differential stability of its solution as a function of the
regularization weight α are the subjects of section 5. The associated bilevel problem
is studied in section 6, where we also provide its first-order optimality conditions are
provided.

2. Notations and preliminaries. Throughout this paper, Ω ⊂ R` is a bounded
connected open set with Lipschitz boundary ∂Ω. As noted earlier, we assume K ∈
L (L2(Ω)) with K∗K invertible and K∗ the adjoint operator of K. When K∗K is
singular, then one may require K1 6= 0 or add an additional regularization term
a
2

∫
Ω
|u|2dx to JP with a > 0 in order to have (P) well-posed. The data f ∈ L2(Ω)

is supposed to be obtained as f = Kutrue + η, with utrue the desired recovery target
and η ∈ L2(Ω) an oscillatory function, with

∫
Ω
ηdx = 0, and

∫
Ω
|η|2dx = σ2|Ω|. In

a discrete setting, η can be regarded as white Gaussian noise with zero mean and
standard deviation σ > 0.

By M(Ω,RN ) we denote the space of N -valued Borel measures, which is the dual
of Cc(Ω; RN ), the space of continuous RN -valued functions with compact support in
Ω. For u : Ω → R we denote by Du its distributional gradient, and the space of
functions of bounded variation is defined by

BV (Ω) = {u ∈ L1(Ω) : Du ∈M(Ω,R`)}.

Furthermore, for µ ∈M(Ω,RN ), |µ| is the smallest nonnegative scalar Borel measure
ν such that |µ(B)|1 ≤ ν(B) for all Borel sets B. Here, | · |1 denotes the `1-norm on
RN . The norm on M(Ω,RN ) is defined as |µ|M(Ω,RN ) = |µ|(Ω), and from measure
theory it is know that |µ|(Ω) =

∫
Ω

d|µ|. Equivalently, this norm may be defined via
duality by

|µ|(Ω) = sup
ϕ∈Cc(Ω;RN )

{〈µ,ϕ〉C′c,Cc : −1 ≤ ϕ(x) ≤ 1 a.e. on Ω},

where 1 = (1, . . . , 1)> ∈ RN , “a.e.” stands for “almost everywhere” in the sense
of the Lebesgue measure and the supremum can be equivalently taken over ϕ ∈
C0(Ω; RN ). Note that this definition implies for µ = {µi}Ni=1 with µi ∈ M(Ω,R),
that |µ|M(Ω,RN ) = |µ1|M(Ω,R) + · · · + |µN |M(Ω,R). Then, the BV -norm is defined as
|u|BV (Ω) := |u|L1(Ω) + |Du|(Ω). Below, the space of non-negative Borel measures is
denoted by M+(Ω).

Before we commence our analysis, a few words on (P) are in order. From now
on, the expression

∫
Ω
α(x)|Du| is denoted by

∫
Ω
α|Du|, and it stands for the integral

of α on Ω with respect to the measure |Du|, i.e.,
∫

Ω
α d|Du|. Hence, α needs to be

a |Du|-measurable function in order for
∫

Ω
α|Du| to be correctly defined, i.e., α is

measurable with respect to the σ-algebra determined by the Du-completion of the
Borel σ-algebra. A sufficient condition for this is given by α ∈ C(Ω), the space of
continuous functions on Ω. In fact, for α ∈ C(Ω) with α > 0 on Ω and u ∈ BV (Ω)
the duality based representation implies
∫

Ω

α|Du| := sup
p∈H0(div)

{∫

Ω

u(x) div p(x)dx : −1α(x) ≤ p(x) ≤ 1α(x) a.e. on Ω
}
,

as shown in Lemma 3.3 below. If u ∈ W 1,1(Ω), then
∫

Ω
α|Du| =

∫
Ω
α(x)|∇u(x)|1dx,

where ∇u is the weak gradient of u.



4 M. Hintermüller and C. N. Rautenberg

Additionally, if α > 0 is a constant, then
∫

Ω
α|Du| reduces to α|Du|(Ω) and

problem (P) becomes the well-known TV-model [14,42]:

minimize
1
2

∫

Ω

|Ku− f |2dx+ α

∫

Ω

|Du| over u ∈ BV (Ω).(TV)

The total variation
∫

Ω
|Du| is known to preserve edges while filtering noise when

solving (TV). The choice of α > 0 represents a trade-off between filtering and data
fitting. Indeed, (too) large values of α > 0 strongly remove noise, but also filter
details. Also the intensity value in regions containing homogeneous image features gets
changed. On the other hand, (too) small α tends to recover details, but noise possibly
remains in the reconstruction. While scalar α affects the quality of the reconstruction
globally in Ω, in this paper we seek to automatically determine a spatially distributed
function α : Ω → R such that α is relatively large in homogeneous image regions
for proper denoising and relatively small values in regions where details need to be
recovered.

We still need some more notation. In fact, for a Banach space X its norm is
written as | · |X . Given a sequence {xn} in X, strong convergence of the sequence
to an element x ∈ X is denoted by “xn → x” and weak convergence by “xn ⇀ x”.
The topological dual of X is written as X ′, and for f ∈ X ′, x ∈ X, the duality
pairing between X ′ and X is 〈f, x〉X′,X . For two Banach spaces X1 and X2, we write
X1 ↪→ X2 when X1 is continuously embedded into X2.

The linear space of infinitely differentiable functions with compact support in Ω is
denoted by D(Ω). We make use of the usual real Lebesgue and Sobolev spaces Lp(Ω)
and W 1,p(Ω), with 1 ≤ p ≤ ∞, respectively, with norms |v|Lp(Ω) = (

∫
Ω
|v(x)|pdx)1/p

and |w|W 1,p(Ω) = |w|Lp(Ω) + |∇v|Lp(Ω)N . The (standard) inner product in L2(Ω) is
(·, ·). Additionally, W 1,p

0 (Ω) denotes the subspace of W 1,p(Ω) of functions whose trace
is zero on ∂Ω; together with |v|W 1,p

0 (Ω) = |∇v|Lp(Ω)N , it is a Banach space.
The Hilbert space H0(div) is defined as

(2.1) H0(div) := {v ∈ L2(Ω)N : div v ∈ L2(Ω) and v · n|∂Ω = 0},

where n denotes the outer unit normal vector and the boundary condition is taken
in the H−1/2(∂Ω)-sense as the trace operator can be proven to be continuous from
H(div) := {v ∈ L2(Ω)N : div v ∈ L2(Ω)} to H−1/2(∂Ω); see [22, Theorem 2.5].

We also need to handle convergence of closed, convex and non-empty subsets of
a reflexive Banach space. For this matter we use Mosco convergence [39,41].

Definition 2.1 (Mosco convergence). Let K and Kn, for each n ∈ N, be
non-empty, closed and convex subsets of a reflexive Banach space X. We say that the
sequence {Kn} converges to K in the sense of Mosco as n→∞, written as

Kn
M−−→ K,

if the following two conditions hold:
(i) For all v ∈ K, there exists {vn} such that vn ∈ Kn and vn → v in X.
(ii) If vn ∈ Kn and vn ⇀ v in X along a subsequence, then v ∈ K.

The main application of Mosco convergence lies in the following result on the sta-
bility of minimizers for convex constrained optimization problems. For its statement,
let X,X0, X1 be reflexive Banach spaces such that |x|X := |Dx|X0 + |x|X1 where
D : X → X0 is linear.
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Proposition 2.2. Let J : X → R be convex, bounded from below, Fréchet
differentiable with 〈J ′(x) − J ′(y), x − y〉X′,X ≥ c|D(x − y)|2X0

for some c > 0, and
such that J(x) → +∞ if |Dx|X0 → +∞. Suppose that K and Kn, for each n ∈ N,
are closed and convex subsets of X containing the vector 0 and such that there exists
r > 0 for which |x|X1 ≤ r if x ∈ K or x ∈ Kn.

Then, if xn ∈ arg minx∈Kn
J(x) and Kn

M−−→ K, we have:

xn ⇀ x∗ in X and Dxn → Dx∗ in X0,

along a subsequence not denoted specifically, where x∗ ∈ arg minx∈K J(x).
Proof. Since J is convex and continuous (for being Fréchet differentiable), it is

weakly lower semicontinuous. Let {xk} be an infimizing sequence for infx∈K J(x).
Since {J(xk)} is bounded, it follows that {|Dxk|X0} is also bounded. Additionally,
since xk ∈ K, we have |xk|X1 ≤ r which implies that {xk} is bounded in X, since
the norm in X is given by | · |X = |D(·)|X0 + | · |X1 . Hence, there is a subsequence
that converges weakly to a minimizer of J on K (note that K is weakly closed as it
is norm closed).

Similarly we prove that there exists a sequence {xn} with xn ∈ arg minx∈Kn
J(x).

Since 0 ∈ Kn, J(xn) ≤ J(0) and xn ∈ Kn, it follows that {xn} is bounded in X.
Hence, it weakly converges along a subsequence to some x∗ ∈ X. The convergence
Kn

M−−→ K implies that x∗ ∈ K, and that for an arbitrary y ∈ K, there is a sequence
{yn} with yn ∈ Kn such that yn → y in X. Therefore,

J(x∗) ≤ lim
n→∞

J(xn) ≤ lim
n→∞

J(yn) = J(y).

As y ∈ K was arbitrary, we find x∗ arg minx∈K J(x).
Since xn ∈ arg minx∈Kn

J(x) and J is convex and differentiable, we equivalenty
get 〈J ′(xn), x−xn〉X′,X ≥ 0 for all x ∈ Kn. We also have 〈J ′(x)−J ′(y), x−y〉X′,X ≥
c|D(x − y)|2X0

. Again, using that Kn
M−−→ K, there is {zn} with zn → x∗ in X and

zn ∈ Kn. Hence, we obtain

〈J ′(zn), zn − xn〉X′,X ≥ 〈J ′(xn)− J ′(zn), xn − zn〉X′,X ≥ c|D(xn − zn)|2X0
.

However, X 3 x 7→ J ′(x) ∈ X ′ is continuous (since J is Fréchet differentiable) and
zn − xn ⇀ 0 in X, which implies that |D(xn − zn)|X0 → 0. Since zn → x∗ in X, we
obtain Dxn → Dx∗ in X0.

3. Problems (P) and (D). Next we study (P) from a dual point of view and
keep this section self-contained.

It is convenient to introduce the following set valued map K.
Definition 3.1. Let X be a set of RM -valued functions on Ω ⊂ R`. Then, we

define

K(α,X) := {p ∈ X : −1α(x) ≤ p(x) ≤ 1α(x) a.e. on Ω},

where 1 = {1}Mi=1 and α : Ω → R. Whenever X is omitted, then we refer to X =
H0(div), i.e., K(α) := K(α,H0(div)).

For |v|2B := (v,B−1v) and B = K∗K, we recall (D), i.e.,

minimize JD(p) :=
1
2
|div p +K∗f |2B over p ∈ K(α).
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Due to convexity, (D) is equivalent to the variational inequality:

(3.1) Find p ∈ K(α) : 〈Ap + f ,q− p〉H0(div)∗,H0(div) ≥ 0, ∀q ∈ K(α),

where A : H0(div) → H0(div)∗ is defined as Ap := −∇B−1 div p, with p ∈ H0(div)
and f = −∇B−1K∗f ∈ H0(div)∗.

The next result clarifies the existence and unqiueness properties of a solution of
(P) as well as (D), respectively.

Proposition 3.2. The following existence results hold true:
(a) If α ∈ C(Ω) and α(x) > 0 for all x ∈ Ω, then (P) admits a unique solution.
(b) If α : Ω→ R is measurable, non-negative and bounded, then (D) has a solution.

For any two solutions p1 and p2 to (D), one has div p1 = div p2.
Proof. Let {un} in BV (Ω) be an infimizing sequence for JP (·, α). Since the

embedding BV (Ω) ↪→ L2(Ω) is continuous (see for example [7, Theorem 10.1.3.]) and

(3.2) c|Du|(Ω) ≤
∫

Ω

α|Du| ≤ C|Du|(Ω),

with c := minx∈Ω α(x) > 0 and C := maxx∈Ω α(x) > 0, we observe that c|Dun|(Ω) ≤
JP (un, α) < ∞. Therefore, {|Dun|(Ω)} is bounded. Since un ∈ BV (Ω) ⊂ L1(Ω), it
can be written as un = ūn + wn with ūn = 1

|Ω|
∫
undx and

∫
Ω
wndx = 0. By the

Sobolev inequality (see [23]), we have |un − ūn|L2 ≤ c1|Dun|(Ω) with some c1 > 0.
Hence, {|wn|L2} and {|Kwn|L2} are bounded. Since {un} is an infimizing sequence,
{|Kun|L2} is bounded, and then Kun = ūnK1 +Kwn yields that {|ūn|} is bounded
(note that K1 6= 0 since K is one-to-one). Hence, {un} is bounded in L1(Ω) and,
thus, {un} is bounded in BV (Ω), as well.

The above arguments yield the existence of u∗ ∈ BV (Ω) such that un ⇀ u∗

in L2(Ω), un → u∗ in L1(Ω) and |Du∗|(Ω) ≤ lim |Dun|(Ω) along a subsequence.
This follows from the compact embedding BV (Ω) ↪→ L1(Ω); see Theorem 10.1.4 and
Proposition 10.1.1 in [7]. We also have Kun ⇀ Ku∗ in L2(Ω). Further, by Lemma
3.3 and since K(α,D(Ω)`) is H(div)-dense in K(α), we observe

∫

Ω

α|Du∗| = sup
p∈K(α,D(Ω)`)

(u∗,−div p) = sup
p∈K(α,D(Ω)`)

(
lim
n→∞

(un,−div p)
)

≤ lim
n→∞

(
sup

p∈K(α,D(Ω)`)

(un,−div p)
)

= lim
n→∞

∫

Ω

α|Dun|.

Therefore, for some subsequence of {un}, which we also denote by {un}, we have

1
2

∫

Ω

|Ku∗ − f |2dx+
∫

Ω

α|Du∗| ≤ lim
n→∞

(
1
2

∫

Ω

|Kun − f |2dx+
∫

Ω

α|Dun|
)
,

i.e., u∗ is a minimizer.
Let u, v ∈ BV (Ω), then Dw = σ1Du + σ2Dv for w = σ1u + σ2v and for some

σ1, σ2 ≥ 0. Hence, ν = σ1|Du|+σ2|Dv| ∈M+(Ω), and by definition |Dw(B)| ≤ ν(B)
for all Borel sets B. However, |Dw| ∈ M+(Ω) is the smallest measure µ such that
|Dw(B)| ≤ µ(B) for all Borel sets B. We therefore have |Dw|(B) ≤ ν(B) for all Borel
sets. As a consequence we get

∫

Ω

α|D(σ1u+ σ2v)| ≤ σ1

∫

Ω

α|Du|+ σ2

∫

Ω

α|Dv|.
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In particular, this implies that u 7→
∫

Ω
α|Du| is convex. Additionally, since B = K∗K

is invertible and K is injective, we have that u 7→ 1
2

∫
Ω
|Ku− f |2dx is strictly convex.

Hence, u 7→ JP (u, α) is strictly convex and the uniqueness of the minimizers follows
from classical arguments (see for example [1]).

Note that B and B−1 are bounded, self-adjoint and invertible. Hence, (v, w)B
and (v, w)L2 are equivalent inner products. In fact, c1|v|L2 ≤ |v|B ≤ c2|v|L2 for some
0 < c1 ≤ c2, and for all v ∈ L2(Ω). The set K(α) is a closed, convex and non-empty
subset of H0(div). Let p 7→ IK(α)(p) be its indicator function (i.e., IK(α)(p) = 0 if
p ∈ K(α) and IK(α)(p) =∞ otherwise). Then, p 7→ JD(p) + IK(α)(p) is lower semi-
continuous, convex and coercive (note that α is bounded, and then K(α) is bounded
in L2(Ω)). Therefore, the existence of solutions to (D) follow immediately.

Let p1 and p2 be two different solutions to (D). Since JD is convex, σp1+(1−σ)p2

is also a solution to (D) for 0 ≤ σ ≤ 1. Additionally, since B = K∗K is invertible, the
norm v 7→ |v|B is strictly convex which implies that v 7→ 1

2 |v +K∗f |2B is also strictly
convex. Consequently, div p1 = div p2 a.e. on Ω.

It turns out that (D) and (P) are dual to each other as specified below in Theorem
3.4, an extension of [27, Theorem 2.2]. Its proof crucially depends on the fact that
K(α) contains dense (in the sense of H0(div)) subsets of more regular functions. It
should be noted that such a density result cannot hold true in general. Indeed, we
refer to [28] for a counterexample. The following lemma, which relies on our density
result, is needed in the proof of Theorem 3.4.

Lemma 3.3. Let v ∈ L2(Ω), α ∈ C(Ω) and α(x) > 0 for all x ∈ Ω. Then,

(3.3) sup
p∈K(α)

(v,−div p) =

{
+∞, if v /∈ BV (Ω),∫

Ω
α|Dv|, if v ∈ BV (Ω).

Proof. The set K(α,C1
0 (Ω)`) is dense, in the sense of H(div), in K(α), cf. [28].

Hence, the supremum in (3.3) can be taken over K(α,C1
0 (Ω)`) without changing its

value. Next, let α̂ = infx∈Ω α(x) > 0 and v /∈ BV (Ω). Then

sup
p∈K(α,C1

0 (Ω)`)

(v,− div p) ≥ sup
p∈K(α̂,C1

0 (Ω)`)

(v,−div p) = α̂ sup
p∈K(1,C1

0 (Ω)`)

(v,−div p) = +∞,

where we have used that supp∈K(1,C1
0 (Ω)`)(v,−div p) =∞ if v /∈ BV (Ω); see [4, Prop.

3.6, page 120] or [23].
Also, the set K(α,D(Ω)`) is dense, in the sense of H(div), in K(α) [28]. Thus,

K(α) can be replaced by K(α,D(Ω)`) in (3.3). Furtheremore, K(1,D(Ω)`) is dense,
in the sense of C0, in K(1, C0(Ω)`) [28]. Then

sup
p∈K(α,D(Ω)`)

(v,−div p) = sup
p∈K(α,D(Ω)`)

〈Dv,p〉C′0,C0 = sup
p∈K(1,D(Ω)`)

〈Dv, αp〉C′0,C0

= sup
p∈K(1,D(Ω)`)

〈αDv,p〉C′0,C0 = sup
p∈K(1,C0(Ω)`)

〈αDv,p〉C′0,C0

= |αDv|(Ω).

Note, however, that |αDv|(Ω) =
∫

Ω
α|Dv|, (see [19, Theorem 20, III.2]). We also ob-

serve that the aforementioned reference applies to real-valued measures. Its extension
to R`-valued ones follows from an analogous proof.

For the ease of reference, we briefly recall the Fenchel duality result [9,20] adapted
to our setting. Let V and Y be Banach spaces, with V ∗ and Y ∗ their respective
topological duals. Suppose that Λ ∈ L (V, Y ), and let F : V → R∪{+∞} and G : Y →
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R ∪ {+∞} be convex lower semicontinuous functionals not identically +∞. Assume
there exists v0 ∈ V such that F(v0) < +∞, G(Λv0) < +∞, and G is continuous at
Λv0. Then, one has

(3.4) inf
v∈V
F(v) + G(Λv) = sup

w∈Y ∗
−F∗(Λ∗w)− G∗(w),

where F∗ : V ∗ → R∪{+∞} and G∗ : Y → R∪{+∞} denote the conjugates of F and
G, respectively, i.e.,

F∗(v∗) := sup
v∈V
〈v, v∗〉 − F(v),

and analogously for G∗. Further, (v̂, ŵ) are solutions to the two optimization problems
in (3.4) if and only if

(3.5) −ŵ ∈ ∂G(Λv̂) and Λ∗ŵ ∈ ∂F(v̂),

where ∂F and ∂G denote the subdifferentials of F and G, respectively.
We now state our duality theorem.
Theorem 3.4. Let α ∈ C(Ω) with α(x) > 0 for all x ∈ Ω. Then the Fenchel

dual of (D) is given by (P). If p̂ is a solution to (D) and û is the solution to (P),
then they satisfy

Bû = div p̂ +K∗f, and 〈(−div)∗û,p− p̂〉H0(div)∗,H0(div) ≤ 0, ∀p ∈ K(α).(3.6)

Proof. The Fenchel duality result is applied with V = H0(div), Y = Y ∗ = L2(Ω),
Λ = −div, G : Y → R defined as G(v) = 1

2 |v −K∗f |2B and with its convex conjugate
G∗ : Y → R given by G∗(v) = 1

2 |Kv + f |2L2 − 1
2 |f |2L2 ; compare [27]. For F : V → R

given by F(p) = IK(α)(p) its convex conjugate F∗ : V ∗ → R satisfies

F∗((−div)∗v) = sup
p∈K(α)

(v,−div p).

As a consequence F∗(Λ∗v) =
∫

Ω
α|Dv| if v ∈ BV (Ω) and F∗(Λ∗v) = +∞ if v /∈

BV (Ω), by Lemma 3.3. This proves that the Fenchel dual of (D) is given by (P).
The relations (3.6) are obtained directly from an application of (3.5).

4. The bilevel optimization problem for choosing α. The main goal of this
paper is to provide an optimization-theoretic framework for automatically choosing
the distributed regularization weight α : Ω → R+. In contrast to [11], where instead
of α a distributed data fidelity weight λ is chosen by an external update mechanism,
we suggest a bilevel optimization problem for selecting α.

Our starting point, however, is similar to [11], where, given a normalized weight
w ∈ L∞(Ω×Ω) with

∫
Ω

∫
Ω
w(x, y) dxdy = 1, the image residual (also associated with

the noise variance) at u is localized by S : L2(Ω)→ L∞(Ω) with

S(u)(x) :=
∫

Ω

w(x, y) (Ku− f)2(y)dy.

Since B = K∗K ∈ L (L2(Ω)) is assumed to be invertible, at a primal-dual solution
(u,p) fulfilling (3.6) the localized residual may be expressed as

(4.1) R(v)(x) :=
∫

Ω

w(x, y) (KB−1v − (KB−1K∗ − I)f)2(y)dy
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with v = div p. Note that, like S, R maps from L2(Ω) into L∞(Ω).
In what follows, we focus on the Fenchel pre-dual problem (D) for setting up a

bilevel optimization problem for fixing α. In contrast to proceeding with a primal for-
mulation, this has two immediate advantages: (i) As (D) becomes a constraint of the
overall problem, we may handle a problem of obstacle type giving rise to a variational
inequality (VI) of the first kind, rather than a VI of the second kind representing the
first-order optimality condition of (P). (ii) Compared to the approach in [18], the
requirements on w may be weakened as coercivity of z 7→

∫
Ω

∫
Ω
w(x, y)z2(y)dydx in

L2(Ω) is no longer required. Besides these analytical benefits, the dual approach also
has advantages in the design of efficient numerical solution algorithms.

We continue by specifying a suitable upper-level objective. In fact, motivated by
the statistics of the extremes in a discrete setting [18, 24, 25], we consider a current
selection of α acceptable whenever the image residual resides within a suitably choosen
variance corridor; otherwise we penalize violations of this feasibility corridor. For this
purpose, we define F : L2(Ω)→ R+

0 with

F (v) :=
1
2

∫

Ω

max(v − σ2, 0)2dx+
1
2

∫

Ω

min(v − σ2, 0)2dx,

where 0 < σ ≤ σ < ∞ are typically chosen using statistical properties involving the
noise contained in the measurement f . In fact, practical choices of σ, σ based on the
statistics of the extreme are discussed in detail in part II of this work [29].

Now we state our bilevel problem.

Problem (P). Let λ > 0 and p > max(2, `). Consider

minimize J(p, α) := F ◦R(div p) +
λ

p
|α|pW 1,p(Ω) over (p, α) ∈ H0(div)×Aad,

s.t. p ∈ arg min{JD(q) : q ∈ K(α)},
(P)

where the non-empty set of admissible weight functions is given by

(4.2) Aad := {α ∈ H1(Ω) : α ≤ α ≤ α, a.e. on Ω},

for α, α ∈ L2(Ω) with 0 < ε0 ≤ α(x) < α(x)− ε1 a.e. on Ω for some ε1 > 0.
A few words on Problem (P) are in order. Suppose that p ∈ H0(div) is a solution

to (D) for some positive α ∈ C(Ω). Then the solution u ∈ BV (Ω) of (P) for that α
satisfies Bu = div p +K∗f (see (3.6)). This implies

KB−1 div p + (KB−1K∗ − I)f = Ku− f.

Hence, we have F ◦ R(div p) = F ◦ S(u). Since F penalizes violations above σ2 and
below σ2, we are interested in residuals S(u) which satisfy σ2 ≤ S(u) ≤ σ2. Note
that S(u)(x) =

∫
Ω
w(x, y)(Ku − f)2(y)dy for x ∈ Ω may be interpreted as a local

variance [18] and recall that f = Kutrue + η where
∫

Ω
|η|2dx = σ2|Ω|. Consequently,

if for some α∗ we have u(α∗) = utrue, then it is expected that S(u) ' σ2. Thus,
choosing σ < σ < σ we expect F ◦ (S(u)) = F ◦R(div p) ' 0. Moreover, the existence
of solutions to (P) is closely related to continuity properties of the map α 7→ K(α),
which, in turn, requires Mosco convergence of K(αn) for a sequence {αn} in Aad.
This latter issue is connected to the question whether a set of functions of higher
regularity is densely contained in K(α), which we address next.
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Proposition 4.1. Let α ∈W 1,p(Ω) ∩ Aad. If p = ` = 1 or p > `, then we have

K(α,H1
0 (Ω)`)

H0(div)
= K(α).

Proof. First recall that Ω ⊂ R`. It is known that for p = ` = 1 or p > `,
W 1,p(Ω) embeds continuously into C(Ω). Since α ∈ Aad and α > 0 on Ω, the
closure of K(α,D(Ω)`) in the H0(div)-norm is K(α) (see [28]). Since K(α,D(Ω)`) ⊂
K(α,H1

0 (Ω)`), the result follows.
Next, and with Mosco convergence in mind, we adapt a result of Boccardo and

Murat (see [11] or [12]) for double obstacle constraints to H1
0 (Ω)` and H0(div).

Lemma 4.2. Let {αn} be a sequence in Aad such that αn ⇀ α∗ in W 1,p(Ω).
Then, if p > 2 we have

K(αn, H1
0 (Ω)`) M−−→ K(α∗, H1

0 (Ω)`).

If p > max(2, `), then

K(αn) M−−→ K(α∗).

Proof. The result of Boccardo and Murat (see [12, p.87] or [11]) implies that if
αn ⇀ α∗ in W 1,p(Ω) with p > 2 and αn ∈ Aad for all n ∈ N, then K−(αn)→ K−(α∗)
in the sense of Mosco for K−(α) := {p ∈ H1

0 (Ω) : −α(x) ≤ p(x) a.e. on Ω}. The
same is true for K+(α) := {p ∈ H1

0 (Ω) : p(x) ≤ α(x) a.e. on Ω}. Furthermore,
for K(α) := {p ∈ H1

0 (Ω) : −α(x) ≤ p(x) ≤ α(x) a.e. on Ω}, and since W 1,p(Ω)
and H1

0 (Ω) both embed compactly into L2(Ω), it follows that if vn ∈ K(αn) for
n ∈ N and vn ⇀ v∗ in H1

0 (Ω) as n → ∞ then v∗ ∈ K(α∗). Let p∗ ∈ K(α∗).
Then p∗ ∈ K+(α∗) and p∗ ∈ K−(α∗), and there exist sequences {p+

n } and {p−n }
such that p±n ∈ K±(αn) for all n ∈ N and p±n → p∗ in H1

0 (Ω). Since the maps
min(·, ·),max(·, ·) : H1

0 (Ω)×H1
0 (Ω) → H1

0 (Ω) are continuous in the strong and weak
topologies, we have that pn := max(p+

n , 0) + min(p−n , 0) satisfies pn ∈ K(αn) and
pn → p∗. Therefore, K(αn) M−−→ K(α∗) and the extension to the multidimensional
case K(αn, H1

0 (Ω)`) M−−→ K(α∗, H1
0 (Ω)`) is direct.

Let pn ∈ K(αn) for n ∈ N and pn ⇀ p∗ in H0(div). Then we prove first that
p∗ ∈ K(α∗): By the compact embedding of W 1,p(Ω) into L2(Ω), we have that, along
a subsequence, αn → α∗ in L2(Ω) and also pointwise almost everywhere. Since also
pn ⇀ p∗ in L2(Ω)`, by Mazur’s Lemma we have that p̃n =

∑N(n)
k=n λ(n)kpk with∑N(n)

k=n λ(n)k = 1 converges strongly in L2(Ω)` to p∗ (and hence pointwise a.e. along
a further subsequence) for some {λ(n)k}N(n)

k=n and some N(n) ∈ N. But, pn ∈ K(αn)
yields

−1
N(n)∑

k=n

λ(n)kαk(x) ≤ p̃n(x) ≤ 1
N(n)∑

k=n

λ(n)kαk(x), a.e. on Ω

and
∑N(n)
k=n λ(n)kαk → α∗ pointwise a.e. so that p∗ ∈ K(α∗).

Let p∗ ∈ K(α∗) be arbitrary and suppose that p > max(2, `). Then, by Propo-
sition 4.1 there exists {qj} in K(α∗, H1

0 (Ω)`) such that |p∗ − qj |H0(div) ≤ 1/j. Since
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qj ∈ K(α∗, H1
0 (Ω)`) for all j ∈ N, and K(αk, H1

0 (Ω)`) M−−→ K(α∗, H1
0 (Ω)`), there ex-

ists a sequence {qjk} such that qjk ∈ K(αk, H1
0 (Ω)`) ⊂ K(αk) and |qj−qjk|H1

0 (Ω)` → 0
as k →∞. Let pj := qjkj

with kj so that |qj − pj |H1
0 (Ω)` ≤ 1/j. Then,

lim
k→∞

|p∗ − pj |H0(div) ≤ lim
k→∞

|p∗ − qj |H0(div) + lim
k→∞

|qj − pj |H0(div) = 0.

This concludes the proof.
Theorem 4.3. Problem (P) has at least one solution.
Proof. Let S : Aad → 2H0(div) be the set-valued solution map of the lower-level

problem, i.e., S(α) := arg minq∈K(α) JD(q), and note that divS(α) is a singleton;
see Proposition 3.2. Further, let {pn, αn} be an infimizing sequence for (P). Then
pn ∈ S(αn) and div pn = divS(αn). Since 0 ≤ J(pn, αn) ≤ M for some M > 0
independent of n, {αn} is uniformly bounded in W 1,p(Ω). Hence, αn ⇀ α∗ in W 1,p(Ω)
along a subsequence (also denoted by {αn}) for some α∗ in W 1,p(Ω) ∩ Aad.

Since αn ⇀ α∗ in W 1,p(Ω), then K(αn) M−−→ K(α∗) by Lemma 4.2. There-
fore, pn ⇀ p∗ ∈ S(α∗) in H0(div) and further div pn → divS(α∗) in L2(Ω) (see
Proposition 2.2). Hence, (α∗,p∗) is feasible for (P). Finally, note that

J(p∗, α∗) ≤ lim
n↓0

J(pn, αn) ≤ J(p(α), α), ∀α ∈ Aad,

i.e., (p∗, α∗) is a minimizer for Problem (P).

5. Solution stability and differentiability of a smoothed lower-level
problem. Problem (P) falls into the realm of elliptic mathematical programs with
equilibrium constraints (see, e.g., [26]) with a degenerate feasible set. As a conse-
quence, the derivation of stationarity conditions for a primal-dual characterization of
a solution does not follow from KKT-theory in Banach space [47], and designing solu-
tion algorithms is delicate. As a remedy, in this section we study a family of problems
(D̃) approximating (D) with respect to their (differential) stability with respect to α.
The family (D̃) is defined as follows.

Problem (D̃). Let 0 ≤ α ∈ L2(Ω), β, γ, δ ∈ R+
0 , ε ∈ R+, and either V := H1

0 (Ω)`

if β > 0, or V := H0(div) if β = 0. Then problem (D̃) reads: Find p ∈ V such that

(D̃) 〈−β∆p + γp +Ap + f ,v〉V ∗,V +
1
ε

(Pδ(p, α),v) = 0, ∀v ∈ V.

The operator ∆ : H1
0 (Ω)` → H−1(Ω)` is the vectorial Laplacian, i.e., for w,v ∈

H1
0 (Ω)`, 〈−∆w,v〉V ∗,V := (∇w,∇v) =

∑`
k=1

∫
Ω
∇wk·∇vkdx. The mapA : H0(div)→

H0(div)∗ and f ∈ H0(div)∗ are as in (3.1), and Pδ : H1
0 (Ω)×L2(Ω)→ L2(Ω)` is given

by

Pδ(p, α) := (p− α1)+
δ − (p + α1)−δ ,(5.1)

where, for δ > 0, R 3 r 7→ (r)+
δ ∈ R is defined as

(5.2) (r)+
δ =





r − δ/2, r ≥ δ ;
r2/2δ, r ∈ (0, δ) ;
0, r ≤ 0 .

The map r 7→ (r)+
δ is a differentiable approximation of the positive part r 7→ (r)+ :=

max(r, 0) and similarly, for (r)−δ := (−r)+
δ and the negative part (r)− := (−r)+.
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Further, for δ = 0, (r)+
δ := (r)+ and (r)−δ := (r)−. Note that for 0 ≤ δ1 ≤ δ2, we have

that 0 ≤ (r)+
δ2
≤ (r)+

δ1
for all r ∈ R. For r ∈ R`, (r)+

δ is defined component-wise, i.e.,
(r)+

δ = ((r1)+
δ , (r1)+

δ , , . . . , (rl)
+
δ ) and (r)−δ analogously.

The existence of a solution to (D̃) follows from monotone operator theory [44].
We note that for β > 0 or γ > 0 the solution is unique. Since 〈Ap,p〉V ∗,V = |div p|2B ,
we have that for β = γ = 0 all solutions to (D̃) have the same divergence.

One readily argues that p of (D̃) solves the following convex optimization problem:

(5.3) minimize J (p, α) :=
β

2
|p|2V +

γ

2
|p|2L2(Ω) + JD(p) +

1
ε
Pδ(p, α), over p ∈ V,

with (D̃) representing the associated Euler-Lagrange system. Above, the functional
Pδ(·, α) : V → R+

0 is defined as

(5.4) Pδ(p, α) :=
∫

Ω

∑̀

i=1

(
Gδ(−(pi + α)) +Gδ(pi − α)

)
dx,

with p = (p1, p2, . . . , pl) and Gδ : R→ R,

(5.5) Gδ(r) =





1
2r

2 − δ
2r + δ2

6 , r ≥ δ ;
r3/6δ, r ∈ (0, δ) ;
0, r ≤ 0 ,

for δ > 0. For δ = 0, we use r 7→ G0(r) := r2/2 for r ≥ 0 and G0(r) := 0 oth-
erwise. Note that d

drGδ(r) = (r)+
δ and d

drGδ(−r) = −(−r)+
δ = −(r)−δ , and further

d2

dr2Gδ(r),
d2

dr2Gδ(−r) ≥ 0 for all r ∈ R. Additionally, for 0 ≤ δ0 ≤ δ1 we have
0 ≤ (r)+

δ1
≤ (r)+

δ0
and also

(5.6) 0 ≤ Gδ1(r) ≤ Gδ0(r) ≤ G0(r), ∀r ∈ R.

Our consistency and stability results are stated next.
Theorem 5.1. Let {βn}, {γn}, {δn} and {εn} satisfy βn, γn, δn ≥ 0, εn > 0

for all n ∈ N, and (βn, γn, εn) → (β∗, γ∗, ε∗). For n ∈ N, suppose that αn and α∗

are non-negative functions on Ω, and let {pn} be a sequence of solutions to (D̃) for
α = αn and (β, γ, δ, ε) = (βn, γn, δn, εn). Then the following statements hold true.

(i) Consistency. Suppose that αn ⇀ α∗ in W 1,p(Ω), p > max(2, `), αn, α∗ ∈
Aad, sup δn <∞, and (β∗, γ∗, ε∗) = (0, 0, 0). Then,

div pn → div p∗ in L2(Ω),

where p∗ is any solution to (D) for α = α∗.
(ii) Stability. Suppose that αn → α∗ in L2(Ω), δn → δ∗ and β∗, ε∗ > 0. Then,

pn → p∗ in H1
0 (Ω)`,

where p∗ is the solution to (D̃) for α = α∗ and (β, γ, δ, ε) = (β∗, γ∗, δ∗, ε∗).
Remark 5.1. In the case (ii) the above results can be extended as follows. Let

fn → f∗ in L2(Ω) and assume that {pn} is a sequence of solutions to (D̃) with f = fn,
n ∈ N, and p∗ solves (D̃) with f = f∗. Then the assertion of (ii) in Theorem 5.1
remains true since fn = −∇B−1K∗fn satisfies fn → f∗ := −∇B−1K∗f∗ in H−1(Ω).
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Proof. (of Theorem 5.1) We split the proof into several steps. Step 1: Bound-
edness of p̃ = p̃(α, β, γ, ε, δ), a solution of (D̃), in H0(div) if ε > 0, δ ≥ 0 and
0 ≤ α ∈ L2(Ω) are in bounded sets, and in H1

0 (Ω)` if β−1 is in a bounded set.
Setting v := p̃ in (D̃), we obtain from the monotonicity of p 7→ Pδ(p, α) and
−β∆+γI+A : V → V ∗, where V = H0(div) if β = 0 and V = H1

0 (Ω)` if β > 0, that

|div p̃|2B + β|p̃|2V ≤ 〈γp̃ +Ap̃, p̃〉V ∗,V ≤ −〈f , p̃〉V ∗,V ≤ |K∗f |B |div p̃|B ,

where we have used that (v, w) 7→ (v,B−1w) is an inner product in L2(Ω). Hence,
{div p̃(α, β, γ, ε, δ)}α,β,γ,ε,δ is bounded in L2(Ω), and, if β−1 is in a bounded set,
{p̃(α, β, γ, ε, δ)}α,β,γ,ε,δ is bounded in H1

0 (Ω)`.
Since p̃ solves (5.3), we obtain from J (p̃, α) ≤ J (0, α) that

(5.7) Pδ(p̃, α) ≤ ε

2
|K∗f |2B .

When δ, ε > 0 are in bounded sets, then this implies that (p̃ − α1)+
δ and (p̃ + α1)−δ

are bounded in L2(Ω)`. Hence, since 0 ≤ α ∈ L2(Ω) is in a bounded set, we have
{p̃}α,γ,ε,δ is bounded in L2(Ω)`. Thus, if δ ≥ 0, ε > 0 and 0 ≤ α ∈ L2(Ω) are in
bounded sets, then {p̃(α, β, γ, ε, δ)}α,β,γ,ε,δ is bounded in H0(div).

Step 2: Weak convergence in H0(div) in (i) or in H1
0 (Ω)` in (ii) of the ap-

proximating sequence {p̃(αn, γn, εn, δn)} to p∗. Consider first (i). Let {αn}, {βn},
{γn}, {δn} and {εn} be as in our hypothesis, and {p̃n} denote a subsequence of
{p̃(αn, γn, εn, δn)} which converges weakly in H0(div) to some p∗ ∈ H0(div). Then,
pni ⇀ p∗i in L2(Ω) where p̃n = (pn1 , p

n
2 , . . . , p

n
` ) and p∗ = (p∗1, p

∗
2, . . . , p

∗
` ), so that

(pni ± αn) ⇀ (p∗i ± α∗) in L2(Ω). Let δ̂ = sup δn <∞. Then, by (5.6) we observe

Pδ̂(p∗, α∗) ≤
∑̀

i=1

(
lim
n→∞

∫

Ω

Gδn
(−(pni + αn))dx+ lim

n→∞

∫

Ω

Gδn
(pni − αn)

)
dx

≤ lim
n→∞

∫

Ω

∑̀

i=1

(
Gδn

(−(pni + αn))dx+Gδn
(pni − αn)

)
dx

= lim
n→∞

Pδn(p̃n, αn) ≤ lim
n→∞

εn
2
|K∗f |2B = 0,

where we have used (5.7) for the last inequality. This shows p∗ ∈ K(α∗). Next
we prove that p∗ is the solution to (D). For this purpose let r ∈ K(α∗, H1

0 (Ω)`)
be arbitrary. Since αn ⇀ α∗ in W 1,p(Ω), Lemma 4.2 yields that K(αn, H1

0 (Ω)`)
converges in the sense of Mosco to K(α∗, H1

0 (Ω)`) . Hence, there is a sequence {rn}
with rn ∈ K(αn, H1

0 (Ω)`) and rn → r in H1
0 (Ω)`. Since J (pn, αn) ≤ J (rn, αn) and

rn ∈ K(αn, H1
0 (Ω)`), we observe that

1
2
|div pn +K∗f |2B +

βn
2
|pn|2V +

γn
2
|pn|2L2(Ω) +

1
εn
Pδn

(pn, αn)

≤ βn
2
|rn|2V +

γn
2
|rn|2L2(Ω) +

1
2
|div rn +K∗f |2B .

By (5.7), 1
εn
Pδn

(pn, αn) is bounded, and since J (pn, αn) ≤ J (0, αn) we have that
βn

2 |pn|2V and γn

2 |pn|2L2(Ω) are also bounded for all n ∈ N. Further, since (βn, γn) →
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(0, 0) and rn → r in H1
0 (Ω)`, we have

1
2
|div p∗ +K∗f |2B + c

≤ lim
n→∞

(
1
2
|div pn +K∗f |2B +

βn
2
|pn|2V +

γn
2
|pn|2L2(Ω) +

1
εn
Pδn(pn, αn)

)

≤ 1
2
|div r +K∗f |2B ,

where c = limn→∞(βn

2 |pn|2V + γn

2 |pn|2L2(Ω) + 1
εn
Pδn

(pn, αn)). Here, we have used
that div pn ⇀ div p∗ in L2(Ω). Finally, since r ∈ K(α∗, H1

0 (Ω)`) is arbitrary and
K(α∗, H1

0 (Ω)`) is dense (in the H0(div)-topology) in K(α∗), we can choose r = rk
with rk → p∗ in H0(div). This shows that c = 0. Furthermore, let p ∈ K(α∗) be
arbitrary. Then there exists r = rk ∈ K(α∗, H1

0 (Ω)`) such that rk → p in H0(div).
Using this fact in the above inequality together with c = 0, we have

1
2
|div p∗ +K∗f |2B ≤

1
2
|div p +K∗f |2B ,

i.e., p∗ solves (D).
Consider next the case (ii), and let {αn}, {βn}, {γn}, {δn} and {εn} be as in our

hypothesis. Let {pn} be a subsequence of {p(αn, γn, εn, δn)} which converges weakly
in H1

0 (Ω)` (and strongly in L2(Ω)`) to some p∗ ∈ H1
0 (Ω)`. Additionally, we have

αn → α∗ and div pn ⇀ div p∗ in L2(Ω). Since (βn, γn, δn, εn) → (β∗, γ∗, δ∗, ε∗) with
β∗, ε∗ > 0, taking the lim inf on both sides of the inequality J (pn αn) ≤ J (p, αn)
for arbitrary p, it readily follows that p∗ solves (D̃) for α = α∗ and (β, γ, δ, ε) =
(β∗, γ∗, δ∗, ε∗).

Step 3: div pn → div p∗ in L2(Ω) in (i), and pn → p∗ in H1
0 (Ω)` in (ii). Consider

first (i). Let vh ∈ K(α∗, H1
0 (Ω)`) be such that |vh − p∗|H0(div) ≤ h for h > 0 and

let vhn ∈ K(αn, H1
0 (Ω)`) with vhn → vh in H1

0 (Ω)`. Note that the existence of vh

is guaranteed since K(α∗, H1
0 (Ω)`) is dense in K(α∗) in the H0(div)-topology. The

existence of {vhn} is guaranteed as K(αn, H1
0 (Ω)`) converges in the sense of Mosco

to K(α∗, H1
0 (Ω)`). From the strong monotonicity of the operator An(·) := (−βn∆ +

γnI +A)(·), we have that

1
2
|div(pn − vhn)|2B +

βn
2
|pn − vhn|2V +

γn
2
|pn − vhn|L2(Ω) = 〈An(pn − vhn),pn − vhn〉V ∗,V

(5.8)

≤
〈

1
εn
Pδn(pn, αn) + f − βn∆vhn + γnvhn +Avhn,v

h
n − pn

〉

V ∗,V

.

From J (pn, αn) ≤ J (0, αn) we obtain that
√
βn|pn|V is bounded and

lim
n→∞

〈f − βn∆vhn + γnvhn +Avhn,v
h
n − pn〉V ∗,V ≤ (K∗f + div vh,div(vh − p∗))B .

Here we have used that (βn, γn) → (0, 0), div pn ⇀ div p∗ and vhn → vh in H1
0 (Ω)`.

Further,∣∣∣∣ 1

εn
Pδn(pn, αn)

∣∣∣∣
V ∗

= sup
|w|V ≤1

〈
1

εn
Pδn(pn, αn),w

〉
V ∗,V

= 〈−βn∆pn + γnpn +Apn + f ,w〉V ∗,V

≤ βn|pn|V |w|V + γn|pn|L2(Ω)|w|L2(Ω) + | div pn +K∗f |B |div w|B
≤ C,
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for some C > 0. Here we employ that βn|pn|2V + γn|pn|2L2(Ω) + |div pn + K∗f |2B is
uniformly bounded in n ∈ N and that the B−inner product is equivalent to the one
in L2(Ω).

As |vh − p∗|H0(div) ≤ h and from (5.8), we infer

lim
n→∞

1
2
|div(pn − vh)|2B = O(h) as h→ 0.

This completes the proof, since |vh − p∗|H0(div) ≤ h and h > 0 is arbitrary.
Next consider (ii). From the inequality

J (p∗, α∗) ≤ limJ (pn, αn) ≤ limJ (pn, αn) ≤ limJ (p∗, αn) = J (p∗, α∗),

and since pn → p∗ in L2(Ω)`, αn → α∗ in L2(Ω) and div pn ⇀ div p∗, we have that

lim
n→∞

(
1
2
|div pn|2B +

β

2
|pn|2H1

0 (Ω)`

)
=

1
2
|div p∗|2B +

β

2
|p∗|2H1

0 (Ω)` .

Further, p 7→ 1
2 |div p|2B + β

2 |p|2H1
0 (Ω)` yields a norm which is equivalent to the usual

one in H1
0 (Ω)`. This implies that |pn|H1

0 (Ω)` → |p∗|H1
0 (Ω)` , given pn ⇀ p∗ in H1

0 (Ω)`.
Hence, pn → p∗ in H1

0 (Ω)`.
We are left with establishing differentiability properties of the mapping α 7→

p(α). For this purpose, we require β > 0 in (D̃). We remark already here that a
corresponding differentiability results for β = 0 seems elusive. The main reason for
this limitation stems from the fact that H0(div) does not embed continuously into
any L2+ξ(Ω)` for any ξ > 0, but H1

0 (Ω) does so for ξ ∈ (0, ξ̄(`)] with ξ̄(`) = +∞ for
` = 1, ξ̄(`) ∈ [0,+∞) for ` = 2, and ξ̄(`) = 2`/(`− 2) for ` > 2.

Theorem 5.2. Let ξ ∈ (0, ξ̄(`)] and p(·) : L2+ξ(Ω) → H1
0 (Ω)` be the solution

mapping of (D̃) with β > 0. Then α 7→ p(α) is Gâteaux differentiable, and the
Gâteaux differential of p at α∗ in direction ω is denoted by s∗ ∈ H1

0 (Ω)` is the unique
solution of

(5.9) 〈−β∆s∗ + γs∗ +As∗,v〉H−1,H1
0

+
1
ε

(P ′δ(p
∗, α∗)(s∗, ω),v) = 0, ∀v ∈ H1

0 (Ω)`,

with p∗ := p(α∗) and P ′δ : H1
0 (Ω)` × L2+ξ(Ω)→ L (H1

0 (Ω)` × L2+ξ(Ω), H−1(Ω)`).
Proof. We divide the proof into several steps. Step 1. Let p∗ := p(α∗) and

pt := p(αt) with αt := α∗ + tω, i.e., p∗ and pt are the solutions of (D̃) for α = α∗

and α = α∗ + tω, respectively. Then, by taking the difference of the corresponding
equations (D̃) for p∗ and pt, it follows that
(5.10)

〈−β∆(pt−p∗)+γ(pt−p∗)+A(pt−p∗),v〉H−1,H1
0

+
1
ε

(Pδ(pt, αt)−Pδ(p∗, α∗),v) = 0,

for v ∈ H1
0 (Ω)`.

For v = pt − p∗ in (5.10) and with Qt(p) := Pδ(p, αt) and Q0(p) := Pδ(p, α∗)
we obtain

β|pt − p∗|2H1
0 (Ω)` + 〈A(pt − p∗),pt − p∗〉H−1,H1

0
+ γ|pt − p∗|2L2(Ω)`+

1
ε

(Qt(pt)−Qt(p∗),pt − p∗) = −1
ε

(Qt(p∗)−Q0(p∗),pt − p∗).
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The functions R 3 r 7→ (r)+
δ , (r)

−
δ are Lipschitz continuous with Lipschitz con-

stant bounded by a constant independent of δ. Hence, it follows that |Qt(p) −
Q0(p)|L2(Ω)` ≤ LQ|αt−α|L2(Ω) = LQ|t||ω|L2(Ω) with some constant LQ > 0. Further-
more, (Qt(p) − Qt(q),p − q) ≥ 0 for all p,q ∈ L2(Ω)`, and from the monotonicity
properties of A we infer

(
β|pt − p0|2H1

0 (Ω)` + |div(pt − p0)|2B + γ|pt − p0|2L2(Ω)`

)1/2

≤ |t|
(
CLQ
ε

)
|ω|L2(Ω).

(5.11)

Let {tn} be a sequence of reals such that tn → 0. Then, by (5.11) there exist a
subsequence (denoted the same) such that

(5.12) s∗n :=
ptn − p∗

tn
⇀ s∗ in H1

0 (Ω)`,

for some s∗ ∈ H1
0 (Ω)`.

Step 2: s∗ solves (5.9) uniquely. We have that H1
0 (Ω)` × L2+ξ(Ω) 3 (p, α) 7→

P (p, α) ∈ H−1(Ω)` is continuously Fréchet differentiable; see Proposition 6.2 below
and the remarks at the end of its statement. Then, for any v ∈ H1

0 (Ω)` and by the
mean value theorem we get

(5.13)

(P (pt, αt)− P (p∗, α∗),v) = (P ′(p∗ + ζt(pt − p∗), α∗ + ζt(αt − α∗))
(

pt − p∗

αt − α∗
)
,v),

for some t 7→ ζt ∈ (0, 1). From (5.11), we have that pt → p∗ in H1
0 (Ω)` as t → ∞

and by definition αt − α∗ = tω. It follows that (pt, αt) → (p∗, α∗) in V × L2+ξ(Ω).
Additionally, P ′δ : H1

0 (Ω)`×L2+ξ(Ω)→ L (H1
0 (Ω)`×L2+ξ(Ω), H−1(Ω)`) is continuous

(since P is continuously Fréchet differentiable), and together with (5.12) this implies

lim
n→∞

(
Pδ(ptn , αtn)− Pδ(p∗, α∗)

tn
,v
)

= (P ′δ(p
∗, α∗)(s∗, ω),v).

One readily shows that 〈−β∆s∗n + Aγs∗n,v〉H−1,H1
0
→ 〈−β∆s∗ + Aγs∗,v〉H−1,H1

0
.

Therefore, dividing (5.10) by tn and taking n→∞, we obtain that s∗ solves (5.9) .
We are only left to prove that the solution to (5.9) is unique. Fix α and recall that

H1
0 (Ω)` 3 p 7→ Pδ(p, α) ∈ H−1(Ω)` is monotone and differentiable. Then, from the

inequality (Pδ(p∗+sr, α∗)−Pδ(p∗, α∗), sr) ≥ 0, we obtain that (D1Pδ(p∗, α∗)r, r) ≥ 0,
i.e., D1Pδ(p∗, α∗) is a monotone, linear and bounded operator. Since P ′δ(p

∗, α∗)(s, ω) =
D1Pδ(p∗, α∗)s +D2Pδ(p∗, α∗)ω (see Proposition 6.2 below) and −β∆ + A+ γI is a
strongly monotone, linear and bounded operator by the Lax-Milgram Lemma, the
equation (5.9) has a unique solution. Thus, for every positive sequence {tn} such
tn → 0, every convergent subsequence of the quotient (5.12) converges for the same
limit and hence, the entire sequence converges to the same limit.

Step 3: s∗n → s in H1
0 (Ω)`. For any t > 0, considering v = pt − p∗ in (5.13),

leads to
(
Pδ(pt, αt)− Pδ(p∗, α∗)

t
,
pt − p∗

t

)
=

(P ′δ(p
∗ + ζt(pt − p∗), α∗ + ζt(αt − α∗))

(
pt−p∗

t
αt−α∗
t

)
,
pt − p∗

t
).(5.14)
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Since ptn → p∗ in H1
0 (Ω)` and αtn → α∗ in L2+ξ(Ω), it follows that p∗ + ζtn(ptn −

p∗)→ p∗ in H1
0 (Ω)` (particularly in L2(Ω)`) and α∗+ζtn(αtn−α∗)→ α∗ in L2+ξ(Ω).

Additionally, we know that (ptn − p∗)/tn ⇀ s∗ in H1
0 (Ω)` and, by the Rellich-

Kondrachov Theorem, (ptn − p∗)/tn → s∗ in L2(Ω)` (as well as pointwise almost
everywhere convergence on Ω) respectively along a subsequence (that we also denote
by {ptn} for the ease of exposition). Moreover, we have (αtn − α∗)/tn = ω for all
n ∈ N. Therefore, since P ′δ : V × L2+ξ(Ω) → L (H1

0 (Ω)` × L2+ξ(Ω), H−1(Ω)`) is
continuous, by (5.9) and (5.14) we obtain

lim
n→∞

−1
ε

(
Pδ(ptn , αtn)− Pδ(p∗, α∗)

tn
,
ptn − p∗

tn

)
= −1

ε
(P ′δ(p

∗, α∗)(s∗, ω), s∗)

= 〈−β∆s∗ +As∗ + γs∗, s∗〉H−1,H1
0
.(5.15)

Note that (u,v)β := 〈−β∆u + Au + γu,v〉H−1,H1
0

with u,v ∈ H1
0 (Ω)` is an

inner product in H1
0 (Ω)` which is equivalent to the usual one and |u|2β := (u,u)2

β =
β|u|2V + γ|u|2L2(Ω)` + |div u|2B . Then, by the lower-semicontinuity of the norm, (5.10)
and (5.15), we find that

(s∗, s∗)β ≤ lim
n→∞

(s∗n, s
∗
n)β ≤ lim

n→∞
(s∗n, s

∗
n)β = lim

n→∞
〈−β∆s∗n +As∗n + γs∗n, s

∗
n〉H−1,H1

0

= lim
n→∞

−1
ε

(
Pδ(ptn , αtn)− Pδ(p∗, α∗)

tn
,
ptn − p∗

tn

)

= 〈−β∆s∗n +As∗n + γs∗n, s
∗
n〉H−1,H1

0
= (s∗, s∗)β ,

where s∗n := ptn−p∗

tn
, i.e., |s∗n|β → |s∗|β . Hence, since we already have that s∗n ⇀ s∗

in V , we conclude s∗n → s∗ in H1
0 (Ω)`. Finally, this implies that for every α, ω, there

exists µ(α, ω) ∈ H1
0 (Ω)` such that

(5.16) lim
t→0

p(α+ tω)− p(α)
t

= lim
t→0

pt − p0

t
= µ(α, ω), in H1

0 (Ω)`.

Consequently, µ(α, ω) is the Gâteaux differential of p at α in direction ω. It fol-
lows additionally from (5.9) that the map ω 7→ µ(α, ω) is linear and continuous,
i.e., µ(α, ω) = µ(α)ω with µ(α) ∈ L (L2+ξ(Ω), H1

0 (Ω)`). Furthermore, since P ′δ :
H1

0 (Ω)` ×L2+ξ(Ω)→ L (H1
0 (Ω)` ×L2+ξ(Ω), H−1(Ω)`), the map α 7→ µ(α) is contin-

uous. Hence, it is the Fréchet derivative of the map α 7→ p(α).

6. The regularized bilevel problem for choosing α. Now we introduce (P̃),
the regularized version of Problem (P) by replacing the lower-level problem (D) in (P)
by (D̃), and the admissible set Aad is defined with α, α ∈ H2. In contrast to (P), we
pose (P̃) over α ∈ W 1,p(Ω) for p ≥ 2 and not with p > max(2, `) as in (P). However,
the duality result of Theorem 3.4 requires the C(Ω)-regularity of the filtering weight
α. Analytically, as seen earlier, it can be obtained by requiring p > max(2, `), or it
arises in an a posteriori way when solving (P̃) by a projection method; see Theorem
3.1 of part II of this work [29].

Problem (P̃): Let λ, β, δ > 0, and p ≥ 2. Consider the problem:

minimize J(p, α) := F ◦R(div p) +
λ

p
|α|pW 1,p(Ω) over (p, α) ∈ H1

0 (Ω)` ×Aad,

s.t. p ∈ arg min
w∈H1

0 (Ω)`

β

2
|w|2H1

0 (Ω)` +
γ

2
|w|2L2(Ω)` + JD(w) +

1
ε
Pδ(w, α).

(P̃)
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The set Aad, is given by

(6.1) Aad := {α ∈ H1(Ω) : α ≤ α ≤ α, a.e. on Ω},

for given α, α ∈ H2(Ω), such 0 ≤ α ≤ α a.e. in Ω and ∂α
∂ν = ∂α

∂ν = 0 in ∂Ω.
Theorem 6.1. Problem (P̃) admits a solution.
Proof. Take an infimizing sequence {(pn, αn)} for (P̃). We have that {αn} is

bounded in W 1,p(Ω) due to λ > 0. The embedding W 1,p(Ω) ↪→ L2(Ω) is compact [2]
yielding a subsequence of {αn} (also denoted by {αn}) such that αn ⇀ α∗ in W 1,p(Ω)
and αn → α∗ in L2(Ω), for some α∗ ∈ W 1,p(Ω) ∩ Aad due to the weak closedness of
Aad in W 1,p(Ω). Additionally, pn = p(αn), where α 7→ p(α) is the solution map of
(D̃). Then, by Theorem 5.1, we have pn → p∗ := p(α∗) in H1

0 (Ω)`. The fact that
(p∗, α∗) is a minimizer follows from weak lower semicontinuity arguments.

We now focus on the derivation of first-order necessary optimality conditions and
solution algorithms. For this matter, we consider from now on only the case p = 2.

Utilizing the solution map α 7→ p(α) for the regularized lower-level problem, the
reduced version of (P̃) is given by

(6.2) minimize Ĵ(α) := J(p(α), α) over α ∈ Aad.

Since the map H1(Ω) 3 α 7→ p(α) ∈ H1
0 (Ω)` is differentiable (recall Theorem 5.2),

it follows that H1(Ω) 3 α 7→ Ĵ(α) ∈ R is differentiable as well, with derivative
Ĵ ′(α) ∈ H1(Ω)∗ and gradient ∇Ĵ(α) := R−1Ĵ ′(α) ∈ H1(Ω) with R the Riesz map
for H1(Ω).

6.1. First-order optimality system. Set X := V ×H1(Ω) with x := (p, α) ∈
X, V := H1

0 (Ω)`, C := V × Aad, and Y := V ∗. Let T : X → R be the differentiable
map with T (x) := J(p, α), and let g : X → Y with

g(x) := −β∆p + γp +Ap + f +
1
ε
Pδ(p, α).

Then, problem (P̃) is equivalent to

minimize T (x) over x ∈ X,
s.t. x ∈ C and g(x) = 0,

where T (x) := F ◦R(div p) + λ
2 |α|2H1(Ω).

As a first step towards first-order optimality conditions for this problem, we show
that g : X → Y is differentiable. Let X = V × H1(Ω) with x = (p, α) ∈ X,
V = H1

0 (Ω)`, C = V ×Aad, and Y = V ∗.
Proposition 6.2. The map g : X → Y is differentiable at any x = (p, α) ∈ C.

For r = (r1, r2) ∈ X, the derivative is given by

g′(x)r = −β∆r1 + γr1 +Ar1 +
1
ε
P ′δ(p, α)(r1, r2),

with P ′δ(p, α)(r1, r2) = D1Pδ(p, α)r1+D2Pδ(p, α)r2, where D1Pδ(p, α) and D2Pδ(p, α)
denote the Fréchet derivatives of p 7→ Pδ(p, α) and α 7→ Pδ(p, α), respectively, and
are given by

D1Pδ(p, α)r1 :=
(
G′′δ (p− α1) +G′′δ (−p− α1)

)
r1,(6.3a)

D2Pδ(p, α)r2 :=
(
G′′δ (−p− α1)−G′′δ (p− α1)

)
1r2,(6.3b)
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where G′δ : L2+ξ(Ω)` → L2(Ω)` (with ξ > 0) is given by G′δ(p) = (G′δ(p1), . . . , G′δ(pl))
where G′δ : L2+ξ(Ω)→ L2(Ω) is the the Nemytskii operator induced by the real valued
function r 7→ (r)+

δ .
The proof of the above proposition follows from standard results for the dif-

ferentiability of superposition operators [5, 45]. In fact, we first note that from
the Sobolev Imbedding Theorem (see [2]) for any l ≥ 1 (recall that Ω ⊂ R`) and
for any ξ > 0, H1(Ω) ↪→ L2+ξ(Ω): In fact, for l = 1, H1(Ω) ↪→ C0,1/2(Ω), for
l = 2, H1(Ω) ↪→ Lq(Ω) with 2 ≤ q < ∞ and for l ≥ 3, H1(Ω) ↪→ L2 l

l−2 (Ω).
Therefore, since H1

0 (Ω) ↪→ H1(Ω) and L2(Ω) ↪→ H−1(Ω), it suffices to prove that
L2+ξ(Ω)` × L2+ξ(Ω) 3 (p, α) 7→ g(p, α) ∈ L2(Ω)` is differentiable.

Note that the map P : (W1)` ×W2 → W3 is differentiable when W1 and W2 are
any of the spaces: L2+ξ(Ω), H1(Ω) and H1

0 (Ω) and W3 is L2(Ω)` or H−1(Ω)`.
Further observe that for p = {pi}`i=1, r1 = {ri1}`i=1 with pi, ri1 ∈ H1

0 (Ω) for
i = 1, 2, . . . , l and α, r2 ∈ H1(Ω), the expressions for (6.3a) and (6.3b) are given
explicitly by D1Pδ(p, α)r1 = {((pi − α)+′ + (−pi − α))+′ri1}`i=1 and D2Pδ(p, α)r2 =
{((−pi − α)+′ − (pi − α))+′r2}`i=1. This implies that that D1Pδ(p, α), D2Pδ(p, α) ∈
L∞(Ω)`.

A direct application of KKT-theory in Banach space [47] finally yields the follow-
ing characterization.

Proposition 6.3. For an optimal solution (p∗, α∗) ∈ H1
0 (Ω)` × Aad of (P̃),

there exists an adjoint state (a Lagrange multiplier) q∗ ∈ H1
0 (Ω)` such that

(J ′0(div p∗),div p) + 〈−β∆q∗ + γq∗ +Aq∗ +
1
ε
D1Pδ(p∗, α∗)q∗,p〉H−1,H1

0
= 0,

〈λ(−∆ + I)α∗ +
1
ε

(D2Pδ(p∗, α∗))
> q∗, α− α∗〉H1(Ω)∗,H1(Ω) ≥ 0,

for all p ∈ H1
0 (Ω)` and all α ∈ Aad, where J0 := F ◦R and further

−β∆p∗ + γp∗ +Ap∗ + f +
1
ε
Pδ(p∗, α∗) = 0, in H−1(Ω)`.

Note that q allows to compute Ĵ ′ at some α in an amenable way. In fact, we have

(6.4) Ĵ ′(α) = λ(−∆ + I)α+
1
ε

(D2Pδ(p(α), α))> q(α),

where α 7→ q(α) solves the first equation in Proposition 6.3 for p∗ = p(α) and α∗ = α.
The above structural representation of Ĵ ′(α) combined with a regularity result

for the metric projection in H1(Ω) onto Aad provides the starting point for the design
of a numerical solver for (P̃). This development is the subject of the second part of
this work [29].

7. Conclusion. The generalization of the total variation regularization filter
proposed in this work involves a scalar weight function α. Its proper choice allows to
locally adjust the strength of the filter and, hence, to recover image details while still
significantly removing noise from homogeneous image regions. While we are able to
address important analytical questions such as existence of solutions for the associated
variational model for image reconstruction and the relation between the primal prob-
lem (P) and its pre-dual problem (D), important issues such as a structural analysis
of the implications of spatially weighted total variation regularization (Depending on
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the local choice of α, which features do occur in reconstruction results, e.g., starting
in 1D?) remain for future work.

In order to identify a monolithic variational approach to both, the reconstruction
of the image and the proper choice of α, a bilevel optimization model is proposed.
While the image reconstruction problem in the lower level now serves merely the
purpose of a provider of a feasible point for the bilevel problem, given a choice of
α, the upper level problem, i.e., its objective along with constraints, aims to identify
a good set of filtering weights. It should be noted that, due to the non-convexity
of the bilevel problem, one should not expect this good set to be a singleton, in
general. In order to address the non-convexity and non-smoothness of the problem
when deriving stationarity conditions, a smoothing approach is pursued. In particular,
this avoids the complications due to non-differentiability. The latter is particularly
complicated as it arises from the solution set of a variational inequality with the
relevant parameter occurring in the upper bound of a pointwise norm constraint on p,
i.e. the first-order condition for the lower level optimization problem. In this respect,
several analytical questions remain for future work. These include a (generalized)
differentiability sensitivity analysis of the map α 7→ p(α), the passage to the limit with
the regularization/penalization parameters δ/ε in the first-order system of Proposition
6.3. This, if possible at all, may identify a useful limiting stationarity system for the
original bilevel problem (P), which may then be the departure point for the design of
associated numerical solvers.

In a second part of this work [29], we propose a projection-based decent algorithm
for solving (P̃). The method yields a approximating sequence of filtering weights
{αk} in C(Ω̄) and is employed to denoising, deblurring and Fourier as well as wavelet
inpainting problems.
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constraints. J. Sci. Comput., 19:95–122, 2003.

[11] L. Boccardo and F. Murat. Nouveaux résultats de convergence dans des problèmes unilatéraux.
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