Optimal selection of the regularization function in a generalized total variation model. Part I: Modelling and theory

Michael Hintermüller1,2 Carlos N. Rautenberg2

submitted: March 3, 2016

1 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: michael.hintermueller@wias-berlin.de

2 Department of Mathematics
Humboldt-Universität zu Berlin
Unter den Linden 6
10099 Berlin, Germany
E-Mail: rautenberg@math.hu-berlin.de
hint@math.hu-berlin.de

No. 2235
Berlin 2016

2010 Mathematics Subject Classification. 94A08, 68U10, 49K20, 49K30, 49K40, 49M37, 65K15.

Key words and phrases. Image restoration, generalized total variation regularization, spatially distributed regularization weight, Fenchel predual, bilevel optimization, variance corridor.

This research was carried out in the framework of MATHEON supported by the Einstein Foundation Berlin within the ECMath projects OT1, SE5 and SE15 as well as by the DFG under grant no. HI 1466/7-1 “Free Boundary Problems and Level Set Methods”.
Abstract

A generalized total variation model with a spatially varying regularization weight is considered. Existence of a solution is shown, and the associated Fenchel-predual problem is derived. For automatically selecting the regularization function, a bilevel optimization framework is proposed. In this context, the lower-level problem, which is parameterized by the regularization weight, is the Fenchel pre-dual of the generalized total variation model and the upper-level objective penalizes violations of a variance corridor. The latter objective relies on a localization of the image residual as well as on lower and upper bounds inspired by the statistics of the extremes.

1. Introduction. In this paper we propose an automated choice rule for the regularization function in an extension of the renowned total variation (TV) regularization model for image restoration; see the seminal work [42] by Rudin, Osher and Fatemi for the latter model with a suitably chosen scalar regularization parameter.

Our generalization of the TV-model consists in considering a non-negative distributed filtering weight (or regularization function) \(\alpha : \Omega \to \mathbb{R} \), with \(\text{ess inf} \; \alpha \geq \alpha > 0 \). The associated variational problem reads

\[
\text{(P) } \quad \text{minimize } \quad J_P(u, \alpha) := \frac{1}{2} \int_{\Omega} |Ku - f|^2 \, dx + \int_{\Omega} \alpha(x) |Du| \quad \text{over } u \in BV(\Omega),
\]

with image domain \(\Omega \subset \mathbb{R}^d \), given \(f \in L^2(\Omega) \) and linear and continuous operator \(K : L^2(\Omega) \to L^2(\Omega) \), i.e., \(K \in \mathcal{L}(L^2(\Omega)) \), and \(\int_{\Omega} \alpha(x) |Du| \) denoting the generalized total variation of \(u \) weighted by \(\alpha \). As we show in this paper, its Fenchel pre-dual is given by

\[
\text{(D) } \quad \text{minimize } \quad J_D(p) := \frac{1}{2} |\text{div } p + K^* f|^2_B \quad \text{over } p \in H_0(\text{div})
\]

s.t. \(p \in K(\alpha) := \{ q \in H_0(\text{div}) : |q(x)|_{L^\infty} \leq \alpha(x) \text{ f.a.a. } x \in \Omega \},\)

where \(|w|_B^2 := (w, B^{-1} w)_{L^2(\Omega)} \) with \(B = K^* K \), which—for simplicity—is assumed invertible, and \(|.|_{L^\infty} \) denotes the maximum norm on \(\mathbb{R}^d \). Further, vector-valued quantities are written in bold font, “s.t.” and “f.a.a.” stand for “subject to” and “for almost all”, respectively, and further definitions are deferred until the end of this section. Sometimes, when referring to (D), we even write (D(\(\alpha \))) to emphasize the dependence of the Fenchel dual on the filtering weight.
For the choice of α we propose a duality-based bilevel optimization framework, where, for a suitably chosen upper-level objective J, $(D(\alpha))$ acts as a constraint which is parametrized by the function α, i.e., we seek to solve the problem

$$\begin{align*}
\text{minimize} & \quad J(p, \alpha) \quad \text{over } (p, \alpha) \in H_0(\text{div}) \times \mathcal{A}_{\text{ad}} \\
\text{subject to} & \quad (\text{s.t.}) \quad p \text{ solves } (D(\alpha)).
\end{align*}$$

Here, \mathcal{A}_{ad} denotes the set of admissible filtering weights.

While the classical TV-model, i.e. (P) with $\alpha \equiv \text{const.} > 0$, has received a considerable amount of attention in image processing (see, e.g., [1, 13–15, 31, 42] as well as the monograph [46] and the many references therein, to mention only a few), the literature on the generalized version with a distributed regularization weight is very scarce. The few available contributions include the PhD thesis [35, Section 2.4.4] and the associated report [36], as well as [6] where a weighted TV-regularization for vortex density models is considered.

When it comes to automated choice rules for the regularization function $\alpha : \Omega \to \mathbb{R}$, the literature is essentially void. We note, however, that distributed data fidelity weights have been considered in [16, 17] for restoring gray-scale and color images subject to blur and Gaussian noise, respectively, and in [30] for problems involving random-valued impulse or salt-and-pepper noise. In these contributions, the adjustment of the fidelity weight is based on local statistical estimators and the statistics of the extremes. In finite dimensions, a technique based on a statistical multiresolution criterion can be found in [21,34], and in [3] a statistical approach with variance estimators different from the ones in [16] is pursued. Finally, we mention [10] where a deterministic choice rule utilizing a pre-segmentation of the image and a piecewise constant fidelity weight is considered.

Besides studying (P) from a Fenchel-duality point of view, the motivation for this work is twofold: (i) Considering a choice rule for the regularization weight $\alpha : \Omega \to \mathbb{R}$ rather than for a data fidelity weight as in [3, 16, 17, 21, 34] allows for a large variety of data spaces including Fourier or wavelet domains; and (ii) our desire to utilize a bilevel optimization framework for the choice of α (compare (\mathcal{F})) stems from the fact that such a formulation provides a unifying variational approach to both the restoration of u as well as the optimal choice of the regularization parameter. These aspects contrast the available literature.

Obviously, the quality of the obtained α (and consequently of u) depends significantly on the upper-level objective J in our bilevel approach. In this paper we select J motivated by the statistics of the extremes (in a discrete setting) and an associated acceptable local variance corridor.

From an optimization theoretic point of view, bilevel optimization falls into the realm of mathematical programming with equilibrium constraints (or MPEC, for short). This problem class typically suffers from notoriously degenerate constraints and requires sophisticated (non-smooth) analysis tools—other than classical Karush-Kuhn-Tucker (KKT) theory—for the derivation of stationarity conditions. For a rather general account of this problem class in finite dimensions we refer to the monographs [38,40], and to the selected works and monographs [8,26,32] for infinite dimensional settings. In mathematical image processing, bilevel problems have been used recently in [37, 43] for parameter learning, and in [33] for calibrating point spread functions in blind deconvolution.

The rest of the paper is organized as follows. In the next section we fix notation and preliminaries. Properties of (P) and its Fenchel pre-dual (D) are studied in the
following section 3. Section 4 contains the formulation of the bilevel problem for the optimal choice of \(\alpha : \Omega \to \mathbb{R} \) and an existence proof. A regularized version of the lower-level problem (D) along with differential stability of its solution as a function of the regularization weight \(\alpha \) are the subjects of section 5. The associated bilevel problem is studied in section 6, where we also provide its first-order optimality conditions are provided.

2. Notations and preliminaries. Throughout this paper, \(\Omega \subset \mathbb{R}^d \) is a bounded connected open set with Lipschitz boundary \(\partial \Omega \). As noted earlier, we assume \(K \in \mathcal{L}(L^2(\Omega)) \) with \(K^*K \) invertible and \(K^* \) the adjoint operator of \(K \). When \(K^*K \) is singular, then one may require \(K1 \neq 0 \) or add an additional regularization term \(\frac{\eta}{2} \int_{\Omega} |u|^2 \text{d}x \) to \(J_p \) with \(\eta > 0 \) in order to have (P) well-posed. The data \(f \in L^2(\Omega) \) is supposed to be obtained as \(f = Ku_{\text{true}} + \eta \), with \(u_{\text{true}} \) the desired recovery target and \(\eta \in L^2(\Omega) \) an oscillatory function, with \(\int_{\Omega} \eta dx = 0 \), and \(\int_{\Omega} |\eta|^2 \text{d}x = \sigma^2 |\Omega| \). In a discrete setting, \(\eta \) can be regarded as white Gaussian noise with zero mean and standard deviation \(\sigma > 0 \).

By \(\mathbf{M}(\Omega, \mathbb{R}^N) \) we denote the space of \(N \)-valued Borel measures, which is the dual of \(C_c(\mathbb{R}^N, \mathbb{R}) \), the space of continuous \(\mathbb{R}^N \)-valued functions with compact support in \(\Omega \). For \(u : \Omega \to \mathbb{R} \) we denote by \(\mathcal{D}u \) its distributional gradient, and the space of functions of bounded variation is defined by

\[
BV(\Omega) = \{ u \in L^1(\Omega) : \mathcal{D}u \in \mathbf{M}(\Omega, \mathbb{R}^d) \}.
\]

Furthermore, for \(\mu \in \mathbf{M}(\Omega, \mathbb{R}^N) \), \(|\mu| \) is the smallest nonnegative scalar Borel measure \(\nu \) such that \(|\mu|(B) \leq \nu(B) \) for all Borel sets \(B \). Here, \(| \cdot |_1 \) denotes the \(\ell^1 \)-norm on \(\mathbb{R}^N \). The norm on \(\mathbf{M}(\Omega, \mathbb{R}^N) \) is defined as \(|\mu|_{\mathbf{M}(\Omega, \mathbb{R}^N)} = |\mu|(\Omega) \), and from measure theory it is know that \(|\mu|(\Omega) = \int_{\Omega} \text{d}|\mu| \). Equivalently, this norm may be defined via duality by

\[
|\mu|(\Omega) = \sup_{\varphi \in C_c(\Omega, \mathbb{R}^N)} \{ \langle \mu, \varphi \rangle_{C_c(\Omega, \mathbb{R}^N)} : -1 \leq \varphi(x) \leq 1 \text{ a.e. on } \Omega \},
\]

where \(1 = (1, \ldots, 1)^\top \in \mathbb{R}^N \), “a.e.” stands for “almost everywhere” in the sense of the Lebesgue measure and the supremum can be equivalently taken over \(\varphi \in C_c(\Omega, \mathbb{R}^N) \). Note that this definition implies for \(\mu = \{\mu_i\}_{i=1}^N \) with \(\mu_i \in \mathbf{M}(\Omega, \mathbb{R}) \), that \(|\mu|_{\mathbf{M}(\Omega, \mathbb{R}^N)} = |\mu_1|_{\mathbf{M}(\Omega, \mathbb{R})} + \cdots + |\mu_N|_{\mathbf{M}(\Omega, \mathbb{R})} \). Then, the \(BV \)-norm is defined as \(|u|_{BV(\Omega)} := |u|_{L^1(\Omega)} + |\mathcal{D}u|(\Omega) \). Below, the space of non-negative Borel measures is denoted by \(\mathbf{M}^+(\Omega) \).

Before we commence our analysis, a few words on (P) are in order. From now on, the expression \(\int_{\Omega} \alpha(x)|\mathcal{D}u| \) is denoted by \(\int_{\Omega} \alpha|\mathcal{D}u| \), and it stands for the integral of \(\alpha \) on \(\Omega \) with respect to the measure \(|\mathcal{D}u| \), i.e., \(\int_{\Omega} \alpha \text{d}|\mathcal{D}u| \). Hence, \(\alpha \) needs to be a \(|\mathcal{D}u| \)-measurable function in order for \(\int_{\Omega} \alpha|\mathcal{D}u| \) to be correctly defined, i.e., \(\alpha \) is measurable with respect to the sigma-algebra generated by \(\mathcal{D}u \)-completion of the Borel \(\sigma \)-algebra. A sufficient condition for this is given by \(\alpha \in C(\overline{\Omega}) \), the space of continuous functions on \(\Omega \). In fact, for \(\alpha \in C(\overline{\Omega}) \) with \(\alpha > 0 \) on \(\overline{\Omega} \) and \(u \in BV(\Omega) \) the duality based representation implies

\[
\int_{\Omega} \alpha|\mathcal{D}u| := \sup_{p \in H^1_{0}(\text{div})} \left\{ \int_{\Omega} u(x) \text{div} p(x) \text{d}x : -1\alpha(x) \leq p(x) \leq 1\alpha(x) \text{ a.e. on } \Omega \right\},
\]

as shown in Lemma 3.3 below. If \(u \in W^{1,1}(\Omega) \), then \(\int_{\Omega} \alpha|\mathcal{D}u| = \int_{\Omega} \alpha(x)|\nabla u(x)|_1 \text{d}x \), where \(\nabla u \) is the weak gradient of \(u \).
Additionally, if \(\alpha > 0 \) is a constant, then \(\int_{\Omega} \alpha |Du| \) reduces to \(\alpha |Du|(\Omega) \) and problem (P) becomes the well-known TV-model [14, 42]:

\[
\text{(TV)} \quad \text{minimize} \quad \frac{1}{2} \int_{\Omega} |Ku - f|^2 dx + \alpha \int_{\Omega} |Du| \quad \text{over } u \in BV(\Omega).
\]

The total variation \(\int_{\Omega} |Du| \) is known to preserve edges while filtering noise when solving (TV). The choice of \(\alpha > 0 \) represents a trade-off between filtering and data fitting. Indeed, large values of \(\alpha > 0 \) strongly remove noise, but also filter details. Also the intensity value in regions containing homogeneous image features gets changed. On the other hand, too small \(\alpha \) tends to recover details, but noise possibly remains in the reconstruction. While scalar \(\alpha \) affects the quality of the reconstruction globally in \(\Omega \), in this paper we seek to automatically determine a spatially distributed \(\alpha : \Omega \to \mathbb{R} \) such that \(\alpha \) is relatively large in homogeneous image regions for proper denoising and relatively small values in regions where details need to be recovered.

We still need some more notation. In fact, for a Banach space \(X \) its norm is written as \(| \cdot |_X \). Given a sequence \(\{x_n\} \) in \(X \), strong convergence of the sequence to an element \(x \in X \) is denoted by \("x_n \to x" \) and weak convergence by \("x_n \rightharpoonup x" \). The topological dual of \(X \) is written as \(X' \), and for \(f \in X' \), \(x \in X \), the duality pairing between \(X' \) and \(X \) is \((f, x)_X \). For two Banach spaces \(X_1 \) and \(X_2 \), we write \(X_1 \hookrightarrow X_2 \) when \(X_1 \) is continuously embedded into \(X_2 \).

The linear space of infinitely differentiable functions with compact support in \(\Omega \) is denoted by \(\mathcal{D}(\Omega) \). We make use of the usual real Lebesgue and Sobolev spaces \(L^p(\Omega) \) and \(W^{1,p}(\Omega) \), with \(1 \leq p \leq \infty \), respectively, with norms \(|v|_{L^p(\Omega)} = (\int_\Omega |v(x)|^p dx)^{1/p} \) and \(|w|_{W^{1,p}(\Omega)} = |w|_{L^p(\Omega)} + |\nabla w|_{L^p(\Omega)} \). The (standard) inner product in \(L^2(\Omega) \) is \((,) \). Additionally, \(W_0^{1,p}(\Omega) \) denotes the subspace of \(W^{1,p}(\Omega) \) of functions whose trace is zero on \(\partial \Omega \); together with \(|v|_{W_0^{1,p}(\Omega)} = |\nabla v|_{L^p(\Omega)} \), it is a Banach space.

The Hilbert space \(H_0(\text{div}) \) is defined as

\[
H_0(\text{div}):= \{ v \in L^2(\Omega)^N : \text{div } v \in L^2(\Omega) \text{ and } v \cdot n|_{\partial \Omega} = 0 \},
\]

where \(n \) denotes the outer unit normal vector and the boundary condition is taken in the \(H^{-1/2}(\partial \Omega) \)-sense as the trace operator can be proven to be continuous from \(H(\text{div}):= \{ v \in L^2(\Omega)^N : \text{div } v \in L^2(\Omega) \} \) to \(H^{-1/2}(\partial \Omega) \); see [22, Theorem 2.5].

We also need to handle convergence of closed, convex and non-empty subsets of a reflexive Banach space. For this matter we use Mosco convergence [39, 41].

Definition 2.1 (Mosco convergence). Let \(K \) and \(K_n \), for each \(n \in \mathbb{N} \), be non-empty, closed and convex subsets of a reflexive Banach space \(X \). We say that the sequence \(\{K_n\} \) converges to \(K \) in the sense of Mosco as \(n \to \infty \), written as

\[
K_n \xrightarrow{M} K,
\]

if the following two conditions hold:

(i) For all \(v \in K \), there exists \(\{v_n\} \) such that \(v_n \in K_n \) and \(v_n \to v \) in \(X \).

(ii) If \(v_n \in K_n \) and \(v_n \to v \) in \(X \) along a subsequence, then \(v \in K \).

The main application of Mosco convergence lies in the following result on the stability of minimizers for convex constrained optimization problems. For its statement, let \(X, X_0, X_1 \) be reflexive Banach spaces such that \(|x|_X := |Dx|_{X_0} + |x|_{X_1} \), where \(D : X \to X_0 \) is linear.
Regularization function choice by bilevel optimization

Proposition 2.2. Let $J : X \to \mathbb{R}$ be convex, bounded from below, Fréchet differentiable with $(J'(x) - J'(y), x - y)'_{X'} \geq c|D(x-y)|^2_{X_0}$ for some $c > 0$, and such that $J(x) \to +\infty$ if $|Dx|_{X_0} \to +\infty$. Suppose that K and K_n, for each $n \in \mathbb{N}$, are closed and convex subsets of X containing the vector 0 and such that there exists $r > 0$ for which $|x|_{X_1} \leq r$ if $x \in K$ or $x \in K_n$.

Then, if $x_n \in \arg\min_{x \in K_n} J(x)$ and $K_n \xrightarrow{M} K$, we have:

$$x_n \to x^* \quad \text{in } X \quad \text{and} \quad Dx_n \to Dx^* \quad \text{in } X_0,$$

along a subsequence not denoted specifically, where $x^* \in \arg\min_{x \in K} J(x)$.

Proof. Since J is convex and continuous (for being Fréchet differentiable), it is weakly lower semicontinuous. Let $\{x_k\}$ be an infimizing sequence for $\inf_{x \in K} J(x)$. Since $\{J(x_k)\}$ is bounded, it follows that $\{|Dx_k|_{X_0}\}$ is also bounded. Additionally, since $x_k \in K$, we have $|x_k|_{X_1} \leq r$ which implies that $\{x_k\}$ is bounded in X, since the norm in X is given by $\|x\| = |D(\cdot)|_{X_0} + \|\cdot\|_{X_1}$. Hence, there is a subsequence that converges weakly to a minimizer of J on K (note that K is weakly closed as it is norm closed).

Similarly we prove that there exists a sequence $\{x_n\}$ with $x_n \in \arg\min_{x \in K_n} J(x)$. Since $0 \in K_n$, $J(x_n) \leq J(0)$ and $x_n \in K_n$, it follows that $\{x_n\}$ is bounded in X. Hence, it weakly converges along a subsequence to some $x^* \in X$. The convergence $K_n \xrightarrow{M} K$ implies that $x^* \in K$, and that for an arbitrary $y \in K$, there is a sequence $\{y_n\}$ with $y_n \to y$ in X. Therefore,

$$J(x^*) \leq \lim_{n \to \infty} J(x_n) \leq \lim_{n \to \infty} J(y_n) = J(y).$$

As $y \in K$ was arbitrary, we find $x^* \in \arg\min_{x \in K} J(x)$.

Since $x_n \in \arg\min_{x \in K_n} J(x)$ and J is convex and differentiable, we equivalently get $\langle J'(x_n), x - x_n \rangle_{X'} \geq 0$ for all $x \in K_n$. We also have $\langle J'(x) - J'(y), x - y \rangle_{X'} \geq c|D(x-y)|^2_{X_0}$. Again, using that $K_n \xrightarrow{M} K$, there is $\{z_n\}$ with $z_n \to x^*$ in X and $z_n \in K_n$. Hence, we obtain

$$\langle J'(z_n), z_n - x_n \rangle_{X'} \geq \langle J'(x_n) - J'(z_n), x_n - z_n \rangle_{X'} \geq c|D(x_n - z_n)|^2_{X_0}.$$

However, $X \ni x \mapsto J'(x) \in X'$ is continuous (since J is Fréchet differentiable) and $z_n - x_n \to 0$ in X, which implies that $|D(z_n - x_n)|_{X_0} \to 0$. Since $z_n \to x^*$ in X, we obtain $Dx_n \to Dx^*$ in X_0. \Box

3. Problems (P) and (D). Next we study (P) from a dual point of view and keep this section self-contained.

It is convenient to introduce the following set valued map K.

Definition 3.1. Let X be a set of \mathbb{R}^M-valued functions on $\Omega \subset \mathbb{R}^d$. Then, we define

$$K(\alpha, X) := \{ p \in X : -\mathbf{1}\alpha(x) \leq p(x) \leq \mathbf{1}\alpha(x) \text{ a.e. on } \Omega \},$$

where $\mathbf{1} = \{1\}_{m=1}^M$ and $\alpha : \Omega \to \mathbb{R}$. Whenever X is omitted, then we refer to $X = H_0(\text{div})$, i.e., $K(\alpha) := K(\alpha, H_0(\text{div}))$.

For $|v|_{B}^2 := (v, B^{-1}v)$ and $B = K^*K$, we recall (D), i.e.,

$$\text{minimize } JD(p) := \frac{1}{2} \text{div } p + K^*f|B|^2 \quad \text{over } p \in K(\alpha).$$
Due to convexity, (D) is equivalent to the variational inequality:
\[(3.1) \text{Find } p \in K(\alpha) : \langle Ap + f, q - p \rangle_{H_0(\text{div})^*, H_0(\text{div})} \geq 0, \quad \forall q \in K(\alpha), \]
where \(A : H_0(\text{div}) \to H_0(\text{div})^*\) is defined as \(Ap := -\nabla B^{-1} \text{div} p\), with \(p \in H_0(\text{div})\) and \(f = -\nabla B^{-1} K^* f \in H_0(\text{div})^*\).

The next result clarifies the existence and uniqueness properties of a solution of (P) as well as (D), respectively.

Proposition 3.2. The following existence results hold true:

(a) If \(\alpha \in C(\overline{\Omega})\) and \(\alpha(x) > 0\) for all \(x \in \overline{\Omega}\), then (P) admits a unique solution.

(b) If \(\alpha : \Omega \to R\) is measurable, non-negative and bounded, then (D) has a solution.

For any two solutions \(p_1\) and \(p_2\) to (D), one has \(\text{div} p_1 = \text{div} p_2\).

Proof. Let \(\{u_n\}\) be a minimizing sequence for \(J_F(\cdot, \alpha)\). Since the embedding \(BV(\Omega) \hookrightarrow L^2(\Omega)\) is continuous (see for example [7, Theorem 10.1.3]) and \(c := \min_{x \in \Omega} \alpha(x) > 0\) and \(C := \max_{x \in \Omega} \alpha(x) > 0\), we observe that \(c|Du_n|_\Omega \leq J_F(u_n, \alpha) < \infty\). Therefore, \(\{|Du_n|_\Omega\}\) is bounded. Since \(u_n \in BV(\Omega) \subset L^1(\Omega)\), it can be written as \(u_n = \bar{u}_n + w_n\) with \(\bar{u}_n = \frac{1}{n} \int u_n \omega d\omega \) and \(\int \omega w_n d\omega = 0\). By the Sobolev inequality (see [23]), we have \(|u_n - \bar{u}_n|_{L^2} \leq c_1|Du_n|_\Omega\) with some \(c_1 > 0\). Hence, \(\{|w_n|_{L^2}\}\) and \(\{|Kw_n|_{L^2}\}\) are bounded. Since \(\{u_n\}\) is an minimizing sequence, \(\{|Ku_n|_{L^2}\}\) is bounded, and then \(Ku_n = \bar{u}_n K1 + Kw_n\) yields \(\{|\bar{u}_n|\}\) is bounded (note that \(K1 \neq 0\) since \(K\) is one-to-one). Hence, \(\{u_n\}\) is bounded in \(L^1(\Omega)\) and, thus, \(\{Du_n\}\) is bounded in \(BV(\Omega)\), as well.

The above arguments yield the existence of \(u^* \in BV(\Omega)\) such that \(u_n \to u^*\) in \(L^2(\Omega)\), \(u_n \to u^*\) in \(L^1(\Omega)\) and \(|Du^*|_\Omega \leq \lim_{n \to \infty} |Du_n|_\Omega\) along a subsequence. This follows from the compact embedding \(BV(\Omega) \hookrightarrow L^1(\Omega)\); see Theorem 10.1.4 and Proposition 10.1.1 in [7]. We also have \(Ku_n \to Ku^*\) in \(L^2(\Omega)\). Further, by Lemma 3.3 and since \(K(\alpha, \mathcal{D}(\Omega))\) is \(H(\text{div})\)-dense in \(K(\alpha)\), we observe

\[\int_\Omega |Du^*| = \sup_{p \in K(\alpha, \mathcal{D}(\Omega))} \langle u^*, -\text{div} p \rangle = \sup_{p \in K(\alpha, \mathcal{D}(\Omega))} \left(\lim_{n \to \infty} \langle u_n, -\text{div} p \rangle \right) \leq \lim_{n \to \infty} \left(\sup_{p \in K(\alpha, \mathcal{D}(\Omega))} \langle u_n, -\text{div} p \rangle \right) = \lim_{n \to \infty} \int_\Omega \alpha|Du_n|.\]

Therefore, for some subsequence of \(\{u_n\}\), which we also denote by \(\{u_n\}\), we have

\[\frac{1}{2} \int_\Omega |Ku^* - f|^2 dx + \int_\Omega \alpha|Du^*| \leq \lim_{n \to \infty} \left(\frac{1}{2} \int_\Omega |Ku_n - f|^2 dx + \int_\Omega \alpha|Du_n| \right),\]
i.e., \(u^*\) is a minimizer.

Let \(u, v \in BV(\Omega)\), then \(Dw = \sigma_1 Du + \sigma_2 Dv\) for \(w = \sigma_1 u + \sigma_2 v\) and for some \(\sigma_1, \sigma_2 \geq 0\). Hence, \(\nu = \sigma_1 |Du| + \sigma_2 |Dv| \in M^+(\Omega)\), and by definition \(|Dw|_B \leq \nu(B)\) for all Borel sets \(B\). However, \(|Dw| \in M^+(\Omega)\) is the smallest measure \(\mu\) such that \(|Dw|_B \leq \mu(B)\) for all Borel sets \(B\). We therefore have \(|Dw|_B \leq \nu(B)\) for all Borel sets. As a consequence we get

\[\int_\Omega \alpha|D(\sigma_1 u + \sigma_2 v)| \leq \sigma_1 \int_\Omega \alpha|Du| + \sigma_2 \int_\Omega \alpha|Dv|.\]
In particular, this implies that \(u \mapsto \int_{\Omega} \alpha |Du| \) is convex. Additionally, since \(B = K^*K \) is invertible and \(K \) is injective, we have that \(u \mapsto \frac{1}{2} \int_{\Omega} |Ku - f|^2 \, dx \) is strictly convex. Hence, \(u \mapsto J_p(u, \alpha) \) is strictly convex and the uniqueness of the minimizers follows from classical arguments (see for example [1]).

Note that \(B \) and \(B^{-1} \) are bounded, self-adjoint and invertible. Hence, \((v, w)_{L^2} \) and \((v, w)_{L^2} \) are equivalent inner products. In fact, \(c_1|v|_{L^2} \leq |v|_B \leq c_2|v|_{L^2} \) for some \(0 < c_1 \leq c_2 \), and for all \(v \in L^2(\Omega) \). The set \(K(\alpha) \) is a closed, convex and non-empty subset of \(H_0(\text{div}) \). Let \(p \mapsto I_K(\alpha)(p) \) be its indicator function (i.e., \(I_K(\alpha)(p) = 0 \) if \(p \in K(\alpha) \) and \(I_K(\alpha)(p) = \infty \) otherwise). Then, \(p \mapsto J_D(p) + I_K(\alpha)(p) \) is lower semi-continuous, convex and coercive (note that \(\alpha \) is bounded, and then \(K(\alpha) \) is bounded in \(L^2(\Omega) \)). Therefore, the existence of solutions to (D) follow immediately.

Let \(p_1 \) and \(p_2 \) be two different solutions to (D). Since \(J_D \) is convex, \(\sigma p_1 + (1 - \sigma) p_2 \) is also a solution to (D) for \(0 \leq \sigma \leq 1 \). Additionally, since \(B = K^*K \) is invertible, the norm \(v \mapsto |v|_B \) is strictly convex which implies that \(v \mapsto \frac{1}{2} |v + K^*f|_B^2 \) is also strictly convex. Consequently, \(\text{div} \, p_1 = \text{div} \, p_2 \) a.e. on \(\Omega \). \(\square \)

It turns out that (D) and (P) are dual to each other as specified below in Theorem 3.4, an extension of [27, Theorem 2.2]. Its proof crucially depends on the fact that \(K(\alpha) \) contains dense (in the sense of \(H_0(\text{div}) \)) subsets of more regular functions. It should be noted that such a density result cannot hold true in general. Indeed, we refer to [28] for a counterexample. The following lemma, which relies on our density result, is needed in the proof of Theorem 3.4.

Lemma 3.3. Let \(v \in L^2(\Omega), \alpha \in C(\Omega) \) and \(\alpha(x) > 0 \) for all \(x \in \Omega \). Then,

\[
\sup_{p \in K(\alpha)} (v, - \text{div} \, p) = \begin{cases} +\infty, & \text{if } v \notin BV(\Omega), \\ \int_{\Omega} \alpha |Dv|, & \text{if } v \in BV(\Omega). \end{cases}
\]

Proof. The set \(K(\alpha, C^*_0(\Omega)) \) is dense, in the sense of \(H(\text{div}) \), in \(K(\alpha) \), cf. [28]. Hence, the supremum in (3.3) can be taken over \(K(\alpha, C^*_0(\Omega)) \) without changing its value. Next, let \(\hat{\alpha} = \inf_{x \in \Omega} \alpha(x) > 0 \) and \(v \notin BV(\Omega) \). Then

\[
\sup_{p \in K(\alpha, C^*_0(\Omega))} (v, - \text{div} \, p) = \sup_{p \in K(\alpha, C^*_0(\Omega))} (v, - \text{div} \, p) = +\infty,
\]

where we have used that \(\sup_{p \in K(1, C^*_0(\Omega))} (v, - \text{div} \, p) = \infty \) if \(v \notin BV(\Omega); \) see [4, Prop. 3.6, page 120] or [23].

Also, the set \(K(\alpha, \mathcal{G}(\Omega)) \) is dense, in the sense of \(H(\text{div}) \), in \(K(\alpha) \) [28]. Thus, \(K(\alpha) \) can be replaced by \(K(\alpha, \mathcal{G}(\Omega)) \) in (3.3). Furthermore, \(K(1, \mathcal{G}(\Omega)) \) is dense, in the sense of \(C_0 \), in \(K(1, C_0(\Omega)) \) [28]. Then

\[
\sup_{p \in K(\alpha, \mathcal{G}(\Omega))} (v, - \text{div} \, p) = \sup_{p \in K(1, \mathcal{G}(\Omega))} (v, - \text{div} \, p) = \sup_{p \in K(1, \mathcal{G}(\Omega))} (\alpha \text{div} \, p)_{C_0, C_0} = \sup_{p \in K(1, C_0(\Omega))} (\alpha \text{div} \, p)_{C_0, C_0} = |Dv|_{(\Omega)}.
\]

Note, however, that \(|\text{div} \, v|_{(\Omega)} = \int_{\Omega} \alpha |Dv| \), (see [19, Theorem 20, III.2]). We also observe that the aforementioned reference applies to real-valued measures. Its extension to \(\mathbb{R}^l \)-valued ones follows from an analogous proof. \(\square \)

For the ease of reference, we briefly recall the Fenchel duality result [9,20] adapted to our setting. Let \(V \) and \(Y \) be Banach spaces, with \(V^* \) and \(Y^* \) their respective topological duals. Suppose that \(\Lambda \in \mathcal{L}^l(V, Y) \), and let \(\mathcal{F} : V \to \mathbb{R} \cup \{+\infty\} \) and \(\mathcal{G} : Y \to \mathbb{R} \cup \{+\infty\} \) be convex, continuous, and lower semi-continuous functions.
\[R \cup \{+\infty\} \text{ be convex lower semicontinuous functionals not identically } + \infty. \text{ Assume there exists } \alpha_0 \in V \text{ such that } F(\alpha_0) < +\infty, \ G(\Lambda_0) < +\infty, \text{ and } G \text{ is continuous at } \Lambda_0. \text{ Then, one has } \]

\[(3.4) \quad \inf_{v \in V} F(v) + G(\Lambda v) = \sup_{w \in Y^*} -F^*(\Lambda^* w) - G^*(w), \]

where \(F^*: V^* \to \mathbb{R} \cup \{+\infty\} \) and \(G^*: Y \to \mathbb{R} \cup \{+\infty\} \) denote the conjugates of \(F \) and \(G \), respectively.

Further, \((\hat{v}, \hat{w})\) are solutions to the two optimization problems in (3.4) if and only if

\[(3.5) \quad -\hat{w} \in \partial G(\Lambda \hat{v}) \quad \text{and} \quad \Lambda^* \hat{w} \in \partial F(\hat{v}), \]

where \(\partial F \) and \(\partial G \) denote the subdifferentials of \(F \) and \(G \), respectively.

We now state our duality theorem.

Theorem 3.4. Let \(\alpha \in C(\overline{\Omega}) \) with \(\alpha(x) > 0 \) for all \(x \in \overline{\Omega} \). Then the Fenchel dual of (D) is given by (P). If \(\hat{p} \) is a solution to (D) and \(\hat{u} \) is the solution to (P), then they satisfy

\[(3.6) \quad B\hat{u} = \text{div} \hat{p} + K^* f, \quad \text{and} \quad (\langle -\text{div} \hat{u}, p - \hat{p} \rangle_{H_0^0(div), H_0^0(div)}) \leq 0, \quad \forall \, p \in K(\alpha). \]

Proof. The Fenchel duality result is applied with \(V = H_0^0(div), \ Y = Y^* = L^2(\Omega), \ L = -\text{div}, \ \mathcal{G}: Y \to \mathbb{R} \) defined as \(\mathcal{G}(v) = \frac{1}{2} |v|^2 - \frac{1}{2} |Kv + f|^2_{L^2} \) and with its convex conjugate \(\mathcal{G}^*: Y \to \mathbb{R} \) given by \(\mathcal{G}^*(v) = \frac{1}{2} |Kv + f|^2_{L^2} - \frac{1}{2} |f|^2_{L^2}; \) compare [27]. For \(F: V \to \mathbb{R} \) given by \(F(p) = I_{K(\alpha)}(p) \) its convex conjugate \(F^*: V^* \to \mathbb{R} \) satisfies

\[F^* (\langle -\text{div} \hat{v}, v \rangle) = \sup_{p \in K(\alpha)} (v, -\text{div} p). \]

As a consequence \(F^*(\Lambda^* v) = \int_{\Omega} \alpha/|Dv| \) if \(v \in BV(\Omega) \) and \(F^*(\Lambda^* v) = +\infty \) if \(v \notin BV(\Omega) \), by Lemma 3.3. This proves that the Fenchel dual of (D) is given by (P).

The relations (3.6) are obtained directly from an application of (3.5). \(\square \)

4. The bilevel optimization problem for choosing \(\alpha \). The main goal of this paper is to provide an optimization-theoretic framework for automatically choosing the distributed regularization weight \(\alpha: \Omega \to \mathbb{R}^+ \). In contrast to [11], where instead of \(\alpha \) a distributed data fidelity weight \(\lambda \) is chosen by an external update mechanism, we suggest a bilevel optimization problem for selecting \(\alpha \).

Our starting point, however, is similar to [11], where, given a normalized weight \(w \in L^\infty(\Omega \times \Omega) \) with \(\int_{\Omega} \int_{\Omega} w(x, y) \, dx \, dy = 1 \), the image residual (also associated with the noise variance) at \(u \) is localized by \(S: L^2(\Omega) \to L^\infty(\Omega) \) with

\[S(u)(x) := \int_{\Omega} w(x, y) (Ku - f)^2(y) \, dy. \]

Since \(B = K^* K \in L^2=L(\Omega) \) is assumed to be invertible, at a primal-dual solution \((u, p)\) fulfilling (3.6) the localized residual may be expressed as

\[(4.1) \quad R(v)(x) := \int_{\Omega} w(x, y) (KB^{-1} v - (KB^{-1} K^* - I) f)^2(y) \, dy. \]
with \(v = \text{div } p \). Note that, like \(S \), \(R \) maps from \(L^2(\Omega) \) into \(L^\infty(\Omega) \).

In what follows, we focus on the Fenchel pre-dual problem \((D)\) for setting up a bilevel optimization problem for fixing \(\alpha \). In contrast to proceeding with a primal formulation, this has two immediate advantages: (i) As \((D)\) becomes a constraint of the overall problem, we may handle a problem of obstacle type giving rise to a variational inequality (VI) of the first kind, rather than a VI of the second kind representing the first-order optimality condition of \((P)\). (ii) Compared to the approach in [18], the requirements on \(w \) may be weakened as coercivity of \(z \mapsto \int_\Omega \int_\Omega w(x, y)z^2(y)dydx \) in \(L^2(\Omega) \) is no longer required. Besides these analytical benefits, the dual approach also has advantages in the design of efficient numerical solution algorithms.

We continue by specifying a suitable upper-level objective. In fact, motivated by the statistics of the extremes in a discrete setting [18, 24, 25], we consider a current selection of \(\alpha \) acceptable whenever the image residual resides within a suitably choosen variance corridor; otherwise we penalize violations of this feasibility corridor. For this purpose, we define \(F: L^2(\Omega) \rightarrow \mathbb{R}_0^+ \) with

\[
F(v) := \frac{1}{2} \int_\Omega \max(v - \sigma^2, 0)^2 dx + \frac{1}{2} \int_\Omega \min(v - \bar{\sigma}^2, 0)^2 dx,
\]

where \(0 < \sigma \leq \bar{\sigma} < \infty \) are typically chosen using statistical properties involving the noise contained in the measurement \(f \). In fact, practical choices of \(\sigma, \bar{\sigma} \) based on the statistics of the extreme are discussed in detail in part II of this work [29].

Now we state our bilevel problem.

Problem \((P)\). Let \(\lambda > 0 \) and \(p > \max(2, \ell) \). Consider

\[
\begin{align*}
\text{minimize} & \quad J(p, \alpha) := F \circ R(\text{div } p) + \frac{\lambda}{p} |(\alpha)|_{W^{1,p}(\Omega)}^p \quad \text{over } (p, \alpha) \in H_0(\text{div}) \times A_{ad}, \\
\text{s.t.} & \quad p \in \text{arg min} \{ J_D(q) : q \in K(\alpha) \},
\end{align*}
\]

where the non-empty set of admissible weight functions is given by

\[
(4.2) \quad A_{ad} := \{ \alpha \in H^1(\Omega) : \underline{\alpha} \leq \alpha \leq \bar{\alpha}, \text{ a.e. on } \Omega \},
\]

for \(\underline{\alpha}, \bar{\alpha} \in L^2(\Omega) \) with \(0 < \epsilon_0 \leq \underline{\alpha}(x) < \bar{\alpha}(x) - \epsilon_1 \) a.e. on \(\Omega \) for some \(\epsilon_1 > 0 \).

A few words on Problem \((P)\) are in order. Suppose that \(p \in H_0(\text{div}) \) is a solution to \((D)\) for some positive \(\alpha \in C(\Omega) \). Then the solution \(u \in BV(\Omega) \) of \((P)\) for that \(\alpha \) satisfies \(Bu = \text{div } p + K^* f \) (see (3.6)). This implies

\[
KB^{-1} \text{div } p + (KB^{-1}K^* - I)f = Ku - f.
\]

Hence, we have \(F \circ R(\text{div } p) = F \circ S(u) \). Since \(F \) penalizes violations above \(\sigma^2 \) and below \(\bar{\sigma}^2 \), we are interested in residuals \(S(u) \) which satisfy \(\underline{\sigma}^2 \leq S(u) \leq \bar{\sigma}^2 \). Note that \(S(u)(x) = \int_\Omega w(x, y)(Ku - f)(y)dy \) for \(x \in \Omega \) may be interpreted as a local variance [18] and recall that \(f = Ku_{\text{true}} + \eta \) where \(\int_\Omega |\eta|^2 dx = \sigma^2 |\Omega| \). Consequently, if for some \(\alpha^* \) we have \(u(\alpha^*) = u_{\text{true}} \), then it is expected that \(S(u) \simeq \sigma^2 \). Thus, choosing \(\underline{\sigma} < \sigma < \bar{\sigma} \) we expect \(F \circ (S(u)) = F \circ R(\text{div } p) \simeq 0 \). Moreover, the existence of solutions to \((P)\) is closely related to continuity properties of the map \(\alpha \mapsto K(\alpha) \), which, in turn, requires Mosco convergence of \(K(\alpha_n) \) for a sequence \(\{ \alpha_n \} \) in \(A_{ad} \). This latter issue is connected to the question whether a set of functions of higher regularity is densely contained in \(K(\alpha) \), which we address next.
Proposition 4.1. Let \(\alpha \in W^{1,p}(\Omega) \cap A_{ad} \). If \(p = \ell = 1 \) or \(p > \ell \), then we have
\[
\overline{K(\alpha, H^1_0(\Omega))^\ell}_{H^0(\text{div})} = K(\alpha).
\]

Proof. First recall that \(\Omega \subset \mathbb{R}^d \). It is known that for \(p = \ell = 1 \) or \(p > \ell \), \(W^{1,p}(\Omega) \) embeds continuously into \(C(\overline{\Omega}) \). Since \(\alpha \in A_{ad} \) and \(\alpha > 0 \) on \(\overline{\Omega} \), the closure of \(K(\alpha, \mathcal{D}(\Omega)^\ell) \) in the \(H^0(\text{div}) \)-norm is \(K(\alpha) \) (see [28]). Since \(K(\alpha, \mathcal{D}(\Omega)^\ell) \subset K(\alpha, H^1_0(\Omega)^\ell) \), the result follows. \(\square \)

Next, and with Mosco convergence in mind, we adapt a result of Boccardo and Murat (see [11] or [12]) for double obstacle constraints to the closure of \(K(\alpha) \) (see [28]). Since \(K(\alpha, \mathcal{D}(\Omega)^\ell) \subset K(\alpha, H^1_0(\Omega)^\ell) \), the result follows. \(\square \)

Lemma 4.2. Let \(\{\alpha_n\} \) be a sequence in \(A_{ad} \) such that \(\alpha_n \topo\alpha^* \) in \(W^{1,p}(\Omega) \). Then, if \(p > 2 \) we have
\[
K(\alpha_n, H^1_0(\Omega)^\ell) \xrightarrow{M} K(\alpha^*, H^1_0(\Omega)^\ell).
\]
If \(p \geq \max(2, \ell) \), then
\[
K(\alpha_n) \xrightarrow{M} K(\alpha^*).
\]

Proof. The result of Boccardo and Murat (see [12, p.87] or [11]) implies that if \(\alpha_n \topo\alpha^* \) in \(W^{1,p}(\Omega) \) with \(p > 2 \) and \(\alpha_n \in A_{ad} \) for all \(n \in \mathbb{N} \), then \(K^-(\alpha_n) \topo K^-(\alpha^*) \) in the sense of Mosco for \(K^-(\alpha) := \{ p \in H^1_0(\Omega) : -\alpha(x) \leq p(x) \text{ a.e. on } \Omega \} \). The same is true for \(K^+(\alpha) := \{ p \in H^1_0(\Omega) : p(x) \leq \alpha(x) \text{ a.e. on } \Omega \} \). Furthermore, for \(K(\alpha) := \{ p \in H^1_0(\Omega) : -\alpha(x) \leq p(x) \leq \alpha(x) \text{ a.e. on } \Omega \} \), and since \(W^{1,p}(\Omega) \) and \(H^1_0(\Omega) \) both embed compactly into \(L^2(\Omega) \), it follows that if \(v_n \in K(\alpha_n) \) for \(n \in \mathbb{N} \) and \(v_n \topo v^* \) in \(H^1_0(\Omega) \) as \(n \to \infty \) then \(v^* \in K(\alpha^*) \). Let \(p^* \in K(\alpha^*) \). Then \(p^* \in K^+(\alpha^*) \) and \(p^* \in K^-(\alpha^*) \), and there exist sequences \(\{p_n^+\} \) and \(\{p_n^-\} \) such that \(p_n^\pm \in K^\pm(\alpha_n) \) for all \(n \in \mathbb{N} \) and \(p_n^\pm \topo p^* \) in \(H^1_0(\Omega) \). Since the maps \(\min(\cdot, \cdot) \), \(\max(\cdot, \cdot) : H^1_0(\Omega) \times H^1_0(\Omega) \to H^1_0(\Omega) \) are continuous in the strong and weak topologies, we have that \(p_n := \max(p_n^+, 0) + \min(p_n^-, 0) \) satisfies \(p_n \in K(\alpha_n) \) and \(p_n \topo p^* \). Therefore, \(K(\alpha_n) \xrightarrow{M} K(\alpha^*) \) and the extension to the multidimensional case \(K(\alpha_n, H^1_0(\Omega)^\ell) \xrightarrow{M} K(\alpha^*, H^1_0(\Omega)^\ell) \) is direct.

Let \(p_n \in K(\alpha_n) \) for \(n \in \mathbb{N} \) and \(p_n \topo p^* \) in \(H^0(\text{div}) \). Then we prove first that \(p^* \in K(\alpha^*) \): By the compact embedding of \(W^{1,p}(\Omega) \) into \(L^2(\Omega) \), we have that, along a subsequence, \(\alpha_n \topo \alpha^* \) in \(L^2(\Omega) \) and also pointwise almost everywhere. Since also \(p_n \topo p^* \) in \(L^2(\Omega)^\ell \), by Mazur’s Lemma we have that \(p_n = \sum_{k=n}^{N(n)} \lambda(n)_k \alpha_k \) with \(\sum_{k=n}^{N(n)} \lambda(n)_k = 1 \) converges strongly in \(L^2(\Omega)^\ell \) to \(p^* \) (and hence pointwise a.e. along a further subsequence) for some \(\{\lambda(n)_k\}_{k=n}^{N(n)} \) and some \(N(n) \in \mathbb{N} \). But, \(p_n \in K(\alpha_n) \) yields
\[
-1 \sum_{k=n}^{N(n)} \lambda(n)_k \alpha_k(x) \leq p_n(x) \leq 1 \sum_{k=n}^{N(n)} \lambda(n)_k \alpha_k(x), \text{ a.e. on } \Omega
\]
and \(\sum_{k=n}^{N(n)} \lambda(n)_k \alpha_k \to \alpha^* \) pointwise a.e. so that \(p^* \in K(\alpha^*) \).

Let \(p^* \in K(\alpha^*) \) be arbitrary and suppose that \(p > \max(2, \ell) \). Then, by Proposition 4.1 there exists \(\{q^k\} \in K(\alpha^*, H^1_0(\Omega)^\ell) \) such that \(|p^* - q^k|_{H^0(\text{div})} \leq 1/j \). Since
\(q^i \in \mathbf{K}(\alpha^*, H^0_0(\Omega)\ell)\) for all \(j \in \mathbb{N}\), and \(\mathbf{K}(\alpha_k, H^0_0(\Omega)\ell) \xrightarrow{\mathcal{M}} \mathbf{K}(\alpha^*, H^0_0(\Omega)\ell)\), there exists a sequence \(\{q^i_k\}\) such that \(q^i_k \in \mathbf{K}(\alpha_k, H^0_0(\Omega)\ell) \subset \mathbf{K}(\alpha_k)\) and \(|q^i - q^i_k|_{H^0_0(\Omega)\ell} \to 0\) as \(k \to \infty\). Let \(p_j := q^i_k\) with \(k_j\) so that \(|q^i - p_j|_{H^0_0(\Omega)\ell} \leq 1/j\). Then,

\[
\lim_{k \to \infty} |p^* - p_j|_{H^0_0(\Omega)\ell} \leq \lim_{k \to \infty} |p^* - q^i|_{H^0_0(\Omega)\ell} + \lim_{k \to \infty} |q^i - p_j|_{H^0_0(\Omega)\ell} = 0.
\]

This concludes the proof. \(\square\)

Theorem 4.3. Problem \((\mathcal{P})\) has at least one solution.

Proof. Let \(\mathcal{S} : \mathcal{A}_{ad} \to 2^{H^0_0(\Omega)\ell}\) be the set-valued solution map of the lower-level problem, i.e., \(\mathcal{S}(\alpha) := \arg\min_{q \in \mathbf{K}(\alpha)} J_D(q)\), and note that \(\text{div} \mathcal{S}(\alpha)\) is a singleton; see Proposition 3.2. Further, let \(\{p_n, \alpha_n\}\) be an infimizing sequence for \((\mathcal{P})\). Then \(p_n \in \mathcal{S}(\alpha_n)\) and \(\text{div} p_n = \text{div} \mathcal{S}(\alpha_n)\). Since \(0 \leq J(p_n, \alpha_n) \leq M\) for some \(M > 0\) independent of \(n\), \(\{\alpha_n\}\) is uniformly bounded in \(W^{1,\mathcal{P}}(\Omega)\). Hence, \(\alpha_n \to \alpha^*\) in \(W^{1,\mathcal{P}}(\Omega)\) along a subsequence (also denoted by \(\{\alpha_n\}\)) for some \(\alpha^*\) in \(W^{1,\mathcal{P}}(\Omega) \cap \mathcal{A}_{ad}\).

Since \(\alpha_n \to \alpha^*\) in \(W^{1,\mathcal{P}}(\Omega)\), then \(\mathbf{K}(\alpha_n) \xrightarrow{\mathcal{M}} \mathbf{K}(\alpha^*)\) by Lemma 4.2. Therefore, \(p_n \to p^* \in \mathcal{S}(\alpha^*)\) in \(H^0_0(\Omega)\ell\) and further \(\text{div} p_n \to \text{div} \mathcal{S}(\alpha^*)\) in \(L^2(\Omega)\) (see Proposition 2.2). Hence, \((\alpha^*, p^*)\) is feasible for \((\mathcal{P})\). Finally, note that

\[
J(p^*, \alpha^*) \leq \lim_{n \to 0} J(p_n, \alpha_n) \leq J(p(\alpha), \alpha), \quad \forall \alpha \in \mathcal{A}_{ad},
\]

i.e., \((p^*, \alpha^*)\) is a minimizer for Problem \((\mathcal{P})\). \(\square\)

5. Solution stability and differentiability of a smoothed lower-level problem. Problem \((\mathcal{P})\) falls into the realm of elliptic mathematical programs with equilibrium constraints (see, e.g., [26]) with a degenerate feasible set. As a consequence, the derivation of stationarity conditions for a primal-dual characterization of a solution does not follow from KKT-theory in Banach space [47], and designing solution algorithms is delicate. As a remedy, in this section we study a family of problems \((\hat{\mathcal{D}})\) approximating \((\mathcal{D})\) with respect to their (differential) stability with respect to \(\alpha\). The family \((\hat{\mathcal{D}})\) is defined as follows.

Problem \((\hat{\mathcal{D}})\). Let \(0 \leq \alpha \in L^2(\Omega), \beta, \gamma, \delta \in \mathbb{R}_0^+, \epsilon \in \mathbb{R}^+,\) and either \(V := H^0_0(\Omega)\ell\) if \(\beta > 0\), or \(V := H^0_0(\Omega)\ell\) if \(\beta = 0\). Then problem \((\hat{\mathcal{D}})\) reads: Find \(p \in V\) such that

\[
(\hat{\mathcal{D}}) \quad -\langle -\Delta p + \gamma p + \lambda p, v \rangle + \frac{1}{\epsilon}(P_3(p, \alpha), v) = 0, \quad \forall v \in V.
\]

The operator \(\Delta : H^0_0(\Omega)\ell \to H^{-1}(\Omega)\ell\) is the vectorial Laplacian, i.e., for \(w, v \in H^0_0(\Omega)\ell\), \(\langle -\Delta w, v \rangle_{V^*, V} := \langle \nabla w, \nabla v \rangle = \sum_{k=1}^{\ell} \int_{\Omega} \nabla w_k \nabla v_k dx\). The map \(A : H^0_0(\Omega) \to H^0_0(\Omega)\ell\) and \(f \in H^0_0(\Omega)\ell\) are as in (3.1), and \(P_3 : H^0_0(\Omega) \times L^2(\Omega) \to L^2(\Omega)\ell\) is given by

\[
P_3(p, \alpha) := (p - \alpha 1)_{+}^\delta - (p + \alpha 1)_{-}^\delta,
\]

where, for \(\delta > 0, \mathbb{R} \ni r \mapsto (r)^{+}_{\delta}\) \(\in \mathbb{R}\) is defined as

\[
(r)^{+}_{\delta} = \begin{cases} r - \delta/2, & r \geq \delta; \\ r^2/2\delta, & r \in (0, \delta); \\ 0, & r \leq 0.
\end{cases}
\]

The map \(r \mapsto (r)^{+}_{\delta}\) is a differentiable approximation of the positive part \(r \mapsto (r)^{+} := \max(r, 0)\) and similarly, for \((r)^{-}_{\delta} := (-r)^{+}_{\delta}\) and the negative part \((r)^{-} := (-r)^{+}\).
Further, for \(\delta = 0 \), \((r)_{\delta}^+ := (r)^+\) and \((r)_{\delta}^- := (r)^-\). Note that for \(0 \leq \delta_1 \leq \delta_2 \), we have that \(0 \leq (r)_{\delta_2}^+ \leq (r)_{\delta_1}^+ \) for all \(r \in \mathbb{R} \). For \(r \in \mathbb{R}^d \), \((r)_{\delta}^+\) is defined component-wise, i.e.,
\[
(r)_{\delta}^+ = ((r_1)_{\delta}^+, (r_1)_{\delta}^+, \ldots, (r_d)_{\delta}^+) \quad \text{and} \quad (r)_{\delta}^- \text{ analogously.}
\]

The existence of a solution to (\(\tilde{D} \)) follows from monotone operator theory \[44\]. We note that for \(\beta > 0 \) or \(\gamma > 0 \) the solution is unique. Since \(\langle Ap, p \rangle_{V', V} = |\text{div} \ p|_{B^0}^2 \), we have that for \(\beta = \gamma = 0 \) all solutions to (\(\tilde{D} \)) have the same divergence.

One readily argues that \(p \) of (\(\tilde{D} \)) solves the following convex optimization problem:

\[
\text{(5.3) minimize} \quad J(p, \alpha) := \frac{\beta}{2} |p|^2_2 + \frac{\gamma}{2} |p|_L^2(\Omega) + J_D(p) + \frac{1}{\epsilon} P_\delta(p, \alpha), \quad \text{over } p \in V,
\]

with (\(\tilde{D} \)) representing the associated Euler-Lagrange system. Above, the functional
\[
P_\delta(\cdot, \alpha) : V \to \mathbb{R}_+^0
\]

is defined as

\[
\text{(5.4) } P_\delta(p, \alpha) := \int OH \sum_{i=1}^f (G_\delta(-(p_i + \alpha)) + G_\delta(p_i - \alpha))\,dx,
\]

with \(p = (p_1, p_2, \ldots, p_l) \) and \(G_\delta : \mathbb{R} \to \mathbb{R} \),

\[
G_\delta(r) = \begin{cases}
\frac{1}{2}r^2 - \frac{\delta}{2}r + \frac{\delta^2}{6}, & r \geq \delta; \\
\frac{\delta^3}{6}, & r \in (0, \delta); \\
0, & r \leq 0,
\end{cases}
\]

for \(\delta > 0 \). For \(\delta = 0 \), we use \(r \mapsto G_0(r) := r^2/2 \) for \(r \geq 0 \) and \(G_0(r) := 0 \) otherwise. Note that \(\frac{d}{dr}G_\delta(r) = (r)_{\delta}^+ \) and \(\frac{d}{dr}G_\delta(-r) = -(r)_{\delta}^+ = -(r)_{\delta}^- \), and further \(\frac{d^2}{dr^2}G_\delta(r), \frac{d^2}{dr^2}G_\delta(-r) \geq 0 \) for all \(r \in \mathbb{R} \). Additionally, for \(0 \leq \delta_0 \leq \delta_1 \) we have \(0 \leq (r)_{\delta_1}^+ \leq (r)_{\delta_0}^+ \) and also

\[
0 \leq G_{\delta_1}(r) \leq G_{\delta_0}(r) \leq G_0(r), \quad \forall r \in \mathbb{R}.
\]

Our consistency and stability results are stated next.

Theorem 5.1. Let \(\{\beta_n\}, \{\gamma_n\}, \{\delta_n\} \) and \(\{\epsilon_n\} \) satisfy \(\beta_n, \gamma_n, \delta_n \geq 0 \), \(\epsilon_n > 0 \) for all \(n \in \mathbb{N} \), and \((\beta_n, \gamma_n, \epsilon_n) \to (\beta^*, \gamma^*, \epsilon^*) \). For \(n \in \mathbb{N} \), suppose that \(\alpha_n \) and \(\alpha^* \) are non-negative functions on \(\Omega \), and let \(\{p_n\} \) be a sequence of solutions to (\(\tilde{D} \)) for \(\alpha = \alpha_n \) and \((\beta, \gamma, \delta, \epsilon) = (\beta_n, \gamma_n, \delta_n, \epsilon_n) \). Then the following statements hold true.

(i) **Consistency.** Suppose that \(\alpha_n \to \alpha^* \) in \(W^{1,p}(\Omega) \), \(p > \max(2, \ell) \), \(\alpha_n, \alpha^* \in \mathcal{A}_{ad} \), sup \(\delta_n < \infty \), and \((\beta^*, \gamma^*, \epsilon^*) = (0, 0, 0) \). Then,

\[
\text{div } p_n \to \text{div } p^* \text{ in } L^2(\Omega),
\]

where \(p^* \) is any solution to (\(D \)) for \(\alpha = \alpha^* \).

(ii) **Stability.** Suppose that \(\alpha_n \to \alpha^* \) in \(L^2(\Omega) \), \(\delta_n \to \delta^* \) and \(\beta^*, \epsilon^* > 0 \). Then,

\[
p_n \to p^* \text{ in } H^1_0(\Omega)^d,
\]

where \(p^* \) is the solution to (\(D \)) for \(\alpha = \alpha^* \) and \((\beta, \gamma, \delta, \epsilon) = (\beta^*, \gamma^*, \delta^*, \epsilon^*) \).

Remark 5.1. In the case (ii) the above results can be extended as follows. Let \(f_n \to f^* \) in \(L^2(\Omega) \) and assume that \(\{p_n\} \) is a sequence of solutions to (\(D \)) with \(f = f_n \), \(n \in \mathbb{N} \), and \(p^* \) solves (\(D \)) with \(f = f^* \). Then the assertion of (ii) in Theorem 5.1 remains true since \(f_n = -\nabla B^{-1}K f_n \) satisfies \(f_n \to f^* := -\nabla B^{-1}K f^* \) in \(H^{-1}(\Omega) \).
Proof. (of Theorem 5.1) We split the proof into several steps. Step 1: Bound-
edness of \(\tilde{p} = \tilde{p}(\alpha, \beta, \gamma, \epsilon, \delta) \), a solution of \((D)\), in \(H_0(\text{div}) \) if \(\epsilon > 0, \delta \geq 0 \), and \(0 \leq \alpha \leq L^2(\Omega) \) are in bounded sets, and in \(H^1_0(\Omega)^t \) if \(\beta^{-1} \) is in a bounded set.

Setting \(v := \tilde{p} \) in \((D)\), we obtain from the monotonicity of \(p \mapsto P_3(\tilde{p}, \alpha) \) and

\[
-\beta \Delta + f + A : V \rightarrow V^* \text{, where } V = H_0(\text{div}) \text{ if } \beta = 0 \text{ and } V = H^1_0(\Omega)^t \text{ if } \beta > 0, \]

that

\[
|\text{div} \tilde{p}|_B^2 + \beta |\tilde{p}|_V^2 \leq (\gamma \tilde{p} + A \tilde{p}, \tilde{p})_{V^*, V} \leq -(f, \tilde{p})_{V^*, V} \leq |K^* f|_B^2 |\text{div} \tilde{p}|_B^2.
\]

where we have used that \((v, w) \mapsto (v, B^{-1}w)\) is an inner product in \(L^2(\Omega) \). Hence, \(\{p(\alpha, \beta, \gamma, \epsilon, \delta)\}_{\alpha, \beta, \gamma, \epsilon, \delta} \) is bounded in \(L^2(\Omega) \) and, if \(\beta^{-1} \) is in a bounded set, \(\{p(\alpha, \beta, \gamma, \epsilon, \delta)\}_{\alpha, \beta, \gamma, \epsilon, \delta} \) is bounded in \(H^1_0(\Omega) \).

Since \(\tilde{p} \) solves \((5.3)\), we obtain from \(J(\tilde{p}, \alpha) \leq J(0, \alpha) \) that

\[
(5.7) \quad P_3(\tilde{p}, \alpha) \leq \frac{\epsilon}{2} |K^* f|_B^2.
\]

When \(\delta, \epsilon > 0 \) are in bounded sets, then this implies that \((\tilde{p} - \alpha)_{\delta}^+ \) and \((\tilde{p} + \alpha)_{\delta}^- \) are bounded in \(L^2(\Omega)^t \). Hence, since \(0 \leq \alpha \leq L^2(\Omega) \) is in a bounded set, we have \(\{\tilde{p}\}_{\alpha, \beta, \gamma, \epsilon, \delta} \) is bounded in \(L^2(\Omega)^t \). Thus, if \(\delta \geq 0, \epsilon > 0 \), and \(0 \leq \alpha \leq L^2(\Omega) \) are in bounded sets, then \(\{p(\alpha, \beta, \gamma, \epsilon, \delta)\}_{\alpha, \beta, \gamma, \epsilon, \delta} \) is bounded in \(H_0(\text{div}) \).

Step 2: Weak convergence in \(H_0(\text{div}) \) in \((i)\) or in \(H^1_0(\Omega)^t \) in \((ii)\) of the approximating sequence \(\{p(\alpha_n, \gamma_n, \epsilon_n, \delta_n)\} \) to \(p^* \). Consider first \((i)\). Let \(\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\delta_n\}, \{\epsilon_n\} \) be as in our hypothesis, and \(\{\tilde{p}_n\} \) denote a subsequence of \(\{p(\alpha_n, \gamma_n, \epsilon_n, \delta_n)\} \) which converges weakly in \(H_0(\text{div}) \) to some \(p^* \in H_0(\text{div}) \). Then, \(p^*_n \rightharpoonup p^*_n \) in \(L^2(\Omega) \) where \(p_n = (p^{n_1}_1, p^{n_2}_2, \ldots, p^{n_\ell}_\ell) \) and \(p^* = (p^*_1, p^*_2, \ldots, p^*_\ell) \), so that \((p^*_n \pm \alpha_n) \rightharpoonup (p^* \pm \alpha^*) \) in \(L^2(\Omega) \). Let \(\delta = \sup \delta_n < \infty \). Then, by (5.6) we observe

\[
P_3(p^*, \alpha^*) \leq \frac{1}{\ell} \sum_{i=1}^{\ell} \left(\lim_{n \to \infty} \int_{\Omega} G_{\delta_n}(-(p^*_n + \alpha_n))dx + \lim_{n \to \infty} \int_{\Omega} G_{\delta_n}(p^*_n - \alpha_n))dx \right)
\]

\[
\leq \lim_{n \to \infty} \int_{\Omega} \sum_{i=1}^{\ell} \left(G_{\delta_n}(-(p^*_n + \alpha_n))dx + G_{\delta_n}(p^*_n - \alpha_n)dx \right)
\]

\[
= \lim_{n \to \infty} P_3(p_n, \alpha_n) \leq \lim_{n \to \infty} \frac{\epsilon_n}{2} |K^* f|_B^2 = 0,
\]

where we have used (5.7) for the last inequality. This shows \(p^* \in K(\alpha^*) \). Next we prove that \(p^* \) is the solution to \((D)\). For this purpose let \(r \in K(\alpha^*, H^1_0(\Omega)^t) \) be arbitrary. Since \(\alpha_n \rightharpoonup \alpha^* \) in \(W^{1, p}(\Omega) \), Lemma 4.2 yields that \(K(\alpha_n, H^1_0(\Omega)^t) \) converges in the sense of Mosco to \(K(\alpha^*, H^1_0(\Omega)^t) \). Hence, there is a sequence \(\{r_n\} \) with \(r_n \in K(\alpha_n, H^1_0(\Omega)^t) \) and \(r_n \rightharpoonup r \) in \(H^1_0(\Omega)^t \). Since \(J(p_n, \alpha_n) \leq J(r_n, \alpha_n) \) and \(r_n \in K(\alpha_n, H^1_0(\Omega)^t) \), we observe that

\[
\frac{1}{2} |\text{div} p_n + K^* f|_B^2 + \frac{\beta_n}{2} |p_n|_V^2 + 2\frac{\gamma_n}{2} |p_n|_{L^2(\Omega)} + \frac{1}{\epsilon_n} P_3(p_n, \alpha_n)
\]

\[
\leq \frac{\beta_n}{2} |r_n|_V^2 + 2\frac{\gamma_n}{2} |r_n|_{L^2(\Omega)} + \frac{1}{2} |\text{div} r_n + K^* f|_B^2.
\]

By (5.7) \(\frac{1}{\epsilon_n} P_3(p_n, \alpha_n) \) is bounded, and since \(J(p_n, \alpha_n) \leq J(0, \alpha_n) \) we have that \(\frac{\beta_n}{2} |p_n|_V^2 \) and \(\frac{\gamma_n}{2} |p_n|_{L^2(\Omega)}^2 \) are also bounded for all \(n \in \mathbb{N} \). Further, since \((\beta_n, \gamma_n) \to \)
(0, 0) and \(r_n \to r \) in \(H_0^1(\Omega) \), we have
\[
\frac{1}{2} \| \text{div} \, p^* + K^* f \|_B^2 + c \\
\leq \lim_{n \to \infty} \left(\frac{1}{2} \| \text{div} \, p_n + K^* f \|_B^2 + \frac{\beta_n}{2} \| p_n \|_{L^2(\Omega)}^2 + \frac{\gamma_n}{2} \| p_n \|_{L^2(\Omega)}^2 + \frac{1}{\epsilon_n} \| p_{\delta_n}(p_n, \alpha_n) \| \right) \\
\leq \frac{1}{2} \| \text{div} \, r + K^* f \|_B^2,
\]
where \(c = \lim_{n \to \infty} \left(\frac{\beta_n}{2} \| p_n \|_{L^2(\Omega)}^2 + \frac{\gamma_n}{2} \| p_n \|_{L^2(\Omega)}^2 + \frac{1}{\epsilon_n} \| p_{\delta_n}(p_n, \alpha_n) \| \right) \). Here, we have used that \(\text{div} \, p_n \to \text{div} \, p^* \) in \(L^2(\Omega) \). Finally, since \(r \in K(\alpha^*, H_0^1(\Omega)^f) \) is arbitrary and \(K(\alpha^*, H_0^1(\Omega)^f) \) is dense (in the \(H_0^0(\text{div}) \)-topology) in \(K(\alpha^*) \), we can choose \(r = r_k \) with \(r_k \to p^* \) in \(H_0(\text{div}) \). This shows that \(c = 0 \). Furthermore, let \(p \in K(\alpha^*) \) be arbitrary. Then there exists \(r = r_k \in K(\alpha^*, H_0^1(\Omega)^f) \) such that \(r_k \to p \) in \(H_0(\text{div}) \). Using this fact in the above inequality together with \(c = 0 \), we have
\[
\frac{1}{2} \| \text{div} \, p^* + K^* f \|_B^2 \leq \| p + K^* f \|_B^2,
\]
i.e., \(p^* \) solves (D).

Consider next the case (ii), and let \(\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\delta_n\} \) and \(\{\epsilon_n\} \) be as in our hypothesis. Let \(\{p_n\} \) be a subsequence of \(\{p(\alpha_n, \gamma_n, \epsilon_n, \delta_n)\} \) which converges weakly in \(H_0^1(\Omega)^f \) (and strongly in \(L^2(\Omega) \)) to some \(p^* \in H_0^1(\Omega)^f \). Additionally, we have \(\alpha_n \to \alpha^* \) and \(\text{div} \, p_n \to \text{div} \, p^* \) in \(L^2(\Omega) \). Since \((\beta_n, \gamma_n, \delta_n, \epsilon_n) \to (\beta^*, \gamma^*, \delta^*, \epsilon^*) \) with \(\beta^*, \gamma^*, \delta^*, \epsilon^* > 0 \), taking the limit on both sides of the inequality \(J(p_n, \alpha_n) \leq J(p, \alpha_n) \) for arbitrary \(p \), it readily follows that \(p^* \) solves (D) for \(p = \alpha^* \) and \((\beta, \gamma, \delta, \epsilon) = (\beta^*, \gamma^*, \delta^*, \epsilon^*) \).

Step 3: \(\text{div} \, p_n \to \text{div} \, p^* \) in \(L^2(\Omega) \) in (i), and \(p_n \to p^* \) in \(H_0^1(\Omega)^f \) in (ii). Consider first (i). Let \(v^h \in K(\alpha^*, H_0^1(\Omega)^f) \) be such that \(\| v^h - p^* \|_{H_0^0(\text{div})} \leq h \) for \(h > 0 \) and let \(v_n^h \in K(\alpha_n, H_0^1(\Omega)^f) \) with \(v_n^h \to v^h \) in \(H_0^1(\Omega)^f \). Note that the existence of \(v^h \) is guaranteed since \(K(\alpha^*, H_0^1(\Omega)^f) \) is dense in \(K(\alpha^*) \) in the \(H_0^0(\text{div}) \)-topology. The existence of \(v_n^h \) is guaranteed as \(K(\alpha_n, H_0^1(\Omega)^f) \) converges in the sense of Mosco to \(K(\alpha^*, H_0^1(\Omega)^f) \). From the strong monotonicity of the operator \(A_n(\cdot) := (-\beta_n \Delta + \gamma_n I + A)(\cdot) \), we have that

\[
\frac{1}{2} \| \text{div} \, (p_n - v_n^h) \|_B^2 + \frac{\beta_n}{2} \| p_n - v_n^h \|_{L^2(\Omega)}^2 + \frac{\gamma_n}{2} \| p_n - v_n^h \|_{L^2(\Omega)}^2 = \langle A_n(p_n - v_n^h), p_n - v_n^h \rangle_{V^*, V} \\
\leq \left\langle \frac{1}{\epsilon_n} P_{\delta_n}(p_n, \alpha_n), f - \beta_n \Delta v_n^h + \gamma_n v_n^h + A v_n^h - v_n^h - p_n \right\rangle_{V^*, V}.
\]

From \(J(p_n, \alpha_n) \leq J(0, \alpha_n) \) we obtain that \(\sqrt{\| p_n \|_V} \) is bounded and
\[
\lim_{n \to \infty} \left(f - \beta_n \Delta v_n^h + \gamma_n v_n^h + A v_n^h - v_n^h - p_n \right)_{V^*, V} \leq (K^* f + \text{div} \, v^h, \text{div} \, (v^h - p^*))_B.
\]

Here we have used that \((\beta_n, \gamma_n) \to (0, 0) \), \(\text{div} \, p_n \to \text{div} \, p^* \) and \(v_n^h \to v^h \) in \(H_0^1(\Omega)^f \). Further,
\[
\frac{1}{\epsilon_n} P_{\delta_n}(p_n, \alpha_n)_{V^*, V} = \sup_{\| w \|_{V^*} \leq 1} \left\langle \frac{1}{\epsilon_n} P_{\delta_n}(p_n, \alpha_n), w \right\rangle_{V^*, V} = (-\beta_n \Delta p_n + \gamma_n p_n + A p_n + f, w)_{V^*, V} \\
\leq \beta_n \| p_n \|_V \| w \|_{V^*} + \gamma_n \| p_n \|_{L^2(\Omega)} \| w \|_{L^2(\Omega)} + \| \text{div} \, p_n + K^* f \|_B \| w \|_B \\
\leq C,
\]
for some $C > 0$. Here we employ that $\beta_n |p_n|^2 \mathcal{V} + \gamma_n |p_n|^2 \mathcal{L}_2(\Omega) + |\text{div} \; p_n + K^* f|_B^2$ is uniformly bounded in $n \in \mathbb{N}$ and that the $B-$inner product is equivalent to the one in $L^2(\Omega)$.

As $|v^h - p^*|_{H_0(\text{div})} \leq h$ and from (5.8), we infer

$$\lim_{n \to \infty} \frac{1}{2} |\text{div}(p_n - v^h)|_B^2 = O(h) \text{ as } h \to 0.$$

This completes the proof, since $|v^h - p^*|_{H_0(\text{div})} \leq h$ and $h > 0$ is arbitrary.

Next consider (ii). From the inequality

$$J(p^*, \alpha^*) \leq \lim J(p_n, \alpha_n) \leq \lim J(p_n, \alpha_n) \leq \lim J(p^*, \alpha_n) = J(p^*, \alpha^*),$$

and since $p_n \to p^*$ in $L^2(\Omega)^\ell$, $\alpha_n \to \alpha^*$ in $L^2(\Omega)^\ell$ and $\text{div} \; p_n \to \text{div} \; p^*$, we have that

$$\lim_{n \to \infty} \left(\frac{1}{2} |\text{div} \; p_n|_B^2 + \frac{\beta}{2} |p_n|_{H_0^1(\Omega)}^2 \right) = \frac{1}{2} |\text{div} \; p^*|_B^2 + \frac{\beta}{2} |p^*|_{H_0^1(\Omega)}^2.$$

Further, $p \mapsto \frac{1}{2} |\text{div} \; p|_B^2 + \frac{\beta}{2} |p|_{H_0^1(\Omega)}^2$ yields a norm which is equivalent to the usual one in $H_0^1(\Omega)^\ell$. This implies that $|p_n|_{H_0^1(\Omega)} \to |p^*|_{H_0^1(\Omega)}$, given $p_n \to p^*$ in $H_0^1(\Omega)^\ell$.

Hence, $p_n \to p^*$ in $H_0^1(\Omega)^\ell$. \qed

We are left with establishing differentiability properties of the mapping $p \mapsto p(\alpha)$. For this purpose, we require $\beta > 0$ in (\mathcal{D}). We remark already here that a corresponding differentiability results for $\beta = 0$ seems elusive. The main reason for this limitation stems from the fact that $H_0(\text{div})$ does not embed continuously into any $L^{2+\xi}(\Omega)^\ell$ for some $\xi > 0$, but $H_0^1(\Omega)$ does so for $\xi \in (0, \xi_0(\epsilon))]$ with $\xi_0(\epsilon) = +\infty$ for $\ell = 1$, $\xi_0(\epsilon) = 2/\ell$ for $\ell > 2$.

Theorem 5.2. Let $\epsilon \in (0, \xi(\ell)]$ and $p(\cdot) : L^{2+\xi}(\Omega) \to H_0^1(\Omega)^\ell$ be the solution mapping of (\mathcal{D}) with $\beta > 0$. Then $\alpha \mapsto p(\alpha)$ is Gâteaux differentiable, and the Gâteaux differential of p at α^* in direction ω is denoted by $s^* \in H_0^1(\Omega)^\ell$ the unique solution of

$$\langle -\beta \Delta s^* + \gamma s^* + A s^*, v \rangle_{H^{-1}, H_0^1} + \frac{1}{\epsilon} (P^*_\beta(p^*, \alpha^*)(s^*, \omega), v) = 0, \quad \forall v \in H_0^1(\Omega)^\ell,$$

with $P^*_\beta := P(\alpha^*)$ and $P^*_\beta : H_0^1(\Omega)^\ell \times L^{2+\xi}(\Omega) \to \mathcal{L}(H_0^1(\Omega)^\ell \times L^{2+\xi}(\Omega), H^{-1}(\Omega)^\ell)$.

Proof. We divide the proof into several steps. Step 1. Let $p^* := p(\alpha^*)$ and $p_t := p(\alpha_t)$ with $\alpha_t := \alpha^* + t\omega$, i.e., p^* and p_t are the solutions of (\mathcal{D}) for $\alpha = \alpha^*$ and $\alpha = \alpha^* + t\omega$, respectively. Then, by taking the difference of the corresponding equations (\mathcal{D}) for p^* and p_t, it follows that

$$\langle -\beta \Delta (p_t - p^*) + \gamma (p_t - p^*) + A(p_t - p^*), v \rangle_{H^{-1}, H_0^1} + \frac{1}{\epsilon} (P_\beta(p_t, \alpha_t) - P_\beta(p^*, \alpha^*), v) = 0,$$

for $v \in H_0^1(\Omega)^\ell$.

For $v = p_t - p^*$ in (5.10) and with $Q_t(p) := P_\beta(p, \alpha_t)$ and $Q_0(p) := P_\beta(p, \alpha^*)$ we obtain

$$\beta |p_t - p^*|_{H_0^1(\Omega)}^2 + \langle A(p_t - p^*), p_t - p^* \rangle_{H^{-1}, H_0^1} + \gamma |p_t - p^*|_{L^2(\Omega)}^2 + \frac{1}{\epsilon} (Q_t(p_t) - Q_t(p^*), p_t - p^*) = -\frac{1}{\epsilon} (Q_t(p^*) - Q_0(p^*), p_t - p^*).$$
The functions $\mathbb{R} \ni r \mapsto (r)^+ (r)^-$ are Lipschitz continuous with Lipschitz constant bounded by a constant independent of δ. Hence, it follows that $|Q_\delta(p) - Q_\delta(q)|_{L^2(\Omega)} \leq L_Q|\alpha_1 - \alpha|_{L^2(\Omega)} = L_Q|\omega|_{L^2(\Omega)}$ with some constant $L_Q > 0$. Furthermore, $(Q_\delta(p) - Q_\delta(q), p - q) \geq 0$ for all $p, q \in L^2(\Omega)^f$, and from the monotonicity properties of A we infer

$$
(\beta|p_t - p_0|^2_{L^2(\Omega)^f} + |\text{div}(p_t - p_0)|^2_{L^2(\Omega)^f} + \gamma|p_t - p_0|^2_{L^2(\Omega)^f})^{1/2} \leq |t| \left(\frac{CL_Q}{\epsilon} \right) |\omega|_{L^2(\Omega)}.
$$

Let $\{t_n\}$ be a sequence of reals such that $t_n \to 0$. Then, by (5.11) there exist a subsequence (denoted the same) such that

$$
s_n^* := \frac{p_{t_n} - p^*}{t_n} \to s^* \quad \text{in} \quad H_0^1(\Omega)^f,
$$

for some $s^* \in H_0^1(\Omega)^f$.

Step 2: s^* solves (5.9) uniquely. We have that $H_0^1(\Omega)^f \times L^{2+\xi}(\Omega) \ni (p, \alpha) \mapsto P(p, \alpha)$ is continuously Fréchet differentiable; see Proposition 6.2 below and the remarks at the end of its statement. Then, for any $v \in H_0^1(\Omega)^f$ and by the mean value theorem we get

$$
(P(p_t, \alpha_t) - P(p^*, \alpha^*), v) = (P'(p^* + \zeta_t(p_t - p^*), \alpha^* + \zeta_t(\alpha_t - \alpha^*))(p_t - p^*) \cdot v),
$$

for some $t \mapsto \zeta_t \in (0, 1)$. From (5.11), we have that $p_t \to p^*$ in $H_0^1(\Omega)^f$ as $t \to \infty$ and by definition $\alpha_t - \alpha^* = t\omega$. It follows that $(p_t, \alpha_t) \to (p^*, \alpha^*)$ in $V \times L^2(\Omega)^f$. Additionally, $P'_\delta : H_0^1(\Omega)^f \times L^{2+\xi}(\Omega) \to L'(H_0^1(\Omega)^f \times L^{2+\xi}(\Omega))$, $H^{-1}(\Omega)^f$ is continuous (since P is continuously Fréchet differentiable), and together with (5.12) this implies

$$
\lim_{n \to \infty} \left(\frac{P_\delta(p_{t_n}, \alpha_{t_n}) - P_\delta(p^*, \alpha^*)}{t_n}, v \right) = (P'_\delta(p^*, \alpha^*)(s^*, \omega), v).
$$

One readily shows that $\langle -\beta \Delta s_n^* + A_\delta s_n^*, v \rangle_{H^{-1}, H_0^1} \to \langle -\beta \Delta s^* + A s^*, v \rangle_{H^{-1}, H_0^1}$. Therefore, dividing (5.10) by t_n and taking $n \to \infty$, we obtain that s^* solves (5.9).

We are only left to prove that the solution to (5.9) is unique. Fix α and recall that $H_0^1(\Omega)^f \ni p \mapsto P_\delta(p, \alpha) \in H^{-1}(\Omega)^f$ is monotone and differentiable. Then, from the inequality $(P_\delta(p + sr, \alpha^*) - P_\delta(p, \alpha^*)$, $sr \geq 0$, we obtain that $(D_1P_\delta(p^*, \alpha^*)r, r) \geq 0$, i.e., $D_1P_\delta(p^*, \alpha^*)$ is a monotone, linear and bounded operator. Since $P'_\delta(p^*, \alpha^*)(s, \omega) = D_1P_\delta(p^*, \alpha^*)s + D_2P_\delta(p^*, \alpha^*)\omega$ (see Proposition 6.2 below) and $-\beta \Delta + A + \gamma I$ is a strongly monotone, linear and bounded operator by the Lax-Milgram Lemma, the equation (5.9) has a unique solution. Thus, for every positive sequence $\{t_n\}$ such $t_n \to 0$, every convergent subsequence of the quotient (5.12) converges for the same limit and hence, the entire sequence converges to the same limit.

Step 3: $s_n^* \to s$ in $H_0^1(\Omega)^f$. For any $t > 0$, considering $v = p_t - p^*$ in (5.13), leads to

$$
\left(\frac{P_\delta(p_t, \alpha_t) - P_\delta(p^*, \alpha^*)}{t}, \frac{p_t - p^*}{t} \right) =
$$

$$
(P'_\delta(p^* + \zeta_t(p_t - p^*), \alpha^* + \zeta_t(\alpha_t - \alpha^*)) \left(\frac{p_t - p^*}{\alpha_t - \alpha^*} \right), \frac{p_t - p^*}{\alpha_t - \alpha^*}).
$$
Since \(p_n \to p^* \) in \(H_0^1(\Omega)^\ell \) and \(\alpha_n \to \alpha^* \) in \(L^{2+\xi}(\Omega) \), it follows that \(p^* + \zeta_n(p_n - p^*) \to p^* \) in \(H_0^1(\Omega)^\ell \) (particularly in \(L^2(\Omega)^\ell \)) and \(\alpha^* + \zeta_n(\alpha_n - \alpha^*) \to \alpha^* \) in \(L^{2+\xi}(\Omega) \). Additionally, we know that \((p_n - p^*)/t_n \to s^* \) in \(H_0^1(\Omega)^\ell \) and, by the Rellich-Kondrachov Theorem, \((p_n - p^*)/t_n \to s^* \) in \(L^2(\Omega)^\ell \) (as well as pointwise almost everywhere convergence on \(\Omega \)) respectively along a subsequence (that we also denote by \(\{p_n\} \) for the ease of exposition). Moreover, we have \((\alpha_n - \alpha^*)/t_n = \omega \) for all \(n \in \mathbb{N} \). Therefore, since \(P'_\beta : V \times L^{2+\xi}(\Omega) \to (H_0^1(\Omega)^\ell \times L^{2+\xi}(\Omega), H^{-1}(\Omega)) \) is continuous, by (5.9) and (5.14) we obtain

\[
\lim_{n \to \infty} \frac{1}{\epsilon} \left(P\beta(p_n, \alpha_n) - P\beta(p^*, \alpha^*) - P\beta(p_n - p^*) \right) = \frac{1}{\epsilon} (P\beta(p^*, \alpha^*)(s^*, \omega), s^*) = (-\beta\Delta s^* + As^* + \gamma s^*, s^*)_H^{-1},H_0^1.
\]

(5.15)

Note that \((u, v)_\beta := (-\beta \Delta u + Au + \gamma u, v)_{H^{-1},H_0^1} \) with \(u, v \in H_0^1(\Omega) \) is an inner product in \(H_0^1(\Omega)^\ell \) which is equivalent to the usual one and \(|u|_{\beta}^2 := (u, u)_\beta^2 = \beta|u|^2 + |\gamma|u|^2_{L^2(\Omega)} + |\text{div} u|^2_{L^2(\Omega)} \). Then, by the lower-semicontinuity of the norm, (5.10) and (5.15), we find that

\[
(s^*, s^*)_\beta \leq \lim_{n \to \infty} (s_n^*, s_n^*)_\beta = \lim_{n \to \infty} (-\beta\Delta s_n^* + As_n^* + \gamma s_n^*, s_n^*)_H^{-1},H_0^1 = (-\beta\Delta s^* + As^* + \gamma s^*, s^*)_\beta,
\]

where \(s_n^* := p_n - p^* \), i.e., \(|s_n^*|_\beta \to |s^*|_\beta \). Hence, since we already have that \(s_n^* \to s^* \) in \(V \), we conclude \(s_n^* \to s^* \) in \(H_0^1(\Omega)^\ell \). Finally, this implies that for every \(\alpha, \omega \), there exists \(\mu(\alpha, \omega) \in H_0^1(\Omega)^\ell \) such that

\[
\lim_{n \to 0} \frac{p(t + \omega) - p(t)}{t} = \lim_{n \to 0} \frac{p(t_n) - p(t)}{t_n} = \mu(\alpha, \omega), \quad \text{in } H_0^1(\Omega)^\ell.
\]

Consequently, \(\mu(\alpha, \omega) \) is the Gâteaux differential of \(p \) at \(\alpha \) in direction \(\omega \). It follows additionally from (5.9) that the map \(\omega \mapsto \mu(\alpha, \omega) \) is linear and continuous, i.e., \(\mu(\alpha, \omega) = \mu(\alpha)\omega \) with \(\mu(\alpha) \in (L^{2+\xi}(\Omega), H_0^1(\Omega)^\ell) \). Furthermore, since \(P'_\beta : H_0^1(\Omega)^\ell \to (H_0^1(\Omega)^\ell \times L^{2+\xi}(\Omega), H^{-1}(\Omega)^\ell) \), the map \(\alpha \mapsto \mu(\alpha) \) is continuous. Hence, it is the Fréchet derivative of the map \(\alpha \mapsto p(\alpha) \).

6. The regularized bilevel problem for choosing \(\alpha \). Now we introduce \((\tilde{\mathcal{P}})\), the regularized version of Problem \((\mathcal{P})\) by replacing the lower-level problem \((D)\) in \((\mathcal{P})\) by \((\tilde{D})\), and the admissible set \(\mathcal{A}_{ad} \) is defined with \(\alpha, \overline{\sigma} \in H^2 \). In contrast to \((\mathcal{P})\), we pose \((\tilde{\mathcal{P}})\) over \(\alpha \in W^{1,p}(\Omega) \) for \(p \geq 2 \) and not with \(p > \max(2, \ell) \) as in \((\mathcal{P})\). However, the duality result of Theorem 3.4 requires the \(C(\overline{\Omega}) \)-regularity of the filtering weight \(\alpha \). Analytically, as seen earlier, it can be obtained by requiring \(p > \max(2, \ell) \), or it arises in an a posteriori way when solving \((\tilde{\mathcal{P}})\) by a projection method; see Theorem 3.1 of part II of this work [29].

Problem \((\tilde{\mathcal{P}})\): Let \(\lambda, \beta, \delta > 0 \), and \(p \geq 2 \). Consider the problem:

\[
\begin{align*}
\text{minimize} & \quad J(p, \alpha) := F \circ R(\text{div} p) + \frac{\lambda}{p} |p|_{W^{1,p}(\Omega)}^p \quad \text{over } (p, \alpha) \in H_0^1(\Omega)^\ell \times \mathcal{A}_{ad}, \\
\text{s.t.} & \quad p \in \arg \min_{w \in H_0^1(\Omega)^\ell} \beta \frac{1}{2} \|w\|_{H_0^1(\Omega)^\ell}^2 + \frac{\gamma}{2} \|w\|_{L^{2+\xi}(\Omega)^\ell}^2 + J_D(w) + \frac{1}{\epsilon} P\beta(w, \alpha).
\end{align*}
\]
The set A_{ad}, is given by
\begin{equation}
A_{\text{ad}} := \{ \alpha \in H^1(\Omega) : \alpha \leq \alpha \leq \alpha, \ \text{a.e. on } \Omega \},
\end{equation}
for given $\underline{\alpha}, \overline{\alpha} \in H^2(\Omega)$, such that $0 \leq \underline{\alpha} \leq \overline{\alpha}$ a.e. in Ω and $\frac{\partial \underline{\alpha}}{\partial \nu} = \frac{\partial \overline{\alpha}}{\partial \nu} = 0$ in $\partial \Omega$.

THEOREM 6.1. Problem (\tilde{F}) admits a solution.

Proof. Take an infimizing sequence $\{ (p_n, \alpha_n) \}$ for (\tilde{F}). We have that $\{ \alpha_n \}$ is bounded in $W^{1,p}(\Omega)$ due to $\lambda > 0$. The embedding $W^{1,p}(\Omega) \hookrightarrow L^2(\Omega)$ is compact [2] yielding a subsequence of $\{ \alpha_n \}$ (also denoted by $\{ \alpha_n \}$) such that $\alpha_n \rightharpoonup \alpha^*$ in $W^{1,p}(\Omega)$ and $\alpha_n \rightharpoonup \alpha^*$ in $L^2(\Omega)$, for some $\alpha^* \in W^{1,p}(\Omega) \cap A_{\text{ad}}$ due to the weak closedness of A_{ad} in $W^{1,p}(\Omega)$. Additionally, $p_n = p(\alpha_n)$, where $\alpha \mapsto p(\alpha)$ is the solution map of (D). Then, by Theorem 5.1, we have $p_n \rightharpoonup p^* := p(\alpha^*)$ in $H^1_0(\Omega)^\ell$. The fact that (p^*, α^*) is a minimizer follows from weak lower semicontinuity arguments. \[\Box \]

We now focus on the derivation of first-order necessary optimality conditions and solution algorithms. For this matter, we consider from now on only the case $p = 2$.

Utilizing the solution map $\alpha \mapsto p(\alpha)$ for the regularized lower-level problem, the reduced version of (\tilde{F}) is given by
\begin{equation}
\text{minimize } J(\alpha) := J(p(\alpha), \alpha) \text{ over } \alpha \in A_{\text{ad}}.
\end{equation}

Since the map $H^1(\Omega) \ni \alpha \mapsto p(\alpha) \in H^1_0(\Omega)^\ell$ is differentiable (recall Theorem 5.2), it follows that $H^1(\Omega) \ni \alpha \mapsto J(\alpha) \in \mathbb{R}$ is differentiable as well, with derivative $J'(\alpha) \in H^1(\Omega)^\ast$ and gradient $\nabla J(\alpha) := \mathcal{R}^{-1}J'(\alpha) \in H^1(\Omega)$ with \mathcal{R} the Riesz map for $H^1(\Omega)$.

6.1. First-order optimality system. Set $X := V \times H^1(\Omega)$ with $x := (p, \alpha) \in X$, $V := H^1_0(\Omega)^\ell$, $C := V \times A_{\text{ad}}$, and $Y := V^\ast$. Let $T : X \to \mathbb{R}$ be the differentiable map with $T(x) := J(p, \alpha)$, and let $g : X \to Y$ with
\[g(x) := -\beta \Delta p + \gamma p + Ap + f + \frac{1}{\epsilon} P_\ell(p, \alpha). \]

Then, problem (\tilde{F}) is equivalent to
\[\text{minimize } T(x) \text{ over } x \in X, \text{ s.t. } x \in C \text{ and } g(x) = 0, \]
where $T(x) := F \circ R(\text{div } p) + \frac{\lambda}{2} |\alpha|_{H^1(\Omega)}^2$.

As a first step towards first-order optimality conditions for this problem, we show that $g : X \to Y$ is differentiable. Let $X = V \times H^1(\Omega)$ with $x = (p, \alpha) \in X$, $V = H^1_0(\Omega)^\ell$, $C = V \times A_{\text{ad}}$, and $Y = V^\ast$.

PROPOSITION 6.2. The map $g : X \to Y$ is differentiable at any $x = (p, \alpha) \in C$. For $r = (r_1, r_2) \in X$, the derivative is given by
\[g'(x)r = -\beta \Delta r_1 + \gamma r_1 + Ar_1 + \frac{1}{\epsilon} P'_\ell(p, \alpha)(r_1, r_2), \]
with $P'_\ell(p, \alpha)(r_1, r_2) = D_1 P \hat{\delta}(p, \alpha)r_1 + D_2 P \hat{\delta}(p, \alpha)r_2$, where $D_1 P \hat{\delta}(p, \alpha)$ and $D_2 P \hat{\delta}(p, \alpha)$ denote the Fréchet derivatives of $p \mapsto \hat{\delta}(p, \alpha)$ and $\alpha \mapsto \hat{\delta}(p, \alpha)$, respectively, and are given by
\begin{align}
D_1 P \hat{\delta}(p, \alpha)r_1 &:= (G''\hat{\delta}(p - \alpha 1) + G''\hat{\delta}(p - \alpha 1))r_1, \\
D_2 P \hat{\delta}(p, \alpha)r_2 &:= (G''\hat{\delta}(p - \alpha 1) - G''\hat{\delta}(p - \alpha 1))1r_2,
\end{align}
where $G'_\delta : L^{2+\xi}(\Omega)^{\ell} \to L^{2}(\Omega)^{\ell}$ (with $\xi > 0$) is given by $G'_\delta(p) = (G'_\delta(p_1), \ldots, G'_\delta(p_{\ell}))$ where $G'_\delta : L^{2+\xi}(\Omega) \to L^{2}(\Omega)$ is the the Nemytskii operator induced by the real valued function $r \mapsto (r)^{\delta}$.

The proof of the above proposition follows from standard results for the differentiability of superposition operators [5, 45]. In fact, we first note that from the Sobolev Imbedding Theorem (see [2]) for any $l \geq 1$ (recall that $\Omega \subset \mathbb{R}^{d}$) and for any $\xi > 0$, $H^{1}(\Omega) \hookrightarrow L^{2+\xi}(\Omega)$: In fact, for $l = 1$, $H^{1}(\Omega) \hookrightarrow C^{0,1/2}(\Omega)$, for $l = 2$, $H^{1}(\Omega) \hookrightarrow L^{3}(\Omega)$ with $2 \leq q < \infty$ and for $l \geq 3$, $H^{1}(\Omega) \hookrightarrow L^{q+\xi}(\Omega)$. Therefore, since $H^{1}(\Omega) \hookrightarrow H^{1}(\Omega)$ and $L^{2}(\Omega) \hookrightarrow H^{-1}(\Omega)$, it suffices to prove that $L^{2+\xi}(\Omega)^{\ell} \times L^{2+\xi}(\Omega) \ni (p, \alpha) \mapsto g(p, \alpha) \in L^{2}(\Omega)^{\ell}$ is differentiable.

Note that the map $P : (W_1)^{\ell} \times W_2 \to W_3$ is differentiable when W_1 and W_2 are any of the spaces: $L^{2+\xi}(\Omega), H^{1}(\Omega)$ and $H^{1}_{0}(\Omega)$ and W_3 is $L^{2}(\Omega)$ or $H^{-1}(\Omega)$.

Further observe that for $p = \{p^{i}\}_{i=1}^{\ell}$, $r_1 = \{r_1^{i}\}_{i=1}^{\ell}$ with $p^{i}, r_1^{i} \in H^{1}_{0}(\Omega)$ for $i = 1, 2, \ldots, l$ and $\alpha, r_2 \in H^{1}(\Omega)$, the expressions for (6.3a) and (6.3b) are given explicitly by $D_{1}P_{3}(p, \alpha)r_1 = \{(p^{i}-\alpha)^{+\epsilon}+(-p^{i}-\alpha)^{+\epsilon}\}_{i=1}^{\ell}$ and $D_{2}P_{3}(p, \alpha)r_2 = \{(-p^{i}-\alpha)^{+\epsilon}-(p^{i}-\alpha)^{+\epsilon}\}_{i=1}^{\ell}$. This implies that that $D_{1}P_{3}(p, \alpha), D_{2}P_{3}(p, \alpha) \in L^{\infty}(\Omega)^{\ell}$.

A direct application of KKT-theory in Banach space [47] finally yields the following characterization.

Proposition 6.3. For an optimal solution $(p^{*}, \alpha^{*}) \in H^{1}_{0}(\Omega)^{\ell} \times A_{\text{ad}}$ of (\tilde{P}), there exists an adjoint state (a Lagrange multiplier) $q^{*} \in H^{1}_{0}(\Omega)^{\ell}$ such that

$$
(J_{0}(\text{div } p^{*}), \text{div } p) + (-\beta \Delta q^{*} + \gamma q^{*} + Aq^{*} + \frac{1}{\epsilon}D_{1}P_{3}(p^{*}, \alpha^{*})q^{*}, p)_{H^{-1}, H^{1}} = 0,
$$

$$
(\lambda(-\Delta + I)\alpha^{*} + \frac{1}{\epsilon}(D_{2}P_{3}(p^{*}, \alpha^{*}))^{\top} q^{*}, \alpha - \alpha^{*})_{H^{1}(\Omega)^{\ell}, H^{-1}(\Omega)^{\ell}} \geq 0,
$$

for all $p \in H^{1}_{0}(\Omega)^{\ell}$ and all $\alpha \in A_{\text{ad}}$, where $J_{0} := F \circ R$ and further

$$
-\beta \Delta p^{*} + \gamma p^{*} + Ap^{*} + f + \frac{1}{\epsilon}P_{3}(p^{*}, \alpha^{*}) = 0, \quad \text{in } H^{-1}(\Omega)^{\ell}.
$$

Note that q allows to compute \tilde{J}' at some α in an amenable way. In fact, we have

$$
\tilde{J}'(\alpha) = \lambda(-\Delta + I)\alpha + \frac{1}{\epsilon}(D_{2}P_{3}(p(\alpha), \alpha))^{\top} q(\alpha).
$$

where $\alpha \mapsto q(\alpha)$ solves the first equation in Proposition 6.3 for $p^{*} = p(\alpha)$ and $\alpha^{*} = \alpha$.

The above structural representation of $\tilde{J}'(\alpha)$ combined with a regularity result for the metric projection in $H^{1}(\Omega)$ onto A_{ad} provides the starting point for the design of a numerical solver for (\tilde{P}). This development is the subject of the second part of this work [29].

7. Conclusion. The generalization of the total variation regularization filter proposed in this work involves a scalar weight function α. Its proper choice allows to locally adjust the strength of the filter and, hence, to recover image details while still significantly removing noise from homogeneous image regions. While we are able to address important analytical questions such as existence of solutions for the associated variational model for image reconstruction and the relation between the primal problem (P) and its pre-dual problem (D), important issues such as a structural analysis of the implications of spatially weighted total variation regularization (Depending on
the local choice of α, which features do occur in reconstruction results, e.g., starting in 1D?) remain for future work.

In order to identify a monolithic variational approach to both, the reconstruction of the image and the proper choice of α, a bilevel optimization model is proposed. While the image reconstruction problem in the lower level now serves merely the purpose of a provider of a feasible point for the bilevel problem, given a choice of α, the upper level problem, i.e., its objective along with constraints, aims to identify a \textit{good} set of filtering weights. It should be noted that, due to the non-convexity of the bilevel problem, one should not expect this good set to be a singleton, in general. In order to address the non-convexity and non-smoothness of the problem when deriving stationarity conditions, a smoothing approach is pursued. In particular, this avoids the complications due to non-differentiability. The latter is particularly complicated as it arises from the solution set of a variational inequality with the relevant parameter occurring in the upper bound of a pointwise norm constraint on p, i.e. the first-order condition for the lower level optimization problem. In this respect, several analytical questions remain for future work. These include a (generalized) differentiability sensitivity analysis of the map $\alpha \mapsto p(\alpha)$, the passage to the limit with the regularization/penalization parameters δ/ϵ in the first-order system of Proposition 6.3. This, if possible at all, may identify a \textit{useful} limiting stationarity system for the original bilevel problem (P), which may then be the departure point for the design of associated numerical solvers.

In a second part of this work [29], we propose a projection-based decent algorithm for solving \tilde{P}. The method yields an approximating sequence of filtering weights $\{\alpha_k\} \in C(\bar{\Omega})$ and is employed to denoising, deblurring and Fourier as well as wavelet inpainting problems.

REFERENCES

[12] L. Boccardo and F. Murat. Homogenization of nonlinear unilateral problems. In \textit{Composite me-
Regularization function choice by bilevel optimization

dia and homogenization theory (Trieste, 1990), volume 5 of Progr. Nonlinear Differential

[16] Y. Dong, M. Hintermüller, and M. Rincon-Camacho. Automated regularization parameter se-
lection in multi-scale total variation models for image restoration. Journal of Mathematical

selection in multi-scale total variation models for image restoration. J. Math. Imaging

[21] K. Frick, P. Marnitz, and A. Munk. Statistical multiresolution dantzig estimation in imaging:
268, 2012.

the 1958 original [Columbia University Press, New York; MR00996342].

[26] M. Hintermüller and I. Kopacka. Mathematical programs with complementarity constraints
in function space: C_ and strong stationarity and a path-finding algorithm. SIAM J. Optim.,

[27] M. Hintermüller and K. Kunisch. Total bounded variation regularization as a bilaterally con-

[28] M. Hintermüller and C. N. Rautenberg. On the density of classes of closed convex sets with

[29] M. Hintermüller, C. N. Rautenberg, T. Wu, and A. Langer. Optimal selection of the regular-
zation function in a generalized total variation model. Part II: Algorithm, its analysis and
numerical tests. Technical report, Humboldt-Universität zu Berlin, Institut of Mathemat-
ics, 2016.

adapted regularization parameter choice rule in l1-tv-based image restoration. Inverse
Problems, 26(8), 2010.

variation-based inf-convolution-type image restoration. SIAM Journal on Scientific Com-

[32] M. Hintermüller, T. M. Surowiec, and B. S. Mordukhovich. Several approaches for the deriva-
tion of stationarity conditions for elliptic mpecs with upper-level control constraints. Math-

[33] M. Hintermüller and T. Wu. Bilevel optimization for calibrating point spread functions in blind

[34] T. Hotz, P. Marnitz, R. Stichtenoth, L. Davies, Z. Kabluchko, and A. Munk. Locally adaptive
image denoising by a statistical multiresolution criterion. Computational Statistics and

technique, 2012.

[36] K. Jalalzai. Discontinuities of the minimizers of the weighted or anisotropic total variation
M. Hintermüller and C. N. Rautenberg

