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Abstract

We consider probability functions of parameter-dependent random inequality systems under
Gaussian distribution. As a main result, we provide an upper estimate for the Clarke subdifferential
of such probability functions without imposing compactness conditions. A constraint qualification
ensuring continuous differentiability is formulated. Explicit formulae are derived from the general
result in case of linear random inequality systems. In the case of a constant coefficient matrix an
upper estimate for even the smaller Mordukhovich subdifferential is proven.

1 Introduction

A probability function has the form

ϕ(x) := P (g(x, ξ) ≤ 0) , (1)

where g : Rn×Rm → Rp is a mapping defining a (random) inequality system, x ∈ Rn is a decision
vector and ξ is an m- dimensional random vector defined on some probability space (Ω,A,P). The
inequality sign in (1) is to be understood componentwise. Throughout the paper we shall make the
following basic assumptions:

g is continuously differentiable
the mappings gj(x, ·) are convex for all x ∈ Rn and all j = 1, . . . , p
ξ ∼ N (0, R) is nondegenerate Gaussian with Rii = 1 (i = 1, . . . ,m).

(2)

Here, we refer to the commonly used notation N (µ,Σ) for a Gaussian distribution with expectation
µ and covariance matrix Σ. Our assumption implies that ξ is standard Gaussian with components
that are centered and have unit variances. In other words, the (nondegenerate) covariance matrix is
actually a correlation matrix. This assumption is no restriction because it can always be achieved under
an affine linear transformation of ξ whose action on the mapping g would not affect the properties
imposed in (2).

Probability functions (1) play a fundamental role in stochastic optimization problems either as an ob-
jective (reliability) to be maximized or when defining a constraint ensuring the robustness of decisions
(probabilistic or chance constraint). Applications can be found in water management, telecommunica-
tions, electricity network expansion, mineral blending, chemical engineering etc. (see, e.g., [18,19,24]).
Treating probability functions in the framework of optimization problems (with respect to the decision
variable x) requires not only to calculate – or better: to approximate – the probability ϕ(x) itself but
also its gradient ∇ϕ. This is why derivatives of probability functions have attracted much attention in
the past (see, e.g., [7,11,12,14,17,20–22,25,26,28]). Many of these papers provide gradient formu-
lae for fairly general classes of distributions for instance in the form of surface and/or volume integrals
associated with the feasible set K := {z ∈ Rm : g(x̄, z) ≤ 0} where x̄ is the point at which the
derivative∇ϕ is supposed to be computed. This generality comes with two drawbacks: first, the men-
tioned surface/volume integrals may be difficult to deal with numerically, at least for nonlinear g (see,
e.g., [18, p. 207], [22, p.3]). Second, a principal assumption made in order to derive differentiability of
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ϕ at all is the compactness of the set K (e.g., [25, p. 200, Assumptions (A2)], [22, Assumption 2.2
(i)], [17, p. 902]). Indeed, without compactness, one cannot expect differentiability of ϕ even with the
nicest data. In [27, Prop. 2.2] an example of even a single inequality g(x, ξ) ≤ 0 (i.e., p = 1) is pro-
vided, where the basic assumptions (2) are fulfilled and where the set K satisfies Slater’s constraint
qualification, yet ϕ fails to be differentiable. On the other hand, compactness of K is a quite restrictive
assumption in probabilistic programming and one would be interested in identifying situations, where
differentiability of ϕ holds true even in the unbounded case. There seems to be a good chance to do
so in case of Gaussian or Gaussian-like (e.g., Student- or log-normally distributed) random vectors.

Indeed, the compactness issue disappears in the case of mappings g which are linear in ξ, when ξ
has a multivariate Gaussian distribution. Extending a classical differentiability result for the Gaussian
distribution function (e.g., [18, p. 204 ]), corresponding gradient formulae could be found for mappings
g(x, ξ) = A(x)ξ ≤ b(x) in (1) with surjective A(x) [28] or with possibly nonsurjective A(x) ≡ A
under the Linear Independence Constraint Qualification for the setK [11]. The important fact about all
these gradient formulae is that they provide a fully explicit reduction of partial derivatives of ϕ to values
of Gaussian distribution functions again. In this way, efficient tools for computing the latter, such as
Genz’ code [8] can be employed not only to calculate values of ϕ but also gradients∇ϕ at the same
time. Moreover, using induction on the obtained formulae, explicit reductions to Gaussian distribution
functions are easily found for any higher order derivative of ϕ. Finally, the precision for calculating
∇ϕ can be controlled by that for calculating Gaussian distributions functions, for instance, in Genz’
code [10, p. 662].

This methodology fails, however, when g is nonlinear in ξ. In such a case, while keeping the Gaussian
character of the random vector, one may resort to the so-called spheric-radial decomposition of Gaus-
sian distributions [3,4,8] (see Section 2.1). Now, unlike the linear situation, differentiability of ϕ can no
longer be taken for granted (not even under a constraint qualification and if g has just one component,
see the counterexample mentioned above). Gradient formulae based on spheric-radial decomposition
can be found in [6] (without rigorous proof) or in [21, 22] albeit under the restrictive compactness as-
sumption on the set K . In order to overcome this assumption, the main intention of [27] consisted
in identifying an easy to check growth condition on the partial derivatives of g guaranteeing differ-
entiability of ϕ without compactness of K . A corresponding result was derived for the setting of (2)
with a single component of g (i.e., p = 1) upon imposing Slater’s condition on K . When considering
systems of random inequalities rather than a single one (as it is typical in most applications), Slater’s
condition is no longer sufficient to guarantee differentiability of ϕ even if K were compact and g a
linear mapping:

Example 1.1 Let ξ have a one-dimensional standard Gaussian distribution and define

g(x1, x2, x3, ξ) := (ξ − x1, ξ − x2,−ξ − x3).

Then, with Φ referring to the one-dimensional standard Gaussian distribution function, one has that

ϕ(x1, x2) = max{min{Φ(x1),Φ(x2)} − Φ(x3), 0}.

Clearly ϕ fails to be differentiable at x̄ := (0, 0,−1), while K = [−1, 0] is compact and satisfies
Slater’s condition in the description via g.

This inherent nondifferentiability motivates us in the present paper not only to look for conditions allow-
ing us to generalize the differentiability result in [27] from a single inequality to inequality systems but
even to take a more general, namely nonsmooth analysis perspective for viewing at probability func-
tions. We will show that the already mentioned growth condition (but now imposed on each component
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of g) implies the local Lipschitz continuity of ϕ. This motivates the computation of subdifferentials ∂ϕ
in the sense of Clarke or Mordukhovich (see Section 2.3). For related work on the use of subdifferen-
tials in settings similar to, but different from ours, we refer, for instance, to [5,29]. As a main result, we
will derive in Section 3 an upper estimate for the Clarke subdifferential of ϕ under the assumption that
g is continuously differentiable and component-wise convex in ξ (no further assumption w.r.t. x). This
result allows us in Section 4 to identify constraint qualifications – similar to those considered in a more
general framework (but with compactness assumed for K) in [22, Assumption 2.2 (iv)] and [12, The-
orem 2.4 and 3.1] – ensuring the (continuous) differentiability of ϕ. The obtained gradient formula is
specialized then in Section 5 to linear random inequality systems, thus providing new representations
in different disguise of the gradient formulae from [11,28] mentioned above, which were formulated in
terms of Gaussian distribution functions. Finally, in Section 6 the paper addresses the issue of refining
the nonsmooth formula towards the use of Mordukhovich’s rather than the bigger Clarke’s subdiffer-
ential. This will be possible in the case of linear mappings g and thus improves the results on Clarke
subdifferentials of singular Gaussian distribution functions in [29].

We note that the (sub-) differentiability results in this paper are not only of theoretical but also of
practical interest in that they provide easy to implement gradient formulae. This relies on the fact that
both, values and partial derivatives of ϕ, are represented as surface integrals with respect to the
uniform distribution on the unit sphere. In contrast, surface integrals in the general derivative formulae
mentioned above are typically taken over the boundary of the setK which may be difficult to compute.
For the sphere, efficient sampling schemes are reported, for instance, in [1, 4]. Those schemes can
be employed in order to simultaneously update approximations of ϕ and ∇ϕ with the same sample
generated on the sphere. Finally, we emphasize, that the methodology described here for Gaussian
distributions can be easily adapted to Gaussian-like distributions (like Student, log-normal etc.) by
reducing them to Gaussian ones after an appropriate transformation of the mapping g. We do not
discuss this issue here in detail because it is exactly the same methodology as the one presented in
the case of a single inequality in [27].

2 Preliminaries

2.1 Spheric-radial decomposition of a Gaussian distribution

Let ξ be an m-dimensional Gaussian random vector normally distributed according to ξ ∼ N (0, R)
for some positive definite correlation matrixR. Then, ξ = ηLζ , whereR = LLT is some factorization
(e.g., Cholesky decomposition) of R, η has a Chi-distribution with m degrees of freedom and ζ has a
uniform distribution on the Euclidean unit sphere

Sm−1 :=

{
z ∈ Rm

∣∣∣∣∣
m∑
i=1

z2
i = 1

}
of Rm. As a consequence, for any Lebesgue measurable set M ⊆ Rm its probability may be repre-
sented as

P(ξ ∈M) =

∫
v∈Sm−1

µη ({r ≥ 0 : rLv ∩M 6= ∅}) dµζ , (3)

where µη and µζ are the laws of η and ζ , respectively. The consideration of distributionsN (0, R) is
no loss of generality because this standardized form is well-known to be achieved under a linear trans-
formation of a given general Gaussian random vector. Then, (3) keeps holding true upon transforming
accordingly the set M .
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2.2 Probability function in spheric-radial form and preliminary results

Given the constraint mapping g in (1), we pass to the maximum function gm : Rn × Rm → R over
its components by defining

gm(x, z) = max
j=1,...,p

gj(x, z), (4)

Evidently, the probability function (1) can be written as ϕ(x) = P(gm(x, ξ) ≤ 0). By (3) we have that

ϕ (x) =

∫
v∈Sm−1

µη ({r ≥ 0 : gm(x, rLv) ≤ 0}) dµζ =

∫
v∈Sm−1

e(x, v)dµζ (5)

where
e(x, v) := µη ({r ≥ 0 : gm(x, rLv) ≤ 0}) ∀x ∈ Rn ∀v ∈ Sm−1. (6)

As a consequence of (2), gm is convex in the second argument. In [27], probability functions of a
single continously differentiable inequality, convex in the Gaussian random vector ξ, have been inves-
tigated. Because our inequality gm(x, ξ) ≤ 0 fails to be differentiable as a maximum function, we
cannot directly apply those results. Nonetheless, several of them are useful for the generalization to
our setting.

Throughout the paper we will consider arguments x for which gm(x, 0) < 0, i.e., for which 0 is a
Slater point of the inequality system g(x, z) ≤ 0 in z. This is no severe restriction because in case
that gm(x, 0) ≥ 0, the feasible set {z|g(x, z) ≤ 0} would be a subset of some halfspace containing
zero by convexity of gm(x, ·). As a consequence of ξ having a symmetric and centered distribution
(see (2)), the probability of this halfspace would be 0.5 implying that ϕ(x) ≤ 0.5. In many practical
applications, however, values of probability functions close to one are considered.

The assumption gm(x, 0) < 0 along with the convexity of gm(x, ·) implies that for each x ∈ Rn and
each v ∈ Sm−1, (6) can be simplified as

e(x, v) = µη([0, r
∗]),

where r∗ =∞ in case that gm (x, rLv) < 0 for all r > 0 or r∗ is the unique solution of gm (x, rLv) =
0 in r ≥ 0. Since this case distinction is essential when dealing with potentially unbounded sets, we
are led to the definition of the following setvalued mappingsFj, Ij, F, I : Rn ⇒ Sm−1 for j = 1, ..., p:

F (x) :=
{
v ∈ Sm−1|∃r > 0 : gm (x, rLv) = 0

}
I(x) :=

{
v ∈ Sm−1|∀r > 0 : gm (x, rLv) < 0

}
Fj(x) :=

{
v ∈ Sm−1|∃r > 0 : gj (x, rLv) = 0

}
Ij(x) :=

{
v ∈ Sm−1|∀r > 0 : gj (x, rLv) < 0

}
The following Lemma collects some elementary properties needed later:

Lemma 2.1 Let x ∈ Rn be such that gm(x, 0) < 0. Then,

1 Fj(x) ∪ Ij(x) = F (x) ∪ I(x) = Sm−1 for all j = 1, ..., p.

2 For j ∈ {1, ..., p} and v ∈ Fj(x) let r > 0 be such that gj (x, rLv) = 0. Then,

〈∇zgj (x, rLv) , Lv〉 ≥ −gj (x, 0)

r
.
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3 F (x) = ∪pj=1Fj(x), I(x) = ∩pj=1Ij(x).

4 e(x, v) = 1 if v ∈ I(x) and e(x, v) < 1 if v ∈ F (x).

Proof. 1. and 3. are obvious. 2. follows easily from the convexity of g(x, ·) (see [27, Lemma 3.1]). As
for 4., v ∈ I(x) entails that

{r ≥ 0 : g(x, rLv) ≤ 0} = R+

and, hence, by (6), e(x, v) = µη (R+) = 1 because the support of the Chi-distribution is R+.
Otherwise, if v ∈ F (x), then again via 1. and by convexity of g(x, ·), we see that

{r ≥ 0 : g(x, rLv) ≤ 0} = [0, R]

for some R > 0, whence e(x, v) = µη ([0, R]) = 1 − µη([R,∞)). With the Chi-density being
strictly positive for all arguments, we conclude that µη ([R,∞)) > 0, such that e(x, v) < 1. �

Lemma 2.2 (Lemma 3.2 in [27]) Let j = 1, ..., p be arbitrary and let (x, v) be such that gj(x, 0) <
0 and v ∈ Fj(x). Then, there exist neighbourhoods Uj of x and Vj of v as well as a continuously
differentiable function ρx,vj : Uj × Vj → R+ with the following properties:

1 For all (x′, v′, r′) ∈ Uj × Vj × R+ the equivalence gj(x′, r′Lv′) = 0 ⇔ r′ = ρx,vj (x′, v′)
holds true.

2 For all (x′, v′) ∈ Uj × Vj one has the gradient formula

∇xρ
x,v
j (x′, v′) = − 1〈

∇zgj(x′, ρ
x,v
j (x′, v′)Lv′), Lv′

〉∇xgj(x
′, ρx,vj (x′, v′)Lv′).

Definition 2.1 Let h : Rn × Rm → R be a differentiable function. We say that h satisfies the
exponential growth condition at x if there exist constants C, δ0 and a neighbourhood U(x) such that

‖∇xh (x′, z)‖ ≤ δ0e
‖z‖ ∀x′ ∈ U(x) ∀z : ‖z‖ ≥ C.

Lemma 2.3 (Lemma 3.3 and Lemma 3.7 in [27]) Let j = 1, ..., p be arbitrary and let x ∈ Rn be
such that gj(x, 0) < 0. Moreover, let v ∈ Ij(x) and consider any sequence (xk, vk) → (x, v) with
vk ∈ Fj(xk). Then ρxk,vk

j (xk, vk)→k ∞. If, in addition, gj satisfies the exponential growth condition
at x, then also

χ
(
ρxk,vk
j (xk, vk)

)
∇xρ

xk,vk
j (xk, vk)→k 0.

Here, χ is the density of the chi-distribution with m degrees of freedom and ρxk,vk
j is the resolving

function defined in a neighbourhood of (xk, vk) as in Lemma 2.2.

2.3 Clarke and Mordukhovich subdifferential

In this section, we recall the definitions of some well-known subdifferentials of nonsmooth functions
(see [2,15]).

Definition 2.2 Let f : Rn → R be an arbitrary function and fix any x̄ ∈ Rn. Then,
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� the Fréchet subdifferenital of f at x̄ is the set

∂̂f(x̄) =

{
x∗ ∈ Rn | lim inf

x→x̄

f(x)− f(x̄)− 〈x∗, x− x̄〉
‖x− x̄‖

≥ 0

}
� the Mordukhovich or limiting subdifferential of f at x̄ is the set

∂Mf(x̄) =
{
x∗ ∈ Rn | ∃xn → x̄, x∗n → x∗ : f(xn)→ f(x̄), x∗n ∈ ∂̂f(xn)

}
� if f is locally Lipschitz continuous around x̄, then the Clarke subdifferential of f at x̄ is the set

∂cf(x̄) = Co {x∗ ∈ Rn | ∃xn → x̄,∇f(xn)→ x∗} ,

where ’Co’ refers to the convex hull.

Note that, thanks to Rademacher’s Theorem, a locally Lipschitz continuous function is differentiable
almost everywhere and, hence, its Clarke subdifferential is nonempty. Moreover, for such functions, the
Clarke subdifferential is always the closed convex hull of the Mordukhovich subdifferential, the latter
being a nonconvex set and, thus, strictly smaller than the former, in general. The partial subdifferential
of a function depending on two variables is defined as the subdifferential of the partial function, similar
to the definition of partial derivatives.

3 Clarke subdifferential of ϕ

The aim of this section is to provide an upper estimate for the Clarke subdifferential of the probability
function (1). The main result of this section is formulated in Theorem 3.1. It will be based on inter-
changing subdifferentiation and integration in (5). This requires to calculate the Clarke subdifferential
of the function e in (6) first. To start with, we prove the following auxiliary result:

Lemma 3.1 Let x ∈ Rn be such that gm(x, 0) < 0 and let v ∈ F (x). Then, introducing the index
set Jx,vF := {j ∈ {1, ..., p}|v ∈ Fj(x)}, the functions ρx,vj from Lemma 2.2 are well-defined for

j ∈ Jx,vF on the neighbourhood Ũ × Ṽ of (x, v), where, with Uj, Vj from Lemma 2.2,

Ũ := ∩j∈JF
Uj, Ṽ := ∩j∈JF

Vj.

Moreover, there exist neighbourhoods U ⊆ Ũ of x and V ⊆ Ṽ of v with the following properties:

1 For all (x′, v′, r′) ∈ U × V × R+ the equivalence gm(x′, r′Lv′) = 0 ⇔ r′ = ρx,v(x′, v′)
holds true, where ρx,v : Ũ × Ṽ → R+ is defined as

ρx,v(x′, v′) := min
j∈Jx,v

F

ρx,vj (x′, v′) ∀ (x′, v′) ∈ Ũ × Ṽ . (7)

2 For all (x′, v′) ∈ U × V , the partial Clarke-sub-differential of ρx,v (w.r.t. x) is given by

∂cxρ
x,v(x′, v′) = Co

{
∇xρ

x,v
j (x′, v′) : j ∈ J x,v(x′, v′)

}
, (8)

where "Co"denotes the convex hull andJ x,v(x′, v′) := {j ∈ Jx,vF |ρ
x,v
j (x′, v′) = ρx,v(x′, v′)}.
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Proof. Our assumptions and Lemma 2.1 (3.) imply that gj(x, 0) < 0 for all j ∈ {1, ..., p} and
Jx,vF 6= ∅. Hence, the set Ũ × Ṽ defined in the statement of this lemma is indeed a neighbourhood of
(x, v) and Lemma 2.2 (1.) yields the equivalence

gj(x
′, r′Lv′) = 0⇔ r′ = ρx,vj (x′, v′) ∀ (x′, v′, r′) ∈ Ũ × Ṽ × R+ ∀j ∈ Jx,vF , (9)

In particular, the min-function ρx,v in (7) is well-defined and continuous on Ũ × Ṽ . We may clearly
shrink Ũ × Ṽ to a neighbourhood U × V of (x, v) which is bounded and – by continuity of gm –
satisfies that gm(x′, 0) < 0 for all x′ ∈ U . Boundedness of U × V and continuity of ρx,v imply the
existence of some R > 0 with

ρx,v(x′, v′) ≤ R ∀ (x′, v′) ∈ U × V. (10)

Moreover, since j ∈ (Jx,vF )c entails v ∈ Ij(x) (by Lemma 2.1 (1.) and (3.)), Lemma 2.3 allows us to
shrink U × V once more such that

ρx
′,v′

j (x′, v′) ≥ R + 1 ∀ (x′, v′) ∈ U × V : v′ ∈ Fj (x′) ∀j ∈ (Jx,vF )c . (11)

Here, ρx
′,v′

j refers to the resolving function in Lemma 2.2 whose existence around (x′, v′) is guaran-
teed by v′ ∈ Fj (x′).

Now, in order to prove statement 1. of this Lemma, let (x′, v′, r′) ∈ U × V × R+ be such that
gm(x′, r′Lv′) = 0. Assuming that r′ > ρx,v(x′, v′), there would exist some j ∈ Jx,vF with r′ >
ρx,vj (x′, v′). From (9), we then derive the contradiction

0 = gj(x
′, ρx,vj (x′, v′)Lv′) ≤ gm(x′, ρx,vj (x′, v′)Lv′) < gm(x′, r′Lv′) = 0,

where the strict inequality follows from gm(x′, 0) < 0 and from the convexity of gm(x′, ·). Hence,
r′ ≤ ρx,v(x′, v′). If, in contrast, r′ < ρx,v(x′, v′), then with the same arguments as before, we arrive
at

gj(x
′, ρx,vj (x′, v′)Lv′) = 0 = gm(x′, r′Lv′) < gm(x′, ρx,v(x′, v′)Lv′) ∀j ∈ Jx,vF . (12)

Hence, for any j ∈ Jx,vF , we have the relations

gj(x
′, 0) ≤ gm(x′, 0) < 0, gj(x

′, ρx,vj (x′, v′)Lv′) = 0, ρx,v(x′, v′) ≤ ρx,vj (x′, v′).

Now, convexity of gj(x′, ·) provides that gj(x′, ρx,v(x′, v′)Lv′) ≤ gj(x
′, ρx,vj (x′, v′)Lv′). This allows

us to conclude from (12) that

gj(x
′, ρx,v(x′, v′)Lv′) < gm(x′, ρx,v(x′, v′)Lv′) ∀j ∈ Jx,vF .

Consider now an arbitrary j ∈ (JF )c. In the case of v′ ∈ Ij (x′) one has that

gj(x
′, ρx,v(x′, v′)Lv′) < 0 < gm(x′, ρx,v(x′, v′)Lv′) (13)

with the first inequality following from the definition of Ij (x′) and the second one following from (12).
In the opposite case, one has that v′ ∈ Fj (x′) by Lemma 2.1 (1.). Then, exploiting (10) and (11), we

end up with ρx
′,v′

j (x′, v′) > ρx,v(x′, v′). Hence, with the same convexity argument as before,

0 = gj(x
′, ρx

′,v′

j (x′, v′)Lv′) > gj(x
′, ρx,v(x′, v′)Lv′). (14)
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Combining this with (13), we have shown that

gj(x
′, ρx,v(x′, v′)Lv′) < gm(x′, ρx,v(x′, v′)Lv′) ∀j ∈ (Jx,vF )c .

Together with (12), one arrives at the contradiction

gj(x
′, ρx,v(x′, v′)Lv′) < gm(x′, ρx,v(x′, v′)Lv′) ∀j ∈ Jx,vF ∪ (Jx,vF )c = {1, . . . , p}

with the definition of gm. Summarizing we have proven that r′ = ρx,v(x′, v′) which shows the part
’⇒’ in the equivalence claimed in statement 1. of this Lemma.

Conversely, assume that r′ = ρx,v(x′, v′) for some (x′, v′, r′) ∈ U ×V ×R+. Select any j∗ ∈ Jx,vF
with ρx,v(x′, v′) = ρx,vj∗ (x′, v′). Then, by (9),

gj∗(x
′, r′Lv′) = gj∗(x

′, ρx,vj∗ (x′, v′)Lv′) = 0. (15)

On the other hand, if j ∈ Jx,vF is arbitrary, then r′ = ρx,v(x′, v′) ≤ ρx,vj (x′, v′) and

0 = gj(x
′, ρx,vj (x′, v′)Lv′) ≥ gj(x

′, r′Lv′)

by gj(x′, 0) < 0 and convexity of gj(x′, ·). Finally, for j ∈ (Jx,vF )c one has that v ∈ Ij(x). In the
case where also v′ ∈ Ij(x′), we have that gj(x′, r′Lv′) < 0. In the opposite case of v′ ∈ Fj(x′)
(10) and (11) yield that ρx

′,v′

j (x′, v′) > ρx,v(x′, v′). Then, by Lemma 2.2 (1.) and applying the same
convexity argument as before, we get

0 = gj(x
′, ρx

′,v′

j (x′, v′)Lv′) > gj(x
′, ρx,v(x′, v′)Lv′) = gj(x

′, r′Lv′).

Summarizing, we have shown that gj(x′, r′Lv′) ≤ 0 for all j = 1, . . . , p, which together with (15)
leads to the desired relation gm(x′, r′Lv′) = 0. This proves statement 1. of our Lemma.

As for statement 2., we may apply [2, Proposition 2.3.12] to the relation −ρx,v = maxj∈Jx,v
F
−ρx,vj in

order to derive the equality

∂cx(−ρx,v(x′, v′)) = Co {−∇xρ
x,v
j (x′, v′) | j ∈ J x,v(x′, v′)}.

On the other hand ∂cx(−ρx,v(x′, v′) = −∂cxρx,v(x′, v′) by [2, Proposition 2.3.1], which allows us to
prove (8) since Co (−A) = −CoA for any set A. �

If one dealt with a single component of g only (i.e., p = 1), then trivially the functions gm in (4) and ρx,v

in (7) would be continuously differentiable and, hence, Lemma 3.1 (1.) would allow us to invoke two
results [27, Lemma 3.3 and Corollary 3.4] derived in this restricted setting. Of course, for p > 1, gm

and ρx,v are just locally Lipschitz continuous and in particular continuous. Continuity is indeed imme-
diate from the given max- and min- operations in (4) and (7) applied to the (differentiable) components
gj and ρx,vj , respectively. Since, none of the two above mentioned results exploits differentiability ar-
guments and only continuity is needed there, we do not provide a proof of the following Lemma which
is literally a copy of the proofs of those results:

Lemma 3.2 Let x ∈ Rn be such that gm(x, 0) < 0. The following holds:

1 If v ∈ F (x) then there exist neighbourhoods U of x and V of v such that e(x′, v′) =
Fη(ρ

x,v (x′, v′)) for all (x′, v′) ∈ U × V , where e and ρx,v are defined in (6) and (7), re-
spectively, and Fη is the cumulative distribution function of the Chi-distribution with m degrees
of freedom.
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2 If v ∈ I(x) then ρxk,vk (xk, vk)→∞ for any sequence (xk, vk)→ (x, v) with vk ∈ F (xk).

3 The function e is continuous at (x, v) for any v ∈ Sm−1.

Corollary 3.1 Let x ∈ Rn be such that gm(x, 0) < 0 and v ∈ F (x). Then, there exists a neigh-
bourhood U × V of (x, v) such that e is Lipschitz on U × V and

∂cxe(x
′, v′) = Co

{
χ (ρx,v(x′, v′))∇xρ

x,v
j (x′, v′) : j ∈ J x,v(x′, v′)

}
∀(x′, v′) ∈ U × V.

Here χ is the density of the Chi-distribution with m degrees of freedom, and J x,v as introduced in
Lemma 3.1.

Proof. From Lemma 3.2 (1.), we know that e = Fη ◦ ρx,v in a neighbourhood U × V of (x, v). We
may assume this neighbourhood small enough so that ρx,v is Lipschitz there as a minimum of smooth
functions by (7). Since the mapping Fη is continuously differentiable with F ′η = χ, Clarke’s chain rule
( [2, Theorem 2.3.9 (ii)]) yields that

∂cxe(x
′, v′) = χ (ρx,v(x′, v′)) ∂cxρ

x,v(x′, v′) ∀(x′, v′) ∈ U × V.

The assertion now follows from (8). �

In the following we want to to generalize Corollary 3.1 and to establish the local Lipschitz continuity of
the partial mapping e (·, v) around any x ∈ Rn with gm(x, 0) < 0 and any v ∈ Sm−1 and to provide
a formula for its Clarke subdifferential. To this aim, we need the following auxiliary results:

Lemma 3.3 Let x ∈ Rn be such that gm(x, 0) < 0 and assume that all components gj of g satisfy
the exponential growth condition at x. Consider any sequence (xk, vk)→ (x, v) for some v ∈ I(x)
such that vk ∈ F (xk). Then,

lim
k→∞

∂cxe(xk, vk) = {0},

where the latter means that for each ε > 0 there exists an index K > 0 such that ∂cxe(xk, vk) ⊆
B(0, ε) for all k ≥ K , where B(0, ε) is the ball of radius ε centered at 0 ∈ Rn.

Proof. By Corollary 3.1 it follows that any sk ∈ ∂cxe(xk, vk) can be written as

sk = χ(ρxk,vk(xk, vk)) ·
∑

j∈J xk,vk (xk,vk)

λ
(k)
j ∇xρ

xk,vk
j (xk, vk),

where λ(k)
j ≥ 0 for all j ∈ J xk,vk(xk, vk) and

∑
j∈J xk,vk (xk,vk) λ

(k)
j = 1. Since according to

Lemma 3.1 (2.), ρxk,vk(xk, vk) = ρxk,vk
j (xk, vk) for j ∈ J xk,vk(xk, vk), one may characterize sk

alternatively by

sk =
∑

j∈J xk,vk (xk,vk)

λ
(k)
j χ(ρxk,vk

j (xk, vk))∇xρ
xk,vk
j (xk, vk) =

p∑
j=1

µ
(k)
j ,

where we have put

µ
(k)
j :=

{
λ

(k)
j χ(ρxk,vk

j (xk, vk))∇xρ
xk,vk
j (xk, vk) (j ∈ J xk,vk(xk, vk))

0 (j ∈ {1, . . . , p}\J xk,vk(xk, vk))
.

The assertion of our Lemma will follow if we can show that µ(k)
j →k 0 for all j ∈ {1, . . . , p}. In order

to do so fix any j ∈ {1, . . . , p}. If there is only a finite number of indices k with j ∈ J xk,vk(xk, vk),

9



then µ(k)
j = 0 for all k large enough, whence the claimed convergence holds true. Otherwise, consider

the subsequence kl consisting of all indices k with j ∈ J xk,vk(xk, vk). Then, (xkl
, vkl

) →l (x, v)
and vkl

∈ F (xkl
) for all l. Moreover, our assumption v ∈ I(x) implies that v ∈ Ij(x) by Lemma 2.1

(3.). Therefore, Lemma 2.3 allows us to conclude that

χ(ρ
xkl

,vkl
j (xkl

, vkl
))∇xρ

xkl
,vkl

j (xkl
, vkl

)→l 0,

whence µ(kl)
j →l 0 due to λ(kl)

j ∈ [0, 1]. Consequently, if ε > 0 is arbitrarily given, then there exists
some l′ such that ∥∥∥µ(kl)

j

∥∥∥ ≤ ε ∀l ≥ l′. (16)

Put k′ := kl′ . Then, for any k ≥ k′ one either has that j ∈ J xk,vk(xk, vk) in which case k = kl for

some l ≥ l′ and, hence, (16) holds true. Otherwise, j /∈ J xk,vk(xk, vk) in which case µ(k)
j = 0. It

follows again the claimed convergence µ(k)
j →k 0, i.e., ‖µ(k)

j ‖ ≤ ε for all k ≥ k′. �

Corollary 3.2 Let x be such that gm(x, 0) < 0 and that gj satisfies the exponential growth condition
at x for all j = 1, ..., p. Then, for any v ∈ Sm−1, the function e(·, v) is Lipschitz continuous in a
neighbourhood of x and its Clarke subdifferential is given by

∂cxe(x, v) =

{
Co
{
− χ(ρx,v(x,v))
〈∇zgj(x,ρx,v(x,v)Lv),Lv〉∇xgj (x, ρx,v (x, v)Lv) j ∈ J x,v(x, v)

}
if v ∈ F (x)

{0} if v ∈ I(x)
.

Here χ is the density of the chi-distribution with m degrees of freedom, ρx,v refers to the resolving
function and J x,v(x, v) is the active index set both introduced in Lemma 3.1.

Proof. Fix arbitrary x and v as indicated above. If v ∈ F (x), then e(·, v) = Fη(ρ
x,v (·, v)) in a

neighbourhood of x by Lemma 3.2 (1.), hence e(·, v) is Lipschitz continuous on this neighbourhood
and the asserted formula for ∂cxe(x, v) follows from Corollary 3.1 and Lemma 2.2 (2.). Therefore, we
may assume v ∈ I(x) now. We start by verifying local Lipschitz continuity of e(·, v) around x. If this
were not true, then there would exist sequences xk →k x and yk →k x with

|e(xk, v)− e(yk, v)| > k ‖xk − yk‖ ∀k ∈ N. (17)

By Lemma 3.2 (3.), we may assume that all xk, yk are contained in a ball around x such that e(·, v)
is continuous in this ball. Moreover, we may assume that this ball is small enough to guarantee that

gm(x′, 0) < 0 ∀x′ ∈ [xk, yk] ∀k ∈ N. (18)

We will show that for all k ∈ N there exist zk ∈ [xk, yk] and x∗k ∈ ∂cxe (zk, v) such that

v ∈ F (zk) and |e(xk, v)− e(yk, v)| ≤
(
‖x∗k‖+ k−1

)
‖xk − yk‖ . (19)

To show this claim, let us fix an arbitrary k now. If v ∈ I(xk) ∩ I(yk), then Lemma 2.1 (4.) leads to a
contradiction with (17). Hence, without loss of generality, v ∈ F (xk). Define xt := (1− t)xk + tyk
for all t ∈ [0, 1] and

τ := sup
{
t ∈ [0, 1] |e(xt′ , v) < 1 ∀t′ ∈ [0, t]

}
.

Since e(x0, v) = e(xk, v) < 1 by Lemma 2.1 (4.), the continuity of e(·, v) on the line segment
[xk, yk] provides that τ ∈ (0, 1]. Moreover, we may find an α ∈ (0, τ) with

|e(xα, v)− e(xτ , v)| ≤ k−1 ‖xk − yk‖ .
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Since α ∈ (0, τ) this implies that e(xt
′
, v) < 1 for all t′ ∈ [0, α], Lemma 2.1 (5.) yields that

v ∈ F (xt
′
) ∀t′ ∈ [0, α] . (20)

Taking into account (20) and that, by (18), gm(xt
′
, 0) < 0 for all t′ ∈ [0, α], Corollary 3.1 yields that

e(·, v) is locally Lipschitz continuous on an open neighbourhood of the line segment [x0, xα]. This
allows us to invoke Lebourg’s mean value theorem [13, Theorem 1.7], in order to derive the existence
of some t∗ ∈ [0, α] and some x∗ ∈ ∂cxe

(
xt
∗
, v
)

such that∣∣e (x0, v
)
− e (xα, v)

∣∣ ≤ ‖x∗‖∥∥x0 − xα
∥∥ .

Therefore, recalling that xk = x0 and that xα ∈ [xk, yk], we arrive at

|e (xk, v)− e (xτ , v)| ≤ ‖x∗‖ ‖xk − xα‖+ k−1 ‖xk − yk‖ ≤
(
‖x∗‖+ k−1

)
‖xk − yk‖ . (21)

Clearly, v ∈ F (xt
∗
) by (20). If τ = 1, then xτ = yk and (19) follows upon putting zk := xt

∗
and

x∗k := x∗. Otherwise, τ < 1 and then e (xτ , v) = 1 by continuity of e(·, v) on the line segment
[xk, yk]. We have to distinguish two cases: first, if v ∈ I(yk), then e (yk, v) = 1 by Lemma 2.1 (4.)
and so (19) follows from (21) and e (yk, v) = e (xτ , v) with the same zk, x∗k as before. In the second
case, v ∈ F (yk), so the roles of xk and yk can be interchanged in deriving (21). Therefore, we may
assume without loss of generality that e(yk, v) ≥ e(xk, v). Then, with e being bounded from above
by 1,

|e (xk, v)− e (xτ , v)| = 1− e (xk, v) ≥ e(yk, v)− e (xk, v) = |e(xk, v)− e(yk, v)| .

Now, (19) follows once more from (21) with the same zk, x∗k as before. Since k ∈ N was chosen
arbitrary, we have altogether verified (19). Clearly, zk ∈ [xk, yk] implies zk →k x. Since also v ∈
F (zk) and v ∈ I(x), Lemma 3.3 yields that ‖x∗k‖ + k−1 is a bounded sequence contradicting (17).
Summarizing, we have proven Lipschitz continuity of e(·, v) around x.

It remains to calculate the Clarke subdifferential of e(·, v). By [2, Theorem 2.5.1] we have that

∂cxe(x, v) = Co {x∗|∃xl → x : e(·, v) differentiable at xl and∇xe(xl, v)→l x
∗}.

Therefore, in order to prove the remaining assertion ∂cxe(x, v) = 0 of our Corollary, we have to show
that ∇xe(xl, v) →l 0 holds true for any sequence xl → x with e(·, v) differentiable at all xl. Let us
fix any such sequence and assume that the asserted convergence would not hold true. Then,

‖∇xe(xlk , v)‖ ≥ ε ∀k (22)

for some subsequence and some ε > 0. If v ∈ I(xlk), for some k, then e(·, v) reaches its maxi-
mum possible value at xlk (see Lemma 2.1 (4.)). Since e(·, v) is differentiable at xlk , it follows the
contradiction∇xe(xlk , v) = 0 with (22). Hence, v ∈ F (xlk) for all k and so by Lemma 3.3 we have
that

{0} = lim
k→∞

∂cxe(xlk , v).

On the other hand, ∇xe(xlk , v) ∈ ∂cxe(xlk) by [2, Proposition 2.2.2], whence ∇xe(xlk , v) →k 0,
which is a contradiction with (22) again. Summarizing, we have shown that ∇xe(xl, v) → 0 along
any sequence xl at which e(·, v) is differentiable. This finishes the proof. �

Now, we are in a position to prove the main result of this paper. The set-valued integral appearing in
(23) has to be interpreted as explained in Remark 3.1 below.
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Theorem 3.1 In addition to our basic assumptions (2), let the following conditions be satisfied at some
fixed x̄ ∈ Rn:

1 gm (x̄, 0) < 0.

2 gj satisfies the exponential growth condition at x̄ (Def. 2.1) for all j = 1, ..., p.

Then, ϕ in (1) is locally Lipschitz continuous on a neighbourhood U of x̄ and it holds that

∂cϕ (x) ⊆ (23)∫
v∈F (x)

Co

{
− χ (ρ̂ (x, v))

〈∇zgj (x, ρ̂ (x, v)Lv) , Lv〉
∇xgj (x, ρ̂ (x, v)Lv)

∣∣∣∣ j ∈ Ĵ (x, v)

}
dµζ(v)

for all x ∈ U . Here, L is a factor in some decomposition R = LLT (e.g., Cholesky decomposition),
ρ̂ (x, v) refers to the unique solution in r ≥ 0 of the equation gm(x, rLv) = 0 and

Ĵ (x, v) := {j ∈ {1, . . . , p}|gj(x, ρ̂ (x, v)Lv) = 0} (v ∈ F (x))

Proof. Since assumptions 1. and 2. are open, there exists an open neighbourhood Ũ of x̄ such that

gm (x, 0) < 0 and the gj satisfy the exponential growth condition ∀j = 1, . . . , p ∀x ∈ Ũ . (24)

According to Lemma 3.2 (3.) e is continuous on Ũ×Sm−1. Consequently, for each x ∈ Ũ the mapping
v ∈ Sm−1 7→ e(x, v) is measurable. Next, we show that the function

α (x, v) := max {‖s‖ : s ∈ ∂cxe(x, v)} .

is upper semi-continuous on Ũ × Sm−1. In order to do so, fix an arbitrary (x, v) ∈ Ũ × Sm−1 and
an arbitrary sequence (xk, vk) →k (x, v) with (xk, vk) ∈ Ũ × Sm−1 for all k. Assume first that
v ∈ F (x). By a continuity argument, there exists k0 such that

J x,v(xk, vk) ⊆ J x,v(x, v) ∀k ≥ k0

holds true for the index set mapping J x,v introduced in Lemma 3.1. Then, by Corollary 3.1,

α (xk, vk) = max
{
‖s‖ |s ∈ Co

{
χ (ρx,v(xk, vk))∇xρ

x,v
j (xk, vk) : j ∈ J x,v(xk, vk)

}}
≤ max

{
‖s‖ |s ∈ Co

{
χ (ρx,v(xk, vk))∇xρ

x,v
j (xk, vk) : j ∈ J x,v(x, v)

}}
→k max

{
‖s‖ |s ∈ Co

{
χ (ρx,v(x, v))∇xρ

x,v
j (x, v) : j ∈ J x,v(x, v)

}}
= α (x, v) .

Since the sequence (xk, vk)→k (x, v) was arbitrarily chosen, it follows that

lim sup
(x′,v′)→(x,v), (x′,v′)∈Ũ×Sm−1

α (x′, v′) ≤ α (x, v)

which is the upper semi-continuity of α at (x, v). Now assume that v ∈ I(x), whence α (x, v) = 0.
We claim that α (xk, vk)→k 0. If this was not the case, then α (xkl

, vkl
) ≥ ε for some subsequence

(xkl
, vkl

) →l (x, v) and some ε > 0. Assume that vkl
∈ I(xkl

) for some l. Since the two assump-
tions of our Theorem are open with respect to x they may be assumed to continue to hold at xkl

.
Then, ∂cxe(xkl

, vkl
) = {0} by Corollary 3.2, whence the contradiction α (xkl

, vkl
) = 0. Therefore,

vkl
∈ F (xkl

) for all l and, hence, by Lemma 3.3,

lim
l→∞

∂cxe(xkl
, vkl

) = {0}.
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This yields once more a contradiction α (xkl
, vkl

) →l 0 with α (xkl
, vkl

) ≥ ε. Consequently,
α (xk, vk) →k 0 as claimed so that α is continuous at (x, v). Summarizing, we have shown that
α is upper semi-continuous on Ũ × Sm−1.

Let B (x̄; r) be a closed ball centered at x̄ and with radius r > 0 such that B (x̄; r) ⊆ Ũ . By the
Weierstrass Theorem, the upper semi-continuous function α realizes its maximum on the compact
set B (x̄; r) × Sm−1, hence α is bounded on this set by some constant M > 0. Define the open
neighbourhood U := intB (x̄; r) and choose arbitrary x, y ∈ U and v ∈ Sm−1. Observe that e(·, v)
is locally Lipschitz continuous on U ⊆ Ũ by Corollary 3.2 and as a consequence of (24). Lebourg’s
mean value theorem [13, Theorem 1.7] then implies the existence of some x̃ in the line segment [x, y]
and of some s∗ ∈ ∂cxe(x̃, v) such that

e(x, v)− e(y, v) = 〈s∗, x− y〉 .

Since x̃ ∈ B (x̄; r), we conclude that ‖s∗‖ ≤ α(x̃, v) ≤M . Summarizing, we have shown that

|e(x, v)− e(y, v)| ≤M ‖x− y‖ ∀x, y ∈ U ∀v ∈ Sm−1.

This property allows us to invoke Clarke’s Theorem on the interchange of integral and subdifferential [2,
Theorem 2.7.2] in order first to conclude that ϕ is locally Lipschitz continuous on U and second to
derive from (5) and from Corollary 3.2 the formula

∂cϕ (x) = ∂c
∫

v∈Sm−1

e(x, v)dµζ ⊆
∫

v∈Sm−1

∂ce(x, v)dµζ =

∫
v∈F (x)

∂ce(x, v)dµζ

=

∫
v∈F (x)

Co

{
− χ (ρx,v (x, v))

〈∇zgj (x, ρx,v (x, v)Lv) , Lv〉
∇xgj (x, ρx,v (x, v)Lv)

∣∣∣∣ j ∈ J x,v(x, v)

}
dµζ(v).

By Lemma 3.1 (1.), ρx,v (x, v) is the unique solution in r of the equation gm(x, rLv) = 0, hence
ρ̂(x, v) = ρx,v (x, v) with ρ̂ as introduced in the statement of this Theorem. It remains to show that

J x,v(x, v) = Ĵ (x, v) ∀x ∈ U ∀v ∈ F (x)

for Ĵ as introduced in the statement of this Theorem. To this aim, fix arbitrary x ∈ U and v ∈ F (x).
Let also j ∈ J x,v(x, v) be arbitrarily given. By definition, ρx,vj (x, v) = ρx,v(x, v) = ρ̂(x, v), whence

gj(x, ρ̂(x, v)Lv) = gj(x, ρ
x,v
j (x, v)Lv) = 0

and so j ∈ Ĵ (x, v). Conversely, let j ∈ Ĵ (x, v) be arbitrary. Then, gj(x, ρ̂(x, v)Lv) = 0 which
entails that v ∈ Fj(x) and that j ∈ Jx,vF with the latter set as introduced in Lemma 3.1. By Lemma
2.2 (1.), ρx,vj (x, v) is the unique solution in r ≥ 0 of the equation gj(x, rLv) = 0. Consequently, by
(7)

ρx,vj (x, v) = ρ̂(x, v) = ρx,v(x, v) = min
j′∈Jx,v

F

ρx,vj′ (x, v).

This shows that j ∈ J x,v(x, v) and finishes the proof of the Theorem. �

Remark 3.1 The integral in (23) is to be understood as the set of integrals over all measurable selec-
tions of the set-valued integrand. More precisely, (23) means that for any x∗ ∈ ∂cϕ(x) there exists a
measurable function β such that for µζ – almost every v ∈ F (x)

β(v) ∈ Co

{
− χ (ρ̂ (x, v))

〈∇zgj (x, ρ̂ (x, v)Lv) , Lv〉
∇xgj (x, ρ̂ (x, v)Lv)

∣∣∣∣ j ∈ Ĵ (x, v)

}
and x∗ =

∫
v∈F (x)

β(v)dµζ(v).
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4 Differentiability of ϕ and a gradient formula

Theorem 3.1 provides an immediate characterization for the differentiability of the probability function
ϕ:

Theorem 4.1 In addition to the assumptions of Theorem 3.1 suppose that

µζ({v ∈ F (x̄)|#Ĵ (x̄, v) ≥ 2}) = 0. (25)

Then, ϕ is Fréchet differentiable at x̄ and

∇ϕ(x̄) = −
∫

v∈F (x̄),#Ĵ (x̄,v)=1

χ (ρ̂ (x̄, v))〈
∇zgj(v) (x̄, ρ̂ (x̄, v)Lv) , Lv

〉∇xgj(v) (x̄, ρ̂ (x̄, v)Lv) dµζ(v),

(26)
where ρ̂ (x̄, v) is the unique solution in r ≥ 0 of the equation gm(x̄, rLv) = 0 and j(v) is the unique
index j ∈ {1, . . . , k} satisfying gj(x̄, ρ̂ (x̄, v)Lv) = 0. If (25) holds locally around x̄, i.e., if there is
a neighbourhood U of x̄ such that

µζ({v ∈ F (x)|#Ĵ (x, v) ≥ 2}) = 0 ∀x ∈ U, (27)

then ϕ is continuously differentiable in U .

Proof. Under (25), the integrand in (23) (for x := x̄) is single-valued µζ – almost everywhere on
F (x̄), hence the integral is single-valued. Since ∂cϕ(x̄) is nonempty by local Lipschitz continuity of
ϕ on the one hand [2, Proposition 2.1.2] and is contained in the single-valued integral by (23) on the
other hand, it follows that ∂cϕ(x̄) coincides with the integral. In particular, ∂cϕ(x̄) is single-valued
and, hence ϕ is Fréchet differentiable [2, Proposition 2.2.4]. Moreover, ∂cϕ(x̄) = {∇ϕ(x̄)} and (26)
follows from (23) upon observing that the integration domain can be reduced to those v ∈ F (x̄) for
which Ĵ (x̄, v) is a singleton (by (25)) and recalling the definition of Ĵ (x̄, v). The second assertion of
the Theorem follows from [2, Corollary to Proposition 2.2.4]. �

Condition (27) may be difficult to verify in a concrete context as it refers to the uniform measure on the
sphere of the radial projection of some set. In the following, we want to identify an explicit constraint
qualification for the inequality system g(x, z) ≤ 0 under which ϕ is (continuously) differentiable. In
order to do so, we need the following characterization of the uniform measure over Sm−1 as a so-called
cone measure (see also [16]):

Lemma 4.1 Let A ⊆ Sm−1 be a Borel measurable subset. Then, the uniform measure µζ on Sm−1

can be represented as

µζ(A) =
1

λ(B)
λ(cone(A) ∩ B), (28)

where B is the closed unit ball, λ is the Lebesgue measure inRm and cone(A) is the cone generated
by the set A.

For any x ∈ Rn and z ∈ Rm we denote by

I (x, z) := {j ∈ {1, . . . , p} |gj (x, z) = 0} (29)
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the active index set of g at (x, z). We say that the inequality system g (x, z) ≤ 0 satisfies the Rank-
2-Constraint Qualification (R2CQ) at x ∈ Rn if

rank {∇zgj (x, z) ,∇zgi (x, z)} = 2 ∀i, j ∈ I (x, z) , i 6= j ∀z ∈ Rm : g (x, z) ≤ 0.
(R2CQ)

Note that (R2CQ) is substantially weaker than the usual Linear Independence Constraint Qualifica-
tion (LICQ) common in nonlinear optimization and requiring the linear independence of all gradients
to active constraints.

Lemma 4.2 Let g be as in Theorem 3.1. Moreover, let x̄ ∈ Rn be given such that

1 gm (x̄, 0) < 0.

2 g satisfies (R2CQ) at x̄.

Then, µζ (M ′) = 0 for M ′ := {v ∈ Sm−1|∃r > 0 : g (x̄, rLv) ≤ 0, #I (x̄, rLv) ≥ 2}, where L
is the regular matrix in the decomposition R = LLT .

Proof. For i, j ∈ {1, . . . , k}, let

Mi,j :=
{
v ∈ Sm−1|∃r > 0 : g (x̄, rLv) ≤ 0, gi (x̄, rLv) = gj (x̄, rLv) = 0

}
.

Since the union
M ′ =

⋃
i,j∈{1,...,k},i<j

Mi,j.

is finite, it is evidently sufficient to show that µζ (Mi,j) = 0 for any i, j ∈ {1, . . . , k} with i < j.
Without loss of generality, it is enough to verify that µζ (M1,2) = 0. Define

M∗
1,2 := {z ∈ Rm|g (x̄, z) ≤ 0, g1 (x̄, z) = g2 (x̄, z) = 0}.

and observe that R+M1,2 = L−1
(
R+M

∗
1,2

)
. We note first that M1,2 is a Borel measurable subset

of Sm−1. Indeed, for any l ∈ N, the set [0, l] ·
(
M∗

1,2 ∩ B (0, l)
)

is closed by closedness of M∗
1,2.

Consequently
R+M

∗
1,2 =

⋃
l∈N

[0, l] ·
(
M∗

1,2 ∩ B (0, l)
)

is Borel measurable in Rm and so is R+M1,2 = L−1
(
R+M

∗
1,2

)
. Since trivially M1,2 = R+M1,2 ∩

Sm−1, it follows that M1,2 is a Borel measurable subset of Sm−1. This allows us to apply Lemma 4.2,
in order to derive that

µζ (M1,2) =
λ (R+M1,2 ∩ B)

λ (B)
=
λ
(
L−1

(
R+M

∗
1,2

)
∩ B
)

λ (B)
.

Hence, in order to prove the Lemma, it will be sufficient to show that

λ
(
L−1

(
R+M

∗
1,2

)
∩ B
)

= 0. (30)

In order to do so, notice that rank {∇zgj (x, z)}j=1,2 = 2 for all z ∈ M∗
1,2 as a consequence

of assumption 2. One may define for each z ∈ M∗
1,2 an open neighbourhood W (z) such that the

rank condition above extends to the whole neighbourhood. Then, W :=
⋃
z∈M∗W (z) is an open set

containing M∗
1,2 such that

rank {∇zgj (x, z)}j=1,2 = 2 ∀z ∈ W. (31)
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Defining M̂ := {z ∈ W |gj (x̄, z) = 0 (j = 1, 2)}, the respective definitions yield thatM∗
1,2 ⊆ M̂ .

We show next that the setL−1
(
R+M̂

)
\{0} is a differentiable manifold of dimensionm−1. Observe

first, that by assumption 1., we have the following equivalence:

w ∈ L−1
(
R+M̂

)
\{0} ⇔ ∃t > 0 : gj (x̄, tLw) = 0 (j = 1, 2) and tLw ∈ W. (32)

Let t̄ > 0 and w̄ be arbitrarily chosen such that t̄Lw̄ ∈ W and gj (x̄, t̄Lw̄) = 0 for j = 1, 2. In
particular, w̄ ∈ Fj (x̄) for j = 1, 2. Define a mapping β by βj (w, t) := gj (x̄, tLw) for j = 1, 2.
Then,

∇β (w̄, t̄) = ∇zg (x̄, t̄Lw̄) (t̄L|Lw̄) =: (A|b) . (33)

Thanks to (31), the matrix A is surjective, hence it contains a quadratic submatrix Ã of order (2, 2)
which is regular. Without loss of generality, we may assume that Ã consists of the first 2 columns ofA.
On the other hand, Lemma 2.1 (2.) that 〈∇zgj (x̄, t̄Lw̄) , Lw̄〉 > 0 for j = 1, 2. As a consequence,
∇tβ (w̄, t̄) = b 6= 0 in (33). Therefore, we can exchange a suitable column in the regular matrix Ã
with the vector b without destroying its regularity. Assume, without loss of generality, that the last col-
umn of Ã can be replaced by b such that the resulting matrix A′ remains regular. Then, by the Implicit
Function Theorem, the equations βj (w, t) = 0 (j = 1, 2) can be resolved in a neighbourhood
Uw̄ × Ut̄ of (w̄, t̄) as

w1 = ϕ̃1 (w2, . . . , wm) (34)

t = ϕ̃2 (w2, . . . , wm) . (35)

with certain continuously differentiable functions ϕ̃j (j = 1, 2). Since t̄ > 0 and t̄Lw̄ ∈ W , we
may further assume Uw̄ × Ut̄ to be small enough such that

tLw ∈ W, t > 0 ∀ (w, t) ∈ Uw̄ × Ut̄. (36)

Now, g1 (x̄, t̄Lw̄) = 0 and (32) imply that w̄ 6= 0 and ‖w̄‖−1 w̄ ∈ F1(x̄). Hence, Lemma 2.2
guarantees the existence of a neighbourhood V of ‖w̄‖−1 w̄ and a continuously differentiable function
α : V → R+ such that for all (v, r) ∈ V × R+ the equivalence

g1 (x̄, rLv) = 0⇔ r = α (v) (37)

holds true. In particular, t̄ = ‖w̄‖−1 α
(
‖w̄‖−1 w̄

)
. This allows us to define a neighbourhood Ũ ⊆ Uw̄

of w̄ such that for all w ∈ Ũ one has that ‖w‖−1w ∈ V and ‖w‖−1 α
(
‖w‖−1w

)
∈ Ut̄. We claim

that
w ∈ Ũ ∩ L−1

([
R+M̂

]
\{0}

)
⇔ w ∈ Ũ and w1 = ϕ̃j (w2, . . . , wm) . (38)

Indeed, if w ∈ Ũ ∩L−1
([
R+M̂

]
\{0}

)
, then by (32), there is some t > 0 such that gj (x̄, tLw) =

0 for all j = 1, . . . , l. Since ‖w‖−1w ∈ V , we infer from (37) that t = ‖w‖−1 α
(
‖w‖−1w

)
∈

Ut̄. Hence, (w, t) ∈ Uw̄ × Ut̄ and the direction ’⇒’ of our asserted equivalence follows from (34).
Conversely, let w ∈ Ũ satisfy (34). Then, with t defined by (35), one has that gj (x̄, tLw) = 0 for
all j = 1, 2. Taking into account (36), the direction ’⇐’ of our asserted equivalence then follows from
(32).

In conclusion, as w̄ ∈ L−1
([
R+M̂

]
\{0}

)
was arbitrary, the equivalence (38) shows that

L−1
([
R+M̂

]
\{0}

)
is a differentiable manifold of dimension m − 1 < m. As a consequence,
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λ
(
L−1

([
R+M̂

]
\{0}

))
= 0 (e.g., [9, Lemma 1.5]). Since M∗

1,2 ⊆ M̂ , we infer that

λ
(
L−1

([
R+M

∗
1,2

]
\{0}

))
= λ

(
L−1

[
R+M

∗
1,2

]
)\{0}

)
= 0, whence λ

(
L−1

[
R+M

∗
1,2

]
)
)

= 0
implying (30) as desired. This completes the proof. �

By combination of Lemma 4.2 and Theorem 4.1, we arrive at the main result of this section:

Corollary 4.1 In addition to the assumptions of Theorem 3.1, suppose that (R2CQ) is satisfied at x̄.
Then, ϕ is Fréchet differentiable at x̄ and the gradient formula (26) holds true. If (R2CQ) is satisfied
locally around x̄, then, ϕ is continuously differentiable at x̄.

Remark 4.1 We note that neither (27) nor (R2CQ) are new conditions for ensuring differentiability of
probability functions. They can be found in [22, Assumption 2.2 (iv)] in the context of spheric radial
decomposition and in [12, Theorem 3.1, Assumption (vi)] in a general setting, respectively. However,
in both references, compactness of the set {z|g(x̄, z) ≤ 0} is needed, which we do not impose here.

5 Probability functions for linear random inequality systems

In this section, we are going to apply the previously obtained results to probability functions for linear
random inequality systems:

ϕ(x) := P (A(x)ξ ≤ b(x)) , (39)

i.e., in (1) we have g (x, ξ) = A(x)ξ − b(x) for matrix and vector functions A : Rn → Rp×m, b :
Rn → Rp. In this special case not only the resulting gradient formula becomes more explicit but,
more importantly, several assumptions made before (exponential growth condition, local validity of
(R2CQ)) can be omitted. The subsequently derived gradient formulae are fully explicit and ’ready-to-
use’ similar to those obtained in [11,18,28] for the same probability function but in a different disguise.
The different representations of the same gradient may turn out to be advantageous depending on the
concrete problem considered. In the following, for a matrix P we denote by Pj its jth row and by Pj,i
its entry in row j and column i.

Theorem 5.1 In (39) let A, b be continuously differentiable and let ξ ∼ N (0, R) for some positive
definite correlation matrixR admitting a decompositionR = LLT . Fix any x̄ ∈ Rn such that bj(x̄) >
0 for all j ∈ {1, . . . , p}. Finally assume that any two rows of the matrixA(x̄) are linearly independent.
Then, ϕ in (1) is continuously differentiable at x̄ and it holds that

∇ϕ(x̄) = −
∫

{v∈Sm−1|J∗(v)6=∅,#J∗∗(v)=1}

χ (ρ̂ (v))

Aj(v)(x̄)Lv

(
ρ̂ (v)

m∑
i=1

∇Aj(v),i(x̄)Liv −∇bj(v)(x̄)

)
dµζ(v),

(40)
where

J∗(v) : = {j ∈ {1, . . . , p} |Aj(x̄)Lv > 0} ,
ρ̂ (v) : = min

j∈J∗(v)
{bj(x̄)/(Aj(x̄)Lv)} ,

J∗∗(v) : = {j ∈ J∗(v)|ρ̂ (v) = bj(x̄)/(Aj(x̄)Lv} .

and j(v) is the unique element of the index set J∗∗(v), i.e., j(v) is the unique index j ∈ {1, . . . , p}
satisfying Aj(x̄)Lv > 0 and bj(x̄) = ρ̂ (v)Aj(x̄)Lv.
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Proof. In order to prove the result, we want to apply Corollary 4.1. To do so, we have first to check
the assumptions of Theorem 3.1. The general assumptions of this Theorem as well as assumption
1. are clearly satisfied by the hypotheses we made. Concerning assumption 2. of Theorem 3.1, we
claim that the exponential growth condition (Def. 2.1) is satisfied for all j = 1, ..., p. Indeed, by A
being continuously differentiable, there exists a neighbourhood U of x̄ and a constant K such that
‖∇Aj,i(x)‖ ≤ K for all x ∈ U and all i, j ∈ {1, . . . , p}. Then, Def. 2.1 holds true because of

‖∇xgj (x, z)‖ =
∥∥∥∑m

i=1
zi∇Aj,i(x)

∥∥∥ ≤ K ‖z‖1 ≤ Ke‖z‖1 ∀z ∈ Rm.

In order to verify the asserted continuous differentiability of ϕ via Corollary 4.1, it remains to check that
the constraint qualification (R2CQ) is satisfied on a neighbourhood of x̄. Clearly, our assumption on
pairwise linear independence of the rows of A(x̄) implies (R2CQ) to hold at x̄ itself. If it didn’t hold
locally around x̄, then there would be sequences xk ∈ Rn zk ∈ Rm, λk ∈ R and ik, jk ∈ {1, . . . , p}
such that

xk → x̄, Aik(xk)zk = bik(xk), Ajk(xk)zk = bjk(xk), Aik(xk) = λkAjk(xk), ik 6= jk.

By passing to a subsequence which we do not relabel, we may assume the existence of i, j ∈
{1, . . . , p} such that

Ai(xk)zk = bi(xk), Aj(xk)zk = bj(xk), Ai(xk) = λkAj(xk), i 6= j.

We infer that λkbj(xk) = bi(xk) for all k. From bi(xk) → bi(x̄) > 0 and bj(xk) → bj(x̄) > 0 we
conclude that

λk → λ :=
bi(x̄)

bj(x̄)
6= 0,

whence the contradiction Ai(x̄) = λAj(x̄) with our assumption on pairwise linear independence of
the rows of A(x̄). Consequently, we have shown that ϕ is continuously differentiable at x̄. It remains
to prove that the general gradient formula (26) ensured by Corollary 4.1 reduces in the special case of
(39) to the asserted formula (40). This follows easily upon specifying the partial derivatives of g, the
concrete shape of ρ̂ (v) and upon observing the relations

F (x̄) =
{
v ∈ Sm−1|J∗(v) 6= ∅

}
, Ĵ (x̄, v) = J∗∗(v).

�

Next, we specialize the previous result to linear inequality systemsAz ≤ b(x) with constant coefficient
matrix. Without loss of generality, we may assume that b(x) = x because the difference in the
resulting gradient formulae consists just in a post-multiplication by the explicit derivative Db according
to the chain rule. Hence, consider now the probability function

ϕ(x) := P (Aξ ≤ x) . (41)

This specialization of (39) not only leads to a substantially simpler gradient formula but also to a
weakened constraint qualification, where only active rows of the matrix A come into play now in order
to guarantee continuous differentiability of ϕ:

Corollary 5.1 In (41) let ξ ∼ N (0, R) for some positive definite correlation matrix R admitting a
decomposition R = LLT . Fix any x̄ ∈ Rn such that x̄j > 0 for all j ∈ {1, . . . , p}. Finally assume
that any two active rows of the matrix A are linearly independent:

Az ≤ x̄, Aiz = x̄i, Ajz = x̄j, i 6= j =⇒ rank {Ai, Aj} = 2. (42)

18



Then, ϕ in (1) is continuously differentiable at x̄ and it holds that

∂ϕ

∂xj
(x̄) =

∫
{v∈Sm−1|AjLv>0,x̄j=ρ̂(v)AjLv}

χ (ρ̂ (v))

AjLv
dµζ(v) (j = 1, . . . , p) . (43)

Proof. Clearly, the gradient formula (43) follows from (40) in the special setting of (41). Evidently, (42)
corresponds to the general constraint qualification (R2CQ). In order to derive continuous differen-
tiability of ϕ via Corollary (4.1), it is sufficient to verify that it automatically holds locally round x̄. If
this was not the case, we could repeat the argument form the proof of Theorem 5.1 in order to derive
the existence of sequences xk, zk, λk and of indices i 6= j such that xk → x̄, Ai = λkAj and
i, j ∈ I (xk, zk). As in that proof it follows that λk → λ := x̄i/x̄j > 0 and Ai = λAj . As a con-
sequence of the Hausdorff continuity of the mapping x 7→ {z|Az ≤ x}, the relation i ∈ I (xk, zk)
implies the existence of some z̄ such that Az̄ ≤ x̄ and Aiz̄ = x̄i. Then, also Ajz = λ−1x̄i = x̄j but
rank {Ai, Aj} = 1, a contradiction with (42). �

Finally, we consider a gradient formula for the cumulative distribution function

Fξ(x) := P (ξ ≤ x) (44)

associated with a Gaussian random vector:

Corollary 5.2 Let ξ ∼ N (0, R) for some positive definite correlation matrix R admitting a decom-
position R = LLT . Fix any x̄ ∈ Rn such that x̄j > 0 for all j ∈ {1, . . . , p}. Then, ϕ in (1) is
continuously differentiable at x̄ and it holds that

∂ϕ

∂xj
(x̄) =

∫
{v∈Sm−1|Ljv>0,x̄j=ρ̂(v)Ljv}

χ (ρ̂ (v))

Ljv
dµζ(v) (j = 1, . . . , p) .

Proof. (44) follows from (41) by putting A := I . Clearly, any two rows of I are linearly independent.
The gradient formula follows from AjLv = Ljv in this special case. �

6 Mordukhovich subdifferential of probability functions for lin-
ear random inequality systems

We reconsider the probability function ϕ in (41) under the assumptions of Corollary 5.1 except the
constraint qualification (42). Without this constraint qualification, we cannot hope for differentiability
of ϕ (see Example 1.1). Nevertheless, it is still locally Lipschitzian and admits an upper estimate for
its Mordukhovich subdifferential which is more precise than its Clarke subdifferential. This allows us
to sharpen the upper estimate in the general result (23) for this special class of problems. In order
to prepare a corresponding result, we introduce the following equivalence class within the index set
{1, . . . , p} of rows of the matrix A in (41):

i ∼ j ⇐⇒ ∃λ ∈ R : Ai = λAj, x̄i = λx̄j.

By the assumption x̄j > 0 for all j ∈ {1, . . . , p} made in Corollary 5.1, i ∼ j implies that λ > 0
in the defining relation. Similarly, i � j implies that (42) is satisfied. Denote by p̃ ≤ p the number of
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different equivalence classes [i]. Without loss of generality, we may assume that the first p̃ rows of A
belong to different equivalence classes. Then, it obviously holds for any i = 1, . . . , p̃ that

Ajz ≤ xj ∀j ∈ [i]⇐⇒ Aiz ≤ hi(x) := min
j∈[i]

λ−1
j xj. (45)

We denote by Ã the submatrix of first p̃ rows of A.

Theorem 6.1 In (41) let ξ ∼ N (0, R) for some positive definite correlation matrix R admitting a
decomposition R = LLT . Fix any x̄ ∈ Rn such that x̄j > 0 for all j ∈ {1, . . . , p}. Then, ϕ is locally
Lipschitz continuous and its Mordukhovich subdifferential can be estimated from above by

∂Mϕ(x̄) ⊆
∑p̃

i=1

∫
{v∈Sm−1|ÃiLv>0,ȳi=ρ̂(v)ÃiLv}

χ (ρ̂ (v))

ÃiLv
dµζ(v)·

⋃{
λ−1
j ej|j ∈ [i] : λ−1

j x̄j = hi(x̄)
}
,

where
ρ̂ (v) := min

{
ȳj/(AjLv)|j ∈ {1, . . . , p̃} : ÃjLv > 0

}
.

Proof. We introduce the modified probability function ϕ̃(y) := P
(
Ãξ ≤ y

)
(for y ∈ Rp̃) and observe

that thanks to (45) the original probability functionϕ in (41) can be written as the compositionϕ = ϕ̃◦h
with a Lipschitz continuous mapping h = (h1, . . . , hp̃). Since the rows of Ã refer to rows belonging
to different equivalence classes in A, they satisfy (42) (see remarks preceding the statement of this
theorem). Furthermore, ȳ := h(x̄) satisfies ȳi > 0 for i = 1, . . . , p̃. This allows us to derive from
Corollary 5.1 that ϕ̃ is continuously differentiable in a neighbourhood of ȳ and that

∂ϕ̃

∂yi
(ȳ) =

∫
{v∈Sm−1|ÃiLv>0,ȳi=ρ̂(v)ÃiLv}

χ (ρ̂ (v))

ÃiLv
dµζ(v) (i = 1, . . . , p̃) ,

where ρ̂ (v) is defined in the statement of this theorem. The chain rule for the Mordukhovich subdif-
ferential [15, Theorem 1.110 (ii)] now yields that

∂Mϕ(x̄) = ∂M 〈∇ϕ̃(h(x̄)), h〉 (x̄) = ∂M
(∑p̃

i=1

∂ϕ̃

∂yi
(h(x̄)) · hi

)
(x̄)

⊆
∑p̃

i=1
∂M
(
∂ϕ̃

∂yi
(h(x̄)) · hi(x̄)

)
,

where the last inclusion follows from the sum rule in [15, Theorem 2.33 (c)]. Next, we observe that
∂ϕ̃
∂yi

(h(x̄)) ≥ 0 for all i = 1, . . . , p̃ because ϕ̃ is evidently nondecreasing with respect to the partial

order of Rp̃. This allows us by [15, p. 112] to continue the previous relation as

∂Mϕ(x̄) ⊆
∑p̃

i=1

∂ϕ̃

∂yi
(h(x̄)) · ∂Mhi(x̄). (46)

Given the definition of components hi in (45), we conclude from [15, Theorem 1.113] that

∂Mhi(x̄) ⊆
⋃{

λ−1
j ej|j ∈ [i] : λ−1

j x̄j = hi(x̄)
}

(i = 1, . . . , p̃) ,

where ej refers to the jth canonical unit vector inRn. (Actually, as the components hi are minima over
linear functions, it is easy to show that even equality holds in the previous relation; we cannot benefit,
however, from this improvement because (46) already involves an inclusion anyway). �
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