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1 Introduction

This paper presents some numerical results about applications of multiscale techniques to
boundary integral equations. The numerical schemes developed here are to some extent
based on the results of the papers [6]-[10]. Section 2 deals with a short description of
the theory of generalized Petrov—Galerkin methods for elliptic periodic pseudodifferential
equations in /R"™ covering classical Galerkin schemes, collocation, and other methods. A
general setting of multiresolution analysis generated by periodized scaling functions as
well as a general stability and convergence theory for such a framework is outlined. The
key to the stability analysis is a local principle due to one of the authors. Its applicability
relies here on a sufficiently general version of a so-called discrete commutator property
of wavelet bases (see [6]). These results establish important prerequisites for developing
and analysing methods for the fast solution of the resulting linear systems (Section 2.4).
The crucial fact which is exploited by these methods is that the stiffness matrices relative
to an appropriate wavelet basis can be approximated well by a sparse matrix while the
solution to the perturbed problem still exhibits the same asymptotic accuracy as the
solution to the full discrete problem. It can be shown (see [7]) that the amount of the
overall computational work which is needed to realize a required accuracy is of the order
O(N(log N)?), where N is the number of unknowns and b > 0 is some real number.

We focus here on two problems which are solved by fully discrete collocation wavelet
methods. Section 3 is devoted to various numerical experiments for the exterior Dirich-
let problem for the Helmholtz equation. In this case the theoretical results for periodic
- problems apply and are confirmed by the numerical tests. In Section 4 we present some
new results concerning a Dirichlet problem for the Laplace equation over three dimen-
sional polyhedral domains. Linear systems with ~ 100,000 unknowns are solved which
corresponds to fully populated matrices of the same order. In this case our goal is not
yet to present a fully developed scheme for such a complex three dimensional problem.
In fact, one should note first that the general theory described in Section 2 is not directly
applicable to this problem because it is not periodic and the boundary is not smooth.
Therefore our main goal here is to explore to which extent the theoretical predictions
from the model problem can still be confirmed under these less ideal circumstances. In

~ particular, we focus on compression properties and the convergence behavior of the cor-

responding solutions of the perturbed problem. Therefore we content ourselves here still
with a rather expensive way of computing the compressed stiffness matrices. Speeding
up this portion of the solution process is less dependent on the topology of the domain
and is meanwhile understood conceptually. Essentially following the analysis in [10], the
practical realizations and numerical tests presented here do confirm a similar behavior as
predicted by the theory for the periodic model problem. '

2 Mulfiscale methods

2.1 Periodic pseudodifferential equations

At this stage we focus on the model case of periodic pseudodifferential equations to ex-
ploit the full advantages of Fourier transform techniques in connection with appropriate
representations for the class of operators under consideration. However, we do consider



variable symbols and it should be mentioned that this class covers all the classical exam-
ples such as Hormander’s class, in particular, those operators arising in connection with
boundary element methods. Moreover, most of the methods used here are of local nature
and thus apply in essence to the case of non—periodic equations, as well (see [8]).

Consider the discrete Fourier transform by (k) = Joqu(z)e ~alokdy ke 7" , where
k=", ka Let 7™ denote the n—dimensional torus. Then a periodic pseudodiffer-
ential operator is defined by ~

o(z, D)u(m)bzz > oz, k)ﬂ(k)ez"ik’x :

keZl™

The function o € C®(T™ x Z"), which is called the symbol of the operator o(z, D), is
assumed to belong to a certain class >.# for some p € C. Here ¥ is comprised of all
symbols o of the form o = gy + 01, where og € C®(T™ x (IR"/{0})) is homogeneous
of degree p € C, ie. 0o(z,0) = 1, oo(z,A\k) = Moo(z,k), for A > 0, k # 0, and
I@‘(i)’r(k 01(z,k)| < cap(l + |k|)+7lol for £ € T, k € Z", and for some 7y < Rep =7r.
Here 0 stands for the partial differential operator and 7 for the partial forward difference
operator. By A" we denote the class of operators of the form A = o(-, D) + K where o €
>#, 7 = Re pis the order of A, and (Ku)(z) = [ k(z, y)u(y)dy with k € C*(T" x IR")
.is a smoothing operator. The operator o(z, D) € A" is called elliptic if, for sufficiently
large ||, |oo(z, k)| > clk|", z € T™ '

Any A € A" is a bounded linear operator A : H® — H' ", t € IR. This operator is
Fredholm if and only if it is elliptic. Here H* denotes the class1cal penodlc Sobolev space

of order ¢, equipped Wlth the norm [|ul|; := (Zkez"(l + |k])*|@ (k)] )

2.2 Multiresolution and wavelets

Multiresolution or Multiscale Analysis (MSA) is by now a well-studied notion [16]. Here
we focus only on those variants which are useful for our purpose. MSA of L*(RR) is a
sequence of nested closed subspaces ---CV; CVyCViC---C L%(IR) with

1. m= Lz(-lR)’
2. N;V; = {0},
3. f(z) €V & f(2a:) € Vi,

4. There is a function ¢ € L?(IR) such that the translates {¢(z — k)} (k € Z) form an
orthonormal basis of Vj.

The function ¢ is called scaling function. Obviously, the functions @; (z) := 29/2p(27z—k)
form an orthonormal basis of V; (j € Z) (see [11] for examples). Since ¢ € V; C V4 there
exists a sequence {hx}rcz (Which is called the mask or the filter of ¢) such that ¢ satisfies
the scaling equation ' .

o(z) \/—thso%—k) seR. R @)

keZZ



Moreover the mask {hk} is finite if and only if ¢ is compactly supported. (2.1) is the
key to the constructions of orthogonal wavelet bases and of fast wavelet algorithms. The
wavelet space W; (j € Z) is defined as the orthogonal complement of V; with respect to
Viei =V; @ W;. Thus

L*(R) = ®;czW; = Vin @ ®j>mW; (for each m € Z). ' - (2.2)

One of the main results of MSA reads as follows. Given o, then there exists ¢ € L*(IR)
such that the functions ;x(z) := 29/%(2z — k), k € Z, form an orthonormal basis of
W; (j € Z). The function v is called the mother wavelet of MSA and is defined by

=v2 > g2z —k), gr=(-1)Fhis. - (2.3)

keZZ

An impbrtant property of wavelets is that certain moments vanish, i.e.,

/mlw(m)dm =0, 0<I<d, | (2.4)

R

where in the case of orthogonal wavelets d* is the order of polynomials which can be
written as linear combinations of the translates ¢(- — k), k € Z.

More flexibility is offered by the concept of biorthogonal wavelets [11] which permits the
employment of B-splines as scaling functions. In particular, the possibility'of raising
the order of moment conditions turns out to be essential for balancing compression and
convergence rates.

In the following we need a periodic version of MSA. To this end, let [-] denote the pe-
riodization operator defined by [f](z) := Yiez f(z + k) for any compactly supported
function f. Given a compactly supported MSA ¢ € L?(IR), then the functions [pm ] and
[ ] are 1-periodic. MSA of L?(IR™) can be defined in a completely analogous manner.
However, one needs a finite number of mother wavelets depending on the type of scaling.

2.3 .Generalized Petrov—Galerkin schemes

The spaces V; will be used as trial spaces for the approximate solution of the equation
Au=f, , S SR (2.5)

where A € A" and f € H*" is given. In the following we will fix one such ¢ and assume
that n € H™*(IR™) is a fixed linear functional with support in some compact set I' C IR".
Defining the functionals 7; ; by n;(f) := 27™/2n(F(279(- +k))), k € Z™, we seek for an
element u; € V; satisfying

ik(Auy) = nin(f), k € L™ =L 2" (2.6)

Clearly, n = ¢ corresponds to a classical Galerkin scheme, while n = §(- — zo) give rises
to collocation at the points 277 (k + z¢), k € Z™, j € INo.



Our first objective is to study the solvability of (2.6), and if this is the case, the convergence
of the solution u; as j — co. The key to this problem is a suitable stability concept. To
this end, it is convenient to consider projectors of the form ‘

Qif = Z nj,k(f)gj,h
keZZ™

where the {‘J » are suitable basis functions satisfying 7;4((;y) = dix (possibly spanning
spaces different from V;, see [6] Sect. 4). Then (2.6) can be rewritten as operator equation
Q;Au; = Q;f. The scheme (2.6) is called (¢, r)-stable if

1QAv]s—r > clv]ls o - (2.7)

for all v € V; uniformly in j € IV,. Clearly, (2.7) means that the finite dimensional
operators A; := Q;AP; : H® — H*™ have uniformly bounded inverses A;' : im Q; —
im Pj.

It turns out that the stability of (2.6) is equivalent to the ellipticity of a certain function
A which shares many features with the principal symbol oy of the operator A and which is

called the numerical symbol (more precisely, the “symbol of the Petrov-Galerkin scheme
(2.6)”). The numerical symbol is defined by

Mey) = Y oo(my+k)ew+haw+h) (2.8)
keZZ™ ‘ i o

for all z,y € 7™ (provided that the series on the r1ght hand side of (2.8) converges
absolutely for all z,y € T™), where " stands for the Fourier transform.

Theorem:[[6]] The scheme (2.6) is (t,r)-stable if and only if the numerical symbol A
is elliptic, i.e. |A(z,y)| > c|8(y)|" holds uniformly in z € T", where 6 = (61, ...,6,)7,
0;(y) = e*™1i -1 ' ' ‘ '

Ezample: Consider the knot collocation (i.e. zo = 0) with tensor product splines of degree
d. Then 4 =1 and ¢(&) = [T, (sin 7&)4+t/ (w&)**1. Clearly, if d is odd, then A is elliptic
if and only if A is strongly elliptic, i.e. Re og > const > 0. Hence, in that case, Theorem 1
provides stability of the collocation with odd degree splines for strongly elliptic operators
(cf. [1] for the case n = 1 and [6] for the multidimensional case). Notice that, in the
case of the classical Galerkin scheme, the ellipticity of the numerical symbol for strongly
~ elliptic operators is a consequence of the stability property of ¢.

Applying Theorem 1 in combination with well known Galerkin techniques and approxima-
tion properties of the functions [¢; ] one obtains optimal estimates for the error ||u uJHt
for a certain range of Sobolev norms (see [6]).

2.4 Matrix compression and fast solution

"This technique is essentially based on estimates for the asymptotié behavior of the entries
of A; (j = oo) in the wavelet representation. We will present such estimates only for the
case of classical Petrov—Galerkin schemes, i.e., when 77 is actually an L2~ function.



Theorem:[[7, 17]] Let 2d*+n+r > 0 where d* denotes the number of vanishing moments
of the wavelets. Then for A € A" the estimate

(1) (n/2+d")

!(AWI sl [Yrpl) <c g ‘ o (2.9)

holds, where ¢ = dist (supp [¢z k], supp [¥r x]) and the constant ¢ depends only on r,n
and d*.

(2.9) are the crucial estimates which compression criteria rély on. Such criteria allow us
to avoid the computation of the full stiffness matrix in the wavelet representation and
tell us which entries must be computed in order to guarantee a required accuracy. More-
over, by realizing sufficiently high accuracy on lower scales, the asymptotical convergence
rates of the solutions to the uncompressed systems can be preserved for those of the com-
pressed system. Such a compression strategy reduces the computational work to the order
O(N(log N)?), where N = 2/™ and b is a positive number ([7]).

3 Exterior Dirichlet problem for the |
Helmholtz equation in 2D

3.1 Statement of the problem

The treatment of scattering of time-harmonic acoustic and electromagnetic waves on
infinitely long cylindrical obstacles in JR® with simply connected cross section D_ C IR?
and smooth boundary I' leads to an exterior boundary value problem for the Helmholtz
equation in IR2. , _ ,
D © Given the boundary data g and

r the wave number & > 0 in D, real.

‘ ,win

We seek the solution w of the following problem

Aw(z) +kw(z) = 0 in D=R\D_, | (3.1)
w(z) = g(z) on T, - . (3.2)
—3g£x)—ikw(x) = o), r=lz] vo0 63

uniformly in all directions (Sommerfeld’s radiation condition). This problem is known to
have a unique solution (cf. [5]).

Using a single-layer approach (indirect method), one seeks w in the form

- w(z) =/F¢(x, y)¢(y)ds(y), z € D, B | o (3.4)



where s is the arc length parametrization, and the fundamental solution correspondmg to
the Helmholtz equation is given by

8(z,) = o HO(Flz — )5 £ .

Here Hél) means the Hankel function of order zero and of the first kind. Substituting
(3.4) into (3.2) gives the boundary integral equation for the unknown density £&:

[#@vewdsw) =g@), seT. (3.5)

Equaﬁon’ (3.5) is uniquely solvable in H*(T) prov1ded that the homogeneous Dlrlchlet
problem for the interior of I' admits only the trivial solution. T

Let z(t) = (z1(t), z2(t)), 0<t <27, bea 2m—periodic regular parametrization of T' sat-

isfying [af (£)]2 + [#4(£)]2 > 0, ¢ € T. Setting in (3.5) u(t) := £(=(®)) {[#4(£)] + [wp()]*}
and f(t) := g(z(t)), the exterior Dirichlet problem for the Helmholtz equation leads to
the following logarithmic szngular 1ntegra1 equation of the first kind:

(Au)(t) = -2-1%- f()Z"K(t,T)u(T)dT= F#), 0<t<om, @)
K(t7) = THP () |

where r(t,7) i= {[21() — 2(r)2 + [ea(t) — 2o ()P}

In principle it is possible to separate the logarithmic part of the Hankel function and
treat it separately. There exist several fast methods for the solution of the logarithmic
kernel equation (also called Symm’s equation). In particular, one can use the fast Fourier
transform, apply the fast method [20] or the exponentially convergent method [14]. Here
we do not separate the logarithmic part because we only consider it as a model problem
for other cases where a separation is usually not applicable. A second related reason is to
simplify the implementation by keeping it as independent as possible of further analytic
investigations which have to be tuned to the particular application at hand.

3.2 Wavelet discretization method

For the numerical solution of (3.6) consider the knot collocation method on the following
nested grids of [0, 27]: ‘ -

Vi={t|th = kh;, k=0,.,Ny—1, b =27"-2r, N, = 2!}, 1 =0,1,...,5. The set of
additional knots for passing from level 1—1 to level I is denoted by A" := VI\V*"! . For
a corresponding Galerkin wavelet method the reader is referred to [17]. As trial functlons
we use here continuous piecewise linear functions spanned by the canonical periodized hat
functions [p; ], i.e., ' '

1+z if -1<z<0,
o(z) = 1—z if 0<z<1,

0 else.



0(z) = Jo(2z +1) + 6(22) + Jo(2a — 1)

H “m
0~
-1 0 +1

b(2) = oo +1) - o(22) + Lp(2a — 1)

Figure 1: Two-scale relations for our choice of generating function and mother wavelet.

In this case the mask in the two-scale relation (2.1) is

{hk}l%:-—l = {%1 1, %} : ‘ , N (3.7)

Since the translates ¢(- — k) are not pairwise orthogonal the simple recipe from (2.3) for
forming orthogonal wavelets does no longer work. Nevertheless, one can resort to the
literature for a long list of candidates 1(z) whose integer translates are stable and span
the orthogonal or other complements of V; in V3. In particular, for any desired order d* of
- vanishing moments biorthogonal wavelets have been constructed in [4] which all give rise
to Riesz bases. Specifically, the wavelet for d* = 2 from this family has support [—1,2]
‘and the mask has the form ~

3 I L e e e — — e
lotiea =123 | (3.8)
To keep the support of 9 as small as possible we will focus here 'though on the following
choice with also vanishing moments of order d* = 2: ’
11 | | | |
{gk}lls;=—1 = {—2'7 —11 '2'}’ v ‘ (39)

which is depicted in Figure 1. These wavelets are likewise biorthogonal in the sense of
[4] and therefore give rise to a Riesz basis as is shown in [18]. Since we are employing
a collocation method the Brandt/Lubrecht functionals [2] are adequate “test Wavelets
(because of pointwise evaluation) spanned by d—distributions:

i) = FE - Mo+ rda) G



k=0,.,2"1-1,1=4-1, i 1 mo(f) = F(te), k= 0,1.

One easily verifies that the n;; have also vanishing moments of order d* = 2. Figure 2
illustrates for three levels [ how the point values are transformed into the data mx(f).
Obviously, the complexity of this transformation is of the order O(IV;) when j is as above
the finest level. Given (3.10), the collocation stiffness matrix A; on level j relative to the

) e : Al ‘ .
1 ! | | | ! ! | ) f(EEy,), VT

/\ /\ 7l7uc(f )

f T I I 1 I I T |

NS
' | ' - - ) f(thera), V!
| J
l T T I | m-16(f) .
o i AI72
. ! f(t5k), VI
I / = -2,k (f )

Figure 2: Generation of the functionals of Brandt/Lubrecht. Open circles indicate those
grid points whose values are to be calculated in the next step.

wavelet basis has entries of the form
(A7) arnw ey = M (Alre]), SR (3.11)
k=0,...,27 =1, K =0,...,2" =1, ,I' <j.

It is easily seen that the integral operator A defined by (36) belongs to the class A" (see
Sect. 2) with » = —1 and r; = —3. Moreover, it is strongly elliptic and, hence, the
considered collocation method is stable (see Theorem 2). Furthermore, the error estimate

lu = w11, < c2=2jull - - (3.12)

holds for all s, —1 < s < 3/2, provided f € H?.

Using an a-priori compression criterion established in [7] and improved in [21] we only
calculate and store approximations to those matrix entries of (3.11). obtained through
quadrature for which

dist (Qx, Ql’,k’) < max {a2", a2fl', aj®/® . 2@/3)i-(4/3N-C/3) }, (3.13)

where Q. is the support of [t x], Qu 4 the support of 7y 4, and a a constant that has to be
chosen appropriately. Note that, according to the general theory, to realize an (asymptoti-
cally) almost optimal compression rate for the choice of piecewise linear wavelets with two
vanishing moments it would be necessary to use Brandt/Lubrecht functionals with three
vanishing moments. In this case also criterion (3.13) changes somewhat. Nevertheless,



the present method turns out to be more efficient for the present scope of experiments
‘because of the smaller support of the test functionals. Also our convergence studies con-
firm a sufficiently good nearly optimal performance of the present version in all our test
problems (see Figs. 3,4,5). ‘

In order to get a fully dlscrete method we have to employ a suitable quadrature method
to approximate the integrals. Because of the logarithmic singularity of the kernel function
it is necessary to use an adapted rule for the quadrature to guarantee that the order of
convergence is better than one. Therefore we choose the following graded quadrature
points 7, of the interval [0, 27] with grading parameter o > 1. More precisely, the points
are graded near the singular point ¢ € (0, 27) as follows::

'r; _ ﬂ_lglasignq_l_t, qg= —v'ﬁ’L’, wym— 1.

The integer 7n has to be chosen proportlonal to IV;. To make the quadrature exact for the

ansatz functions these graded points are united with equidistant ones: {r 1T = = {#}.
Let 7,¢ =0,...,m —1, m = 2m + N; be the quadrature points obtained by periodizing
{myu{re}. In our numerical examples we choose a grading parameter a = 2.5 together
Wlth the trapezoidal rule. The latter is exact for linear polynomials, and hence sufficient
to obtain second order convergence in L? (cf. (3.12)).

3.3 Assembling the compressed stiffness matrix

Let

(A1) Z K(t, r)wabie(ry), k=0,...,2 =1, 1 <],
rat
be the approximation of (At;x)(;) obtained by quadrature. Here w, are quadrature
weights.

Keeping iﬂmind that
C me (AR = (A B4 - VAR ) + (Al (E )}

and that the vanishing moments of the test wavelets 7, imply that these quantities
decay, their approximations obtained through quadrature are expected to exhibit the
same behavior. Thus we have to compute the following expressions:

e i(Ailvg]) = Z K t2’z+1’7-‘1 Jwelthk](Tg) —

q—-O
U+1
Tq¢t21+1

3 Z K (8, 7g)wq[is)(rq) - o (319)
5 |
1 m-l L

> K(tz+1""q wq[ ] (Tq)ﬂ,

q—O . ’
Tq¢t1+1 '



i=0,...,No—=1, k=0,...,N—1, I,I'=1,...,5—1,

mi(Ajleong]) = Z Kty m) Jwaler](ra) -

q=0

141
Tq ¢t2;—|¢—-1

5 mi K(t Tq wq pref(r) = o (3.15)

q—O
"'tﬁétu
1 m—1

Z K z+1aTq)wq[‘P1k](Tq)

q-O
Tq¢tz+1

i=0,...,No—1, k=0,1, I'=1,...,5—1,

i) = S K@ o), 6w

g=0
Tq ;ét}

i=0,1, k=0,...,N—1, I=1,...,5—1,

m~—1

mi(Ajlonal) = 30 K(t, m)wylen, (7). | (3.17)

q=0
TgFit

i=0,1, k=0,1.

Here it is important to note that, according to our above remarks, these calculations are
only performed for those pairs (I, k'), (I, k) which satisfy condition (3.13). Thus storage
is only required, and hence is directly reduced, for the significant entries of the matrix A?
defined by

(4 — { 0 if (3.13) does not hold,
3 (U R, (k) = g (Aj[e]) if (3.13) holds,

where ¥ = 0,...Ny — 1,k =0,...,N; — 1, l,l’ =0,...,j7 — 1 and where we ha,ve set
Yok = P1k- ‘

Next let us denote by B; the transformation (3.10) which takes the array of data f(t’) k=
0,...,N; — 1, into the array m(f). One can check that AS is the compressed version of

the matrix B; A Hence we end up with the following sparse matrix equation
Aju; = Bifi, . (3.18)

where f; := (f (t%) FE), -ty )™

10
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Figure 3: Error E; in logarithmic scale for various wave numbers k£ and constants a for
the a-priori compression strategy. [' = circle.

Note that it is possible to use the same quadrature formula as for a standard collocation
method not based on wavelets for all expressions in (3.14)~(3.17). It is only necessary to
shift the grading for the singularity to the actual singular point.

Clearly, the solution u; of (3.18) consists of the coefficients of the approximate solution
relative to the wavelet basis. If one wishes to represent the solution in terms of the nodal
basis, a further transformatlon

S
uj = Tju;

has to be performed. This transformation also has the following familiar pyramid structure

Wy, Wa,. ws,. e Wj-1,. i :
G N G > G | (3.19)
u,. — Uy, — Us. v Uil — up o, : '
Ml M2 . Mj_]_
where the matrices M;, C;, 1 =1,. ., j—1 are sparse and contain the masks from (3.7) and -

(3.9). For a description of the algonthm in pseudocode see [10]. Thus T takes coefficients

uj = {u1 k,w”c} of the wavelet representation ¥,_ —0.1 UL EP1E + Zl_ ZkEA‘ wy ke into
the coefficients u¥ := {u;x} of the corresponding nodal representation ey 45,k Also
the application of the transformation T; is easily seen to requlre only O(N;) operations.

11
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Figure 4: Error e; in logarithmic scale for various wave numbers % and constants a for
the a-priori compression strategy. I' = circle. ' :

3.4 Preconditiohing and solution

The linear system (3.18) is solved with the aid of the iterative Krylov subspace method
GMRES (cf. [19],[24]). This method has been proved to be efficient for this kind of
- systems (cf. e.g. [23],[13],[10]). Since r = —1, the condition numbers x(Af) grow like
Nj so that the number of iterations which is necessary to accomplish a desired accuracy
increases when IV; becomes large. The theory in [21] suggests multiplying A with the
N; x N; diagonal matrix D from the right where Dy gy, gy = (k24 2%)2 - 8 1), 4y After
solving then the system A%Dv; = B;f; one has to transform the resulting vector according
to u; = Dwj; to obtain the wavelet coefficients of the solution.

We have also tested the following alternative preconditioning strategies based on diagonal
scaling. Let D@ = 2+ 8y, 1)-
1. Solve DASu; = DB;f; or

2. solve D%AjD%vj = D%Bj‘ f; followed by corresponding diagonal back transformations.

The results of the tests for a fixed example are given in Table 1. The best preconditioner
is the one suggested by the theory which gives a constant iteration count. May be that
with higher order Brandt/Lubrecht functionals the iteration count can further be reduced.
The corresponding tools are available and, in principle, easily implemented.

The main steps of the solution procedure may be summarized now as follows:

1. Compute the matrix A directly in the wavelet representation as described by (3.14) -
‘(3.17) and apply the a~priori compression criterion (3.13) yielding a sparse matrix;
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2. apply the transformation B; (3.10) to the right-hand side:

 {f(E)} — {nj,k(f)} k=0,...,N;—1: B; fJ, which requlres only (’)(N)
opera.tlons : R v

3. solve the sparse matrix equatlon A;Dv; = B, f; by an iterative solver (e.g. GMRES)
The complexity of this part is nearly O(N;(log N;)?);

4. back transform the solution of this linear system to u; = Dv; (= N; operat1ons) which
provides the coefficient vector u; relative to the Wavelet basis and

5. (optionally) apply the transformation T; which yields the coefficients uf = Tju; for
the nodal basis representation. Again this only requires O(NV;) operations.

Clearly, the multiplications with the dlagonal matrices are apphed to the iteration vector
rather than to the matrix A:: AE(Du )), with u( " the actual iteration vector of u; during
the GMRES-iteration. ThlS only requires 2N addmonal operations for the diagonal
matrix times vector products in each iteration step

Summing up the operation count in steps 2.-5. the overall complexity is of order
O(N;(log N;)®) which gives rise to a fast solution of the linear system. Unfortunately,
step 1., the matrix assemblation, is still of the order O(N?) although only (nearly)
O(N; (log N;)®) matrix entries are calculated. This is due to the poor quadrature scheme
which does not take the distance between the supports € x and Qp  into account. Mean-
while it has been shown in [21] that such a refined quadrature strategy reduces the com-
putational work for assembling the matrix to the order of nonvanishing matrix entries.

After the evaluation of the solution, the relative L? error E; of the solution and the
convergence rate ; are calculated:
_log(E;/E;-1)

N1y oy v
B, = i luj( ikl )| P

Sy fu(d)? log2
Preconditioning \ '
j 23] 4] 5] 6] 7] 8] 9] 10 11] 12
N; 4]8|16|32| 64| 128|256 | 512 | 1024 | 2048 | 4096
without |3 |5| 9|14 [ 18] 21| 29| 33| 37| 40| 44
DA: 35| 9|15 18] 20| 25| 27| 28| 28| 29
D:AsDz |[3|5] 9l15| 17| 19] 24| 27| 26| 26| 27

|AD  [3[5] 9|14[15] 16| 21| 23| 23| 22| 22 |

Table 1: Number of GMRES iterations without preconditioning and W1th different pre-
conditioners for the following example: I'= ellipse, k = 10, a=1.0.

3.5 Numerical examples for scattering
We consider the scattering of an E-polarized electromagnetic plane wave ui® by a perfectly

conducting cylinder. In acoustics this problem is equivalent to the scattering of a plane
wave by an impenetrable, sound-soft cylinder with smooth cross section. Let the incident
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wave be given by u™(z) = exp(ikéinz), with &, a unit vector describing the direction of
propagation of the incident wave, and let u® be the scattered wave. Then the exterior wave
(total field) u® = u™+u* is also a solution of the Helmholtz equation Au®+k?u® =0 in D
and satisfies the boundary condition u®* =0 on I'. So we have u® = —u™ on T and
u® also satisfies the conditions (3 1) and (3 3). Thus in terms of our 1n1tia1 unknowns we
have: ‘

o w = u,
° g = uSlp = —exp(ikénz)|r and if we set for the incident direction &, = (‘1, 0),
we obtain '
flz®) = —(cos(kzi(t)) +isin(kz,(t))).

With these data one can then solve the integral equation (3.6).

The solution u®, the backscattered electric field, exhibits the following asymptotic behavior
which follows from the asymptotics for the Hankel function for large argument:

() = S fumge) 4 0 {lri}},ixiéoo,

||

w(@) = S22 [ () expl—ihan)s(u)

uniformly for all directions Z := z/|z|. The function u® is known as far field pattern or
scattering amplitude of u®. Substltutmg for £(y) the solution u(t) of our integral equation,
we obtain

| exp(i%)

u*(%) - Y /F u(t) exp(—ikéoz(t))dt. | | (3.20)

A more interesting quantity is the radar cross section (RCS). It is defined by 0°(d') =
27 limyz| 500 xIJF’Iliz’ with 0° < 6 < 360°, the backscatter angle. With the aid of the

asymptotics of u° we obtain the followmg approximation o°(d') = 2m|u*® (91:){2 for the
RCS where & is the direction given by . When plottmg the RCS as a function of the
observation angle, the quantity

o =10logyo(0°/A), A= wavelength o (3.21)

are shown in the figures rather than ¢ which is common in the engineering literature.

After the solution of the integral equation by the wavelet method, the integral (3.20) is
calculated which is a functional of the solution. This is realized by the rectangular rule
which in the periodic case is equivalent to the trapezoidal rule. Let the approximation of
(3.20) be u$®. For the determination of u™ and u$°® we fix the direction of observation.
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For a sequence of discretizations we determine the error e; and the convergence rate 5,
for the functionals u$°: ~

o= P —u g logles/ei)
7 fue| log2

For all numerical examples we have selected a = 2.5 as an optimal grading parameter
for the quadrature points and employing the a-priori compression criterion, we have
" examined the convergence and compression behavior for various wave numbers & and
constants a. In the first example we consider a disc of radius r = 0.6 as cross section of
a scattering obstacle (cf. e.g. [3]) and we set & := (1,0) while the second considered
obstacle is assumed to have an elliptical cross section with a, = 2b, = 0.6.

Figures 3 and 4 present the behavior of the errors Ej,e; for the disc. Figure 5 shows
results for the case of an ellipse. Figures 3,4,5 clearly show the predicted behavior for
the convergence rate of Ej,e; for the investigated boundaries if the constant a for the
a-priori compression criterion is appropriately chosen. The convergence rates of ~ 2
coincide with the expected convergence rate of the solutions to the full systems when
using the same discretization method. Because of (3.12) for e; a convergence rate of 3 is
possible when using a quadrature of higher exactness.

The constant a from (3.13) in practical applications should be chosen so that the supports
of ¥;x,miw do not overlap on the finest level 5. This leads to a fixed bandwidth for
the diagonal bandmatrix on the finest levels j and determines all other bandwidths of
the appearing block band matrices. For our special choice of 91k, mx we recommend a
bandwidth b of & > 4. For greater values of k£ or more complex domains D_ it may be
necessary to increase this value by small amounts.

Obviously, the error e; for the functional of the solution is not as sensitive to different
compression constants a as the error E;. This is due to the fact that a quadrature rule of
higher exactness would yield a better compression rate for this error.

Figures 6 and 7 show the number nze of nonzero elements of the compressed matrix A
for some constants a and the time tgy for the iterative solution of the linear system by a
preconditioned GMRES. One clearly observes that the time depends on the wave number
k as well as on the constant a for the compression criterion.

Finally, Figs. 8,9,10 pfesent some results for the RCS for two domains and two different
wave numbers k. The results agree with those obtained with a conventional collocation
method. '

4 Dirichlet problem for the Laplace equation in 3D |

In this section new results for the multiscale method proposed in [10] are presented for
a large number of degrees of freedom N;. Note that linear systems with nearly 100,000
unknowns are solved. Since the thresholding procedure is chosen so that the optimal
asymptotic accuracy of the discretization error is preserved this corresponds to solving
fully populated linear systems of the same size arising from non-wavelet approaches.

We start briefly recalling the main ingredients of the method and refer to [10] for further
details. Note that the theory outlined in Section 2 does not apply directly because we are

15



dealing now with a non-periodic problem and the boundary of the considered polyhedral
‘domain is not smooth. Nevertheless, the decay of the matrix entries in the wavelet
representation on a face of the polyhedron [10] is of the same form as for the periodic case
[7]. Accordingly, the results are also similar to those predicted in the model problem.

It is a well known fact that the Dirichlet problem for the Laplace equation in some domain
P C IR® can be transformed into a second kind integral equation over its boundary [15].
For a polyhedral domain P this equation over the boundary 2 = 9P reads

Au = (I +2W)u = f, , ‘ | (4.1)

Wu(z) = [1/2 —Oa(z)]u(z) —l—i/ﬂnyl—?;(_z—cx;lg-)-u(y)dyﬂ,

where 0qo(z) is the inner solid angle of Q at £ € Q and ny‘the unit vector of the interior
normal to P at y. W is the double layer potential operator. The kernel function k(x y) ==

="+ (2 — y)|y — 2|™® vanishes if z and y are located on the same face of (2.

4.1 Triangulation and discretization

As mesh for the boundary Q a regular triangulation is used. Given some initial partition
(mesh 0°) of Q into triangles, subsequent subdivision of each triangle of Q° into four
congruent subtriangles leads to 2!. This process generates a sequence of nested meshes
Q7 of depth or level j € INy. Clearly, the meshsize h on the level j is proportional to 277,
The vertices Tx of the triangles are the knot points of the mesh. The indices K on a given
level define a grid V¥ = {K : zx is aknot in (7}. Again, the set of additional knots
added when passing from level j — 1 to level j is A7~ := V/\VI1,

As trial functions, we employ properly normalized Courant hat functions ¢; x which are
frequently used in finite element or boundary element methods. More precisely, each basis
function ¢; x is a continuous function on  whose restriction to any triangle 7 in Q7 is
afﬁne and satisfies the nodal conditions ¢; x(zx') = 20x &, for all K, K' € Vi|.. The
spaces V; := span {p;x : K € V’} of piecewise linear continuous functions on Q are
by construction nested Vo C V; C --- C V;_; C V;. By considering the restriction to the
planar faces of P one readily conﬁrms second order accuracy of the trial spaces.

Consider knot collocation on the finest grid V7, i.e., we WlSh to determine a p1ecew1se
linear and continuous function u € V; such that

Au‘f(a:K) = f(zx), K€V, ‘ (4.2)

Thus the entries of the collocation stiffness matrix are given by

1 ny - (Tx —
: y—(K_y)(pj’K,(y)dyQ, (4.3)

A K N\TKg /
(Aps)(ax) = 57 A

KK eV K+K'.

suppy;, k' consists of the six triangles 7, for which knot K’ is a common vertex. In order
.to get a fully discrete method quadrature which is known to be exact for polynomials
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p of degree at most two is used for approximating the integrals (e.g. [22]). To describe
this, let T = [zk,, Tx,, Tx,] € O and let Tx!, Tkl Tk, denote the midpoints of its edges
[Tx1, Tky)s [Txo Tra |5 [ TR, TRy respectively (cf F1gure 11). The quadrature formula for
a function v(z) then reads

JECEE WOl | RENES (4.4

T

Moreover to treat the singularities in a proper way, usually a regularization techmque is
employed (cf. [13]) based on rewriting Au = f as

2u(z) + 57; /Q,%;Py)[u(y)— u(w)}dy ~f@), zen @5

Note that some calculations presented in Tables 2 and 3 are performed without singularity
subtraction.

In summary one obtains the following linear system with the discrete collocation matrix

CAfui =i, A7 = (axx)kgevis | (4.6)

4.2 Decomposition of function spaces

Our approach is based on a multiscale decomposition of the given trial spaces induced by
the following two scale relations. The refinement equation (2.1) now takes the form

oixk= Y, MikxPik, K€V (4.7)
K'evi+l

The coeflicients m; g+ x are called mask or ﬁlter coeﬁic1ents On those grid points lo-
cated in the interior of the triangles 7 € w? the entries of the sparse Nj41 X N; matrix
(mj,x1.x)Kevitt,kevi can be represented by the following 7 point stencil -

e

0 1 ,
1 2 (4.8)
11 '

Here the bold value indicates a position K in the coarse gnd Vi. Relation (2. 3) which
omplements the ba51s in V; to one for V41, now reads :

-7,/)_7-’_;{ = Z Cj,KI,K(,Oj_;.l,Kl, K S AJ = V]-H \Vj, : , (4.9)
K’EVJ"E1 ' NEREE . .

and in the interior of each 7 € Q0 cj k', x corresponds to one of the following 3 point
stencils '

0 0 01, 0 -1 01, 0 0 -1 1 '
-12 -1 |5, 02 0|5 002 0 |, (4.10)
0 0 0 / 0 —1 0 -10 0 S
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depending on the direction of the edge contamlng the knot zg, K € AJ. Here the boldface
~ values correspond to indices K e AJ.

Now let as before T; denote the transformation that takes the coefficient vector @; of
some element of V; relatlve to the multiscale basis {pox : K € VO}U{thx: K € Al, I =
0,...,7 — 1} into the coefficient vector- uf relative to the nodal basis {;x : K € V7L
The hnear system (4.6) is equwalent to

where A; = T; A¥T; is the collocation stiffness matrix relative to the multiscale basis.

The transformation 7} has the same pyramid structure as described in Section 3. Due to
~ the finite supports of the masks its application requires the order of O(NV;) operations

The essential steps of the present prehmlnary version of the algorithm may now be de-
scribed as follows:

1. The discretized collocation method in the nodal basis gives rise to a linear system
(4.6). The complexity of assembling the matrix is O(N7). :

2. The transformations T,,T* lead to the matrix A; := T;A?Tj, so that the system
is equivalent to A;i; = T;f;, and uf = Tji;. Since A? is fully populated the
complexity of this part is stlll O(N 2). In view of the order of our quadrature rule,
the estimates in [10] predict a s1gn1ﬁcant1y faster decay of the entries in A; than of
those in A‘J‘-’. Replacing all those entries in A; by zero whose modulus stays below
a given threshold th yields the compressed system Aju; = T7f;. To improve the
scheme one has to compute A: directly without going through A%. The theoretical

concepts needed to perform thlS step in an eﬁic1ent way have now become available

21] ~

3. This latter system is solved with the aid of a sparse iterative solver (e.g. GMRES)
without preconditioning since the order of the operator is zero in this case.

The decay estimates (see [10]) allow us to estimate the deviation of the solution of the
compressed system from the solution to the full system and, in some cases, also from the
exact solution of Au = f. As pointed out above at this stage this method has still an
overall complexity of O(N?). Only the last step, after the thresholding procedure, has
a complexity which is nearly linear and therefore leads to a fast solution of the linear
system. As one can see in Tables 2 and 3, quadrupling the number N; of unknowns leads
to quadrupled nze only. In contrast to the method of Section 3 it does not save yet memory
because in the first two steps, NJ? matrix entries are handled. Nevertheless, so far the
primary objective of these test has been to confirm the performance of such techniques
with regard to compression and convergence behavior in situations where not all the
assumptions of the model case are fulfilled. The results show that efficient compression is
possible without deteriorating the resulting accuracy of the discrete solutions significantly.

4.3 Numerical examples

For our numerical experiments we consider a Dirichlet problem‘ for Laplace’s equatidn
AU(z) =0 , z € P, and smooth Dirichlet data, U(z)la = f(z), z = (12,22,32) € Q.
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In spite of the smoothness of the Dirichlet data the solution will generally not be smooth
because the boundary is not smooth.

Here we mainly present numerical experiments for two different polyhedra, a cube, and a
pyramid. For a nonconvex domain (bench) and further more detailed results, see [10].

Recall that the solution U of the above Dirichlet problem with boundary data f(z), z €
has the representation

Ue) = - /Q "y’m'—(fy_P—y)u(y)dg,n, xej:, o @

where u is the solution ‘okf the double layer potential equation Au = f. Specifically, for
our tests we choose f(z) := U(z)|q with the harmonic function U(z) := \/%—((w +1)2+
2$2+3$2)_%,.’L‘ € P. -

In order to control our compression error, we have to monitor the error between the
exact solution u, and the approximate solution u obtained by the given (uncompressed)
discretized collocation method on a grid V7 with N = N; knots. Since we are often
interested in the potential U, or in some functionals of the boundary data u, rather than
in the values of u, we directly go ahead and determine first an approximation of U as
follows. Inserting u¥ into the representation formula above and computing the integral via
the same quadrature rule used for the computation of the entries of the stiffness matrix, we
derive the following formula for the approximate solution of the boundary value problem
(cf. Fig.11):

1 3 Ny - _yK)

ZZ

5 u; (Vk)I7), | (412)
TEQ] 1,—1 yKi ’ .

where for T = [y, YKo, Yk,| the points y, are defined by Yk = Lyk, + yxk) €A =
1,2,3 withk=i+1,fori=1,2 and with k =1if i = 3, are the midpoints of the edges
of the trlangle 7 and uf (yK,) = 2 (uf (v%.) + uf (vk,))-

As a further control we replace the exact solution u of (4.5) by the numerical solution uy on

a very fine grid and compute ERR? = eizuslo o ere here Jlu 0= (Zxeoi |ulzg)?)H2.
Y lusllo Ke

This error is equivalent to the relative L?-error (see [10]).

In the multiscale representation A; of the operator we discard those elements which are
below a given threshold th and end up with a compressed or sparsified matrix A;. The
ratio between the total number N2 of matrix elements of the full matrix and the number
nze of nonzero elements after thresholding defines the compression rate= cpr := NTZ By
compression we obtain a perturbed system. The solution of this perturbed system yields
the approximate solution u; (which at this stage is given in its multiscale representation).

Evaluating u; at the points g, and substituting these values into the discrete represen-

tation formula (4.12) for u;”, prlovides Uj(z). The evaluation is most efficiently performed
- by transforming the solution of the compressed system into nodal basis coefficients with
the aid of T; and exploiting then the localness of the basis functions ;.

Of course, the compression causes an additional error. An acceptable compression should
have only a negligable influence on the precision of the final approximate solution. To
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. monitor u; we again replace the exact solution u of (4.5) by the numerical solution u; on

a very fine level J and compute ERR; = W In order to determine which threshold

results in a suitable compression, we compare this error with the error.ERR;‘.’ of the

discretization scheme. Similarly we compare ERR,: with the corresponding error |U(z?) —

U;(z*)|. To estimate this error we compute the maximum MERR,, := max;_; 2 3|U(z) —

U;(z*)|. This is the second quantity that should help determining which compression

rate still has a negligable effect on the precision of the approximatell s;)lutlilon. Finally, we
uf—u;ilo

compute the additional error arising from the compression ERR := e which is also
: ; ;

displayed in most of the tables.

The main results for the geometries we have tested are presented in Tables 2, and 3.
The bold quantities refer to the largest threshold th and the corresponding solution u;
for which ERR; =~ ERR;’ on the same level j. In this case, thresholding apparently has
a negligable influence on the solution ;. Furthermore for the bold quantities one has
MERR; =~ ERR,:,t = 1,2,3 and for j > 4 even MERR, < ERR,:,i = 1,2,3. We observe
that we can choose a larger threshold, and this results in a better compression for larger
N, satisfying MERR,, ~ infERR:, 1 =1,2,3. '

In Figs. 12, and 13 the number nze of nonzero elements of the compressed matrices A,
for which we observed acceptable precision (bold quantities in Tables 2, and 3) versus
the number of knot points N = #V/ are plotted and compared with the N? elements of
the dense matrix. Figure 13 exhibits a nearly linear increase of nze for greater N. The
compression reduces storage significantly to 1/cpr - N2. Likewise the CPU time for the
‘matrix-vector multiplications during the iterative solution of the linear system decreases
substantially (see Fig.14).

For the solution of the discrete and compressed scheme we again use the iterative method
GMRES. For the estimation of the condition numbers £(Af) and x(A$) we apply a direct
solver. This method is an expert driver of the well known LA-package [12]. The number of
iteration steps, the estimated condition numbers and the CPU time tgm for the GMRES
solution on a DEC 3000 AXP 500 workstation are presented in Table 4. The termination
bound for the iteration process is chosen to be about ERRY/100. Note that since the
operator has order zero in this case and since we have not employed an orthogonal basis
the condition of the original matrix should be better than that of the transformed matrix.
Furthermore, compression should have a minor influence on the condition numbers which
is also confirmed by our experiments. ’ o

Our aim was to show the nearly linear asymptotic behavior of the necessary number
of nonzero elements nze also in the case of a large number of degrees of freedom. So
quadrupling the number N; of unknowns leads to quadrupled nze only. In spite of a
relatively strong compression one observes acceptable accuracy. For N = 100, 000 such a
compression rate is about 500 and we observed this rate to be more or less independent of
the underlying geometry. Therefore in CPU—-time solving the linear system by an iterative
scheme the speed up factor was dramatic — solving a system corresponding to 100, 000
degrees of freedom, only takes 3 minutes on a sequential workstation and the whole matrix
- goes into a main memory of ~ 200 MB. Our method damps the coefficients away from
the singularity. Thus the double layer potential operator for the Laplacian can be well
compressed. We expect the same to persist for the double layer potential for the Stokes -
system. ‘ : . ' .
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One advantage of the present multiscale technique applied to boundary integral equations
is that we have additionally a simple a posteriori criterion to decide which coefficients
are essentially required. Applying the present thresholding leads often to much better
compression than the a priori choice of coefficients. This seems to apply to our double
layer potential operator. \ :

5 Concluding remarks

We have outlined some theoretical foundations of multiscale methods and have carried
out corresponding numerical experiments for two types of boundary integral equations.
Galerkin methods being better understood we have concentrated here on collocation. The
first case study concerning the Helmholtz equation is covered by the existing theory and
shows that aside from the natural effects of large wave numbers also operators of order
different from zero can be handled efficiently. The experiments are of significant help in
clarifying the quantitative effects of the various ingredients of the scheme. The second
example is a more complex three dimensional problem which is not fully covered by the
- analysis of the model problems. It could be shown though that nevertheless even for large
problem sizes the basic compression and convergence properties predicted by the theory
for the periodic case still persist to be valid. ~
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Figure 5: Errors Ej, e; in logarithmic scale for an elliptical cross section and fixed wave
number k = 10 for two different constants a for the a-priori compression strategy.
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Figure 6: Number nze of nonzero elements of the compressed matrix for two constants a
for different wave numbers k. ‘
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Figure 7: CPU-time tgy in seconds on a DEC 3000 AXP 500 a-processor workstation for
the iterative solution of the arising linear system by GMRES for different wave numbers
k and constants a. :
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~ Figure 8: Radar cross section (RCS) o versus viewing angle for the scattering of a fre-

quency of 2.4 GHz implying a wavelength of A = 0.125 m at a disc with radius r = 0.25

m. The quantity & - 2r determining the Hankel function values is equal to 25.13.
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Figure 9: Radar cross section (RCS) o versus viewing angle for the scattering of a fre-

quency of 10 GHz implying a wavelength of A = 30 mm at an ellipse with a, = 60 mm, b, -

= 30 mm. The quantity & - 2a determining the Hankel function values is equal to 25.13.
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Figure 10: Radar cross section (RCS) o versus viewing angle for the scattering of a
frequency of 10 GHz implying a wavelength of A = 30 mm at an ellipse with a; = 300

mm, b, = 150 mm. The quantity & - 2a determining the Hankel function values is equal

to 125.66.
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Figure 11: Triangle [zx,, Tx,, Tx,] of a face of a polyhedral boundary and its reﬁnement‘.
{Kla K2) K3} - VJ = {Kla K27 K3J K]I.’ Ké’ K,',i} C vj+1) {K],J Ké’ Ké} - AJ

Cube ‘ ,
g N;| th | nze | cpr ERR MERR,
1 26 [ 3-1073 | 568 1.2 |2.0-107*[2.9-1072
1-1072 466 1.4 4.3-107%]2.9-1072
3-107% 274 2.5 85-1072 | 3.0-1072
2 98 [ 1-1073 5176 1.8]23-1073 | 4.6-1073
-~ 13.1073 3346 2.9 | 55-107%|4.4.1073
1-1072 1990 481 25-107%(29-1073
3 386 | 3.107% 36,484 4111.0-107%|6.7-107%
1.-1073 21,124 7.0 || 44-1073 | 52-10*
3.1073 12,646 | 11.8 | 2.3-1072|1.9-1073 |
4| 1,538 | 1-107* 401,272 59 [ 4.7-107% | 1.3.107*
3-107* 235,588 | 10.3 | 1.3-1073 | 1.2.10*
1-10-3 125,524 18.8 | 3.8-107% | 1.8-107*
5| 6,146 | 3-107° 2,098,108 18.0(29-107%]9.2-10°°
1-107%| 1,118,296 | 33.8 | 8.4-107%| 4.0-107°
3-107*| - 647,032 58.4 1 2.1-107% | 2.4-107°
6> | 24,578 [ 3-107° 6,755,512 || 89.4 - 5.0-107°
1-107%| 3,953,114 | 152.8 - 5.5-1076
13.107%| 2,478,484 || 243.7| . - 2.1-107°
7° | 98,306 | 3-107° | 17,857,936 | 541.0 - 2.0-10°°
3.107% | 7,097,044 | 1361.0 - 122.1078

2 Calculations without singularity subtraction. Coarsest level is set to [ = 2.

® Calculations without singularity subtraction. Coarsest level is set to [ = 3.

Table 2: Number nze of nonzero elémen’ps, compression rate cpr, errors ERR and MERR,
for the multiscale algorithm for the Laplace equation on the cube for several thresholds
th and levels j. S
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Pyramid , ;
j | N;| th | nze | cpr| ERR | MERR,
1 14 3.1078 188 1.0]1.1-107%4[2.2-1072
1-1072 172 1.1 | 1.8-107% | 2.2-1072
3-1072 122 1.6 || 56-1072 | 3.7-1072
2 50 1-107% | 1948 1.3 75-107%(5.2-1073
3-1073 1494 | 1.7 15-1073|53-107%
1-1072 1016 2.5 15-1072|6.3-1073
3 194 [ 3-1074 22,546 1.7 22-107%]2.2-107¢
1-1073 15,108 2.5(16-1073|1.8-107*
3.1078 9,736 3.9 58-107%|1.5-10"*
4 770 | 1-1074 159,022 3.7]31-107*|12-107*
3-107% 196,244 6.2 1.1-107%|1.2-10*
1-1073 56,668 | 10.5 || 3.0-1073 | 2.3-107*
5| 3,0014]3-10° 1,179,686 8.0 1.8-107%[29-107°
1-1074 660,124 | 14.3 || 5.1-107* | 2.8-1075
3-107* 389,018 | 24.3 | 1.4-.1073|2.5-107°
612,290 | 3-107° 4,071,856 | 37.1 - 9.0-107F
1-107% | 2,401,236 | 62.9 - 7.3.1075
3.107° 1,486,256 | 101.6 - 9.2.10°6
7° | 49,154 | 3-107° | 10,776,400 || 224.4 - 1.6-10°° ,
2 Calculations without singularity subtraction. Coarsest level is set to [ = 2.

b Calculations without singularity subtraction. Coarsest level is set to [ = 3.

Table 3: Number nze of nonzero elements, compression rate cpr, errors ERR and MERR,
for the multiscale algorithm for the Laplace equation on the pyram1d for several thresholds
th and levels j.

IJ'I N; || s(A7) [it(AT) [ (A7) | cpr | w(A5) [ it(A5) | #(45) |
Cube: . . ' :
3 386 2.4 6 0.2 70| 389 14 0.1}
41 1,538 2.8 8 39| 103 133.0 16 0.9
5| 6,146 3.2 11| 52.0( 33.8]| 215.7 23| 6.0
6 | 24,578 . - - || 152.82 - 29 | 33.8
7 | 98,306 - - - || 541.0° -| . 32]|178.0
Pyramid: ~ :
3 194 2.3 7] 0.06 39| 311 13| 0.03
4 770 5.3 8 09 62| 634 15 0.3
15| 3,074 8.6 10| 17.3 14.3 | 1182 19 2.6
6 | 12,290 - - - 62.92 - 28 | 19.9
7| 49,154 - - - || 224.4° - 31| 74.2

a Calculatlons without s1ngular1ty subtraction. Coarsest level is set to [ = 2
b Calculations without smgulanty subtraction. Coarsest level is set to [ = 3.

Table 4: Laplace equation: Number of iterations it for the solution of the linear systems ‘
Afuf = f; and ASu; = (T})* f;, respectively, with 'GMRES; CPU-times ¢ in seconds on a
DEC 3000 AXP 500 C—Processor workstatlon Cond1t10n numbers K of the correspondmg
matrices.
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Figure 12: Number nze of nonzero elements of the transformed matrix A for the Laplace
equation after thresholding in dependence of N;. Dotted line for comparison: quadratic
behavior of the number of elements of the original stiffness matrix.
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Figure 13: Number nze of nonzero elements of the transformed matrix A for the Laplace
equation after thresholding in dependence of N; in logarithmic scale. Dotted lines for
comparison: quadratic behavior and linear behavior.
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Figure 14: CPU-time in seconds on a DEC 3000 AXP 500 a—pfocessor workstation for
the iterative solution of the linear systems for the Laplace equation with uncompressed
(dotted line) and compressed matrix, respectively, with GMRES.
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