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1 Introduction 

This paper presents some numerical results about applications of multiscale techniques to 
boundary integral equations. The numerical schemes developed here are to some extent 
based on the results of the papers [6]-[lOJ. Section 2 deals with a short description of 
the theory of generalized Petrov-Galerkin methods for elliptic periodic pseudodifferential 
equations in IRn covering classical Galerkin schemes, collocation, and other methods. A 
general setting of multiresolution analysis generated by periodized scaling functions as 
well as a general stability and convergence theory for such a framework is outlined. The 
key to the stability analysis is a local principle due to one of the authors. Its applicability 
relies here on a sufficiently general version of a so-called discrete commutator property 
of wavelet bases (see [6]). These results establish. important prerequisites for developing 
and analysing methods for the fast solution of the resulting linear systems (Section 2.4). 
The crucial fact which is ·exploited by these methods is that the stiffness matrices relative 
to an appropriate wavelet basis can be approximated well by a sparse matrix while the 
solution to the perturbed problem still exhibits the same asymptotic accuracy as the 
solution to the full discrete problem. It can be shown (see [7]) that the amount of the 
o.verall computational work which is needed to realize a required accuracy is of the order 
O(N(log N)b), where N is the number of unknowns and b ~ 0 is some real number. 

We focus h~re on two problems which are solved by fully discrete collocation wavelet 
methods. Section 3 is devoted to various numerical experiments for the exterior Dirich-
let problem for the Helmholtz equation. In this case the theoretical results for periodic 
problems apply and are confirmed by the numerical tests. In Section 4 we present some 
new results concerning a Dirichlet problem for the Laplace equation over three dimen-
sional polyhedral domains. Linear systems with ~ 100,000 unknowns are solved which 
corresponds to fully populated matrices of the same order. In this case our goal is not 
yet to present a fully developed scheme for such a complex three dimensional problem. 
In fact, one should note first that the general theory described in Section 2 is not directly 
applicable to this problem because it is not periodic and the boundary is not smooth. 
Therefore our main goal here is to explore to which extent the theoretical predictions 
from the model problem can still be confirmed under these less ideal circumstances. In 
particular, we focus on compression properties and the convergence behavior of the cor-

. responding solutions of the perturbed problem. Therefore we content ourselves here still 
with a rather expensive way of computing the compressed stiffness matrices. Speeding 
up this portion of the solution process is less dependent on the topology of the domain 
and is meanwhile understood conceptually. Essentially following the analysis in [10], the 
practical realizations and numerical tests presented here do confirm a similar behavior as 
predicted by the theory for the periodic model problem. 

2 . Multiscale methods 

2.1 Periodic pseudodifferential equations 

At this stage we focus on the model case of periodic pseudodifferential equations to ex-
ploit the full advantages of Fourier transform techniques in connection with appropriate · 
representations for the class of operators. urider consideration. However, we do consider 
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variable symb9ls and it should be mentioned that this class covers all the classical exam-
ples such as Hormander's class, in particular, those operators arising in connection with 
boundary element methods. Moreover, most of the methods used here are of local nature 
and thus apply in essence to the case of non-periodic equations, as well (see [8]). 

Consider the discrete Fourier transform by u(k) := f[o,l] u(x)e-21l"ix·kdx, k E ~n, where 
x. k = ~J=l Xjkj. Let rn denote then-dimensional torus. Then a periodic pseudodiffer-
ential operator is defined by 

a(x, D)u(x) := L a(x, k )u(k )e27rik·x. 

kE'll.in 

The function a E C00 (Tn x ~n), which is called the symbol of the operator a(x, D), is 
assumed to belong to a certain class ~µ for some µ EC. Here ~µ is comprised of all 
symbols (}' of the form (}' ~ O'o + 0'1, where O'Q E C00 (rn x (.!Rn I {O} )) is homogeneous 
of degreeµ EC, i.e. ·a0 (x,O) = 1, a0 (x,)..k) = )..µa0 (x,k)~ for)..> 0, k =I 0, and 
lafx)T{k)al(x, k)I ::; Ca,,a(l + lk!Y1 -lal for x E rn, k E ~n, and for some rl < Reµ= r . . 
Here a stands for the partial differential operator and T for the partial forward difference 
operator. By Ar we denote the class of operators ofthe form A= a(·, D) + K where a E 
~µ' r =Reµ is the order of A, and (Ku)(x) = f1 n k(x, y)u(y)dy with k E C00 (Tn x .!Rn) 

. is a smoothing operator. The operator a(x, D) E Ar is called elliptic if, for sufficiently 
large !kl, lao(x, k)I 2:: clklr, x E rn. 
Any A E Ar is a bounded linear operator A : Ht -+ Ht-r, t E JR. This operator is 
Fredholm if and only if it is elliptic. Here Ht denotes the classical periodic Sobolev space 
of order t, equipped with the norm llullt := (~kE'll.in(l + lkl)2tlu(k)l2)
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2.2 Multiresolution and wavelets 

Multiresolution or Multiscale Analysis (MSA) is by now a well-studied notion [16]. Here 
we focus only on those variants which are useful for our purpose. MSA of L2 ( JR) is a 
sequence of nested closed subspaces.· · · C V_1 c Vo C Vi C · · · C L 2 (JR) with 

- 2( 1. UjVJ = L JR), 

2. ni Vj = {O}, 

3. f(x) E Vj {:} f(2x) E VJ+i, 

4. There is a function r.p E L 2 (JR) such that the translates {r.p(x - k)} (k E ~) form an 
orthonormal basis of Vo. 

The function r.p is called scaling function. Obviously, the functions <{Jj,k(x) := 2il2r.p(2ix-k) 
form an orthonormal basis of Vj (j E ~) (see [11] for examples). Since r.p E Vo c Vi there 
exists a sequence {hkhE'll.i (which is called the mask or the filter of r.p) such that r.p satisfies 
the scaling equation 

r.p(x) = v'2 L hkr.p(2x - k), x E lR. 
kE'll.i 
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~oreover, the mask {hk} is finite if and only if cp is compactly supported. (2.1) is the 
key to the constructions of orth9gonal wavelet bases and of fast wavelet algorithms. The 
wavelet space Wi (j E 7l) is defined as the orthogonal complement of Vj with respect to 
Vj+l = Vj EB Wi. Thus 

(2.2) 

One of the main results of MSA reads as follows. Given cp, then there exists 'lj; E L2 (JR) 
such that the functions 'l/Ji,k(x) :=. 2i/27j;(2ix - k), k E 7l, form an orthonormal basis of 
Wi (j E 7l). The function 'lj; is called the mother wavelet of MSA and is defined by 

'lf;(x) = v'2 L 9k'P(2x - k), 9k = (-l)kfi1-k· 
kE'll 

An important property of wavelets is that certain moments vanish, i.e., 

j x1'lj;(x)dx = 0, 0:::; l < d*, 
IR 

(2.3) 

(2.4) 

where in the case of orthogonal wavelets d* is the order of polynomials which can be 
written as linear combinations of the translates cp( · - k), k E 7l. 

More flexibility is offered by the concept of biorthogonal wavelets [11] which permits the 
employment of B-splines as scaling functions. In particular, the possibility of raising 
the order of moment conditions turns out to be essential for balancing compression and 
convergence rates. 

In the following we need a periodic version of MSA. To this end, let [·] denote the pe-
riodization operator defined by [f](x) := ~kE'll f(x + k) for any compactly supported 
function f. Given a compactly supported MSA cp E L2 (JR), then the functions ['Pm,k] and 
['l/Jm,k] are 1.,...periodic. MSA of L2 (1Rn) can be defined in a completely analogous manner. 
However, one needs a finite number of mother wavelets depending on the type of scaling. 

2.3 Generalized Petrov-Galerkin schemes 

The spaces Vj will be used as trial spaces for the approximate solution of the equation 

Au=f, (2.5) 

where A E Ar and f E Ht-r is given. In the following we will fix one such t and assume 
that 'T] E Hr.-t(JRn) is a fixed linear functional with support in some compact set r c IRn. 
Defining the functionals 'T]j,k by 'T]j,k(f) :. 2-ni/27](!(2-i(. + k))), k E 7ln,i, we seek for an 
element Uj E Vj satisfying 

(2.6) 

Clearly, 'T] = cp corresponds to a classical Galerkin scheme, while 'T] = o(· - xo) give rises 
to collocation at the points 2-i (k + x0 ), k E 7ln,j, j E INo. 
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Our first objective is to study the solvability of (2.6), and if this is the case, the convergence 
of the solution Uj as j -+ oo. The key to this problem is a suitable stability concept. To 
this end, it is convenient to consider projectors of the form 

Qjf = :E 'T/j,kUKj,k, 
kE'lln,j 

where the (j,k are suitable basis functions satisfying 'T/j,k( (j,l) = 8i,k (possibly spanning 
spaces different from Vj, see [6] Sect. 4). Then (2.6) can be rewritten as operator equation 
QiAui = Qjf. The scheme (2.6) is called (t, r)-stable if 

(2.7) 

for all v E Vj uniformly in j E JN0• Clearly, (2.7) means that the finite dimensional 
operators Ai := QiAPi : Ht -+ Ht-r have uniformly bounded inverses Aj1 : im Qi -+ 
im Pi. 
It turns out that the stability of (2.6) is equivalent to the ellipticity of a certain function 
A which shares many features with the principal symbol o-0 of the operator A and which is 
called the . numerical symbol (more precisely, the "symbol of the Petrov-Galer kin scheme 
(2.6)"). The numerical symbol i_s defined by 

.A(x, y) := L o-0 (x, y + k)cp(y + k)ij(y + k) 
kE'llin 

(2.8) 

for all x, y E P (provided that the series on the right hand side of (2.8) converges 
absolutely for all x, y E Tn), where "stands for the Fourier transform. 

Theorem:[{6}} The scheme (2'.6) is (t, r)-stable if and only if the numerical symbol A 
is elliptic, i.e. 1-A(x, y)I 2:: c!B(y)lr holds uniformly in x E Tn, where B = (B1, ... , Bn)T, 
Bi(Y) = e21l"iYi _ 1. 

Example: Consider the knot collocation (i.e. x0 = 0) with tensor product splines of degree 
d. Then ij = 1 and <P(e) = rrr=l (sin 7rez)d+l I (7rez)d+l. Clearly, if dis odd, then A is elliptic 
if and only if A is strongly elliptic, i.e. Re o-0 2:: const > 0. Hence, in that case, Theorem 1 
provides stability of the collocation with odd degree splines for strongly elliptic operators 
(cf. [1] for the case n = 1 and [6] for the multidimensional case). Notice that, in the 
case of the classical Galerkin scheme, the ellipticity of the numerical symbol for strongly 
elliptic operators is a consequence of the stability property of cp. 
Applying Theorem 1 in combination with well known Galerkin techniques and approxima-
tion properties of the functions [cpj,k] one obtains optimal estimates for the error llu- uJt 
for a certain range of Sobolev norms (see [6]). 

2.4 Matrix compression and fast ·solution 

'This technique is essentially based on estimates for the asymptotic behavior of the entries 
of Ai (j -+ oo) in the wavelet representation.· We ·will present such estimates only for the 
case of classical Petrov-Galerkin schemes, i.e., when 'T/ is actually an L2-function. 
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Theorem:{{7, 17}} Let 2d* +n+r > 0 where d* denotes the number ofvanishing moments 
of the wavelets. Then for A E Ar the estimate 

2-(l+l')(n/2+d"') 
l(A[~z,k], [~z1 ,k1 ])I:::; C n+r+2d"'+2 (2.9) - f2 

holds, where f2 = <list (supp [~z,k], supp [~z',k']) and the constant c depends only on r, n 
and d*. 

(2.9) are the crucial estimates which compression criteria rely on. Such criteria allow us 
to avoid the computation of the full stiffness matrix in the wavelet representation and 
tell us which entries must be computed in order to guarantee a required accuracy. More-
over, by realizing sufficiently high accuracy on lower scales, the asymptotical convergence 
rates of the solutions to the uncompressed systems can be preserved for those of the com-
pressed system. Such a compression strategy reduces the computational work to the order 
O(N(log N)b), where N = 2in and bis a positive number ([7]). 

3 Exterior Dirichlet problem for the 
Helmholtz equation in 2D 

3.1 Statement of the problem 

The treatment of scattering of time-harmonic acoustic and electromagnetic waves on 
infinitely long cylindrical obstacles in JR3 with simply connected cross section D_ c JR2 

and smooth boundary r leads to an exterior boundary value problem for the Helmholtz 
equation in JR2• 

D 

D_ 

r 
Given the boundary data g and 
the wave number k > 0 in D, real. 

We seek the solution w of the following problem 

~w(x) + Pw(x) 
w(x) 

. 2-- 0 m D = IR \D_ , 
g(x) on r' 

8w(x) .k- ( ) ---IWX -
8r 

(3.1) 
(3.2) 

(3.3) 

uniformly in all directions (Sommerfeld's radiation condition). This problem is known to 
have a unique solution (cf. [5]). 

Using a single-layer approach (indirect method), one seeks w in the form 

w(x) = £ <f>(x, y)e(y)ds(y), x E D, (3.4) 
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where sis the arc length parametrization, and the fundamental solution corresponding to 
the Helmholtz equation is given by 

1 (1) -<f;(x,y):=-;H0 (klx-yl),x=fay. 
21 

Here Hd1
) means the Hankel function of order zero and of the first kind. Substituting 

(3.4) into (3.2) gives the boundary integral equation for the unknown density ~: 

fr </J(x, y)~(y)ds(y) = g(x), x Er: (3.5) 

Equation (3.5) is uniquely solvable 'in H 8 (r) provided that the homogeneous Dirichlet 
problem for the interior of r admits only the trivial solution. 

Let x(t) = (x1 (t), x2 (t)), 0::; t::; 27r, be a 27r-periodic regular parametrization of r sat-
isfying [ x~ ( t)] 2 + [ x~ ( t)] 2 > 0, t E r. Setting in ( 3. 5) u ( t) : = ~ ( x ( t)) { [ x~ ( t)] 2 + [ x~ ( t)] 2} 

112 

and f (t) := g(x(t)), the exterior Dirichlet problem for the Helmholtz equation leads to 
the following logarithmic singular integral equation of the first kind: 

(Au)(t) 

K(t, r) 

1 {27r 
·- 27r lo K(t, r)u(r)dr = J(t), 0::; t::; 27r, 

.- ~Hd1)(kr(t,r)) 
1 

where r(t, r) := {[x1 (t) - x1 (r)] 2 + [x2 (t) - x2 (r)]2}112 . 

(3.6) 

In principle it is possible to separate the logarithmic part of the Hankel function and 
treat it separately. There exist several fast methods for the solution of the logarithmic 
kernel equation (also called Symm's equation). In particular, one can use the fast Fourier 
transform, apply the fast method [20] or the exponentially convergent method [14]. Here 
we do not separate the logarithmic part because we only consider it as a model problem 
for other cases where a separation is usually not applicable. A second related reason is to 
simplify the implementation by keeping it as independent as possible of further analytic 
investigations which have to be tuned to the particular application at hand. 

3.2 Wavelet discretization method 

For the numerical solution of (3.6) consider. the knot collocation method on the following 
nested grids of [O, 27r]: 
'\lz = {t~lt~ := khz, k = O, ... ,Nz-1, hz = 2-z. 27r, Ni= 2z}, l = 0,1, ... ,j. The set of 
additional knots for passing from level l - 1 to level l is denoted by ..6.1- 1 := '\ll\ '\11- 1 . For 
a corresponding Galer kin w~velet method the reader is referred to [17]. As trial functions 
we use here continuous piecewise linear functions spanned by the canonical periodized hat 
functions [ 'Pi,k], i.e., 

{ 

1 + x if -1 ::; . x ::; 0' 
cp ( x) : = 01 - x if 0 ::; x ::; 1, 

else. 
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cp(x) = ~cp(2x + 1) + cp(2x) + ~cp(2x - 1) 

-1 0 +1 

'ljJ(x) = ~cp(2x + 1) - cp(2x)+ ~cp(2x - 1) 
1 +---2 

0 

-1--

Figure 1: Two-scale relations for our choice of generating function and mother wavelet. 

In this case the mask in the two-scale relation (2.1) is 

(3.7) 

Since the translates cp( · - k) are not pairwise orthogonal the simple recipe from (2.3) for 
forming orthogonal wavelets does no longer work. Nevertheless, one can resort to the 
literature for a long list of candidates 'lf;(x) whose integer translates _are stable and span 
the orthogonal or other complements of Vo in 1/i. In particular, for any desired order d* of 
vanishing moments biorthogonal wavelets have been constructed in [4] which all give rise 
to Riesz bases. Specifically, the wavelet for d* = 2 from this family has support [-1, 2] 
and the mask has the form 

(3.8) 

To keep the support of 'ljJ as small as possible we will focus ·here though on the following 
choice with also vanishing moments of order d* = 2: · 

(3.9) 

which is depicted in Figure 1. TJ:iese wavelets are likewise biorthogonal in the sense of 
[4] and therefore give rise to a Riesz basis as is shown in [18]. Since we are employing 
a collocation method the Brandt/Lubrecht functionals [2] are adequate "test wavelets" 
(because of poi:ritwise evaluation) spanned by 8-distributions: 

(3.10) 
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k == 0, ... , 2Z-l - 1, l == j - 1, ... , 1; 'T/o,k(f) == f (tl), k == 0, 1. 

One easily verifies that the 'T/Z,k have also vanishing moments of order d* = 2. Figure 2 
illustrates for three levels l how the point values are transformed into the data 'T/z,k(f). 
Obviously, the complexity of this transformation is of the.order O(Ni) when j is as above 
the finest level. Given (3.10), the collocation stiffness matrix Ai on level j relative to the 

• : f::i..Z 

• : f::i..Z-1 

• : f::i..Z-2 

f (tl+l ) . \7Z+l 
2k+l ' 

i 
'T/z,k(f) 

f ( t~k+l)' \7l 

i 
'T/l-1,k(f) 

f (t~k~l), \7Z-l 

i 
'T/l-2,k(f) 

Figure 2: Generation of the functionals of Brandt/Lubrecht. Open circles indicate those 
grid points whose values are to be calculated in the next step. 

wavelet basis has entries of the form 

(3.11) 

k = 0, ... , 2l-l - 1, k' = 0, ... , 21'-l - 1, l, l' < j. 

It is easily seen that the integral operator A defined by (3.6) belongs to the class Ar (see 
s·ect. 2) with r = -1 and r 1 _.:... -3. Moreover, it is strongly elliptic and, hence, the 
considered collocation method is stable (see Theorem 2). Furthermore, the error estimate 

(3.12) 

holds for alls, -1 ~ s < 3/2, provided f E H 3 • 

Using an a-priori compression criterion established in [7] and improved in [21] we only 
calculate and store approximations to those matrix entries of (3.11) obtained through 
quadrature for which 

dist (n n I 1) < max {a2~z a2-l' a1·5/6 . 2(2/3)j-(4/3)Z-(2/3)Z'} l,k, l ,k - ' ' ' (3.13) 

where Dz,k is the support of [1/'z,k], 01',k' the support of 'T/l',k'' and a a constant that has to be 
chosen appropriately. Note that, according to the general theory, to realize an ( asymptoti-
cally) almost optimal compression rate for the choice of piecewise linear wavelets with two 
vanishing moments it would be necessary to use Brandt/Lubrecht functionals with three 
vanishing moments. In this case also cr~terion (3.13) changes somewhat .. Nevertheless, 
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the present method turns out to be more efficient for the present scope of experiments 
·because of the smaller support of the test functionals. Also our convergence studies con-
firm a sufficiently good nearly optimal performance of the present version in all our test 
problems (see Figs. 3,4,5). 

In order to get a fully discrete method we have to employ a suitable quadrature method 
to approximate the integrals. Because of the logarithmic singularity of the kernel function 
it is necessary to use an adapted rule for the quadrature to guarantee that the order of 
convergence is better than one. Therefore we choose· the following graded quadrature 
points Tq of the interval [O, 2?T] with grading parameter a ~ 1. More precisely, the points 
are graded near the singular point t E (0, 21T) as follows: 

T~ ==?TI! la sign q + t, q == -m, ... , m - l. 

The integer m has to be chosen proportional to Ni. To make the quadrature exact for the 
ansatz functions these graded points are united with equidistant ones: { re}~i-l == { tn. 
Let Tq, q == 0, ... , m - 1, m == 2ih +Ni be the quadrature points obtained by periodizing 
{ r~} U {Te}. In our numerical examples we choose a grading parameter a== 2.5 together 
with the trapezoidal rule. The latter is exact for linear polynomials, and hence sufficient 
to obtain second order convergence in L2 (cf. (3.12)}. 

3.3 Assembling the compressed stiffness matrix 

Let 
m-1 

(Ai[~z,k])(ti) == L K(ti, Tq)wq~l,k( Tq), k ~ 0, ... , 2z - 1, l < j, 
q=O 

rq-::f;.t 

be the approximation of (A~z,k)(ti) obtained by quadrature. Here Wq are quadrature 
weights. 

Keeping in mind that 

and that the vanishing moments of the test wavelets T/l,k imply that these quantities 
decay, their approximations obtained through quadrature are expected to exhibit the 
same behavior. Thus we have to compute _the following expressions: 

(3.14) 
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i = 0, ... , Nl' - 1, k = 0, ... , Nz - 1, l, l' = 1, ... , j - 1, 

(3.15) 

i = 0, ... , Nz, - 1, k = 0, 1, l' = 1, ... , j - 1, 

m-1 

T]o,i(Ai[~z,k]) = L K(ti, rq)wq[~z,k](Tq), (3.16) 
q=O 

rq=r!:t} 

i=O,l, k=O, ... ,Nz-1, l=l, ... ,j-1, 

(3.17) 

i = 0, 1, k = o, 1. 

Here it is important to note that, according to our above remarks, these calculations are 
only performed for those pairs (l', k'), (l, k) which satisfy condition (3.13). Thus storage 
is only required, and hence is directly reduced, for the significant entries of the matrix Aj 
defined by 

{ 
0 if (3.13) does not hold, 

( Aj)(l' ,k'),(Z,k) := 7JZ' ,k' (Ai [~z,k]) if (3.13) holds, 

where k' = 0, ... Nz1 - 1, k = 0, ... , Nz - 1, l, l' = 0, ... , j - 1 and wh'ere we have set 
~O,k := 'Pl,k· 

Next let us denot~ by Bi the transformation (3.10) which takes the array of data J(t{), k = 
0, ... , Ni - 1, into the array 77z,k(f). One can check that Aj is the compressed version of 
the matrix BiAi. Hence we end up with the following sparse matrix equation 

(3.18) 

where fj := (!(fa), f (t{), ... , f (fN.-1)f · 
J 
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·. ·o. 

0.1 
·6 "·o. 

·1:::. ·o. 
0 8 "· · .. 0. 0.01 

0.001 <>. 6 
E· J ·0. 

0.0001 
0 

le- 05 

le- 06 

~ = 10., a = 0.3 ·O· -
k = 10.,a = 1.0 ·A· -
k = 1. 0, a = 0 .3 ·O· -

0. 

0. 
6 

b 
0. 

b 0 
·o 

<> '!:::. 

<>. 
1 e - 0 7 ,______.____.___.__L-1-1,........,___..;;.___.____.___..__._....L.-.L-.I..........._ _ _.__........_...,._.__..__,_....._, 

10 100 1000 10000 
N· J 

Figure 3: Error Ej in logarithmic scale for various wave numbers k and constants a for 
the a-priori compression strategy. r = circle. 

Note that it is possible to use the same quadrature formula as for a standard collocation 
method not based on wavelets for all expressions in (3.14)-(3.17). It is only necessary to 
shift the grading for the singularity to the actual singular point. 

Clearly, the solution Uj of (3.18) consists of the coefficients of the approximate solution 
relative to the wavelet basis. If one wishes to represent the solution in terms of the nodal 
basis, a further transformation 

has to be performed. This transformation also has the following familiar pyramid structure 

W1,. W2,. W3,. Wj-1,· 

'\c C1 '\c. C2 '\c cj-1 (3.19) 
U1,. ---+ u2,. ---+ U3,. Uj-1,· ---+ u'f 

J 
M1 M2 Mj-1 

where the matrices Mi, Ci, i = 1, ... ,j-1 are sparse and contain the masks from (3.7) and· 
(3.9). For a description of the algorithm in pseudocode see (10]. Thll:s Ti takes coefficients 
Uj := { u1,k, wz,k} of the wavelet representation :Ek=O,l u1,k'P1,k + :Ef:t :EkE~z Wz,ki/Jz,k into 
the coefficients u) := { Uj,k} of the corresponding nodal representation :EkEY'i Uj,k'Pj,k· Also 
the application of the transformation Ti is easily seen to require only O(Ni) operations. 
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Figure 4: Error ei in logarithmic scale for various wave numbers k and constants a for 
.the a-priori compression strategy. r == circle. 

3.4 Preconditioning and solution 

The linear system (3.18) is solved with the aid of the iterative Krylov subspace method 
GMRES ( cf. [19],[24]). This method has been proved to be efficient for this kind of 

. systems (cf. e.g. [23],[13],[10]). Since r == -1, the condition numbers K(Aj) grow like 
Ni so that the number of iterations which is necessary to accomplish a desired accuracy 
increases when Ni becomes large. The theory in [21] suggests multiplying Aj with the 
Ni x Ni diagonal matrix D from the right where D(l,k),(l' ,k') = (k2 + 22z) ~ • c5cz,k),(Z' ,k'). After 
solving then the system AjDvi = Bjfj one has to transform the resulting vector according 
to ui = Dvj to obtain the wavelet coefficients of the solution. 

We have also tested the following alternative preconditioning strategies based on diagonal 
- l 

scaling. Let Dcz,k),(Z' ,k') = 2 · c5(l,k),(l' ,k'). 

-1 -1 -1 
2. solve D2 AjD2 Vj = D2 B.i!J followed by corresponding diagonal back transformations. 

The results of the tests for a fixed example are given in Table 1. The best preconditioner 
is the one suggested by the theory which gives a constant iteration count. May be that 
with higher order Brandt/Lubrecht functionals the iteration count can further be reduced. 
The corresponding tools are available and, in principle, easily implemented. 

The main steps of the solution procedure may be summarized now as follows: 

1. Compute the matrix Aj directly in the wavelet representation as described by (3.14) -
(3.17) and apply the a-priori compression criterion (3.13) yielding a sparse matrix; 
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2. apply the transformation Bi (3.10) to the right-hand side: 
Bi : {f (t{)} r-+ {7Jj,k(f)}, k == 0, ... , Ni - 1 : Bjfj, which requires only O(Ni) 
operations; 

3. solve the sparse matrix equation AjDvi == Bjfj by an iterative solver (e.g. GMRES). 
The complexity of this part is nearly O(Ni(log Ni)b); 

4. back transform the solution of this linear system to ui == Dvi (== Ni operations), which 
prov~des the coefficient vector ui relative to the wavel~t basis and 

5. (optionally) apply the transformation 1j which yields the coefficients uj = Tiui for 
the nodal basis representation. Again this only requires O(Ni) operations. 

Clearly, the multiplications with the diagonal matrices are applied to the iteration vector 
rather than to the matrix Aj: Aj(DuY\ with uY) the actual iteration vector of Uj during 
the GMRES-iteration. This only requires 2Nj additional operations for the diagonal 
matrix times vector products in each. iteration step. 

Summing up the operation count in steps 2.-5. the overall complexity is of order 
O(Ni(log Ni)b) which gives rise to a fast solution of the linear system. Unfortunately, 
step 1., the matrix assemblation, is still of the order O(NJ) although only (nearly) 
O(Nj(log Ni)b) matrix entries are calculated. This is due to the poor quadrature scheme 
which does not take the distance between the supports nz,k and Ozt ,k' into account. Mean-
while it has been shown in [21] that such a refined quadrature strategy reduces the com-
putational work for assembling the matrix to the order of nonvanishing matrix entries. 

After the evaluation of the solution, the relative L 2 error Ei of the solution and the 
convergence rate /31 are calculated: 

Preconditioning 
j 2 3 4 5 6 7 8 9 10 11 12 
N· J 4 8 16 32 64 128 256 512 1024 2048 4096 
without 3 5 9 14 18 21 29 33 37 40 44 
DA~ 3 5 9 15 18 20 25 27 28 28 29 
D~A~D~ '? 3 5 9 15 17 19 24 27 26 26 27 

I 3 I 5 I 9 I 14 I 15 I 16 I 21 I 23 I 23 I 22 I 22 I 
Table 1: Number of GMRES iterations without preconditioning and with different pre-
conditioners for the following example: r · ellipse, k == 10, a == 1.0. 

3.5 Numerical examples for scattering 

We consider the scatteringof an E-polarized ·electromagnetic plane wave uin by a perfectly 
conducting cylinder. In. acoustics this problem is equivalent to the scattering of a plane 
wave by an impenetrable, sound-soft cylinder with smooth cross section. Let the incident 
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wave be given by uin(x) .= exp(ikeinx), with ein a unit vector describing the direction of 
propagation of the incident wave, and let us be the scattered wave. Then the exterior wave 
(total field) ue = uin+us is also a solution of the Helmholtz equation .6.ue+Pue = o in D 
and satisfies the boundary condition ue = 0 on r. So we have us = -uin on r and 
us also satisfies the conditions (3.1) and (3.3). Thus in terms of our initial unknowns we 
have: 

• w ·- us, 

• g ·- uslr = - exp(ikeinx)lr and if we set for the incident direction ein = (1, 0), 
we·obtain 

f (x(t)) .- -(cos(kx1 (t)) + isin(kx1 (t))). 

With these data one can then solve the integral equation (3.6). 

The solution us, the backscattered electric field, exhibits the following asymptotic behavior 
which follows from the asymptotics for the Hankel function for large argument: 

u•(x) = ex!i~r { u00(x) + o { l~I}}, lxl -too, 

exp(iZ!:) fr -u00 (x) = ~ ~(y) exp(-ikxy)ds(y). 
87rk r 

uniformly for all directions x := x/lxl. The function u00 is known as far field pattern or 
scattering amplitude of us. Substituting for ~(y) the solution u( t) of our integral equation, 
we obtain 

(3.20) 

A more interesting quantity is the radar cross section (RCS). It is defined by O'c(B') = 
27r lim1x!-roo x 1~:1~2 , with 0° ::; ()' :::; 360°, the backscatter angle. With the aid of the 
asymptotics of us we obtain the following approximation O'c(B') = 27rlu00 (x)l 2 for the 
RCS where x is the direction given by ()'. When plotting the RCS as a function of the 
observation angle, the quantity 

O' = 10 log10 ( O'c /A), A = wavelength (3.21) 

are shown ill the figures rather than O'c which is common in the engineering literature. 

After the solution of the integral equation by the wavelet method, the integral (3.20) is 
calculated which is a functional of the solution. This is realized by the rectangular rule 
which in the periodic case is equivalent to the trapezoidal rule. Let the approximation of 
(3.20) be uj. For the determination of u00 and uj we fix the direction of observation. 
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For a sequence of discretizations we determine the error ei and the convergence rate (32 
for the functionals uj: 

luC:O - uool e . - ---'-1 __ _ 
J - juooj ' 

For all numerical examples we ha,.ve selected a = 2.5 as an optimal grading parameter 
for the quadrature points and employing the a-priori compression criterion, we have 
examined the convergence and compression behavior for various wave numbers k and 
constants a. In the first example we consider a disc of radius r = 0.6 as cross section of 
a scattering obstacle ( cf. e.g. [3]) and we set e0 b := (1, 0) while the second considered 
obstacle is assumed to have an elliptical cross section with ax = 2by = 0.6. 

Figures 3 and 4 present the behavior of the errors Ei, ei for the disc. Figure 5 shows 
results for the case of an ellipse. Figures 3,4,5 clearly show the predicted behavior for 
the convergence rate of Ei, ei for the investigated boundaries if the constant a for the 
a-prior_i compressi_on criterion is appropriately chosen. The convergence rates of~ 2 
coincide with the expected convergence rate of the solutions to the full systems when 
using the same discretization method. Because of (3.12) for ei a convergence rate of 3 is 
possible when using a quadrature of higher ex_actness. 

The constant a from (3.13) in practical applications should be chosen so that the supports 
of 'l/;j,k, T/j,k' do not over~ap on the finest level j. This leads to a fixed bandwidth for 
the diagonal bandmatrix on the finest levels j and determines all other bandwidths of 
the appearing block band matrices. For our special choice of 'l/Jz,k, T/Z,k we recommend a 
bandwidth b of b ~ 4. For greater values of k or more complex domains D_ it may be 
necessary to increase this value by small amounts. 

Obviously, the error ei for the functional of the solution is not as sensitive to different 
compression constants a as the error Ei. This is due to the fact that a quadrature rule of 
higher exactness would yield a better compression rate for this error. 

Figures 6 and 7 show the number nze of nonzero elements of the compressed matrix Aj 
for some constant_s a and the time tGM for the iterative solution of the linear system by a 
preconditioned GMRES. One clearly observes that the time depends on the wave number 
k as well as on the constant a for the compression criterion. 

Finally, Figs. 8,9,10 present some results for the RCS for two domains and two different 
wave numbers k. The results agree with those obtained with a conventional collocation 
method. 

4 Dirichlet problem for the Laplace equation in 3D 

In this section new results for the multiscale method proposed in [10] are presented for 
a large number of degrees of freedom Ni. Note that linear systems with nearly 100,000 
unknowns are solved. Since the thresholding procedure is chosen so that the optimal 
asymptotic accuracy of the discretization error is preserved this corresponds to _solving 
fully populated linear systems of the same size arising from non-wavelet approaches. 
We start briefly recalling the main ingred_ients of the method and refer to [10] for further 
details. Note that the theory outlined in Section 2 does not apply directly because we are 
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dealing now with a non-periodic problem and the boundary of the considered polyhedral 
domain is not smooth. Nevertheless, the decay of the matrix entries in the wavelet 
representation on a face of the polyhedron [10] is of the same form as for the periodic case 
[7]. Accordingly, the results are also similar to those predicted in the model problem. 
It is a well known fact that the Dirichlet problem for the Laplace equation in some domain 
p c IR3 can be transformed into a second kind integral equation over its boundary [15]. 
For a polyhedral domain P this equation over the boundary n = BP reads 

Au 

Wu(x) 

·- (I+ 2W)u = f, 
.- [1/2 - Bn(x)]u(x) + 

4
1 { nl. (x 1

3
Y) u(y)dy!1, 

7r ln y- x 

(4.1) 

where Bn ( x) is the inner solid angle of n at x E n and ny the unit vector of the interior 
normal to Pat y. W is the double layer potential operator. The kernel function k(x, y) := 

4~ny · (x - y)jy - xj-3 vanishes if x and y are located on the same face of n. 

4.1 Triangulation and discretization 

As mesh for the boundary n a regular triangulation is used. Given some initial partition 
(mesh n°) of n into triangles, subsequent subdivision of each triangle of n° into four 
congruent subtriangles leads to 0 1 . This process generates a sequence of nested meshes 
Oi of depth or level j E JN0 • Clearly, the meshsize h on the level j is proportional to 2-i. 
The vertices x K of the· triangles are the· knot points of the mesh. The indices K on a given 
level define a grid \Ji = {K : XK is a knot in ni}. Again, the set of additional knots 
adde~ when passing from level j - 1 to level j is D._i-l := \Ji\ \Ji-1 . 

As trial functions, we employ properly normalized Courant hat functions 'Pi,K which are 
frequently used in finite element or boundary element methods. More precisely, each basis 
function 'Pi,K is a continuous function On 0 whose restriction to any triangle 'T in Oi is 
affine and satisfies the nodal conditions 'Pi,K(XK') = 2i8K,K'' for all K, K' E \Jilr· The 
spaces Vj := span { 'Pi,K : K E \Ji} of piecewise linear continuous functions on n are 
by construction nested Vo C Vi C · · · C Vj_1 C Vj. By considering the restriction to the 
planar faces of P one readily confirms second order accuracy of the trial spaces. 

Consider knot collocation on the finest grid \Ji, i.e., we wish to determine a piecewise 
linear and continuous function ur E Vj such that 

(4.2) 

Thus the entries of the collocation stiffness matrix are given by 

1 ls . n · (xK ~ y) 
(Acpi,K')(xK) = -2 · l . 13 'Pi,K'(y)dyn, 

7r supp 'Pj,K' y - x K 
(4.3) 

K, K' E \Ji, K =/= K'. 

suppcpi,K' consists of the six triangles 7, for which knot K' is a common vertex. In order 
. to get a fully discrete method quadrature which is known to be exact for polynomials 
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p of degree at most two is used for approximating the integrals (e.g. [22]). To describe 
this, let r == [xKu XK2 , XK3 ] E OJ and let xK~, XK~, xK~ denote the midpoints of its edges 
[xKu XK2 ], [xK2 , XK3 ],[xK3 , XK1 ], respectively (cf. Figure 11). The quadrature formula for 
a function. v ( x) then reads 

(4.4) 

Moreover, to treat the singularities in a proper way, usually a regularization technique is 
employed ( cf. [13]) based on rewriting Au = f as 

2u(x) + 2_ { nl. (x lay) [u(y)- u(x)]dy = f(x), x E fl. 
27r ln y - x (4.5) 

Note that some calculations presented in Tables 2 and 3 are performed without singularity 
subtraction. 

In summary one obtains the following· linear system with the discrete collocation matrix 

(4.6) 

4.2 Decomposition of function spaces 

Our approach is based· on a multiscale decomposition of the given trial spaces induced by 
the following two scale relations. The refinement equation (2.1) now takes the form 

'Pi,K == L mi,K',K'Pi+i,K', KE \Ji. (4.7) 
K'EV"i+l 

The coefficients mi,K' ,K are called mask or filter coefficients. On those grid points lo-
cated in the interior of the triangles r E. w0 the entries of the sparse Ni+l x Ni matrix 
(mi,K',K)K'E"VH1,KEV"i can be represented by the following 7 point stencil 

(4.8) 

Here the bold value indicates a position K in the coarse grid \Ji. Relation (2.3) which 
complements the basisin Vj to one for VJ+i, now reads 

. 'l/Ji,K := L ci,K' ,K'Pj+l,K'' K E D.,i == \lj+l \ \Ji' 
K'EV"i+l 

(4.9) 

and in the interior of each r E n°, ci,K' ,K corresponds to one of the following 3 point 
stencils 

( ~1 ~ ~1 ) ~' ( ~· ~: ~ ) ~' ( ~1 ~ ~1 ) ~ ' (4.10) 
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depending on the direction of the edge containing the knot x K, K E. ,6.i. Here the boldface 
values correspond to indices K E ,6.i. 

Now let as before Ti denote the transformation that takes the coefficient vector Uj of 
some element of Vj relative to the multiscale basis { f.fJo,K : K E \7°} U { 'l/Jz,K : K E .6..z, l · 
0, ... 'j - 1} into the coefficient vector ur relative to the nodal basis { f./Jj,K : K E \7i}. 
The linear system ( 4.6) is equivalent to 

AjUj = Tj*fj, fj = f(xK), KE ·vd, 

where Ai := Ti* ArTi is the collocation stiffness matrix relative to the multiscale basis. 

The transformation Ti has the same pyramid structure as described in Section 3. Due to 
the fin!te supports of the masks its application requires the order of O(Ni) operations. 

The essential steps of the present preliminary version of the algorithm may now be de-
scribed as follows: 

1. The discretized collocation method in the nodal basis gives rise to a linear system 
( 4.6). The complexity of assembling the matrix is O(NJ). 

2. The transformations Ti, Ti* lead to the matrix Ai.:= Ti* ArTj, so that the system 
is equivalent to Affti == Ti* fj, and u) == Tiui. Since A) is fully populated the 
complexity of this part is still O(NJ). In view of the order of our quadrature rule, 
the estimates in [10] predict a significantly faster decay of the entries in Ai than of 
those in A). Replacing all those entries in Ai by zero whose modulus stays below 
a given threshold th yields the compressed system A]ui == TI fj. To improve the 
scheme one has to compute Aj directly without going through A). The theoretical 
concepts needed to perform this step in an efficient way have now become available 
[21]. 

3. This latter system is solved with the aid of a sparse iterative solver (e.g. GMRES) 
without preconditioning since the order of the operator is zero in this case. 

The decay estimates (see [10]) allow us to estimate the deviation of the solution of the 
compressed system from the solution to the full system and, in some cases, also from the 
exact solution of Au == f. As pointed out above at this stage this method has still an 
overall complexity of O(NJ). Only the last step, after the thresholding procedure, has 
a complexity which .is nearly linear and therefore leads to a fast solution of the linear 
system. As one can see in Tables 2 and 3, quadrupling the number Ni of unknowns leads 
to quadrupled nze only.·· In contrast to the method of Section 3 it does not save yet memory 
because in the first two steps, NJ matrix entries are handled .. ·Nevertheless, so far the 
primary objective of these test has been to confirm the performance of such techniques 
with regard to compression and convergence behavior in situations where not all the 
assumptions of the model case are fulfilled. The results show that efficient compression is 
possible without deteriorating the resulting accuracy of the discrete solutions significantly. 

4.3 Numerical examples 

For our numerical experi~ents we consider a Dirichlet problem for Laplace's equation 
.6..U(x) = 0 , x E P, and smooth Dirichlet data, U(x)ln == f(x), x ==(ix, 2x, 3x) En. 
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In spite of the smoothness of the Dirichlet data the solution will generally not be smooth 
becau~e the boundary is not smooth. 

Here we mainly present numerical experiments for two different polyhedra, a cube, and a 
pyramid. For a nonconvex domain (bench) and further more detailed results, see [10]. 

Recall that the solution U of the above Dirichlet problem with boundary data f(x), x En 
has the representation 

1 1 ny · (x - y) U(x) = -4 I 13 u(y)dyO, x E P, 
7r n x-y ( 4.11) 

where u is the solution of the double layer potential equation Au = f. Specifically, for 
our tests we choose f(x) := U(x)ln with the harmonic function U(x) := /¥((1x + 1)2 + 

2 + 2)-1 E p . 2X 3X 2, X • , . 

In order to control our compression error, we have to monitor the error between the 
exact solution u, and the approximate solution u) obtained by the given (uncompressed) 
discretized collocation method on a grid Vi with N = Ni knots. Since we are often 
interested in the potential U, or in some functionals of the boundary data u, rather than 
in the values of u, we directly go ahead and determine first an approximation of U as 
follows. Inserting u) into the representation formula above and computing the integral via 
the same quadrature rule used for the computation of the entries of the stiffness matrix, we 
derive the following formula for the approximate solution of the boundary value problem 
(d. Fig.11): 

( 4.12) 

where for r = [YK1 , YK2 , YK3 ] the points YK! are defined by YK! = ~(YKi + YKk) E D..i, i = 
1, 2, 3 with k = i + 1, for i = 1, 2 and with' k = 1 if i = 3, are 'the midpoints of the edges 
of the triangle rand u)(yKJ := ~(u)(Yk) + u)(yK:J). 

l 

As a further control we replace the exact solution u of ( 4.5) by the numerical solution u1 on 
a very fine grid and compute ERR)= llulfu~~l~llo where here llullo := CEKeoi ju(xK)l 2 ) 1l 2 . 

This error is equivalent to the relative L2-error (see [10]). 

In the multiscale representation Ai of the operator we discard those elements which are 
below a given threshold th and end up with a compressed or sparsified matrix Aj. The 
ratio between the total number N 2 of matrix elements of the full matrix and the number 
nze of nonzero elements after thresholding defines the compression rate= cpr := ~:. By 
compression we obtain a perturbed system. The solution of this perturbed system yields 
the approximate solution Uj (which at this stage is given in its multiscale representation). 
Evaluating ui at the points Y}c and substituting these values into the discrete represen-
tation formula ( 4.12) for u), pr~vides Ui(x ). The evaluation is most efficiently performed 
by transforming the solution of the compressed system into nodal basis coefficients with 
the aid of Ti and exploiting then the localness of the basis functions 'Pi,K· 

Of course, the compression causes an additional error. An acceptable compression should 
have only a negligable influence on the precision of the final approximate solution. To 
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. monitor Uj we again replace the exact solution u of ( 4.5) by the numerical solution UJ on 
a very fine level J and compute ERRj == llull:Jll~llo. In order to determine which threshold 
results in a suitable compression, we compare this error with the error ERR) of the 
discretization scheme. Similarly we comp.are ERRxi with the corresponding error IU(xi)-
Ui(xi) I. To estimate this error we compute the maximum MERRx :== maxi=l,2,3 IU(xi) -
Ui ( xi) I· This is the second quantity. that should help determining which compression 
rate still has a negligable effect on the precision of the approximate solution. Finally, we 

h dd't' 1 . . f h . ERR llu'f-ttjllo h' h. 1 compute t e a I 10na error ansmg rom t e compress10n :== ll uj 110 , w IC IS a so 
displayed in most of the tables. · 

The main results for the geometries we have tested are presented in Tables 2, and 3. 
The bold quantities refer to the largest threshold th and the corresponding solution Uj 

for which ERRi ~ ERR) on the same level j. In this case, thresholding apparently has 
a negligable influence on the solution Uj. Furthermore for the bold quantities one has 
MERRx ~ ERRxi, i == 1, 2, 3 and for j > 4 even MERRx ::; ERRxi, i == 1, 2, 3. We observe 
that we can choose a larger threshold, and this results in a better compression for larger 
N, satisfying MERRx ~ infiERRxi, i == 1, 2, 3. 
In Figs. 12, and 13 the number nze of nonzero elements of the compressed matrices Aj, 
for which we observed acceptable precision (bold quantities in Tables 2, and 3) versus 
the number of knot points N == #\Ji are plotted and compared with the N2 elements of 
the dense matrix. Figure 13 exhibits a nearly linear increase of nze for greater N. The 
compression reduces storage significantly to 1/cpr · N 2• Likewise the CPU time for the 
matrix-vector multiplications during the iterative solution of the linear system decreases 
substantially (see Fig.14). 

For the solution of the discrete and compressed scheme we again use the iterative method 
GMRES. For the estimation of the condition numbers ~(A)) and ~(Aj) we apply a direct 
solver. This method is an expert driver of the well known LA-package [12]. The number of 
iteration steps, the estimated condition numbers and the CPU time taM for the GMRES 
solution on a DEC 3000 AXP 500 workstation are presented in Table 4. 'fhe termination 
bound for the iteration process is chosen to be about ERR) /100. Note that since the 
operator has order zero in this case and since we have not employed an orthogonal basis 
the co~dition of the original matrix should be better than that of the transformed matrix. 
Furthermore, compression should have a minor influence on the condition numbers which 
is also confirmed by our experiments. 

Our aim was to show the nearly linear asymptotic behavior of the necessary number 
of nonzero elements nze also in the case of a large number of degrees of freedom. So 
quadrupling the number Ni of unknowns leads to quadrupled nze only. In spite of a 
relatively strong compression one observes acceptable accuracy. For N ~ 100, OOO such a 
compression rate is about 500 and we observed this rate to be more or less independent of 
the underlying geometry. Therefore in CPU-time solving the linear system by an iterative 
scheme the speed up factor was dramatic - solving a system corresponding to ·100, OOO 
degrees of freedom, only takes 3 minutes on a sequential workstation and the whole matrix 
goes into a main memory of ~ 200 MB. Our method damps the coefficients away from 
the singularity. Thus the double layer potential operator for the Laplacian can be well 
compressed. We expect the same to persist for the double layer potential for the Stokes 
system. 
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One advantage of the present multiscale technique applied to boundary integral equations 
is that we have additionally a simple a posteriori criterion to decide which coefficients 
are essentially required. Applying the present thresholding leads often to much better 
compression than the a priori choice of coefficients. This seems to apply to our double 
layer potential operator. 

5 Concluding remarks 

We have outlined some theoretical foundations of multiscale methods and have carried 
out corresponding numerical experiments for two types of boundary integral equations. 
Galerkin methods being better understood we have concentrated here on collocation. The 
first case study concerning the Helmholtz equation is covered by the existing theory and 
shows that aside from the_ natural effects of large wave numbers also operators of order 
different from zero can be handled efficiently. The experiments are of significant help in 
clarifying the quantitative effects of the various ingredients of the scheme. The second 
example is a more complex three dimensional problem which is not fully covered by the 
analysis of the model problems. It could be shown though that nevertheless even for large 
problem sizes the basic compression and convergence properties predicted by the theory 
for the periodic case still persist to be valid. 
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Figure 5: Errors Ej, ei in logarithmic scale for an elliptical cross section and fixed wave 
number k = 10 for two different constants a for the a-priori compression strategy. 
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Figure 6: Number nze of nonzero elements of the compressed matrix for two constants a 
for different wave numbers k. 

24 



co 
:::?. 
en 
(.) 
a: 

120 

100 

80 
tcM 

60 

40 

full matrix · · · · 
k == 10., a== 1.0 -e-
k == 10., a== 0.3 +-
k = 1.0, a = 0.3 -+-

Figure 7: CPU-time tcM in seconds on a DEC 3000 AXP 500 a-processor workstation for 
the iterative solution of the arising linear system by GMRES for different wave numbers 
k and constants a. 
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Figure 8: Radar cross section (RCS) O" versus viewing angle for the scattering of a fre-
quency of 2.4 GHz implying a wavelength of A == 0.125 m at a disc with radius r = 0.25 
m. The quantity k · 2r determining the Hankel function values is equal to 25.13. 
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Figure 9: Radar cross section (RCS) O' versus viewing angle for the scattering of a fre-
quency of 10 GHz implying a wavelength of.:\ = 30 mm at an ellipse with ax = 60 mm, by 
= 30 mm. The quantity k · 2a determining the Hankel function values is equal to 25.13. 
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Figure 10: Radar cross section (RCS) a versus viewing angle for the scattering of a 
frequency of 10 GHz implying a wavelength of .:\ = 30 mm at an ellipse with ax = 300 
mm, by = 150 mm. The quantity k · 2a determining the Hankel.function values is equal 
to 125.66. 
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XK1 ------------ XK2 
XK~ 

Figure 11: Triangle [xKu XK2 , XK3 ] of a face of a polyhedral boundary and its refinement. 
{K1,K2,K3} c \Ji~ {K1,K2,K3,KLK~,Kn c Vi+1, {KLK~,Ka c ~i. 

I Cube 
j I Nj I th nze II cpr II ERR MERRx 
1 26 3. 10-3 568 1.2 2.0. 10-4 2.9. 10-2 

1. 10-2 466 1.4 4.3 .10-3 2.9. 10-2 

3. 10-2 . 274 2.5 8.5 .10-2 3.0. 10-2 

2 98 1. 10-3 5176 1.8 2.3. 10-3 4.6. 10-3 

3. 10-3 3346 2.9 5.5. 10-3 4.4. 10-3 

1. 10-2 1990 4.8 2.5. 10-3 2.9. 10-3 

3 386 3. 10-4 36,484 4.1 1.0. 10-3 6.7. 10-4 

1. 10-3 21,124 7.0 4.4. 10-3 5.2. 10-4 

3. 10-3 12,646 11.8 2.3. 10-2 1.9. 10-3 

4 1,538 1. 10-4 401,272 5.9 4.7. 10-4 1.3. 10-4 

3. 10-4 235,588 10.3 1.3. 10-3 1.2. 10-4 

1. 10-3 125,524. 18.8 3.8. 10-3 1.8. 10-4 

5 6,146 3. 10-5 2,098,108 18.0 2.9. 10-4 9.2. 10-6 

1. 10-4 1,118,296 33.8 8.4. 10-4 4.0. 10-5 

3. 10-4 647,032 58.4 2.1. 10-3 2.4. 10-5 

5a 24,578 3. 10-6 6,755,512 89.4 - 5.0. 10-6 

1. 10~5 3,953,114 152.8 - 5.5. 10-6 

3. 10-5 2,478,484 243.7 - 2.1. 10-5 

7b 98,306 3. 10-6 17,857,936 541.0 - 2.0. 10-6 

3. 10-5 7,097,044 1361.0 - 2.2. 10-5 
.. 

a Calculations without singularity Bubtractioh. Coarsest level is set to l = 2 . 
b Calculations without singularity subtraction. Coarsest level is set to l = 3. 

Table 2: Number nze of nonzero elements, compression rate cpr, errors ERR and MERRx 
for the multiscale algorithm for the Laplace equation on the cube for several thresholds 
th and levels j. 
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I Pyramid 
j I Nj I th nze II cpr II ERR MERRx 
1 14 3. 10-3 188 1.0 1.1 . 10-4 2.2. 10-2 

1. 10-2 172 1.1 1.8. 10-4 2.2. 10-2 

3. 10-2 122 1.6 5.6. 10-2 3.7. 10-2 

2 50 1. 10-3 1948 1.3 7.5. 10-4 5.2. 10-3 

3. 10-3 1494 1.7 1.5. 10-3 5.3. 10-3 

1. 10-2 1016 2.5 1.5. 10~2 6.3. 10-3 

3 194 3. 10-4 22,546 1.7 2.2. 10-4 2.2. 10-4 

1. 10-3 15,108 2.5 1.6. 10-3 1.8. 10--4 

3. 10-3 9,736 3.9 5.8. 10-3 1.5. 10-4 

4 770 1. 10-4 159,022 3.7 3.1. 10-4 1.2. 10-4 

3. 10-4 96,244 6.2 1.1. 10-3 1.2. 10-4 

1. 10-3 56,668 10.5 3.0. 10-3 2.3. 10-4 

5 3,074 3. 10-5 1,179,686 8.0 1.8. 10-4 2.9. 10-5 

1. 10-4 660,124 14.3 5.1. 10-4 2.8. 10-5 

3. 10-4 389,018 24.3 1.4. 10-3 2.5 · 10-5 

5a 12,290 3. 10-5 4,071,856 37.1 - 9.0. 10-5 

1. 10-5 2,401,236 62.9 - 7.3. 10-6 

3. 10-5 1,486,256 101.6 - 9.2. 10-6 

7b 49,154 3. 10-5 10,776,400 224.4 - 1.6. 10-5 

a Calculations without singularity subtraction. Coarsest level is set to l == 2. 
b Calculations without singularity subtraction. Coarsest level is set to l == 3. 

Table 3: Number nze of nonzero elements, compression rate cpr, errors ERR and MERRx 
for the multiscale algorithm for the Laplace equation on the pyramid for several thresholds 
th and levels j. 

Cube·: 
3 386 2.4 6 0.2 7.0 38.9 14 0.1 
4 1,538 2.8 8 3.9 10.3 133.0 16 0.9 
5 6,146 3.2 11 52.0 33.8 215.7 23 6.0 
6 24,578 - - - 152.8a - 29 33.8 
7 98,306 - - - 541.0b - 32 178.0 
Pyramid: 
3 194 2.3 7 0.06 3.9 31.1 13 0.03 
4 770 5.3 8 0.9 6.2 63.4 15 0.3 
5 3,074 8.6 10 17.3 14.3 118.2 19 2.6 
6 12,290 - - - 62.9a - 28 19.9 
7 49,154 - - - 224.4b - 31 74.2 

a Calculations without singularity subtraction. Coarsest level is set to l == 2. 
b Calculations without singularity subtraction. Coarsest level is set to l == 3. 

Table 4: Laplace equation: Number of iterations it for the solution of the linear systems 
Ajuj == fj and Ajui == (Ti)* fj, respectively, with GMRES; CPU-times tin seconds on a 
DEC 3000 AXP 500 a-processor workstation. Condition numbers 11, of the corresponding 
matrices. 
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Figure 12: Number nze of nonzero elements of the transformed matrix Aj for the Laplace 
equation after thresholding in dependence of Ni. Dotted line for comparison: quadratic 
behavior of the number of elements of the original stiffness matrix. 
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the iterative solution of the linear systems for the Laplace equation with uncompressed 
(dotted line) and compressed matrix, respectively, with GMRES. 
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