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Abstract. We investigate the limit passage for a system of ordinary differential equations
modeling slow and fast chemical reaction of mass-action type, where the rates of fast reac-
tions tend to infinity. We give an elementary proof of convergence to a reduced dynamical
system acting in the slow reaction directions on the manifold of fast reaction equilibria.
Then we study the entropic gradient structure of these systems and prove an E-convergence
result via Γ-convergence of the primary and dual dissipation potentials, which shows that
this structure carries over to the fast reaction limit. We recover the limit dynamics as a
gradient flow of the entropy with respect to a pseudo-metric.

1. Introduction

We consider reaction equations for the concentrations c(t) of I chemical species in the state
space X := [0,∞)I , where the R reaction rates can be additively decomposed into a slow
and a fast part, viz.

ċ = −Rε(c) := −
Rs∑
r=1

kr
(
cαr−κrcβr

)
(αr−βr)−

1

ε

R∑
r=Rs+1

kr
(
cαr−κrcβr

)
(αr−βr) (1.1)

where kr > 0 and κrkr > 0 are the forward and backward reaction rates, αr ∈ NI
0 and

βr ∈ NI
0 are the stoichiometric coefficients (with monomial notation cα =

∏I
i=1 c

αi
i ), and ε

is the small parameter which describes the ratio between slow and fast time scales such that
the limit ε↘ 0 corresponds to infinite reaction speed.

For the limit passage ε ↘ 0 in (1.1), we show two types of results: the first one is the
convergence of the solution curves to a curve satisfying a limit system of ODEs which can be
either formulated in RR, including an algebraic constraint to the fast reaction equilibrium
manifold, or, alternatively, as a reduced system of ODEs acting only in RRs , the space of
“slow” directions, with appropriately modified reaction rates. This limit passage has been
widely investigated, as a particular instance of a quasi-steady-state approximation (QSSA)
for reaction systems. We refer e.g. to [12, 3, 25, 24] and the references therein. We highlight
the work of Bothe [4], in which a rigorous justification of a limit passage for (1.1) was
previously shown. Our proof is based on Bothe’s techniques but performed in a simpler
setting with respect to the “slow” dynamics, so that it becomes much more direct, not
requiring higher-order estimates and providing a more explicit dimension reduction.

We perform the limit passage in the transformed variables of stoichiometric vector coordi-
nates rather than concentrations, as a standard approach to QSSA, see Section 2.3. In a se-
ries of papers, a group of authors including Goeke, Noethen and Walcher [10, 20, 18, 19, 8, 9]
studied QSSA for systems of this type with respect to its justification in a mathematical as
well as modeling sense. In addition, they developed qualitative and quantitative tools for
the identification of small parameters. Regarding mass-action kinetics, our result general-
izes their approach in [10, 9] in that we do not require the linear stability analysis of the
limit invariant manifold associated to the Tihonov-Fenichel theory [27]. Instead, we prove
local Lipschitz continuity of the equilibrium map, which maps the initial data to the the
unique equilibrium corresponding to the system of “fast” reactions, and directly perform
the singular limit via time-rescaling. In this way, no assumptions in addition to reversibility
and the linear independence of the stoichiometric vectors are required.

Our second result concerns the stability of the entropic gradient structure of (1.1) with
respect to the limit passage, cf. also [? ]. Following the framework in [14, 15], we say that
(1.1) has a gradient structure, if there exists a triple (X, E ,Ψε), where E : X→ R∞ denotes
the relative entropy of the system and Ψε is the corresponding dissipation potential, such
that (1.1) can be written equivalently in the form DE(c)+DċΨε(c, ċ) = 0. It is shown in [15]
that solutions cε of (1.1) can in this case be characterized by the upper energy dissipation
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estimate

E(c(T )) +

∫ T

0

{
Ψε(c, ċ) + Ψ∗ε(c,−DE(c))

}
dt ≤ E(c(0)), (UEDE)

where Ψ∗(c, ·) denotes the Legendre dual of Ψ(c, ·). For details, we refer to Subsection 2.2
and Section 4. A crucial point of this characterization is that (UEDE) is a scalar inequality,
written solely in terms of functionals. Hence, it is possible to apply variational methods such
as Γ-convergence. We prove an evolutionary Γ -convergence (E-convergence) result in the
spirit of the survey [17], showing that a limit triple (X, E ,Ψ0) exists and that the limit curve
satisfies the corresponding (UEDE). In our case, the limit dissipation potential Ψ0 provides
a pseudo-metric on X only, thus enforcing the equilibrium constraint for the fast reaction.
An important feature of our approach is that the limit passage does not require estimates in
addition to (UEDE). Our interpretation is that E-convergence provides a natural approach
to the quasi-steady state approximation, ensuring thermodynamic consistency of the limiting
process. For related works in this direction, we refer to [11, 12].

We note that in contrast to [11], we do not require the (geodesic) convexity of the entropy
as a Lyapunov functional for system (1.1), which is in general unknown [14]. This lack of
convexity also excludes the use of known stability results for metric gradient flows as in [7].
Our approach provides a new thermodynamically consistent perspective on QSSA in the case
of reversible reactions. Our motivation is that it may in the future be helpful for parameter
identification and consistent modeling of coupled systems. From an abstract point of view,
the result highlights the robustness and flexibility of the notion of E-convergence for a large
and natural class of entropic gradient structures, even without the assumption of convexity.

Outline. In the next section, we collect preliminary results on reaction systems of type (1.1),
including a precise definition of the entropic gradient structure, the change of variables from
concentrations to stoichiometric vector coordinates, a priori estimates which hold uniformly
in ε > 0 and properties of the data-to-equilibrium map. In Section 3, we prove the first
convergence result as a limit passage in terms of the equations. In Section 4, we introduce
the notions associated to the E-convergence of gradient structures and then prove the limit
passage for the entropic gradient structure of (1.1) in this sense.

2. Assumptions and preliminary results on reaction kinetics satisfying
detailed balance

We are interested in the evolution of a system of I ∈ N species undergoing R ∈ N
simultaneous reactions of mass-action type. Denoting by c(t) ∈ [0,∞)I =: X the vector of
concentrations at time t, the evolution of the system is given by the ODE system (1.1). It
is well-known that for any fixed ε > 0 the system in (1.1) is globally solvable and solutions
converge to an equilibrium as t→∞, see Theorem 2.1 below.

2.1. Slow and fast reaction kinetics. We consider reaction systems with slow and fast
reactions, i.e., let Rs ∈ N and Rf ∈ N denote the number of slow and fast reactions,
respectively, with R := Rs +Rf .

We make the following general assumptions:

(R1) R ≤ I and the vectors γ1, . . . ,γR are linearly independent.
(R2) The relative reaction rate constants κr, r = 1, . . . , R, are independent of ε.
(R3) The absolute reaction rate constants for slow reactions ks

r,ε, r = 1, . . . , Rs do not depend

on ε. The absolute reaction rate constants for the fast reactions satisfy kf
r,ε = 1

ε
k̃f
r for

r = 1, . . . , Rf , with k̃f
r independent of ε.



3

We denote by X̊ the interior of the non-negative cone X. For a given ε > 0 and an initial
datum c0

ε ∈ X̊, the equations for cε read

ċε = −
Rs∑
r=1

ks
r

(
cαr
ε −κrcβr

ε

)
γr −

1

ε

R∑
r=Rs+1

k̃f
r

(
cαr
ε −κrcβr

ε

)
γr, cε(0) = c0

ε. (2.1)

In the following, we will sometimes write

Cr(c) := cαr − κrcβr (2.2)

for the state-dependent part of the r-th reaction rate in (2.1).
Any solution of (1.1) stays in the stoichiometric class c0

ε +S, where S := span{γ1, . . . ,γR}
is the stoichiometric subspace. The orthogonal complement S⊥ gives the invariants of the
evolution: For each ζ ∈ S⊥, one has that ζ · c(t) = ζ · c0

ε for all t > 0.
The condition of detailed balance for a reaction system means that there exists a positive

steady state c∗ = (c∗i )i=1,...,I such that all reactions are in equilibrium. It is a classical result
that system (2.1) satisfies this condition, i.e. there exists c∗ > 0 such that

Cr(c∗) = 0⇔ cαr−βr
∗ = κr, for all r = 1, . . . , R. (2.3)

Note that the existence and value of c∗ is independent of ε > 0. We say that a steady state
ceq corresponds to the initial datum c0 if

γc
r · ceq = γc

r · c0 for all r = 1, . . . , Rc,

where γc
r is a basis of the orthogonal complement S⊥, the dimension of which is Rc = I−R.

We summarize the above properties of (2.1) in a theorem and refer to [5, 13] and in
particular to [4, Thm. 1].

Theorem 2.1 (Dynamics of (2.1)). Let ε > 0 be fixed, but arbitrary. The following state-
ments hold:

(a) For each initial value c0 ∈ X̊, there exists a unique steady state ceq ∈ (c0 + S) ∩ X̊ of
the dynamical system induced by (2.1) corresponding to c0. Moreover, ceq is uniquely
determined, independently of the absolute reaction rate constants kr.

(b) The solution cε ∈ C∞([0,∞);RI) to the initial-value problem (2.1) exists globally in

time, it is unique and it satisfies cε(t) ∈ X̊ for all t ≥ 0.

2.2. Entropic gradient structure of the system. It was shown in [15] (see also [16])
that systems of the form (2.1) have an entropic gradient structure in the following sense.
Given a positive steady state c∗ of (2.1) with detailed balance (2.3), we define the relative
entropy E : X→ R with respect to c∗ and the Onsager matrices Kε(c) ∈ RI×I

spsd, (symmetric
and positive semidefinite), cf. [21, Eqn. (1.11)] or [22, Eqs. (2-1)–(2-4)], by

E(c) := H(c |c∗) :=
I∑
i=1

c∗iE
(
ci/c

∗
i

)
, with E(z) =

{
z log z − z + 1 if z > 0,

1 if z = 0,

Kε(c) :=
R∑
r=1

kr,εΛ
(
cαr , κrc

βr
)
(αr−βr)⊗(αr−βr)

with the (nonnegative) logarithmic mean

Λ(a, b) :=


0 if a = 0 or b = 0,

a−b
log b−log b

if a, b > 0, a 6= b,

a if a = b > 0,

and γ⊗γ ∈ RI×I denoting the tensor product, i.e., (γ⊗γ)ij = γiγj. Note that Kε(c) depends
on ε > 0 but not on c∗.
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Using the detailed-balance condition on c∗ and the calculation rules for the logarithm, we
immediately verify

ċ = −Rε(c) ⇐⇒ ċ = −Kε(c)DE(c). (2.4)

Associated with the Onsager operator family Kε, we define the dual dissipation potentials
Ψ∗ε : X× RI → [0,∞] via

Ψ∗ε(c, ξ) =
1

2
ξ ·Kε(c)ξ =

1

2

R∑
r=1

kr,εΛ(cαr , κrc
βr)
(
ξ · (αr−βr)

)2
.

Moreover, we introduce the (primal) dissipation potentials Ψε : X×RI → [0,∞] as Legendre
duals of Ψ∗ε at c ∈ X, i.e.

Ψε(c,v) := sup
ξ∈RI

{
〈ξ,v〉 −Ψ∗ε(c, ξ)

}
.

One of the features of this structure is that by means of the Young-Fenchel estimate [6],

Ψε(c,v) + Ψ∗ε(c, ξ) ≥ 〈ξ,v〉 , (2.5)

and the chain rule d
dt
E(c) = 〈DE(c), ċ〉, it follows that the scalar energy dissipation balance

E(c(T )) +

∫ T

0

{
Ψε(c, ċ) + Ψ∗ε(c,−DE(c))

}
dt = E(c(0)). (EDB)

is an equivalent formulation to the rate equation (2.1). The same argument shows that
actually, the equality in (EDB) can be replaced by the upper energy dissipation estimate

E(c(T )) +

∫ T

0

{
Ψε(c, ċ) + Ψ∗ε(c,−DE(c))

}
dt ≤ E(c(0)). (UEDE)

We further discuss this structure in Section 4 and show it is preserved in the limit, in a
suitably generalized sense.

2.3. Transformation of the system. An alternative formulation of (2.1) is obtained by a
linear change of coordinates in the concentrations c to a basis provided by the stoichiometric
vectors. Here, for simplicity, we choose an orthonormal basis (γc

1, . . . ,γ
c
Rc

) of the orthogonal
complement S⊥ of the stoichiometric subspace. Correspondingly, we write γf

r, r = 1, . . . , Rf ,
to indicate the r-th reaction vector corresponding to a fast reaction and γs

r, r = 1, . . . , Rs,
for the r-th reaction vector corresponding to a slow reaction. We set

T = (γf
1, . . . ,γ

f
Rf
,γs

1, . . . ,γ
s
Rs
,γc

1, . . . ,γ
c
Rc

) ∈ RI×I

the transposed of the extended stoichiometric matrix, which is invertible due to (R1) and
introduce the transformed variable g := T−1c. In the following, we consider the vector
g ∈ RI as a triple with the three components gf ∈ RRf for the fast, gs ∈ RRs for the slow,
and gc ∈ RRc for conserved quantities. More generally, the superscripts “s”, “f” and “c”
indicate the truncation of a vector in RI to these components. Clearly, the curve t 7→ cε(t)
solves (2.1) with cε(0) = c0

ε, if and only if the transformed solution gε = T−1cε satisfies

ġε,r =

{
−kr,εCr(Tgε) for r = 1, . . . , R,

0 otherwise,
gε(0) = g0

ε := T−1c0
ε, (2.6)

where Cr is defined as in (2.2).
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2.4. Transformed gradient structure. The gradient structure for (2.1) introduced in
Subsection 2.2 is inherited by the system in (2.6). We set

X̃ = T−1X and Ẽ(g) = E(Tg),

and write
˚̃
X = T−1X̊. It follows that DgẼ(g) = TTDcE(c) = TT log( c

c∗
). Note that E

depends implicitly on ε if c∗ depends on ε. However, by (R2) the steady state c∗ can be
assumed to be independent of ε.

Using the gradient system for the untransformed system, the equations for gε can be
written in the form

ġε = T−1ċε = −T−1Kε(cε)T−TDgẼ(gε). (2.7)

Hence, defining the Onsager matrix K̃ε(gε) := T−1Kε(Tgε)T−T ∈ RI×I
spsd gives the gradient

system (X̃, Ẽ , Ψ̃∗ε) for the transformed equation (2.6), where Ψ̃∗ε is the family of quadratic

forms associated with K̃ε. In particular, K̃ε(g) takes on diagonal form,

K̃ε(g) =
R∑
r=1

kr,εΛ̃r(g)er⊗er = diag(kr,εΛ̃r(g))r=1...,R,

where er ∈ RI denotes for all r ∈ R the r-th unit vector and

Λ̃r(g) := Λ
(
cαr , κrc

βr
)

for c = Tg. (2.8)

Following Subsection 2.2, we obtain that for every ε > 0 the system (2.7) is equivalent to

Ẽ(gε(t)) +

∫ t

s

Ψ̃ε(gε, ġε) + Ψ̃∗ε

(
gε,−TT log

(Tgε
c∗

))
dr = Ẽ(gε(s)), (EDBε)

for every 0 ≤ s < t <∞.

Note that the dual dissipation potentials Ψ∗ε : X̃×RI → [0,∞] can be additively decom-
posed into

Ψ̃∗ε(g, ξ) = Ψ̃s,∗
ε (g, ξs) + Ψ̃f,∗

ε (g, ξf) + Ψ̃c,∗
ε (g, ξc), where

Ψ̃s,∗
ε (g, ξs) =

1

2

Rs∑
r=1

krΛ̃r(g)(ξs
r)

2, Ψ̃f,∗
ε (g, ξf) =

1

2ε

Rf∑
r=1

krΛ̃r(g)(ξf
r)

2, and Ψ̃c,∗
ε (g, ξc) ≡ 0.

Correspondingly, the primal dissipation potentials Ψ̃ε : X̃× RI → [0,∞] are given by

Ψ̃ε(g,v) = Ψ̃s
ε(g,v

s) + Ψ̃f
ε(g,v

f) + Ψ̃c
ε(g,v

c), where

Ψ̃s
ε(g,v

s) =
Rs∑
r=1

(vs
r)

2

2krΛ̃r(g)
, Ψ̃f

ε(g,v
f) = ε

Rf∑
r=1

(vf
r)

2

2krΛ̃r(g)
, and Ψ̃c

ε(g,v
c) =

{
0 if vc = 0,

∞ otherwise.

Note that Ψ̃s,∗
ε , Ψ̃f,∗

ε and Ψ̃c,∗
ε are, for fixed g, the Legendre transforms of Ψ̃s

ε, Ψ̃f
ε and Ψ̃c

ε on

the smaller spaces RRs , RRf and RRc , respectively, whereas Ψ̃∗ε(g, ·) is the Legendre transform

of Ψ̃ε(g, ·) on RI . This splitting is possible due to the diagonal structure of the transformed

Onsager operator K̃ε(g).

2.5. Uniform estimates based on (EDBε). Based on the energy-dissipation balance, we
obtain a priori estimates. By Theorem 2.1, we can choose c∗ independently of ε > 0 such
that E in (EDBε) does not depend on ε either; this provides several ε-uniform estimates.

We make the following two assumptions on the initial data c0
ε, stated in terms of g0

ε and
E , for the remainder of the paper:

(I1) The limits gs
0 = limε→0(g0

ε)
s and gc

0 = limε→0(g0
ε)

c exist.
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(I2) There is a constant E0 > 0, such that

sup
ε>0
Ẽ(g0

ε) = sup
ε>0
E(c0

ε) = E0 <∞.

Under these assumptions, we immediately obtain the following.

Lemma 2.2. Let (gε)ε>0 be a family of solutions of (EDBε). The following statements are
true:

(a) There exists a constant C(E0) > 0 such that

sup
ε>0, t∈[0,∞)

∣∣gε(t)∣∣ ≤ C(E0). (2.9)

(b) There exists a constant K0 > 0 such that

sup
ε>0
‖ġs

ε‖L2(0,∞) ≤ K0E0. (2.10)

(c) The relative entropy Ẽ is a strict Lyapunov functional for (2.6). In particular, we have
limt→∞ gε(t) = geq,ε with geq,ε = T−1ceq denoting the transformed equilibrium, given by
Theorem 2.1.

Proof. Note that for these properties to hold, it is sufficient to replace (EDBε) by an upper
estimate of type (UEDE).

(a) For the proof of (2.9), we combine (EDBε) with the elementary estimate

E(s) ≥ (
√
s− 1)2 (s ≥ 0)

to obtain for all t > 0:

sup
ε>0

I∑
i=1

(√
cε,i(t)−

√
c∗i

)2

≤ sup
ε>0
E(cε(t)) ≤ sup

ε>0
E(c0

ε).

The estimate (2.9) follows by Assumption (I2).
(b) Note that by (2.9), there is a constant K0 > 0 such that

sup
ε>0, t∈[0,∞)

Λ̃r(gε(t)) ≤ K0, for all r = 1, . . . , R,

with Λ̃r as in (2.8). By (EDBε) with s = 0 and letting t→ +∞, we have

sup
ε>0

∫ ∞
0

Ψs
ε(gε, ġε) dt = sup

ε>0

∫ ∞
0

Rs∑
r=1

(
ġs
ε(t)
)2

Λ̃r(gε(t))
dt ≤ E0

and thus (2.10) holds.

(c) The strict Lyapunov property follows from (EDBε), using again that Λ̃−1
r , (r = 1, . . . , Rs)

are bounded away from 0 by (2.9). Moreover, by (2.9), orbits are relatively compact,
so the convergence to equilibrium follows by LaSalle’s Invariance Principle, cf. e.g. also
[4].

�

2.6. The equilibrium map. In the following lemma, we show elementary properties of
the equilibrium map eq : X̊→ X̊, which maps an initial value of concentrations c0 > 0 for
(2.1) to the unique corresponding equilibrium ceq > 0. Note that the result is independent
of the particular structure and scaling of (2.1), but holds for all systems of reaction kinetics
with detailed balance. In particular, we will use the result with respect to the system (3.1)
of fast reactions only. Note also that parts of this lemma are well-known and ideas for the
proof or similar statements can e.g. be found in [4]. We restate and reprove them to match
this setting.
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Lemma 2.3. The equilibrium map eq : X̊ → X̊ is locally Lipschitz continuous on X̊ and
eq(c0) is uniquely determined by the conserved quantities (g0)ci = γci · c0 only.

Proof. First, note that for c∗ being a positive steady state of (2.1) and η∗ := log c∗ it follows
from (2.3) that

γr · η = log κr, for all r = 1, . . . , R. (2.11)

Conversely, for every η̂∗ ∈ RI satisfying (2.11), ĉ∗ := eη̂∗ is a positive steady state of (2.1).
Let ceq and ĉeq be the two equilibrium states of (2.1) corresponding to the initial data

c0 = Tg0 and ĉ0 = Tĝ0, respectively. Then by (2.11), the corresponding η = log ceq and
η̂ = log ĉeq satisfy

γr ·
(
η − η̂

)
= 0, for all r = 1, . . . , R,

i.e. η−η̂ ∈ S⊥. Since ceq−c0 ∈ S and ĉeq−ĉ0 ∈ S, it follows that

(ceq − ĉeq) · (η − η̂) = (c0 − ĉ0) · (η − η̂) =
(
T(g0−ĝ0)

)
· (η − η̂)

=
Rc∑
r=1

(g0
r − ĝ0

r)
(
γc
r · (η − η̂)

)
,

(2.12)

where the last identity is due to the orthogonality γs
r ⊥ η − η̂ and γf

r ⊥ η − η̂. For
0 < a < b < +∞, let

Xb
a = {c ∈ X : a < ci < b for all i = 1, . . . , I} ⊂ X̊.

We first show that for all c0 ∈ Xb
a, there are constants 0 < A < B < +∞ such that

ceq = eq(c0) ∈ XB
A. The upper bound B follows immediately from Lemma 2.2. To prove

the lower bound, consider the initial value a = (a, . . . , a) and the positive equilibrium
caeq = eq(a). Then by (2.12), we have

0 < H(ceq |caeq) +H(caeq |ceq) = (ceq − caeq) · (η − ηa) = (c0 − a) · (η − ηa),
so (c0 − a) · log caeq ≤ (c0 − a) · log ceq. Since max

i
ceq,i ≤ B and caeq is bounded from below,

it follows that ceq is also bounded from below.
To prove Lipschitz continuity, let again ceq and ĉeq be two equilibrium states in XB

A

corresponding to the initial data c0 and ĉ0 in Xb
a. Then the logarithmic means Λi =

Λ(ceq,i, ĉeq,i) satisfy Λi ∈ XB
A for all i = 1, . . . , I. By (2.12), it follows that∣∣ceq − ĉeq

∣∣2 ≤ B

I∑
i=1

(
ceq,i − ĉeq,i

)2

Λi

= B(c0 − ĉ0) · (log ceq − log ĉeq)

≤ B|T|
∣∣(g0)c − (ĝ0)c

∣∣∣∣log ceq − log ĉeq

∣∣ ≤ C
∣∣(g0)c − (ĝ0)c

∣∣∣∣ceq − ĉeq

∣∣,
where the constant C = C(A,B,T) > 0 includes the Lipschitz constant of the logarithm on
XB
A. �

Remark 2.4. Note that existence and Lipschitz continuity of the equilibrium map on com-
pact subsets Xb

a of the non-negative cone X can also be argued as follows: The equilibrium
is the unique minimizer of the relative entropy E under the linear constraint gc = const.,
and E is strictly convex and analytic on Xb

a.

3. Convergence to a system of ODEs on the manifold of fast equilibria

The aim of this section is to prove the convergence of solutions gε of (2.6) to solutions of
a suitable limit system. In terms of the concentrations c, we recover the result of [4] under
slightly less restrictive conditions on reaction terms and slightly more restrictive conditions
on the slow dynamics. In particular, our proof is very simple and short and does not require
higher-order estimates. In terms of g, we uncover two corresponding formulations of the
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limit problem, either as a mixed full system of ODEs and algebraic constraints (3.3), or as
a system of ODEs in fewer variables (3.2).

Let t 7→ h(t) = (hf(t),hs(t),hc(t)) be a solution of the transformed system of fast reac-
tions only, namely

ḣf
r(τ) = −kf

rC
f
r

(
Th(τ)

)
, for all r = 1, . . . , Rf , ḣs = ḣc = 0, h(0) = h0, (3.1)

and denote by heq the unique positive equilibrium of this system corresponding to h0.
Arguing as in Lemma 2.3, we see that heq actually only depends on the conserved compo-
nents (hs

0,h
c
0), but not on hf

0. In the following we will write this dependence in the form
heq = heq[hs

0,h
c
0]. In a first step, we prove convergence of solutions using Lemmas 2.2 and

2.3 and a time-rescaling argument.

Lemma 3.1. For every t0 ≥ 0, we have

lim
ε→0

gf
ε(t0) =

(
heq

[
gs(t0), gc(t0)

])f
.

In particular, there is a time t+ > 0, such that the limit curve

lim
ε→0

gε =: g = (gf , gs, gc) ∈ C([0, t+],
˚̃
X)

with

lim
t↘0
g(t) = g0 :=

(
hf

eq[gs
0, g

c
0], gs

0, g
c
0

)
= heq[gs

0, g
c
0]

is continuous and remains in the transformed positive cone.

Proof. By (2.9), for every t0 ≥ 0, we can choose a convergent subsequence of gε(t0) labeled
by εj(t0) with εj(t0) → 0 as j → ∞ and limit g(t0) = limj→∞ gεj(t0)(t0). We use this
limit value in the following and show a posteriori that it does not depend on the choice of
subsequence εj(t0). Starting from t0, we rescale time by εj(t0) and define τ = t

εj(t0)
and

hεj(t0)(τ) = gεj(t0)(t0 + εj(t0)τ). Then, τ 7→ hεj(t0)(τ) satisfies

ḣf
εj(t0) = −kfCf

(
Thεj(t0)

)
,

ḣs
εj(t0) = −εksCs

(
Thεj(t0)

)
,

ḣc
εj(t0) = 0

with initial condition hεj(t0)(0) = gεj(t0).
We first show that as j →∞, the solution hεj(t0) converges to the solution h of (3.1) with

h0 = g(t0). Clearly, we have that

hc
εj(t0)(τ)− hc(τ) = hc

εj(t0)(0)− hc(0).

Using the uniform bound (2.9) for hεj(t0), we obtain∣∣ḣs
εj(t0)(τ)− ḣs(τ)

∣∣ ≤ εj(t0)
∣∣ksCs(Thεj(t0)(τ))

∣∣ ≤ εj(t0)K1

for some K1 > 0. Moreover, using that g 7→ Cf(Tg) is continuous on the compact set
|g| ≤ C(E0) with C(E0) from Lemma 2.2, we obtain∣∣ḣf

εj(t0)(τ)− ḣf(τ)
∣∣

≤ kfL
{∣∣hf

εj(t0)(τ)−hf(τ)
∣∣+ εj(t0)K1τ +

∣∣hs
εj(t0)(0)−hs(0)

∣∣+
∣∣hc

εj(t0)(0)−hc(0)
∣∣}.

By Gronwall’s inequality,∣∣hf
εj(t0)(τ)− hf(τ)

∣∣ ≤ (C|hεj(t0)(0)− h(0)|+ εj(t0)K1τ
)
ek

fLτ ,
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with a constant C = C(L,K1, k
f) > 0. Let now δ > 0. By Lemma 2.2, we can choose Tδ > 0

such that for all τ ≥ Tδ,

|h(τ)− heq| ≤
δ

2
.

Choose j(δ) sufficiently large to achieve(
C|hεj(t0)(0)− h(0)|+ εj(t0)LK1τ

)
ek

fLτ <
δ

2

for all τ ≤ 2Tδ. Then, it follows that∣∣gf
εj(t0)(t0+t)− hf

eq

∣∣ =
∣∣hf

εj(t0)(τ)− hf
eq

∣∣ ≤ ∣∣hf
εj(t0)(τ)− hf(τ)

∣∣+ |hf(τ)− hf
eq| ≤ δ,

for all Tδ ≤ τ ≤ 2Tδ, i.e. for all εj(t0)Tδ ≤ t ≤ 2εj(t0)Tδ. We conclude by Theorem 2.1 that
regardless of the choice of subsequence εj(t0), limj→∞ g

f
εj(t0)(t0) = hf

eq, as hf
eq depends on

gs(t0) and gc(t0) but not on gf(t0).
It remains to show that g is continuous and contained in the transformed positive cone

up to some t+ > 0. By Theorem 2.1, g0 ∈ X̃b
a := T−1Xb

a for some 0 < a < b < +∞.
By continuity of gs and gc (gc is constant), there exists a t+ > 0 such that g̃(t) =

(gf
0, g

s(t), gc(t)) ∈ X̃2b
a/2 for all 0 ≤ t ≤ t+. By Lemma 2.3, there are 0 < A < B < +∞ such

that g = heq ◦ g̃ ∈ C([0, t+], X̃B
A). �

It remains to characterize the system which is solved by the limit curve g. The main
result of this section is the following.

Theorem 3.2. The limit curve t 7→ g(t) = heq[gs(t), gc(t)] obtained in Lemma 3.1 is
uniquely determined by the reduced system of Rs ODEs

ġs(t) = −ksCs
(
Theq[gs(t), gc

0]
)
, t ∈ (0,∞),

gs(0) = gs
0.

(3.2)

Proof. The theorem follows straightforwardly from Lemma 3.1. We first show that for
t ∈ (0,∞), g satisfies the mixed system of ODEs and constraints given by

ġs(t) = −ksCs
(
Tg(t)

)
, t ∈ (0,∞),

Cf(Tg(t)) = 0, t ∈ (0,∞),

g(0) = g0.

(3.3)

Validity of the second set of equations in (3.3) follows from Lemma 3.1. To verify the first
set of equations, note that by Lemma 2.2, possibly after choosing a subsequence, we have
ġs
ε ⇀ ġs weakly in L2([0, T ]) for every T ≥ 0. In addition, ġs

ε(t) = −ksCs(Tgε(t)) with an
ε-uniform L∞-bound on the right-hand-side, so

gs(T )− gs(0) = lim
ε→0

∫ T

0

−ksCs
(
Tgε(t)

)
dt =

∫ T

0

−ksCs
(
Tg(t)

)
dt,

by dominated convergence. In particular, gs is locally absolutely continuous and the first
set of equations holds. Again by Lemma 3.1, (3.2) characterizes g. �

Remark 3.3. The merit of system (3.2) depends on the equilibrium map heq being explicit.
It can e.g. be calculated from the Wegscheider conditions combining the Rf conditions in
(2.11) and the I − Rf conditions in ceq ∈ c0 + Sf , where Sf is the stoichiometric subspace
corresponding to fast reactions only, or as the unique minimizer of the (convex) entropy E
constrained to ceq ∈ c0 +Sf . Note that regardless of the choice of representation for the limit
system, in order to obtain its initial value, the equilibrium map needs to be calculated in at
least this instance. We provide a simple example in the next subsection.
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3.1. Example. As a simple but illustrative example, we consider the following reaction
system for three different species consisting of one slow and one fast reaction, namely

3C3

(slow)−−−⇀↽−−− C1 and C1 + C2

(fast)−−−⇀↽−−− C3

Thus, the stoichiometric vectors are given by αs = (0, 0, 3)>, βs = (1, 0, 0)> and αf =
(1, 1, 0)>, βf = (0, 0, 1)>. In particular, the evolution equations for the concentrations
c = (c1, c2, c3) read

ċ = −ks
(
c3

3 − κsc1

)
(αs−βs)− kf

ε

(
c1c2 − κfc3

)
(αf−βf), (3.4)

and their solutions are plotted against the limit concentrations in Figure 3.1.

time
0 T

co
n
ce

n
tr

at
io

n

0

1

2

3

4

5

Figure 1. Solutions c of example system (3.4) for different values of ε (dash-
dotted) and limit solution (solid).

The transformed quantities g = (gs, gf , gc) are three scalars related to the concentrations
c via c = Tg, where the matrix T and its inverse are

T =

−1 1 3/
√

14

0 1 −2/
√

14

3 −1 1/
√

14

 , T−1 =
1

14

 1 4 5
6 10 2

3
√

14 −2
√

14
√

14

 .

For every ε > 0, gε = T−1cε solves

ġs = −ks

[(
3gs − gf +

1√
14
gc

)3

− κs

(
−gs + gf +

3√
14
gc

)]
,

ġf = −1

ε
kf

[(
−gs + gf +

3√
14
gc

)(
gf − 2√

14
gc

)
− κf

(
3gs − gf +

1√
14
gc

)]
,

gc = µ = const.
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Given a fixed µ, we calculate the equilibrium map eqµ : gs 7→ ceq with respect to the fast
reaction. The three Wegscheider conditions are

ceq,1ceq,2 = κfceq,3,

µ = gc =
√

14(3ceq,1 − 2ceq,2 + ceq,3),

gs =
1

14
(ceq,1 + 4ceq,2 + 5ceq,3).

We solve explicitly to obtain the equilibrium map

ceq,1 =
1

2

(
ψµ,κf (g

s)− κf +
5√
14
µ− gs

)
,

ceq,2 =
1

2

(
ψµ,κf (g

s)− κf − 5√
14
µ− gs

)
,

ceq,3 =
1

2

(
κf +

3√
14
µ+ 5gs − ψµ,κf (gs)

)
,

where

ψµ,κf (g
s) =

√
(κf)2 +

(
5√
14
µ− gs

)2

+ 2κf

(
3√
14
µ+ 5gs

)
.

By Theorem 3.2, the limit dynamics are determined by the well-posed scalar ODE

ġs = −ks

[
1

8

(
κf +

3√
14
µ+ 5gs − ψµ,κf (gs)

)3

− κs 1

2

(
ψµ,κf (g

s)− κf +
5√
14
µ− gs

)]
.

4. E-convergence of the entropic gradient structure

The aim of this section is to study the limit ε↘ 0 for (2.1) in terms of its gradient structure.
This will provide a stronger result then Theorem 3.2, in the sense that the limit equations
(3.2) receive an additional structure. Moreover, this may be considered a natural approach
to the quasi-steady state approximation, as it ensures thermodynamic consistency of the
limiting process.

As in Subsection 2.2, we consider a triple (X, E ,Ψ), where X is a (suitable) state space,
E : X→ R∞ is a driving functional, i.e. an entropy or energy functional, and Ψ is a suitable
dissipation potential. The metric gradient flow, cf. e.g. [1], for this structure is given by
curves u : t 7→ u(t) ∈ X which satisfy the upper energy dissipation estimate

E(u(T )) +

∫ T

0

{
Ψ(u, u̇) + Ψ∗(u,−DE(u))

}
dt ≤ E(u(0)), (UEDE)

where Ψ(u, u̇) provides the metric derivative of u and Ψ∗(u,−DE(u)) gives the metric slope
of the entropy along u. We show that the limit problem (3.2) still provides an upper energy

dissipation estimate, but the limit dissipation functional Ψ̃ provides only a pseudo-metric

on X̃. This structure enforces the equilibrium constraint for the fast reactions.

4.1. Definition of E-convergence. Following the notions in the survey [17], we consider
families (X, Eε,Ψε)ε>0 depending on a small parameter ε. The aim is then to find limits E0

and Ψ0 such that a limit u of the solutions uε is a solution for the limit problem given by E0

and Ψ0. A first systematic study of evolutionary Γ-convergence (or E-convergence) relying
on gradient structures was initiated in [23], see also [26]. Here, we prove an E-convergence
result based on Theorem 3.2 and the Γ-convergence of the dual and primal dissipation
functionals Ψ̃∗ε and Ψ̃ε. We recall the definition of (static) Γ-convergence of functionals.

Definition 4.1 (Gamma- and Mosco convergence). Let (Φε)ε>0 be a family of functionals
Φε : Y → R∞, where Y is a Banach space, and let Φ : Y → R∞.
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(a) (Φε)ε is said to Γ-converge to Φ with respect to the strong (weak) convergence in Y

(write Φε
Γ→ Φ and Φε

Γ
⇀ Φ, respectively) as ε ↘ 0, if the following conditions are

satisfied:
(i) (Liminf estimate) If uε → u (uε ⇀ u), then lim inf

ε↘0
Φε(uε) ≥ Φ(u).

(ii) (Recovery sequences) For all u ∈ Y, there exists a sequence (ûε)ε with ûε → u
(ûε ⇀ u) and lim sup

ε↘0
Φε(ûε) ≤ Φ(u).

(b) (Φε)ε is said to converge in the sense of Mosco to Φ as ε↘ 0 (write Φε
M−→ Φ), if both

Φε
Γ→ Φ and Φε

Γ
⇀ Φ.

In our situation, Y = RI is always finite-dimensional, so Gamma- and Mosco convergence
are equivalent.

On grounds of these notions for variational convergence of static functionals, a notion of
evolutionary convergence for generalized gradient systems was built (cf. [17, Ch. 2]). We
slightly adapt this notion to our setting, as the limit passage creates a boundary layer at
time t = 0, cf. Section 4.3.

Definition 4.2 (Evolutionary Γ-convergence). Let a family (X, Eε,Ψε)ε>0 be given and let
T > 0. We say that (X, Eε,Ψε)ε>0 (strongly) E-converges to a limit triple (X, E0,Ψ0) on
(0, T ] as ε↘ 0 and write

(X, Eε,Ψε)
E→ (X, E0,Ψ0),

if, given a sequence of solutions uε : [0, T ] → X to (X, Eε,Ψε) with a suitable condition on
the initial values (u0

ε)ε>0, there exists a limit solution u : [0, T ] → X to (X, E0,Ψ0) with
suitable u(0) = u0 and a subsequence εk → 0 such that for all t ∈ (0, T ]:

uεk(t)→ u(t) and Eεk(uεk(t))→ E(u(t)).

4.2. Proof of E-convergence. As a first step, we prove the Mosco convergence of the
primal and dual dissipation potentials Ψ̃∗ε(gε, ·) and Ψ̃ε(gε, ·) defined in Subsection 2.4. In

view of Lemma 3.1, we may reduce our considerations to the smaller state space
˚̃
X.

Proposition 4.3. Let limε→0 gε = g in the cone
˚̃
X be given. Then the families of dual and

primal dissipation potentials (Ψ̃∗ε(gε, ·))ε>0 and (Ψ̃ε(gε, ·))ε>0 converge in the sense of Mosco

as ε↘ 0 to their respective limits Ψ̃∗0(g, ·) and Ψ̃0(g, ·) given by

Ψ̃∗0(g, ξ) =

{
Ψ̃s,∗(g, ξs) if ξf = 0,

∞ otherwise,

and, correspondingly,

Ψ̃0(g,v) =

{
Ψ̃s(g,vs) if vc = 0,

∞ otherwise.

Proof. The limit is nontrivial in Ψ̃f and Ψ̃f,∗ only. Clearly, we have limε→0 Ψ̃f
ε(gε, ·) = 0. By

[2, Thm. 3.7], this implies the result for Ψ̃f,∗ as well. �

The main result of this section is the following.

Theorem 4.4. Under Assumptions (R1)–(R3) and (I1), (I2), we obtain

(X̃, Ẽ , Ψ̃ε)
E→ (X̃, Ẽ , Ψ̃0)
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in the sense of Definition 4.2. In particular, the limit curve g ∈ C([0,∞),
˚̃
X) satisfies the

(UEDE)

Ẽ(g(t)) +

∫ t

0

[
Ψ̃0(g, ġ) + Ψ̃∗0

(
g,−TTlog

(Tg
c∗

))]
ds ≤ Ẽ(g0), (4.1)

for all t ≥ 0, with g0 given by Lemma 3.1.

Proof. For all 0 < s < t < t+, equation (EDBε),

Ẽε(gε(t)) +

∫ t

s

[
Ψ̃ε(gε, ġε) + Ψ̃∗ε

(
gε,−DẼ(gε)

)]
dr = Ẽε(gε(s)),

holds for gε. We apply the limit ε → 0 on both sides. By Lemma 3.1, limε→0 gε = g in

C([s, t+]; X̃B
A) for some 0 < A < B < +∞ and by Lemma 2.2, ġs

ε → ġs in L2((s, t+);RRs).
By Proposition 4.3, it follows that

lim inf
ε→0

Ψ̃s
ε(gε, ġ

s
ε) ≥ Ψ̃s(g, ġs) and lim inf

ε→0
Ψ̃s,∗
ε (gε,−DẼ(gε)

s) ≥ Ψ̃s,∗(g,−DẼ(g)s
)
. (4.2)

In particular, we have that

lim inf
ε→0

Ψ̃f,∗
ε (gε,−DẼ(gε)

f) ≥ Ψ̃f,∗(g,−DẼ(gε)
f), (4.3)

so that

−DẼ(g)f
r = −γr · log

( c
c∗

)
= 0 for all r = 1, . . . , Rf , (4.4)

and Ψ̃f,∗(g,−DẼ(g)f) = 0. Note that (4.4) is equivalent to c being in equilibrium with

respect to the fast reactions. Continuity of Ẽ and continuity of g imply the limit estimate

Ẽ(g(t)) +

∫ t

s

[
Ψ̃0(g, ġ) + Ψ̃∗0

(
g,−TTlog

(Tg
c∗

))]
dr ≤ Ẽ(g(s)). (4.5)

Performing the limit s → 0 on both sides of (4.5) yields (4.1). For the extension of this
result from the interval (0, t+] to (0,∞), cf. Section 4.3 below.

�

Clearly, the two main theorems 3.2 and 4.4 imply convergence of the curve of concentra-
tions cε = Tgε → c = Tg on (0,∞) with c0 = Tg0. In terms of the concentrations c, one
obtains the following result on the passage to the limit ε ↘ 0. We omit its proof for the
sake of brevity and refer to [4] and [? ], where similar studies were made directly in the
untransformed variables.

Theorem 4.5. Under the Assumptions of Theorem 4.4, we obtain

(X, E ,Ψε)
E→ (X, E ,Ψ0)

in the sense of Definition 4.2, for a suitable limit dissipation functional Ψ0. Equivalently to
(4.1), the limit curve c ∈ C((0,∞); X) satisfies lim

t↘0
c(t) = c0 and

ċ = −
Rs∑
r=1

ks
rC

s
r(c)γ

s
r −

Rf∑
ρ=1

Rs∑
r=1

∂gsrheq[(T−1c)f , (T−1c0)c]ρk
s
rC

s
r(c)γ

f
ρ

=
[
1− Tf((Tf)TJ(c)T)−1(Tf)TJ(c)

]( Rs∑
r=1

ks
rC

s
r(c)γ

s
r

)
,

(4.6)

where Tf :=
(
γf

1, . . . ,γ
f
Rf

)
∈ RI×Rf and J(c) := diag(c−1

1 , . . . , c−1
I ) ∈ RI×I .
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The idea of proof for the second characterization of the limit c in (4.6) relies on the fact
that along the solution c = Tg, one has

d

dt
Cf(c(t)) = 0,

for all t > 0.

4.3. Concluding remarks. We give some remarks concerning Theorems 4.4 and 4.5.
E-convergence in the sense of Definition 4.2 requires continuity of the full limit curve

g, in particular, of gf . Using Lemma 2.3, this is guaranteed as long as g ∈ X̃b
a for some

0 < a < b < +∞. As shown in Lemma 3.1, by continuity of gs, this property holds at least
up to some t+. But this condition is also necessary and sufficient for Lipschitz continuity
and thus unique solvability of (3.2). A posteriori, Lemma 2.3 shows that the right-hand side

of (3.2) preserves the transformed positive cone X̃, which yields global solvability of (3.2) as
well as uniform positivity and thus uniform convergence of gε and E-convergence on all com-
pact subsets of (0,∞). For a similar argument in the non-transformed setting, cf. [4] and [? ].

The limit system (X̃, Ẽ , Ψ̃0) generalizes the concept of a gradient flow on a metric space

in the sense that the dissipation potential Ψ̃0 only generates a pseudometric on X̃ via

dist(g, ĝ) = inf
{

s ∈ C1([0, 1], X̃), s(0) = g, s(1) = ĝ :

∫ 1

0

Ψ̃0(s(t), ṡ(t)) dt
}
.

By the definition in Proposition 4.3, all g, ĝ ∈ X̃ with gs = ĝs are at distance 0 from each
other. This is consistent with the limiting curve t 7→ g(t) being determined by the reduced
system (3.2).

At time t = 0, an additional amount of energy is dissipated in the limit. Note that, in
general, lim

t↘0
c(t) = c0 6= lim

ε→0
c0
ε =: c0

0 and that assumptions (I1) and (I2) do not require the

limit on the r.h.s. to exist. If it exists, the amount of dissipated energy is E(c0
0)−E(c0). This

quantity is non-negative as c0 is the unique fast-reaction steady state corresponding to c0
0:

indeed, E(c0
0)− E(c0) is exactly the amount of energy which is dissipated in the (gradient)

system (3.1) of only fast reactions over the time interval τ ∈ [0,∞) along the curve joining
T−1c0

0 and its corresponding equilibrium T−1c0 of (3.1). This phenomenon can be viewed as
an additional external force which instantaneously brings the system into the fast-reaction
equilibrium, acting only at initial time.
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