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ABSTRACT. We consider a generalized pendulum equation depending on the scalar parameter

µ having for µ = 0 a limit cycle Γ of the second kind and of multiplicity three. We study the

bifurcation behavior of Γ for −1 ≤ µ ≤ (
√

5 + 3)/2 by means of a Dulac-Cherkas function.

1. INTRODUCTION

We consider planar autonomous differential systems

dx

dt
= P (x, y, µ),

dy

dt
= Q(x, y, µ)(1.1)

depending on the scalar parameter µ ∈ I , where P,Q : R × R × I → R are periodic in

the first variable with period 2π. Under this assumption we can identify the phase space of (1.1)

with the cylinder Z := S
1 × R, where S

1 is the unit circle. Interpreting x as arclength ϕ on S
1

we will use in the following the notation

dϕ

dt
= P (ϕ, y, µ),

dy

dt
= Q(ϕ, y, µ).(1.2)

It is well-known that to given µ the qualitative behavior of the trajectories of system (1.2) on Z is

determined by the singular orbits, namely equilibria, limit cycles and orbits connecting equilibria

(homoclinic and heteroclinic orbits). We note that in the case of a cylindric phase space we

have to distinguish two types of limit cycles. A limit cycle Γ(µ) of system (1.2) on Z is called

a limit cycle of the first kind, if Γ(µ) is contractible to a point on Z , Γ(µ) is called a limit cycle

of the second kind, if Γ(µ) surrounds the cylinder Z , that means, it is not contractible to a

point on Z [1, 2]. Analogously, there are two types of homoclinic orbits: homoclinic orbits of

the first kind (contractible to a point) and homoclinic orbits of the second kind which surround

the cylinder Z . A crucial problem in the qualitative theory is to establish and to locate global

singular trajectories and to estimate their number. A traditional approach to prove the existence

of at least one limit cycle for planar system consists in constructing a Poincaré-Bendixson region

whose boundaries are crossed transversally by the trajectories. In a recent paper by Giacomini

and Grau [6] an algorithm has been provided to construct such boundaries in the form of conics.

Another method to estimate the number of limit cycles consists in constructing a Dulac function.

This method has been extended by Cherkas [3]. The advantage of his approach consists in the

possibility to derive results on the existence of a unique limit cycle in some annular region and to

determine its stability. In our paper [7] we called the corresponding functions as Dulac-Cherkas

functions. A method to construct such functions numerically is described in [4]. The method of

Dulac-Cherkas function can also be applied to study limit cycles of the second kind on a cylinder

[5].

If we are interested in the dependence of the phase portrait of (1.2) on the parameter µ ∈ I ,

where I is some interval, then we have to determine those values of µ in I which are related to

a possible change of the phase portrait and we have to study the changes of the phase portrait

when µ passes such critical parameter value. In this paper we are interested in the change of

the phase portrait when the critical parameter value is related to the existence of a limit cycle of

the second kind of multiplicity three. Our goal is to show by means of a special example that a

Dulac-Cherkas function can be used to study the bifurcation locally and globally.

For this purpose we consider the scalar second order equation
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(1.3)
d2ϕ

dt2
−

3
∑

i=0

gi(ϕ, µ)
(dϕ

dt

)i

= 0,

where µ is a scalar real parameter belonging to some interval I , the functions gi : R×I → R,

i = 0, 1, 2, 3, are defined as follows

g0(ϕ, µ) :=
1

4
g(ϕ, µ)

[

g2(ϕ, µ) + µ(sin ϕ − 6)
]

,

g1(ϕ, µ) :=
3

2

[

g2(ϕ, µ) + µ(sin ϕ − 2)
]

,

g2(ϕ, µ) := 3g(ϕ, µ),

g3(ϕ, µ) := 2,

where

g(ϕ, µ) := 2(1 + µ cos ϕ).

Equation (1.3) can be viewed as a generalized pendulum equation. It can be rewritten as the

first order system

dϕ

dt
=y,

dy

dt
=

1

4
g(ϕ, µ)

[

g2(ϕ, µ) + µ(sin ϕ − 6)
]

+
3

2

[

g2(ϕ, µ) + µ(sin ϕ − 2)
]

y + 3g(ϕ, µ)y2 + 2y3.

(1.4)

For µ = 0, system (1.4) takes the form

dϕ

dt
= y,

dy

dt
= 2(y + 1)3,

that means that the second equation can be solved separately. The second equation has the

unique equilibrium y = −1 which is an unstable equilibrium of multiplicity three. Hence, we can

conclude that system (1.4) has for µ = 0 a unique singular trajectory which is the unstable limit

cycle

Γ(0) := {(ϕ, y) ∈ Z : y = −1}
of the second kind of multiplicity three. To study the bifurcation behavior of Γ(0) when µ passes

the critical value 0 we will use the method of Dulac-Cherkas functions.

The paper is structured as follows: In the next section we describe the method of Dulac-Cherkas

functions. In order to be able to apply it to system (1.4) we determine in section 3 an interval

I1 ⊂ I containing the origin such that system (1.4) has no equilibrium for µ ∈ I1. In section 4

we prove some general properties of limit cycles of system (1.4). In the last section we construct

a Dulac-Cherkas function for system (1.4) and apply it to study the bifurcation behavior of the

limit cycle Γ(0) of the second kind of multiplicity three when µ crosses 0.



3

2. METHOD OF DULAC-CHERKAS FUNCTIONS

We consider on the cylinder Z the system

(2.1)
dϕ

dt
= P (ϕ, y, µ),

dy

dt
= Q(ϕ, y, µ)

under the assumption

(A1). P,Q : Z × I → R are continuous, continuously differentiable in the first two variables

and 2π-periodic in the first variable.

Let f be the vector field defined by (2.1), let D be a subregion of Z .

Definition 2.1. Suppose hypothesis (A1) to be valid. A function B : D × I → R having the

same smoothness as P,Q and with the properties

(i). B(ϕ, y, µ) = B(ϕ + 2π, y, µ) ∀(ϕ, y, µ) ∈ D × I,
(ii). div(Bf) ≡ (gradB, f) + Bdivf ≥ 0 (≤ 0) in D for µ ∈ I , where div(Bf)

vanishes only on a subset of D of measure zero

is called a Dulac function of system (2.1) in D for µ ∈ I .

The following generalization of a Dulac function is basically due to L. Cherkas [3], hence we call

it Dulac-Cherkas function.

Definition 2.2. Suppose hypothesis (A1) to be valid. A function Ψ : D × I → R having the

same smoothness as P,Q and with the properties

(i). Ψ(ϕ, y, µ) = Ψ(ϕ + 2π, y, µ) ∀(ϕ, y, µ) ∈ D × I .

(ii). For µ ∈ I the set

W(µ) := {(ϕ, y) ∈ D : Ψ(ϕ, y, µ) = 0}
has measure zero.

(iii). There is a real number κ 6= 0 such that for µ ∈ I
Φ(ϕ, y, µ, κ) := (gradΨ, f) + κΨdivf ≥ 0 (≤ 0) in D,(2.2)

where the set

Vκ(µ) := {(ϕ, y) ∈ D : Φ(ϕ, y, µ, κ) = 0}
has the properties

(a). Vκ(µ) has measure zero.

(b). If Γ(µ) is a limit cycle of (2.1), then it holds Γ(µ) ∩ Vκ(µ) 6= Γ(µ).

(iv).

(gradΨ, f)|W(µ) 6= 0(2.3)

is called a Dulac-Cherkas function of (2.1) in D for µ ∈ I .

Remark 2.3. If Φ does not depend on y, that is

Φ(ϕ, y, µ, κ) = Φ0(ϕ, µ, κ)

and if Φ0 vanishes only in finitely many points ϕi(µ, κ), then the conditions on the set Vκ(µ)
are fulfilled.
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Remark 2.4. From (2.3) it follows that the curves belonging to the set W(µ) are crossed

transversally by the trajectories of system (2.1), and that no equilibrium is located on W(µ).

Since we are focusing on limit cycles of the second kind we assume for the following

(A2). The boundary of the region D consists of two closed curves ∆u (upper closed curve) and

∆l (lower closed curve) surrounding the cylinder Z and which have no common point.

The following results which have been proved in [5] show how the topological structure of W(µ)
influences the topological structure of the set of limit cycles of the second kind.

Theorem 2.5. Suppose the hypotheses (A1) and (A2) to be valid. Let Ψ be a Dulac-Cherkas

function of (2.1) in D for µ ∈ I . If the set W(µ) is empty, then system (2.1) has at most one

limit cycle of the second kind in D.

Now we assume

(A3). The set W(µ) consists in D of s isolated closed curves W1(µ), W2(µ), ...,Ws(µ) sur-

rounding the cylinder Z and which do not touch the boundaries ∆u and ∆l.

Without loss of generality we assume the following ordering of these curves: Wi(µ) is located

above Wi+1(µ) on Z . With this ordering we associate the following notation: The region on

Z between Wi(µ) and Wi+1(µ) is denoted by Ai(µ), the region between ∆u and W1(µ) is

denoted by A0(µ), the region between Ws(µ) and ∆l is denoted by As(µ). Fig. 1 illustrates

the case s = 2.

FIGURE 1. Regions Ai in the case s = 2.

Theorem 2.6. Assume the hypotheses (A1)−(A3) to be valid, and that D contains no equilib-

rium of (2.1). Then system (2.1) has at least s but at most s + 2 limit cycles of the second kind

in D, more precisely, the region Ai(µ), i = 1, ..., s − 1, contains a unique limit cycle Γi(µ) of

the second kind, each of the regions A0(µ) and As(µ) may contain a unique limit cycle of the
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second kind. Furthermore, the limit cycle Γi(µ) in Ai(µ) is hyperbolic and asymptotically stable

(unstable) if

κΦ(ϕ, y, µ, κ)Ψ(ϕ, y, µ) < 0 (> 0) in Ai(µ).

Remark 2.7. The condition that D contains no equilibrium is essential. If we suppose that for

µ0 < µ < µ1 there exists a Dulac-Cherkas function Ψ(ϕ, y, µ) of (2.1) in D to which there

belong two closed curves W1(µ) and W2(µ) bounding the region A1(µ) which contains no

equilibrium of (2.1) but a family Γ(µ) of limit cycles of the second kind. If for µ = µ1 there

arises a multiple equilibrium in A1(µ) with a homoclinic orbit, then it may happen that the family

Γ(µ) of limit cycles can not be continued for µ > µ1.

3. EQUILIBRIA OF SYSTEM (1.4)

In order to be able to apply Theorem 2.6 to system (1.4) we have to exclude the existence of

an equilibrium. Therefore, our goal in this section is to determine an interval I1 containing the

origin such that system (1.4) has no equilibrium for µ ∈ I1.

It is obvious that all equilibria of system (1.4) lie on the ϕ-axis and that their location is deter-

mined by the equations

g(ϕ, µ) := 2(1 + µ cos ϕ) = 0,(3.1)

g2(ϕ, µ) + µ(sin ϕ − 6) = 0.(3.2)

First we consider equation (3.1). By inspection we get immediately the result

Lemma 3.1. Equation (3.1) has no root for |µ| < 1, for µ = −1 it has the double root ϕ = 0,

for µ = 1 it has the double root ϕ = π, for |µ| > 1 it has two simple roots.

Now we study equation (3.2). From (3.2) we obtain

Lemma 3.2. Equation (3.2) has no root for µ ≤ 0.

In what follow we want to determine a positive number µ1 with the properties: equation (3.2)

has no root for µ < µ1, equation (3.2) has for µ = µ1 a real root.

From the relations

g2(0, µ) − 6µ = g2(2π, µ) − 6µ = 4µ2 + 2µ + 4 > 0 for µ > 0,

g2(π, µ) − 6µ = 2(2µ2 − 7µ + 2), g2(π, 0.5) − 3 = −2, g2(π, 4) − 24 = 12

we can conclude that there are at least two values of the parameter µ, we denote them by µ1

and µ3 satisfying

0 < µ1 < 0.5, 0.5 < µ3 < 4

such that (3.2) has at least two multiple roots of even multiplicity ϕ
(1)
2 = ϕ(µ1) and ϕ

(3)
2 =

ϕ(µ3).

A multiple root of equation (3.2) is determined by the equation (3.2) and by the equation

−8 sin ϕ(1 + µ cos ϕ) + cos ϕ = 0.(3.3)
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From (3.3) we get that the multiple root satisfies

cos ϕ 6= 0, sin ϕ 6= 0.

Thus, we can solve (3.3) for µ,

µ =
cos ϕ − 8 sin ϕ

8 sin ϕ cos ϕ
,(3.4)

and substitute this relation into (3.2). By this way we obtain the equation

sin ϕ[cos ϕ(16 cos + sin ϕ − 12) + 16(6 sinϕ − 1)] + cos ϕ = 0.(3.5)

It can be proved that this equation has exactly two roots in the interval (−π, π). The numerical

solution of (3.5) provides in the interval (−π, π) the real roots

ϕ
(1)
2 ≈ −2.9632, ϕ

(3)
2 ≈ 3.08413.

Relation (3.4) yields the corresponding µ-values

µ1 ≈ 0.311448, µ3 ≈ 3.17818.

It can be shown that these values do not satisfy the equation

−8 cos ϕ − sin ϕ − 8µ(cos2 ϕ − sin2 ϕ) = 0,

which is necessary to be a root of order higher than two. Thus, ϕ
(1)
2 and ϕ

(3)
2 are double roots

of the equation (3.2).

Taking into account Lemma 3.2 we have the result

Lemma 3.3. The equation (3.2) has no root for µ < µ1, for µ = µ1 it has a double root, for

µ1 < µ < µ3 it has two simple roots, for µ = µ3 it has two simple roots and a double root, for

µ > µ3 it has four simple roots.

From Lemma 3.1 and Lemma 3.3 we get

Lemma 3.4. System (1.4) has no equilibrium for −1 < µ < µ1.

4. GENERAL PROPERTIES OF THE LIMIT CYCLES OF THE SECOND KIND

Before we introduce a Dulac-Cherkas function we prove some general results about a limit cycle

of the second kind of system (1.4).

First we prove the following basic result

Theorem 4.1. Let Γ(µ) be a limit cycle of the second kind of system (1.4). Then Γ(µ) cannot

meet the ϕ-axis.

Proof. We assume that the limit cycle Γ(µ) has the representation

ϕ = ϕ̄(t, t0, 0, y0, µ), y = ȳ(t, t0, 0, y0, µ) ∀t ∈ R

with

ϕ̄(t0, t0, 0, y0, µ) = 0, ȳ(t0, t0, 0, y0, µ) = y0,

ϕ̄(t, t0, 0, y0, µ) = ϕ̄(t + T (µ), t0, 0, y0, µ) ∀t ∈ R,

ȳ(t, t0, 0, y0, µ) = ȳ(t + T (µ), t0, 0, y0, µ) ∀t ∈ R,
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where the period T (µ) is a finite number. For the sequel we suppose y0 > 0, the case y0 < 0
can be treated analogously. We assume that there is a t1 > t0 with ȳ(t1, t0, 0, y0, µ) = 0 and

ȳ(t, t0, 0, y0, µ) 6= 0 for t0 < t < t1. From (ϕ̄(t1, t0, 0, y0, µ), 0) ∈ Γ(µ) we can conclude

that (ϕ̄(t1, t0, 0, y0, µ), 0) is not an equilibrium of system (1.4). Thus we have

dϕ

dt |(ϕ̄(t1,t0,0,y0,µ),0)
= 0,

dy

dt |(ϕ̄(t1,t0,0,y0,µ),0)
6= 0,

that is, Γ meets the ϕ-axis vertically. Since Γ(µ) is a closed trajectory there is a further time

moment t2 > t1 with ȳ(t2, t0, 0, y0, µ) = 0. From (1.4) we conclude ϕ̄(t2, t0, 0, y0, µ) <
ϕ̄(t1, t0, 0, y0, µ). In case 0 ≤ ϕ̄(t2, t0, 0, y0, µ) < ϕ̄(t1, t0, 0, y0, µ) we can immediately

conclude that Γ(µ) is not a closed orbit. In case ϕ̄(t2, t0, 0, y0, µ) < 0 we consider ϕ̄(t, t0, 0, y0, µ)
for t < t0. Since Γ(µ) is a closed trajectory there is a time moment t−1 < t0 with ȳ(t−1, t0, 0, y0, µ) =
0 and ȳ(t, t0, 0, y0, µ) 6= 0 for t−1 < t < t0. In case

ϕ̄(t2, t0, 0, y0, µ)) = ϕ̄(t−1, t0, 0, y0, µ)

Γ(µ) is a limit cycle of the first kind. In case

ϕ̄(t2, t0, 0, y0, µ)) 6= ϕ̄(t−1, t0, 0, y0, µ)

Γ(µ) is not a closed orbit. Both cases contradict our assumption that Γ(µ) is a limit cycle of the

second kind. This proves our theorem. �

Analogously we can prove

Theorem 4.2. Let Γ(µ0) be a homoclinic orbit of the second kind to the equilibrium (ϕ(µ0), 0)
of system (1.4). Then Γ(µ) meets the ϕ-axis only in the point (ϕ(µ0), 0).

Theorem 4.1 and Theorem 4.2 imply the following corollary

Corollary 4.3.
dϕ

dt
does not change its sign on any limit cycle of the second kind and on any

homoclinic orbit of the second kind of system (1.4), that is, any limit cycle of the second kind

of system (1.4) is entirely located either in the region y > 0 or in the region y < 0, and any

homoclinic orbit of the second kind is located either in the region y ≥ 0 or in the region y ≤ 0.

The following result addresses the existence of limit cycles of the second kind when system

(1.4) has no equilibrium.

Theorem 4.4. For −1 < µ < µ1, system (1.4) has at least one limit cycle.

Proof. From (1.4) we get immediately that to any given µ there is a positive number C0(µ)
such that all closed curves y = C and y = −C on Z with C ≥ C0(µ) are crossed by

the trajectories of (1.4) transversally. More precisely, any trajectory of (1.4) which crosses any

of these closed curves crosses it for increasing t in the direction of increasing |y|. By Lemma

3.4 there is no equilibrium of system (1.4) in the region B(µ) bounded by y = C0(µ) and

y = −C0(µ) for −1 < µ < µ1. Thus, we may apply the Poincaré-Bendixson Theorem which

completes the proof of Theorem 4.4. �

Corollary 4.5. If system (1.4) has a unique limit cycle of the second kind in B(µ) then it is

orbitally unstable.

In what follows we use the null-isocline to derive a sufficient condition for system (1.4) to have

no limit cycle of the second kind in the region y > 0.
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We denote by N(µ) the curve defined by

N(µ) :={(ϕ, y) ∈ Z :
dy

dt
=

1

4
g(ϕ, µ)

[

g2(ϕ, µ) + µ(sin ϕ − 6)
]

+
3

2

[

g2(ϕ, µ) + µ(sin ϕ − 2)
]

y + 3g(ϕ, µ)y2 + 2y3 = 0}.
(4.1)

It is obvious that any limit cycle Γ(µ) of system (1.4) must either cut the curve N(µ) or be a

subset of that curve.

From the relation

g(ϕ, µ) := 2(1 − µ cos ϕ) > 0 for ϕ ∈ [0, 2π], |µ| < 1

we can conclude that all coefficients of the polynomial in y for dy/dt in (4.1) are positive for

−1 < µ < 0 and ϕ ∈ [0, 2π] such that N(µ) is located in the region y < 0 for −1 < µ < 0.

Thus is holds

Lemma 4.6. System (1.4) has for −1 < µ ≤ 0 no limit cycle in the region y ≥ 0.

Since the curve

N(0) = {(ϕ, y) ∈ Z : y = −1}
is completely located in the region y < −0.9 we can conclude

Lemma 4.7. There is a positive number c1 such that system (1.4) for |µ| < c1 has no limit cycle

in the region y ≥ 0.

If we ask for the smallest positive value of µ for which N(µ) meets the first time the line y = 0 we

get from (4.1) that this value coincides with µ1 ≈ 0.311448, where the expression g2(ϕ, µ) +
µ(sin ϕ − 6) has a double root. Hence, it holds

Lemma 4.8. System (1.4) has for −1 < µ ≤ µ1 no limit cycle in the region y ≥ 0.

Thus we can improve Theorem 4.4.

Theorem 4.9. For −1 < µ < µ1, system (1.4) has at least one limit cycle in the region y < 0.

5. APPLYING A DULAC-CHERKAS FUNCTION TO STUDY THE BIFURCATION BEHAVIOR OF THE

LIMIT CYCLE Γ(0) OF MULTIPLICITY THREE

Now we introduce a Dulac-Cherkas function to study the bifurcation behavior of the limit cycle

of the second kind y = −1 of multiplicity three. In what follows we will show that the function

Ψ(ϕ, y, µ) :=
(

y +
1

2
g(ϕ, µ)

)2

− µ ≡
(

y + 1 + µ cos ϕ
)2

− µ(5.1)

fulfills all conditions of Definition 2.2 for µ 6= 0, that is, Ψ is a Dulac-Cherkas function of system

(1.4) in Z for µ 6= 0.

It is obvious that the function Ψ has the required smoothness and periodicity properties de-

scribed in Definition 2.2. The set

W(µ) := {(ϕ, y) ∈ Z : Ψ(ϕ, y, µ) = 0}
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consists for µ > 0 of the two curves

W1(µ) := {(ϕ, y) ∈ Z : y = −1 − µ cos ϕ +
√

µ = 0},

W2(µ) := {(ϕ, y) ∈ Z : y = −1 − µ cos ϕ −√
µ = 0}

surrounding the cylinder, W(0) represents the closed curve

W(0) := {(ϕ, y) ∈ Z : (y + 1)2 = 0},

and W(µ) is empty for µ < 0. Hence, W(µ) satisfies the condition (ii) in Definition 2.2. Fur-

thermore, we observe that the topological structure of the set W(µ) changes when µ crosses

the value 0. Later we will show that this bifurcation behavior of the set W(µ) can be exploited

to study the bifurcation behavior of the multiple limit cycle y = −1 of system (1.4).

To derive an explicit expression for the function

Φ(ϕ, y, µ, κ) := (gradΨ, f) + κΨdivf(5.2)

introduced in (2.2) we have to calculate the corresponding expressions for (gradΨ, f) and

Ψdivf . From the relation

f :=
(

y,
1

4
g
[

g2 + µ(sin ϕ − 6)
]

+
3

2

[

g2 + µ(sin ϕ − 2)
]

y + 3gy2 + 2y3
)

and (5.1) we obtain

(gradΨ, f) = 4y4 + 8gy3 +
(

6g2 + µ(sin ϕ − 6)
)

y2

+ g
(

2g2 + µ(sin ϕ − 6)
)

y +
1

4
g2(g2 + µ(sin ϕ − 6)),

(5.3)

Ψdivf = 6y4 + 12gy3 + 3
(

3g2 +
1

2
(sin ϕ − 6)

)

y2

+
3

2
g
(

2g2 + µ(sin ϕ − 6)
)

y +
3

2

(

g2 + µ(sin ϕ − 2)
)(g2

4
− µ

)

.

Thus, Φ is a polynomial in y of degree four. Setting κ = −2
3

in (5.2) we obtain for µ 6= 0

Φ(ϕ, y, µ,−2

3
) ≡ µ2(sin ϕ − 2) < 0.

Thus, the condition (iii) in Definition 2.2 is fulfilled.

To verify the condition (iv) we exploit the relation

y2 + gy +
1

4
g2 − µ = 0(5.4)

which characterizes the set W(µ). Using (5.4) we obtain from (5.3) for µ 6= 0
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(gradΨ, f)|Wµ

= 4y2(y2 + gy +
1

4
g2 − µ) + 4gy3 + y2(µ sin ϕ + 5g2 − 2µ)

+ g(µ sin ϕ + 2g2 − 6µ)y +
1

4
g4 +

1

4
µg2 sin ϕ − 3

2
µg2

= 4gy(y2 + gy +
1

4
g2 − µ) + y2(µ sin ϕ + g2 − 2µ)

+ g(µ sin ϕ + g2 − 2µ)y +
1

4
g4 +

1

4
µg2 sin ϕ − 3

2
µg2

= µ sin ϕ(y2 + gy +
1

4
g2) + y2(g2 − 2µ)

+ y(g3 − 2µg) +
1

4
g4 +

1

4
µg2 sin ϕ − 3

2
µg2

= g2(y2 + gy +
1

4
g2 − µ) − 2µy2 − 2µgy − 1

2
g2µ + µ2 sin ϕ

= −2µ(y2 + gy +
1

4
g2 − µ) − 2µ2 + µ2 sin ϕ = µ2(−2 + sin ϕ) < 0.

(5.5)

Therefore, condition (iv) is valid and we can conclude that for µ 6= 0 the function Ψ(ϕ, y, µ) is

a Dulac-Cherkas function for system (1.4).

Now we apply the Dulac-Cherkas function Ψ(ϕ, y, µ) to study the limit cycles of the second

kind of system (1.4) and their bifurcation.

First we study the existence of limit cycles of the second kind of system (1.4) for µ < 0. Since

the set W(µ) is empty for µ < 0 we can conclude by Theorem 2.5 and Corollary 4.3

Lemma 5.1. System (1.4) has for µ < 0 at most one limit cycle of the second kind. If this limit

cycle exists it is located either in the region y ≥ 0 or in the region y ≤ 0.

If we restrict us to the interval −1 < µ < 0 we can easily check that dy/dt is positive on

the line y = 0 and negative on the line y = −7. Since by Lemma 3.4, system (1.4) has no

equilibrium for that µ - interval, it holds

Lemma 5.2. System (1.4) has a unique limit cycle Γu(µ) for −1 < µ < 0. This limit cycle is

located in the region bounded by y = 0 and y = −7, and it is unstable.

For µ > 0, we denote the region bounded by W1(µ) and W2(µ) by A1(µ), by Ã0(µ) the

region bounded by the ϕ-axis and the curve W1(µ), and by Ã2(µ) the region bounded by the

curves W2(µ) and y = −C0(µ). From (5.5) we get that the vector field f defined by system

(1.4) is directed into the region A1(µ) for µ > 0. Taking into account Lemma 3.4 we get by

applying Theorem 2.6 the result

Theorem 5.3. For 0 < µ < µ1 ≈ 0.311448, system (1.4) has in the region A1(µ) a unique

hyperbolic asymptotically stable limit cycle Γs
1(µ).

For 0 < µ < µ1, the vector field on the ϕ-axis is directed into the region y > 0 and on the

curve y = −C0(µ) the trajectories of system (1.4) leave the region Ã2(µ) for increasing t.
Consequently, using Theorem 2.6 and the Poincaré-Bendixson Theorem we obtain the result
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Theorem 5.4. For 0 < µ < µ1, system (1.4) has in each of the regions Ã0(µ) and Ã2(µ) a

unique hyperbolic unstable limit cycle which we denote by Γu
0(µ) and Γu

2(µ), respectively.

Fig. 2 illustrates the results of Theorem 5.3 and Theorem 5.4.

FIGURE 2. Location of the limit cycles Γu
0(µ), Γs

1(µ) and Γu
2(µ) of system (1.4),

of the curves W1(µ) and W2(µ) and of the regions Ã0(µ), A1(µ) and Ã2(µ)
in the case µ = 0.2.

Since for increasing µ the amplitude of the curves W1(µ) and W2(µ) is increasing we can

determine the values µw
1 and µw

2 of µ, when W1(µ) and W2(µ) meet the ϕ-axis. We get

µw
1 =

3 −
√

5

2
≈ 0.381966, µw

2 =
3 +

√
5

2
≈ 3.736.

Since by Theorem 4.1 no limit cycle of the second kind can meet the ϕ-axis, we can conclude

that µw
1 and µw

2 yield an upper bounds for the µ-intervals for which the limit cycles Γu
0(µ) and

Γs
1(µ) can exists.

Theorem 5.5. The limit cycles Γu
0(µ) and Γs

1(µ) exist for µ at most in the intervals (0, µw
1 ) and

(0, µw
2 ), respectively.

Remark 5.6. Numerical investigations give a strong evidence that the limit cycles Γu
0(µ) bifur-

cates from the homoclinic orbit of the second kind to the double equilibrium of system (1.4) for

µ = µ1 ≈ 0.311448 and that Γs
1(µ) bifurcates from the homoclinic orbit of the second kind to

the double equilibrium for µ = µ3 ≈ 3.17818 for decreasing µ.

REFERENCES

[1] G.A. LEONOV, I.M. BURKIN, A.I. SHEPELYAVYI, Frequency methods in oscillation theory, Mathematics and

its Applications 357, Kluwer Academic Publishers, Dordrecht 1996

[2] ANDRONOV A.A., VITT A.A., HAIKIN S.E. Theory of oscillations, Nauka, Moscow, 1981.

[3] L.A. CHERKAS, Dulac function for polynomial autonomous systems on a plane, Differential Equations 33

(1997), 692 - 701.



12

[4] L. A. CHERKAS, A. A. GRIN, Limit cycle function of the second kind for autonomous systems on the cylinder,

Differential Equations 47 (2011), 462 - 470.

[5] L.A. CHERKAS, A.A. GRIN, K.R. SCHNEIDER, A new approach to study limit cycles on a cylinder, Dynamics

of continuous, discrete and impulsive systems Series A: Mathematical Analysis 18 (2011), 839 - 851.

[6] H. GIACOMINI, M. GRAU, Transversal conics and the existence of limit cycles, J. Math. Anal.Appl. 428 (2015),

563 - 586.

[7] A.A. GRIN, K.R. SCHNEIDER, On some classes of limit cycles of planar dynamical systems, Dynamics of

Continuous, Discrete and Impulsive Systems, ser. A, 14 (2007), 641 - 656.


