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Abstract

We present a model of, and analysis of an optimization problem for, a magnetostric-
tive harvesting device which converts mechanical energy of the repetitive process such
as vibrations of the smart material to electrical energy that is then supplied to an electric
load. The model combines a lumped differential equation for a simple electronic circuit
with an operator model for the complex constitutive law of the magnetostrictive material.
The operator based on the formalism of the phenomenological Preisach model describes
nonlinear saturation effects and hysteresis losses typical of magnetostrictive materials in
a thermodynamically consistent fashion. We prove well-posedness of the full operator-
differential system and establish global asymptotic stability of the periodic regime under
periodic mechanical forcing that represents mechanical vibrations due to varying environ-
mental conditions. Then we show the existence of an optimal solution for the problem of
maximization of the output power with respect to a set of controllable parameters (for the
periodically forced system). Analytical results are illustrated with numerical examples of an
optimal solution.

1 Introduction

Many engineering processes imply energy conversion. Part of the energy ‘released’ to the en-
vironment in one or several forms, spanning from heat to vibrations, is normally considered
as ‘wasted’. Since the environmental (low power) energy source is everywhere available, the
idea of its exploitation to supply low power devices arises naturally and leads to the concept of
Energy Harvesting, EH [1, 2].

Energy harvesting is a technique for recovering small amounts of ambient energy, otherwise
wasted, of any kind (such as light, vibrations, heat, etc.). It can be considered as a paradigm
for a wiser way of energy use. In fact, EH has enabled power supply of wireless battery-free
sensors and increased device efficiency through recovery and re-use of ambient energy. De-
sign of an EH device can be based on the use of materials (usually referred to as smart) that
demonstrate coupling between mechanical and electromagnetic properties and thus naturally
perform energy conversion. Effectively, smart materials act as a natural miniature electrical gen-
erator under mechanical forcing. Thermo-electric junctions, piezoelectric, magnetostrictive and
magneto-caloric materials are significant examples of smart materials that have been known for
a long time. However, their exploitation for energy conversion has become possible only recently,
since the development of new materials such as PZT and Terfenol-D that show a very strong
coupling between mechanical and electromagnetic variables, or SrTiO 3 that demonstrates a
giant Seebeck effect [3, 4, 5].

One of the most studied EH techniques for recovery of mechanical energy of vibrations in-
volves alloys with strong electro- or magneto-mechanical coupling. Figure 1 presents a general
schematic of a system that employs a kinetic energy harvesting device (harvester) to convert
kinetic energy available in the form of mechanical vibrations into electrical power which is then
used to feed wireless sensors. A substantial body of work has been devoted to optimization of
the efficiency and maximization of the output power for such systems. Most of this work adopts
a linear model for the energy conversion mechanism of the harvester and focuses on optimiza-
tion of the electrical circuit of the harvester, or on careful design of the electronic circuit that
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Figure 1: General scheme of a wireless sensor employing a magnetostrictive energy harvester
as power source.

stores the electric energy and makes it available to sensors and data transmission modules
(this electronic circuit can be considered as the electric load of the harvester, see Figure 1).
For example, electronic techniques helping optimize the converted power of a kinetic energy
harvester based on a piezoelectric element have been considered in [6]. Karush-Kuhn-Tucker
(KKT) conditions have been applied to optimize the power output of a piezoelectric vibration-
based energy harvester which utilizes a harvesting circuit employing an inductor and a resistive
load [7]. Further analytic formulas for efficiency have been obtained from the linear theory of
kinetic energy harvesting [8]. In particular, the efficiency of a mass-spring-damper system with
a linear behavior of the energy converting mechanism has been considered in [9]. EH devices
employing magnetostrictive materials for energy conversion have also been designed, modeled
and tested as, for example, in [10] where the magnetostrictive harvester (based on metglas)
is coupled with an electronic circuit to improve the conversion efficiency. Analysis presented in
[10, 11] is based on a linear model of the magnetostrictive harvester.

The linear approximation and techniques based on perturbation methods are effective for mod-
eling oscillators with relatively weak nonlinearity or sufficiently small vibrations [12]. However,
all smart materials demonstrate a strongly nonlinear constitutive law. Results from piezoelec-
tric energy harvesters [13, 14, 15, 16, 17] and preliminary results from magnetostrictive energy
harvesters [18] show that nonlinearities in the material characteristic need to be accounted
for in order to maximize, or significantly increase, the energy output of these devices. From
a philosophical point of view, linear models displaying Onsager reciprocity have been criticized
because they only model reversible processes in thermodynamic equilibrium [19] (Chap. 7). Fur-
thermore, it is well known that smart materials displaying magnetostriction, piezoelectricity, and
thermoelectricity possess a continuum of metastable states whose stability depends on the input
variables. The presence of a continuum of metastable states leads to hysteresis in the charac-
teristic of the material, which is a non-local memory effect leading to the dependence of the
current value of the output on past values of the input. This memory effect is typically modeled
using input-state-output formalism, which involves a special class of nonlinear operators char-
acterized by the property of rate-independence1 [20]. The operators describe the relationship
between varying stress, strain, electric field, polarization, magnetic field and magnetization by
defining the evolution of the memory state associated with the material in an infinite-dimensional
metric space. In particular, the operators of Preisach [21] and Prandtl-Ishlinskii [22, 23], which
were originally used as models of hysteresis in magnetism and plasticity (as well as for model-
ing friction, fatigue and sorption [24, 25, 26, 27]), have been successfully adapted for actuation,

1An operator P acting in space of functions of time is called rate-independent if it commutes with any increasing
transformation τ = τ(t) of the time scale, P ◦ τ = τ ◦ P .
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sensing and energy harvesting applications involving piezoelectric materials [28]. It is important
to note that the memory associated with hysteresis in material characteristic is often charac-
terized as “permanent” because there is no explicit time scale set for “forgetting” the effect of
past input values.2 This distinguishes hysteresis from other models of memory such as delay
(functional) differential equations or convolution operators. On the other hand, even very small
oscillations of the input result in changes of the material state with the associated hysteretic
energy losses. This effect is different from bi-stable behavior (often also called “hysteresis”)
observed, for example, in nonlinear oscillators because bi-stable systems do not manifest hys-
teresis for small oscillations or, more generally, as long as the system is kept in any one of the
two (or more) stable regimes.3

The saturation field for Terfenol-D is high, but it shows significant hysteresis in the strain vs field
characteristic, suggesting that dissipation of energy due to hysteresis effect can strongly affect
energetic performance of an EH device based on this magnetostrictive material. Hysteresis is
less significant for Galfenol, but the material saturates at a much lower magnetic field, which is
problematic if not accounted for. Therefore, a possible approach to modeling an EH device so
that the maximum possible energy is harvested includes the following ingredients: (a) modeling
the nonlinearity and hysteresis in the characteristic of a magnetostrictive material that performs
energy conversion using a hysteresis operator; (b) modeling electronic and mechanical com-
ponents of the device with differential equations; (c) combining these two models into a closed
operator-differential model of an EH device. The resulting combined model should be amenable
to effective analysis that would allow one to maximize the energy output of the device by an
appropriate choice of design parameters.

In order to test the above approach in this paper, we focus our attention on improved phe-
nomenological modeling of nonlinear hysteretic characteristics of the magnetostrictive material,
while using a simple LR (and LCR) model for the electric circuit. For simplicity, it is assumed that
the magnetostrictive material is subject to periodic forcing which is not mediated by a mechani-
cal component. Our aim is to analyze stability of the operator-differential model of the EH device
and obtain general properties of the harvested power with respect to a few design parameters
that include inductance and resistance of the electric circuit and the magnetic bias.

A few remarks are in order. First, a model for the magnetostrictive material should not only
describe the evolution of metastable states for large deformations, but also accurately model
the evolution of thermodynamic quantities in non-equilibrium [29] and energy dissipation due to
hysteresis. It should therefore be compatible with thermodynamic constraints such as Clausius-
Duhem inequality. A thermodynamically consistent, irreversible, nonlinear model for hysteresis
and saturation in magnetoelastic materials, involving the Preisach operator, was proposed in
[30]. We choose this model because it states the energy balance within the framework of classi-
cal thermodynamics in a mathematically rigorous and physically consistent way and reproduces
all the basic features of the macroscopic behavior manifested by magnetostrictive materials, in-
cluding hysteretic response of the magnetization and strain to variations of the applied magnetic
field and stress; magnetic response curves affected by the applied pre-stress; magnetic satura-
tion not affected by the applied pre-stress; strain saturation strongly depending on the applied
prestress; and, specific scaling of the butterfly-shaped magnetoelastic response curves with the

2For example, according to the Preisach model, a permanent magnet does not demagnetize unless a demag-
netization field is applied. This is of course an idealization, but a useful one for applications where demagnetization
caused by random fluctuations of magnetic moments is slow enough to be negligible on the time interval of interest.

3In particular, a control can be applied to avoid, or diminish, the jump phenomenon, i.e. transitions from the
desirable stable regime of operation to undesired ones.
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applied pre-stress. The model has been fitted to experimental measurements of the constitutive
relationship between stress (loading), strain, magnetic field and magnetization in Galfenol and
Terfenol-D. Here, we combine this model with a differential equation for the current and voltage
in the electric circuit.

Second, hysteresis creates infinitely many degrees of freedom in the state space of the system.
As the model of the material characteristic involves the Preisach operator, the phase space of
the proposed operator-differential model of the harvester is the space of Lipschitz continuous
functions with Lipschitz constant 1 , see [31, Chapter II], cf. also [32]. This space lacks a local
linear structure. Furthermore, the Preisach operator is not differentiable because, as any other
model of hysteretic memory, it is rate-independent. Therefore, some alternative to standard
techniques employing linearization is needed in order to analyze stability of solutions to the
operator-differential model and address optimization of its parameters. For this reason, we use
a method based on variational inequalities combined with a time discretization technique. This
discretization technique is also useful for stable numerical implementation of the model.

Third, magnetostrictive materials show a typical butterfly curve with saturation in the strain ver-
sus magnetic field characteristic, which means that a biasing magnetic field and correct pre-
stressing need to be applied to extract maximum energy if the harvester is operating in an
open-loop fashion4. In other words, the magnetic bias determines how much energy is available
for harvesting [18]. Therefore, we consider maximization of harvestable energy, for a given me-
chanical load, with respect to controllable bias field while also taking into account the losses due
to lead resistance. In our model, we assume that the stress is periodic. The operating range of
frequencies for particular applications is well-known and, in many applications, a relatively nar-
row frequency band is used for harvesting. For example, the frequency is between 30 to 50 Hz
(engine rpm 1800 to 3000) for a harvester in a car engine compartment, and up to 15 Hz for a
bridge structure harvester [33, 34].

The paper is organized as follows. In Section 2, we derive a simple differential equation for mag-
netostrictive harvesting that includes the Preisach hysteresis operator as a model of the mag-
netostrictive material. Basic properties of the Preisach operator (and its variational form, such
as in [35]) are recalled in Section 3. Well-posedness of the initial value problem for the model is
established in Section 4. A solution of the harvesting equation is constructed by discretization of
time. In Section 5, we show the existence and global asymptotic stability of a periodic solution
under periodic forcing. The optimal harvesting problem, formulated as the maximization prob-
lem for the energy functional with respect to controllable parameter values, is stated in Section
6. It is proved that an optimal parameter choice exists. Numerical examples are presented in
Section 7. For a certain bias current, the delivered power is maximum if the load impedance
is the complex conjugate of the output impedance of the harvester, if the harvester is used to
continuously power some circuitry. As the magnetostrictive harvester is inductive in nature, one
would expect that a capacitive load would maximize the power delivered. We give a numerical
evidence that this is indeed the case by comparing circuits with a simple resistive load and a
capacitive load.

4For Galfenol and Terfenol-D, a bias is typically applied using a permanent magnet; for Metglas, it is applied
during manufacture using a transverse magnetic field.
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Figure 2: Harvesting device connected to a useful electric load R . The Galfenol core of the

coil has section S and length ℓ . The core is subject to periodic uniform stress σ(t) . The coil

has N loops with the total resistance Nr .

permeability.

The total magnetic flux in the coil is Φ = NSb , where b is the magnetic induction, N is

the number of loops, and S is the area of a loop which is equal to the area of the cross

section of the Galfenol specimen, see Figure 2. By Faraday’s law, we have

NSḃ = −(R+Nr)i,

where r is the resistance of one loop of the coil. The H -field of the current i equals

Hi = Ni/ℓ , where ℓ is the length of the specimen, hence

NSḃ = −(R+Nr)ℓ

N
(h−H0),

where h = Hi+H0 is the total H -field in the specimen. According to the model proposed

in [11], the H -field, magnetization m , and stress σ of Galfenol obey the constitutive
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Figure 2: Harvesting device connected to a useful electric load R . The Galfenol core of the coil
has section S and length ` . The core is subject to periodic uniform stress σ(t) . The coil has
N loops with the total resistance Nr .

2 Harvester model

We consider a simple model consisting of a coil with N loops winding around a Galfenol spec-
imen. An external source forces vibrations of the specimen which, due to coupling between the
mechanical and magnetic properties of Galfenol, produce variations of the magnetic field. Ac-
cording to Faraday’s law, the resulting electromotive force produces an electric current i in the
coil. The coil is connected to a load with resistance R . This resistor models an electric load.
We assume that the active useful power harvested from the load equals Ri2 . The objective
of optimization is to maximize the average harvested power. We also assume that the wire of
which the coil is made has finite resistivity ρ that accounts for linear losses in the device. Part
of the setting is a permanent magnet which creates a constant field (bias) B0 = µ0H0 in the
coil, where µ0 is the vacuum permeability.

The total magnetic flux in the coil is Φ = NSb , where b is the magnetic induction, N is the
number of loops, and S is the area of a loop which is equal to the area of the cross section of
the Galfenol specimen, see Figure 2. By Faraday’s law, we have

NSḃ = −(R +Nr)i,

where r is the resistance of one loop of the coil. The H -field of the current i equals Hi =
Ni/` , where ` is the length of the specimen, hence

NSḃ = −(R +Nr)`

N
(h−H0),

where h = Hi +H0 is the total H -field in the specimen. According to the model proposed in
[30], the H -field, magnetization m , and stress σ of Galfenol obey the constitutive relationship

m = P
[

h

f(σ)
, λ−1

]
, (1)
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where P is a Preisach hysteresis operator [36, 37] (see the definition in the next section), λ−1
is a given initial memory state, and f is an experimentally determined constitutive function. As
b = µ0h+m , with this expression for magnetization the Faraday’s law becomes

d

dt

(
µ0h+ P

[
h

f(σ)
, λ−1

])
=
`(Nr +R)

SN2
· (H0 − h), (2)

where h = h(t) is the unknown function and σ = σ(t) is the forcing term.

The control parameters in equation (2) are N , ` , S , R , and H0 . Assuming periodic forc-
ing σ = σ(t) , we will consider the optimization problem that consists in maximizing the time
average value of the useful power

W = Ri2 = R
`2(h−H0)

2

N2

over one period of a periodic process, that is,

E =
R`2

N2

∫ T

0

(h(t)−H0)
2 dt→ max (3)

where T is the period of the forced periodic solution h = h(t) of equation (2).

3 Preisach operator

Here we recall a definition of the Preisach operator together with a few of its properties which
will be used later for analysis of equation (2).

We are given a nonnegative function ψ ∈ L1(R2
+) (the Preisach density ), where R2

+ =
{(r, v) : r > 0, v ∈ R} is the Preisach half-plane. Assume that there exists a function
ψ1 ∈ L1(R) such that

0 ≤ ψ(r, v) ≤ ψ1(r) a.e., (4)

and set

Ψ+ =

∫ ∞
0

∫ ∞
0

ψ(r, v) dv dr , Ψ− =

∫ ∞
0

∫ 0

−∞
ψ(r, v) dv dr , Ψ1 =

∫ ∞
0

ψ1(r) dr . (5)

The Preisach state space is the set

Λ = {λ ∈ W 1,∞(0,∞) : |λ′(r)| ≤ 1 a.e., lim
r→∞

λ(r) = 0}.

For an input function u = u(t) ∈ W 1,1(0, T ) , an initial state λ−1 ∈ Λ , and a parameter r >
0 , we define the play operator as the solution operator pr : W 1,1(0, T )× Λ→ W 1,1(0, T ) :
(u, λ−1) 7→ ξr of the variational inequality

|u(t)− ξr(t)| ≤ r ∀t ∈ [0, T ] , (6)

ξr(0) = λ−1(r) + Pr(u(0)− λ−1(r)) , (7)

ξ̇r(t)(u(t)− ξr(t)− z) ≥ 0 a.e. ∀z ∈ [−r, r] , (8)

where Pr is the piecewise linear function

Pr(s) = min{s+ r,max{0, s− r}}. (9)
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Figure 3: Hysteresis curves produced by the Preisach model (1) of magnetostrictive material.
The density function ψ(r, v) and the function f(σ) are defined in Section 7. Behavior with
respect to magnetic field h at two different stress values σ1 = 1 MPa and σ2 = 30 MPa
(a) and with respect to compressive stress σ at two different field values h1 = 5 kA/m and
h2 = 20 kA/m (b). The upper panels have been obtained for the parameter set presented in
Section 7; wider hysteresis loops in the lower panels correspond to a larger parameter x0 = 0.4
with other parameters as in Section 7.

With this choice, the function λ(t) , which for a fixed time t associates with r > 0 the value of
the play pr[u, λ−1](t) , belongs to Λ for each t . Furthermore, the semigroup property

pr[u, λ−1](t+ τ) = pr[u(·+ τ), pr[u, λ−1](τ)](t) (10)

holds for each constant time shift τ > 0 , see e.g. [36, Section 2.3].

We now introduce the function

g(r, v) =

∫ v

0

ψ(r, s) ds (11)

and define the Preisach operator P by the formula

P [u, λ−1](t) =

∫ ∞
0

g(r, pr[u, λ−1](t)) dr . (12)

Figure 3 presents some hysteresis loops produced by relationship (12) between the input u =
h/f(σ) and the output m = P [u, λ−1](t) of the Preisach operator that mimics the response
of magnetization m of a magnetostrictive material to variations of stress σ and magnetic field
h .

Furthermore, we introduce the function

G(r, v) =

∫ v

0

sψ(r, s) ds, (13)

and define the Preisach energy potential

U [u, λ−1](t) =

∫ ∞
0

G(r, pr[u, λ−1](t)) dr . (14)

Then the energy balance equation has the form

u(t)
d

dt
P [u, λ−1](t)−

d

dt
U [u, λ−1](t) =

∣∣∣∣ d

dt
D[u, λ−1](t)

∣∣∣∣ , (15)
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where

D[u, λ−1](t) =

∫ ∞
0

rg(r, pr[u, λ−1](t)) dr

is the Preisach dissipation operator . Relation (15) is a form of the Clausius-Duhem inequality
describing dissipation of energy by hysteresis [36, 31, 38].

This definition is shown in [35] to be equivalent to the classical one in [21] based on nonideal
relays switching between +1 and −1 with thresholds v − r and v + r . For each fixed time
t ∈ [0, T ] , the curve r 7→ v = pr[u, λ−1](t) describes the interface between the +1 and
−1 regions in the Preisach half-plane R2

+ .

In order to solve Eq. (2) numerically, it is convenient to proceed as in [39] and extend the play
operator to the space GR(0, T ) of right continuous regulated functions, that is, functions that
are right continuous and admit the left limit at each point of the domain of definition (also called
càdlàg in the literature). It suffices to replace the variational inequality in differential form (8) by
the Kurzweil integral variational inequality∫ T

0

(u(t)− ξr(t)− z(t)) dξr(t) ≥ 0 (16)

for every function z ∈ G(0, T ) , |z(t)| ≤ r for all t ∈ [0, T ] . Of special interest are the
so-called step functions of the form

u(t) =
m∑
j=1

uj−1χ[tj−1,tj)(t) + umχ{tm}(t) , (17)

where u0, u1, . . . um are constants and χA(t) denotes the characteristic function of a set A ,
that is, χA(t) = 1 if t ∈ A , χA(t) = 0 if t /∈ A . We then have

pr[u, λ−1](t) =
m∑
j=1

λj−1(r)χ[tj−1,tj)(t) + λm(r)χ{tm}(t) , (18)

where λj ∈ Λ are defined recurrently by a formula similar to (7)

λj(r) = λj−1(r) + Pr(uj − λj−1(r)) for j = 0, 1, . . . ,m , (19)

where Pr is the function (9). We have the saturation bound

−Ψ− ≤ P [u, λ−1](t) ≤ Ψ+ (20)

for all u ∈ GR(0, T ) , λ−1 ∈ Λ , and t ∈ [0, T ] , as well as the Lipschitz continuous depen-
dence for two inputs u1, u2 ∈ GR(0, T ) , λ1−1, λ

2
−1 ∈ Λ , see [39],

|pr[u1, λ1−1](t)− pr[u2, λ
2
−1](t)| ≤ max{|u1 − u2|[0,t] , |λ1−1(r)−λ2−1(r)|}, (21)

|P [u1, λ
1
−1](t)− P [u2, λ

2
−1](t)| ≤ Ψ1|u1 − u2|[0,t] +

∫ ∞
0

ψ1(r)|λ1−1(r)−λ2−1(r)| dr, (22)

where for a function w : [0, T ]→ R and 0 ≤ s < t ≤ T we set |w|[s,t] = supτ∈[s,t] |w(τ)| .
We recall here the Hilpert inequality, see [40], which we systematically use in the sequel.
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Lemma 1 For u1, u2 ∈ W 1,1(0, T ) and λ1−1, λ
2
−1 ∈ Λ put ξir(t) = pr[ui, λ

i
−1](t) , i = 1, 2 .

Then for every locally Lipschitz continuous non-decreasing function g : R → R and a.e.
t ∈ (0, T ) we have

d

dt

∣∣g(ξ1r )− g(ξ2r )
∣∣ (t) ≤ sign (u1(t)− u2(t))

d

dt

(
g(ξ1r )− g(ξ2r )

)
(t) . (23)

Proof. From (6)–(8) it follows that (we omit the argument t for simplicity)

g′(ξ1r ) ξ̇
1
r

(
(u1 − ξ1r )− (u2 − ξ2r )

)
≥ 0 a.e.,

−g′(ξ2r ) ξ̇2r
(
(u1 − ξ1r )− (u2 − ξ2r )

)
≥ 0 a.e.,

hence (
(u1 − ξ1r )− (u2 − ξ2r )

) d

dt

(
g(ξ1r )− g(ξ2r )

)
≥ 0 a.e. (24)

Using the implication c(a − b) ≥ 0 ⇒ c(sign a − sign b) ≥ 0 for a, b, c ∈ R , we obtain
from (24) that

sign (ξ1r − ξ2r )
d

dt

(
g(ξ1r )− g(ξ2r )

)
≤ sign (u1 − u2)

d

dt

(
g(ξ1r )− g(ξ2r )

)
a.e. (25)

For a.e. t > 0 we have

g(ξ1r (t)) = g(ξ2r (t)) ⇒ d

dt

∣∣g(ξ1r )− g(ξ2r )
∣∣ (t) = 0 ,

g(ξ1r (t)) 6= g(ξ2r (t)) ⇒ sign (ξ1r (t))− ξ2r (t)) = sign (g(ξ1r (t))− g(ξ2r (t))) ,

and (23) follows. �

4 Qualitative properties of solutions

In this section, we prove well-posedness of model equation (2). This equation is different from
the operator-differential equations with the Preisach operator considered in [35, 41, 27, 42,
26, 43] as the input of the Preisach operator contains the forcing term. That is, we consider
a Preisach operator P as in Section 3, with initial memory λ−1 . The harvesting process is
modeled by Eq. (2) with a given external forcing f(t) := f(σ(t)) > 0 , given bias magnetic
field h0 , and given material constants. Although the case of constant bias field is of main interest
to us, in this and the next sections we allow h0 = h0(t) to depend on time.

We thus consider the differential equation for the unknown magnetic field h(t)

d

dt

(
µ0h(t) + P

[
h

f
, λ−1

]
(t)

)
+ α(h(t)− h0(t)) = 0 (26)

with given h0(t) , where the magnetic induction b(t) is given by

b(t) = µ0h(t) + P
[
h

f
, λ−1

]
(t) , (27)
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and

α =
`(Nr +R)

SN2
.

Introducing a new unknown function u(t) = h(t)/f(t) , we rewrite (26) in the form

d

dt

(
µ0f(t)u(t) + P [u, λ−1](t)

)
+ α(f(t)u(t)− h0(t)) = 0 . (28)

Proposition 2 Let h0 ∈ L∞(0, T ) , f ∈ W 1,2(0, T ) , λ−1 ∈ Λ , and an initial condition u0 ∈
R be given, 0 < f∗ ≤ f(t) ≤ f ∗ for all t ∈ [0, T ] ,

∫ T
0
|ḟ(t)|2 dt ≤ F0 , |h0(t)| ≤ H0 a.e.,

where f∗, f ∗, F0, H0 are fixed constants. Then there exists a unique solution u ∈ W 1,2(0, T )
of (28) such that u(0) = u0 , and (28) holds a.e. in (0, T ) . This solution continuously depends
on initial data u0 , λ−1 and functions f, h0 in the uniform norm.

Proof. Set

y(t) = µ0u(t) +
1

f(t)
P [u, λ−1](t). (29)

By [44, Theorem 3.4], for every given function y in the space C[0, T ] of continuous functions
on [0, T ] there exists a unique u ∈ C[0, T ] such that (29) holds for all t . Moreover, the
mapping u = G[y, f ] which with y and f associates u is causal and Lipschitz continuous
in C[0, T ]×C[0, T ] . Hence, Eq. (28) can be interpreted as integral equation for the unknown
function y

f(t)y(t) = f(0)y(0) + α

∫ t

0

(h0(τ)− f(τ)G[y, f ](τ)) dτ, (30)

the unique solution of which can be easily constructed by successive approximations.

In order to prove that the solution of (28) depends continuously on the data, we now choose
two sets of data (λ1−1, u

1
0, f1, h

1
0) , (λ2−1, u

2
0, f2, h

2
0) satisfying the assumptions of Proposition

2, and denote by u1, u2 the corresponding solutions of (28). As in the uniqueness proof, we
multiply the difference of the two equations (28) written for u1 and u2 by sign (u1(t)−u2(t)) ,
and use the fact that sign (u1(t)−u2(t)) = sign (f1(t)(u1(t)−u2(t))) . The Hilpert inequality
(23) now yields (we omit the arguments (t) for simplicity)

d

dt

(
µ0f1|u1 − u2|+

∫ ∞
0

|g(r, pr[u1, λ
1
−1])− g(r, pr[u2, λ

2
−1])| dr

)
+ αf1|u1 − u2|

≤ µ0|u̇2||f1 − f2|+ µ0|u2||ḟ1 − ḟ2|+ α|u2||f1 − f2|+ α|h10 − h20|. (31)

Integrating from 0 to t we conclude that there exists a constant C1 depending only on the
bounds for the data such that

|u1 − u2|[0,T ] ≤ C1

(
|u10 − u20|+

∫ ∞
0

ψ1(r)|λ1−1 − λ2−1|(r) dr

+

∫ T

0

|ḟ1 − ḟ2| dt+
(∫ T

0

|f1 − f2|2 dt
)1/2

+

∫ T

0

|h10 − h20| dt. (32)

�

10



5 Global stability of the periodic regime

Next, we consider time periodic data, that is, there exists T > 0 such that the identities

h0(t+ T ) = h0(t) , f(t+ T ) = f(t) (33)

hold for all t ≥ 0 . We prove the following result.

Proposition 3 Let f, h0 be defined on [0,∞) and satisfy (33), and let the hypotheses of
Proposition 2 hold. Then there exists a unique function u∗ with the following properties:

(i) u∗(t+ T ) = u∗(t) ∀t ≥ 0 , u∗
∣∣
[0,T ]
∈ W 1,2(0, T ) ;

(ii) Let u be the solution of (28) on [0,∞) with initial data u0 ∈ R , λ−1 ∈ Λ . Then there
exists λ∗ ∈ Λ such that

d

dt

(
µ0f(t)u∗(t) + P [u∗, λ∗](t)

)
+ α(f(t)u∗(t)− h0(t)) = 0 a.e., (34)

lim
t→∞
|u(t)− u∗(t)| = 0. (35)

The meaning of Proposition 3 is that Eq. (28) with periodic data has a unique periodic solution
which is globally asymptotically stable. On the other hand, the limit memory state λ∗ is not
uniquely determined, but the values of P [u∗, λ∗](t) for different λ∗ differ only by an additive
constant.

Proof of Proposition 3. Let u be as in (ii). We test Eq. (28) by sign (u(t)) = sign (f(t)u(t))
and refer to Lemma 1 with u1 = u , u2 = 0 to obtain

d

dt

(
µ0f(t)|u(t)|+

∫ ∞
0

|g(r, pr[u, λ−1](t))| dr
)

+ αf(t)|u(t)| ≤ α|h0(t)| , (36)

and we easily conclude that there exists a constant C2 such that |u(t)| ≤ C2 for all t ≥ 0 .
Furthermore, multiplying (28) by u̇(t) and using the fact that Ṗ [u, λ−1]u̇ ≥ 0 a.e., we obtain

µ0(f(t)u̇2(t) + u(t)ḟ(t)u̇(t)) + αf(t)u(t)u̇(t) ≤ αh0(t)u̇(t),

hence there exists a constant C3 > 0 such that∫ τ+T

τ

u̇2(t) dt ≤ C3 (37)

independently of τ ≥ 0 .

We now subtract the two equations (28) taken at t and t+ T , and obtain

d

dt

(
µ0f(t)(u(t+T )−u(t))+(P [u, λ−1](t+T )−P [u, λ−1](t))

)
+αf(t)(u(t+T )−u(t)) = 0 .

(38)
We proceed as above, multiplying (38) by sign (u(t + T ) − u(t)) . From Hilpert’s inequality it
follows that

d

dt

(
µ0f(t)|u(t+ T )− u(t)|+

∫ ∞
0

|g(r, pr[u, λ−1])(t+ T )− g(r, pr[u, λ−1])(t)| dr
)

+αf(t)|u(t+ T )− u(t)| ≤ 0. (39)
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For k ∈ N put

Bk = µ0f(0)|u((k+1)T )−u(kT )|+
∫ ∞
0

|g(r, pr[u, λ−1])((k+1)T )−g(r, pr[u, λ−1])(kT )| dr.

By virtue of (39), we have for n > k that

α

∫ nT

kT

f(t)|u(t+ T )− u(t)| dt ≤ Bk −Bn.

We now introduce the sequence
uj(t) = u(t+ jT )

for j ∈ N and t ∈ [0, T ] . We have

α

∫ T

0

f(t)|un+1(t)− uk(t)| dt ≤ α
n∑
j=k

∫ T

0

f(t)|uj+1(t)− uj(t)| dt

= α

∫ nT

kT

f(t)|u(t+ T )− u(t)| dt ≤ Bk −Bn. (40)

The sequence Bk is decreasing and positive, hence it is convergent. Consequently, uj is a
Cauchy sequence in L1(0, T ) . Furthermore, we know that the sequence uj is bounded in
C[0, T ] and, by (37), also in W 1,2(0, T ) . We conclude that uj is convergent uniformly in
C[0, T ] and weakly in W 1,2(0, T ) . Let u∗ ∈ W 1,2(0, T ) be its limit. Letting k and n tend to
∞ in (40), we obtain

u∗(t+ T ) = u∗(t)

for all t ≥ 0 , hence u∗ is periodic. Furthermore, for t ∈ [nT, (n + 1)T ] we have u(t) −
u∗(t) = un(t− nT )− u∗(t− nT ) , hence (35) holds.

It remains to prove that u∗ is a solution of (34) with a suitable choice of λ∗ and that it is unique.
For n ∈ N put

λn(r) = pr[u, λ−1](nT ), (41)

with the intention to prove that λn converge in Λ . Let k ∈ N be fixed for the moment, and let
us define

u(k)(t) =

{
u(t) for t ∈ [0, kT ] ,
u∗(t)− u∗(kT ) + u(kT ) for t > kT .

(42)

By [37, Section 2.8], the function pr[u
(k), λ−1](t) is T -periodic for t ≥ (k + 1)T . Hence, for

n > k , we have
pr[u

(k), λ−1](nT ) = pr[u
(k), λ−1]((k + 1)T )

and consequently, by triangle inequality,

|λn(r)− λk+1(r)| ≤ |pr[u, λ−1](nT )− pr[u
(k), λ−1](nT )|

+|pr[u, λ−1]((k + 1)T )− pr[u
(k), λ−1]((k + 1)T )|

for all r > 0 . Using (21) and (42), we obtain

|λn(r)− λk+1(r)| ≤ 4|u− u∗|[kT,∞).
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hence {λn(r)} is a Cauchy sequence uniform in r . The set Λ is closed with respect to uniform
convergence, hence there exists λ∗ ∈ Λ such that

lim
n→∞

sup
r>0
|λn(r)− λ∗(r)| = 0.

From the semigroup property (10) it follows that

pr[un, λn](t) = pr[u, λ−1](t+ nT ) (43)

for all n ∈ N and t ≥ 0 . By (28) we thus have for all n that

d

dt

(
µ0f(t)un(t) + P [un, λn](t)

)
+ α(f(t)un(t)− h0(t)) = 0 a.e., (44)

and passing to the limit as n→∞ we obtain (34). Uniqueness of u∗ follows easily again from
Hilpert’s inequality. �

6 Harvesting efficiency

Let us consider the case that the external magnetic field (bias) is constant, that is,

h0(t) ≡ H0 for t ≥ 0,

and f(t) is a given T -periodic function. Let u(t) be the T -periodic solution of the equation

d

dt

(
µ0f(t)u(t) + P [u, λ](t)

)
+ α(f(t)u(t)−H0) = 0 (45)

with a fixed choice of λ ∈ Λ . In agreement with Eq. (3), the optimal harvesting problem consists
in choosing the parameters H0 ∈ R , and α, γ > 0 in order to maximize the harvested energy

E(H0, α, γ) = γ

∫ T

0

(H0 − h(t))2 dt (46)

under given loading f(t) , with h(t) = f(t)u(t) , where

γ =
R`2

N2
, α =

`(Nr +R)

SN2
. (47)

Parameters α and γ are controlled by four physical parameter: the number of turns in the coil,
N , the electric load (resistance), R , and the dimensions of the Galfenol specimen, ` and S .
Note that γ/α is bounded above by the constant `S , which is the volume of the specimen.
The magnetic bias H0 is an independent parameter.

Using (45), we alternatively have

E(H0, α, γ) =
γ

α2

∫ T

0

ḃ(t)2 dt (48)

with b as in (27). In view of (5), we define auxiliary functions

k+(U) =
∫ U
0

∫ U−r
0

ψ(r, v) dv dr −
∫∞
U

∫ 0

U−r ψ(r, v) dv dr for U > 0 ,

k−(U) = −
∫ −U
0

∫ 0

U+r
ψ(r, v) dv dr +

∫∞
−U

∫ U+r

0
ψ(r, v) dv dr for U < 0 ,

(49)

and by hypothesis we have limU→∞ k+(U) = Ψ+ , limU→−∞ k−(U) = −Ψ− . We now
prove the following statement.
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Proposition 4 Assume that there exist k0 > 0 and δ > 0 such that the functions k± in (49)
have the property

k+(U) ≥ Ψ+ − k0U−1−δ for U > 0 , k−(U) ≤ −Ψ− + k0|U |−1−δ for U < 0 . (50)

Then there exist constants C∗1 , C
∗
2 , C

∗
3 , C

∗
4 independent of H0 and α such that

E(H0, α, γ) ≤


C∗1γ ,
C∗2γ|H0| ,
C∗3γα

−2(1 + |H0|)2 ,
C∗4γ(1 + |H0|)−2−2δ .

(51)

Corollary 5 We have the uniform limits

limγ→0E(H0, α, γ) = 0 , limα→∞E(H0, α, γ) = 0 ,
lim|H0|→0E(H0, α, γ) = 0 , lim|H0|→∞E(H0, α, γ) = 0 .

(52)

In particular, there exist positive constants A+, A−, H+, H− such that E(H0, α, γ) admits a
global maximal value which is reached in the domain Ω0 := {(H0, α, γ) ∈ R3 : A− < γ ≤
α`S < A+ , H− < |H0| < H+} .

We first show how Corollary 5 follows from Proposition 4.

Proof of Corollary 5. For two different parameter values (H1
0 , α1), (H

2
0 , α2) , let u1, u2 be

the corresponding periodic solutions of (45) and λ1, λ2 the corresponding memory states. We
test the difference of Eqs. (45) written for u1 and u2 by sign (u1 − u2) and use the fact that
sign (u1 − u2) = sign (fu1 − fu2) to obtain∫ T

0

(
α1(f(t)u1(t)−H1

0 )− α2(f(t)u2(t)−H2
0 )
)

sign (u1 − u2) dt ≤ 0,

hence∫ T

0

α1f(t)|u1(t)− u2(t)| dt ≤
∫ T

0

|α1 − α2|f(t)|u2(t)| dt+ T |α1H
1
0 − α2H

2
0 | .

It follows that the solution u depends locally Lipschitz continuously on α and H0 , and we
conclude that E(H0, α, γ) is locally Lipschitz in all variables.

As a consequence of Proposition 4 and of the inequality γ/α ≤ `S , we have the inequalities
E(H0, α, γ) ≤ C∗1γ ,
E(H0, α, γ)2+δ ≤ C∗4(C∗3)1+δ(`S)2+δα−δ ,
E(H0, α, γ)2 ≤ C∗2C

∗
3(`S)2|H0|(1 + |H0|)2 ,

E(H0, α, γ)2 ≤ C∗3C
∗
4(`S)2(1 + |H0|)−2δ ,

(53)

which imply the uniform limits. These limits, the estimate E > 0 and the Lipschitz continuity of
E = E(H0, α, γ) imply that E admits a maximum. �

Proof of Proposition 4. We first derive some a priori bounds for the periodic solutions of (45).
To this end, we rewrite (45) in the form

d

dt

(
µ0(h(t)−H0)+P [u, λ](t)

)
+
α

µ0

(
µ0(h(t)−H0)+P [u, λ](t)

)
=

α

µ0

P [u, λ](t). (54)
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This is an equation of the form

µ0

α
Ḃ(t) +B(t) = p(t), (55)

with B(t) = µ0(h(t)−H0) +P [u, λ](t) , and p(t) = P [u, λ](t) , which is bounded in abso-
lute value by the saturation value Ψ0 := max{Ψ+,Ψ−} . We multiply (55) by B(t)|B(t)|q−2
for sufficiently large exponents q and integrate from 0 to T . We obtain∫ T

0

|B(t)|q dt ≤
∫ T

0

|p(t)||B(t)|q−1 dt ≤
(∫ T

0

|p(t)|q dt
)1/q(∫ T

0

|B(t)|q dt
)(q−1)/q

,

hence (∫ T

0

|B(t)|q dt
)1/q
≤
(∫ T

0

|p(t)|q dt
)1/q
≤ Ψ0T

1/q.

Letting q tend to ∞ , we conclude that

|B(t)| ≤ Ψ0 ∀t ∈ [0, T ]. (56)

This implies that

|h(t)−H0| ≤
2

µ0

Ψ0 ∀t ∈ [0, T ]. (57)

This and (46) immediately yield the first inequality in (51) with C∗1 = (4T/µ2
0)Ψ

2
0 . Furthermore,

multiplying (45) by signu(t) = signh(t) , we obtain by Hilpert’s inequality (Lemma 1) with

u2 = 0 , λ2−1 = 0 that
∫ T
0
|h(t)| dt ≤ T |H0| , and using again (57), we obtain the second

inequality in (51) with C∗2 = (4T/µ0)Ψ0 .

We now investigate the cases that |H0| or α are large. We test (45) by ḣ(t) and obtain∫ T

0

(
µ0|ḣ(t)|2 + Ṗ [u, λ](t)(f(t)u̇(t) + ḟ(t)u(t))

)
dt = 0.

We have
0 ≤ Ṗ [u, λ](t)u̇(t) ≤ Ψ1|u̇(t)|2 , (58)

hence

µ0

∫ T

0

|ḣ(t)|2 dt ≤
∫ T

0

|Ṗ [u, λ](t)ḟ(t)u(t)| dt ≤
∫ T

0

Ψ1|u̇(t)| |ḟ(t)| |u(t)| dt .

We now substitute u = h/f , and obtain, using also Young’s inequality,

µ0

∫ T

0

|ḣ(t)|2 dt ≤
∫ T

0

Ψ1|h(t)| |ḟ(t)|
f(t)

(
|ḣ(t)|
f(t)

+
|h(t)ḟ(t)|
f 2(t)

)
dt

≤ µ0

2

∫ T

0

|ḣ(t)|2 dt+ Cµ

∫ T

0

|h(t)|2|ḟ(t)|2 dt, (59)

with a suitably chosen constant Cµ . From (57) and the hypotheses on ḟ we thus find a constant
C4 such that ∫ T

0

|ḣ(t)|2 dt ≤ C4(1 + |H0|)2.
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We have as before by (57) that∫ T

0

|u̇(t)|2 dt ≤ C5

(∫ T

0

|ḣ(t)|2 dt+ (1 + |H0|)2
)
,

hence, by (58), ∫ T

0

|ḃ(t)|2 dt ≤ C6(1 + |H0|)2

with suitably chosen constants C5, C6 , and we conclude from (48) that the third inequality in
(51) holds with C∗3 = C6 .

The last inequality is more involved. We first notice that by (57), we have h(t) ≥ H0−(2/µ0)Ψ0

for all t ∈ [0, T ] . For any U > 0 put H0 := f ∗U + (2/µ0)Ψ0 . Then

u(t) =
h(t)

f(t)
≥ f ∗

f(t)
U ≥ U ∀t ∈ [0, T ] .

Consequently, pr[u, λ](t) ≥ U − r for all t , and

Ψ+ ≥ P [u, λ](t) ≥
∫ ∞
0

g(r, U − r) dr = k+(U) ∀t ∈ [0, T ] .

We now rewrite (54) as

d

dt

(
µ0(h(t)−H0)+P [u, λ](t)−Ψ+

)
+
α

µ0

(
µ0(h(t)−H0)+P [u, λ](t)−Ψ+

)
=

α

µ0

(P [u, λ](t)−Ψ+).

(60)
This is again an equation of the form (55) with B(t) = µ0(h(t)−H0)+P [u, λ](t)−Ψ+ , and
p(t) = P [u, λ](t)−Ψ+ We argue as above, and the counterpart of (56) reads, by hypothesis
on k+(U) ,

|µ0(h(t)−H0) +P [u, λ](t)−Ψ+| ≤ max
t
|P [u, λ](t)−Ψ+| ≤ Ψ+−k+(U) ≤ k0U

−1−δ,

hence

|h(t)−H0| ≤
2k0
µ0

U−1−δ =
2k0
µ0

(
1

f ∗

(
H0 −

2

µ0

Ψ0

))−1−δ
.

The argument is similar for H0 large negative. Thus, the fourth inequality in (51) follows if
|H0| > (4/µ0)Ψ0 . For |H0| ≤ (4/µ0)Ψ0 , it suffices to take C∗4 larger than a suitable multiple
of C∗1 . Proposition 4 is proved. �

Corollary 5 guarantees the existence of solution to the optimization problem (3) which aims at
maximization of the output power of the harvester. To estimate the efficiency of the harvester
and the relative amount of energy losses, one can use the energy balance law from [30]

ε̇σ + ḃh− d

dt
V [σ, h] = D[σ, h] , (61)

where V is the magnetostrictive potential of the form (we omit the initial state λ−1 for simplicity)

V [σ, h] = (f(σ)− σf ′(σ))U [h/f(σ)], (62)

with U as in (14); the hysteresis dissipation D[σ, h] is given by the formula

D[σ, h] = f(σ)

∣∣∣∣ d

dt
D[h/f(σ)]

∣∣∣∣ (63)
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with the Preisach dissipation operator D as in (15); and, the magnetostriction ε can be com-
puted from the relationship [30]

ε = −f ′(σ)U [h/f(σ)]. (64)

Let us consider the T -periodic process described by Eq. (45). In view of the derivation in Sec-
tion 2 and Eq. (45), the harvested energy over one period is given by

E(H0, α, γ) = −γ
α

∫ T

0

ḃ(t)h(t) dt. (65)

The mechanical energy per unit volume supplied to the system over one period is, by virtue of
(61) (note that the process is periodic),∫ T

0

ε̇(t)σ(t) dt =
α

γ
E(H0, α, γ) +

∫ T

0

D[σ, h] dt. (66)

The volume of the specimen is S` . Hence, if we define the efficiency ∆ as the ratio between
the harvested energy and the supplied energy, we obtain

∆ =
1
S`
E(H0, α, γ)

α
γ
E(H0, α, γ) +

∫ T
0
D[σ, h] dt

=
− R
Nr+R

∫ T
0
ḃ(t)h(t) dt

−
∫ T
0
ḃ(t)h(t) dt+

∫ T
0
D[σ, h] dt

. (67)

Note that the efficiency is a number between 0 and 1 . The integral
∫ T
0
ḃ(t)h(t) dt is negative

by virtue of (65). Geometrically, this corresponds to the fact that the trajectory of the periodic
solution in the h − b plane forms a closed clockwise loop. If no hysteresis dissipation D is
present, the efficiency is equal to the ratio between the resistance of the electric load and the
total resistance of the contour including the coil resistance.

7 Numerical examples

Assuming that the specimen and the wire have circular cross section and the radius of the cross
section of the wire is d , the length of one loop of wire equals 2

√
πS and its resistance is

r =
2
√
πSρ

πd2
.

We fix an exemplary set of physical parameters

` = 18mm, S = 9mm2, d = 0.1mm, ρ = 1.68× 10−8 Ω ·m, N = 2000

with ρ being the resistivity of copper; the vacuum permiability is µ0 = 4π×10−7H
m

. The density
function ψ of the Preisach operator P and the function f = f(σ) were fit to experimental
measurements on Galfenol in [30]. We simulate equation (2) using these fitted functions that
are defined by the relations

f(σ) = c

(
cf + ceπσ +

ca
cb

ecbπσ +
cc
cd

ecdπσ
)
,
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Figure 4: Projection of the periodic solution of system (2) on the (h, b) plane (solid bold line)
for ω = 1 Hz, H0 = 5100 A/m, R = 13 Ω . Dashed curves show hysteresis loops such as in
the upper panel of Figure 3(a) for fixed values of stress σ .

where c = 0.48Am−1 , cf = 3800 , ce = 280 × 10−6 Pa−1 , ca = −200 × 10−6 Pa−1 ,
cb = −0.32× 10−6 Pa−1 , cc = 160× 10−6 Pa−1 , cd = −0.14× 10−6 Pa−1 , and

ψ(r, v) = ψ0

(
φ(v + r)− φ(v − r)

)
φ′(v + r)φ′(v − r)

with
ψ0(x) = c0e

−x/x0 , φ(x) = tanh(ax+ bx3),

where φ′ is the derivative of φ and a = 0.58 , b = 0.01 , x0 = 0.01 , c0 = 150.75V ·s/m2 .

Remark that this choice is compatible with the hypothesis (50). Indeed, for U > 0 ,

Ψ+ − k+(U) =

∫ ∞
0

∫ ∞
U−r

ψ(v, r) dv dr =
1

2

∫ ∞
U

∫ y

0

ψ0

(
φ(y)− φ(x)

)
φ′(y)φ′(x) dx dy ,

As φ increases, ψ0(φ(y)− φ(x)) ≤ c0 , hence we obtain

Ψ+ − k+(U) ≤ c0
2

∫ ∞
U

∫ y

0

φ′(y)φ′(x) dx dy =
c0
4

(
φ2(∞)− φ2(U)

)
≤ c0

2
e−2(aU+bU3),

which implies the first relationship in (50); the second relationship for U < 0 follows similarly.

Simulations of equation (2) with the above parameters and a piecewise linear periodic input σ(t)
oscillating between the values 1 MPa and 30 MPa were performed for two test frequencies of 1
Hz and 50 Hz of the input (see Figure 4). The electric load resistance R and the magnetic bias
H0 were used as control parameters. Note that, according to formulas (47), limits (52) can be
realized by variation of these two parameters from zero to infinity.

Figure 5 presents the dependence of the output power (the harvested energy (3) normalized
to the period of the input, E/T ) on the parameters R , H0 . The power demonstrates a single
maximum, which is quite sharp. The pick output power is higher for higher frequency of forcing.

In (2), the electric load of the harvester is modeled simply by a linear resistance, R . We have
done simulations for a more complex model where the electric load also has a capacitance C ,
which is connected in parallel to the resistance R . The system is described by the equations

d

dt

(
µ0h+ P

[
h

f(σ)
, λ−1

])
=

`r

NS
· (H0 − h)− u

NS
(68)

18



H
0
 (A/m)

R
 (

Ω
)

4.96e−05

3
.1

4
2
e
−
0
5

2
.4

8
0
6
e
−
0
5

1
.9

8
4
6
e
−

0
5 4

.1
3
4
1
e
−
0
5

2000 4000 6000 8000 10000

10

20

30

40

50

(a)

H
0
 (A/m)

R
 (

Ω
)

0.0305

0
.0

2
4
3
9
9

0
.0

1
8
2
9
9

0
.0

1
1
1
8
3

0.5 1 1.5 2

x 10
4

10

20

30

40

50

(b)

Figure 5: Dependence of the output power E/T (in the units of W) on the parameters R and
H0 shown by the intensity of gray color for the input frequency ω = 1 Hz (a) and ω = 50 Hz
(b).
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Figure 6: Dependence of the output power on the capacitance C for system (68), (69) for
forcing σ with the frequency ω = 1 Hz (a) and ω = 50 Hz (b). The values of the parameters
R and H0 correspond to the peak output power of system (2) without the capacitor, see the
corresponding panels of Figure 5. Other parameters are the same as in Figure 5.
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du

dt
= −`(H0 − h)

CN
− u

CR
(69)

where u is the drop of voltage across R (cf. (2)). Figure 6 presents the dependence of the
output power on the capacitance C obtained by numerical simulation of this system. The max-
imum power is achieved for a positive value of C . The limit C → 0 corresponds to system (2)
without capacitance. Rigorous analysis of equations (68), (69) is a subject of future work.
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[35] P. Krejčí, On Maxwell equations with the Preisach hysteresis operator: the one-dimensional
time-periodic case, Aplikace matematiky 34 (1989) 5, 364–374.

[36] M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer, New York, 1996.

[37] M. A. Krasnosel’skii and A. V. Pokrovskii, Systems with Hysteresis, Springer, 1989.
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