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Abstract

Consider a time-harmonic acoustic point source incident on a bounded isotropic linearly elas-

tic body immersed in a homogeneous compressible inviscid fluid. This paper is concerned with the

inverse fluid-solid interaction (FSI) problem of recovering the elastic body from near-field data gen-

erated by infinitely many incident point source waves at a fixed energy. The incident point sources

and the receivers for recording scattered signals are both located on a non-spherical closed surface,

on which an outgoing-to-incoming (OtI) operator is appropriately defined. We provide a theoretical

justification of the factorization method for precisely characterizing the scatterer by utilizing the spec-

trum of the near-field operator. This generalizes the imaging scheme developed in [G. Hu, J. Yang,

B. Zhang, H. Zhang, Inverse Problems 30 (2014): 095005] to the case when near-field data are mea-

sured on non-spherical surfaces. Numerical examples in 2D are demonstrated to show the validity

and accuracy of the inversion algorithm, even if limited aperture data are available on one or several

line segments.

1 Introduction

Consider a time-harmonic acoustic point source wave incident on a bounded elastic solid immersed in a

homogeneous fluid (cf. Fig. 1, right). The wavelength of incidence is supposed to be comparable with the

diameter of the elastic scatterer. Due to the external incident acoustic field, an elastic wave is generated

inside the solid, while the incident acoustic wave is scattered back into the fluid and propagate into the

infinity. This leads to the fluid-solid interaction (FSI) problem with the scattering interface separating the

domains of acoustic and elastic waves. This paper is concerned with the inverse scattering problem

of determining the shape and position of the elastic obstacle from near-field measurement data. Such

inverse problem has many applications in underwater acoustics and ultrasonic non-destructive evaluation

(see, e.g. [18] and references therein). For instance, in immersion testing, objects are always put in a tank

of water in order to minimize the energy loss of the ultrasound beam transmitting from a transducer into

a medium and vice versa. In ocean acoustics, sonar is a commonly used tool for tracking and detecting

objects under the sea surface (see Figure 1, left).
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Figure 1: Right: the interaction problem between acoustic and elastic waves. Left: underwater research

with a sonar submarine (source: http://www.freedigitalphotos.net/).

In this paper, the unknown obstacle is detected by sending infinitely many time-harmonic acoustic point

sources at a fixed energy. The sources and receivers are supposed to be located on a non-spherical

closed surface. We shall establish the factorization method of Kirsch [10, 11] for precisely characterizing

the region occupied by the scatterer in terms of the spectrum of the near-field operator. As a sampling-

type inversion scheme, the factorization method requires neither computation of direct solutions nor initial

guesses. It provides a sufficient and necessary condition for recovering the shape and location of an

obstacle (see Theorem 3.14), which can also be used as an efficient computational criterion. The original

version of the factorization method was designed for inverse scattering of plane waves with infinitely many

incident directions. We refer to the monograph [11] and references therein for a detailed discussion of the

various versions of inverse acoustic scattering from impenetrable and penetrable scatterers. However,

it is an open problem how to analyze the near-field operator within the same functional framework as

in the far-field case until the recent study of the outgoing-to-incoming (OtI) operator carried out in [5].

The factorization scheme for treating the far-field operator does not extend to the near-field case since

the resulting adjoint would be defined via a bilinear other than sesquilinear form, leading to essential

difficulties in the characterization of the scatterer (see [11, Chapter 1.7] for details). A few approaches

have been proposed so far, e.g., converting the near-field data to far-field patterns [11] (see also Section

4.2), constructing non-physical auxiliary operators [17] for connecting outgoing and incoming waves, or

making use of non-physical incident point sources [13]. In [5], an OtI operator for the Helmholtz equation

was constructed on a sphere for facilitating the factorization of the near-field operator, which can be more

efficiently implemented than the earlier approaches. The scheme proposed in [5] seems promising for

spherical measurement surfaces since the OtI mapping takes a simple form and is capable of recovering

both impenetrable and penetrable acoustic scatterers.

The aim of this paper is to generalize the idea of [5] to the case of non-spherical measurement surfaces.

In contrast to the simple form given in [5], the OtI mapping considered in this paper cannot be represented

explicitly. Hence, difficulties arise from how to appropriately define and then discretize the OtI mapping

when the measurement surface is not spherical; see Sections 3.3 and 4.1 for details. Our arguments

have generalized the concept of the OtI operator defined on spheres. We also illustrate properties of the

OtI mapping and its adjoint operator, which turns out to be an incoming-to-outgoing (ItO) mapping. We

believe that one can mathematically justify a modified Linear Sampling Method [16] with near-field data

in a rigorous way, as done in the far-field case shown in [12, Theorem 2.7]. As an application of the OtI

operator, we investigate the inverse fluid-solid interaction problem by analyzing the product of the OtI

and near-field operators. This product operator plays the analogous role of the far-field operator (see the
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discussions at the end of Section 3.3), and has been used recently in [7] for determining the Dirichlet

eigenvalues of the region occupied by a sound-soft obstacle from near-field measurements. Numerics

show that our inversion scheme is more stable and efficient than the approach of converting near-field

data to far-field patterns. Particularly, it is numerically applicable even if limited aperture data are available

only. In our numerical experiments, the measurement curve in 2D is allowed to be a (finite) line segment,

which might have important applications in non-destruction testing with line-array transducers.

Other imaging schemes for inverse FSI interaction can be found in [2, 3] where an optimization-based

technique is applied and in [15, 16] using the reciprocity gap (RG) and linear sampling methods (LSM).

The factorization method established in [12] involves far-field patterns corresponding to infinitely many

incident plane waves, but without numerical tests. In this paper, the definition of the middle operator

slightly differs from that of [12], but shows convenience in simplifying our arguments (cf. Lemma 3.11 and

[12]). The proof of the denseness and compactness of the near-field solution operator is more involved

than [12]; see Section 3.2.

In the subsequent Section 2, we rigorously formulate the direct and inverse FSI interaction problems. Sec-

tion 3 is devoted to the theoretical justification of the factorization method using near-field measurement

data. The OtI mapping and its adjoint will be introduced and investigated in Section 3.3, and the inversion

scheme will be stated in Section 3.5. Discretization schemes and a number of numerical experiments are

reported in Section 4.

2 Direct and inverse interaction problems

We formulate the fluid-solid interaction (FSI) problem following [4,14]. Let Ω ⊂ R
3 be a bounded domain

with the C2-smooth boundary Γ and denote by ν the unit normal vector to Γ directed into the exterior of

Ω. We assume that Ω is occupied by an isotropic linearly elastic solid characterized by the real-valued

constant mass density ρ > 0 and the Lamé constants λ, µ ∈ R satisfying µ > 0, 3λ + 2µ > 0. The

exterior Ωc := R
3\Ω, which is assumed to be connected, is filled with a homogeneous compressible

inviscid fluid with the constant mass density ρf > 0. Let k = ω/c > 0 be the wave number in the fluid,

where ω > 0 denotes the frequency of the time harmonic incoming wave and c > 0 the sound speed.

Let pi be a point source of the form

pi(x) = pi(x, z) = Φk(x, z), x ∈ R
3, z ∈ R

3\Ω, x 6= z, (1)

where Φk(x, z) is the free space fundamental solution of the Helmholtz equation in R
3 with wave number

k, that is,

Φk(x, z) =
eik|x−z|

4π|x− z| , x, z ∈ R
3, x 6= z. (2)

Due to the external incidence, an outgoing acoustic wave ps is scattered back into the fluid propagating

into the infinity, while an elastic wave u = (u1, u2, u3)
> is incited inside Ω. Under the hypothesis of

small amplitude oscillations in both the solid and the fluid, the direct or forward scattering problem can be

formulated as the following boundary value problem (see, e.g., [4, 14, 18]): determine u ∈ H1(Ω)3 and
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Figure 2: The geometric setting of our scattering problem: Ω denotes the elastic body, ∂D := {x ∈ R
3 :

x = x̂ γ(x̂)} is the (non-spherical) surface where incident point sources are located and near-field data

are measured.

the total acoustic field p ∈ H1
loc(Ω

c\{z}) such that

∆∗u+ ρω2u = 0 in Ω, ∆∗ := µ∆ + (λ+ µ) ∇∇· , (3)

∆p+ k2p = 0 in Ωc\{z}, (4)

η u · ν = ∂νp on Γ, η = ρfω
2 > 0, (5)

T u = −νp on Γ. (6)

Here, ∂νp = ν · ∇p denotes the normal derivative of p on Γ and T stands for the standard stress

operator defined by

Tu = 2µ ∂νu+ λν (∇ · u) + µ ν × (∇× u) on Γ. (7)

Furthermore, the scattered field ps = p− pi satisfies the Sommerfeld radiation condition

lim
r→∞

r(
∂ps

∂r
− ikps) = 0, r = |x|, (8)

which holds uniformly in x̂ = x/|x| ∈ S
2 := {θ̂ ∈ R

3 : |θ̂| = 1}. From this radiation condition it follows

that the scattered field ps has the asymptotic behavior of an outgoing spherical wave

ps(x) =
eik|x|

4π|x|

{
p∞(x̂) +O

(
1

|x|

)}
as |x| → ∞ (9)

uniformly in all directions x̂, where p∞(x̂) defined on the unit sphere S
2 is known as the far field pattern

of the scattered field with the argument x̂ denoting the observation direction.

Throughout the paper it is supposed that ω is not a Jones frequency, so that the problem (3)-(6) and (8) is

always uniquely solvable (see, e.g., [8,9]). Notice that ω ∈ R is called a Jones frequency if the boundary

value problem

∆∗u0 + ρω2u0 = 0 in Ω, Tu0 = 0, u0 · ν = 0 on Γ,
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admits a nontrivial solution. Furthermore, the transmission problem

∆∗u+ ρω2u = 0 in Ω,

∆ps + k2ps = 0 in Ωc,

ηu · ν − ∂νp
s = f on Γ,

Tu+ νps = h on Γ,

with ps satisfying the Sommerfeld radiation condition (8), has a unique solution (ps, u) ∈ H1
loc(Ω

c) ×
H1(Ω)3 for all f ∈ H−1/2(Γ), h ∈ H−1/2(Γ)3 provided that ω is not a Jones frequency [15, Theorem

3.3]. Given an incident wave pi(·, z) with z ∈ Ωc, we use ps(·, z), p∞(·, z) to indicate the dependence

of the scattered field and far-field pattern on the source position z.

Set BR(y) := {x ∈ R
3 : |x − y| < R}, and for simplicity write BR = BR(O) with the boundary

ΓR = {x : |x| = R}. In this paper we assume for simplicity that the incident point sources are located

on the boundary of a star-shaped domainD containing Ω, that is, the boundary ofD can be represented

as

∂D = {x ∈ R
3 : x = x̂ γ(x̂)} (10)

where γ : S
2 → R is a positive and continuous function. Moreover, we assume that the scattered

data are also measured on ∂D, that Ω ⊂ BR ⊂ D for some R > 0, and that k2 is not the Dirichlet

eigenvalue of −∆ over D. The inverse scattering problem under consideration is to determine the shape

and location of the obstacle Ω from the near-field data {ps(x, z) : x, z ∈ ∂D} due to the point sources

pi(·, z) with z ∈ ∂D. The scattered fields ps(x, z) for all x, z ∈ ∂D define the near-field operator

N : L2(∂D) → L2(∂D) by

(Nϕ)(x) =

∫

∂D

ps(x, z)ϕ(z) ds(z) for x ∈ ∂D. (11)

Clearly, Nϕ is the restriction to ∂D of the scattered field generated by the incident wave
∫

∂D

pi(x, z)ϕ(z) ds(z), x ∈ D.

Remark 2.1. In this paper, the measurement surface ∂D is assumed to be a star-shaped surface taking

the form (10) and lying in |x| > R for some R > 0. With these assumptions we can readily define

and efficiently implement the OtI operator (see Section 3.3). A detailed description of the discretization

schemes will be stated in Section 4.1. For non-star-shaped measurement surfaces, the OtI operator is

still well-defined and can be computed, for instance, by solving second kind integral equations defined

on ∂D. The reader is referred to (38) for the expression of the OtI operator in terms of the doubly-layer

potential and its adjoint.

3 Factorization of near-field operator

In this section, we will establish a suitable factorization of the near-field operator N corresponding to

incident point sources pi(·, z) = Φk(x, z) for all z ∈ ∂D. Compared to the far-field case, the essential

ingredient in our analysis is to define the outgoing-to-incoming operator T so that the factorization form

TN = (TG)J∗(TG)∗ holds, where J andG are referred to as the middle operator and solution operator

to be defined later. Since the measurement surface is not necessarily spherical, our augment generalizes

the approach developed in [5] which was valid only when ∂D is a sphere.
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3.1 Auxiliary boundary value problems

We introduce several auxiliary boundary value problems for establishing the factorization method. For

h ∈ H1/2(Γ), consider the boundary value problem of finding w ∈ H1(Ω) such that

∆w + k2w = 0 in Ω, w = h on Γ. (12)

Suppose k2 is not a Dirichlet eigenvalue of −∆ in Ω. Then, the above problem (12) is uniquely solvable

and the normal derivative ofw on Γ defines the interior Dirichlet-to-Neumann (DtN) map Λ : H1/2(Γ) →
H−1/2(Γ) by h 7→ ∂νw|Γ. Further, we have

Lemma 3.1. Assume that k2 is not a Dirichlet eigenvalue of −∆ in Ω. Then it holds that

∫

Γ

(Λh) g ds =

∫

Γ

(Λg)h ds for all h ∈ H1/2(Γ), g ∈ H1/2(Γ). (13)

Proof. Letw and v be the unique solution to the problem (12) with the Dirichlet data h and g, respectively.

Applying Green’s formula yields

∫

Γ

(Λh) g ds−
∫

Γ

(Λg)h ds =

∫

Γ

(∂νw v − ∂νv w) ds =

∫

Ω

(∆w v − ∆v w) dx = 0.

Lemma 3.1 will be used to derive the adjoint of the solution operator in Section 3.2 below. With the

definition of Λ, we introduce the second auxiliary boundary value problem as follows: Given h ∈ H1/2(Γ),

find u ∈ H1(Ω)3 and ps ∈ H1
loc(Ω

c) such that

∆∗u+ ρω2u = 0 in Ω, (14)

∆ps + k2ps = 0 in Ωc, (15)

ηu · ν − ∂νp
s = Λh on Γ, (16)

Tu+ νps = −νh on Γ, (17)

and that ps satisfies the Sommerfeld radiation condition (8). Since ω is not a Jones frequency, there

is a unique solution (u, ps) to the problem (14)-(17). Clearly, our forward scattering problem can be

equivalently formulated as the problem (14)-(17) with h = pi(·, z)|Γ, since Λ(pi(·, z)|Γ) = ∂νp
i(·, z)|Γ

for all z ∈ Ωc.

To justify the factorization method, we need to consider the following interior boundary value problem:

Find u ∈ H1(Ω)3 and w ∈ H1(Ω) such that

∆∗u+ ρω2u = 0 in Ω, (18)

∆w + k2w = 0 in Ω, (19)

ηu · ν − ∂νw = f on Γ, (20)

Tu+ νw = g on Γ (21)

with f ∈ H−1/2(Γ) and g ∈ H−1/2(Γ)3. We call ω an interior transmission eigenvalue if there exists

a non-trivial solution pair (w, u) ∈ H1(Ω) × H1(Ω)3 to the homogeneous system (18)-(21) with f =
g = 0. In [12], it was shown that the set of such eigenvalues is at most discrete with the only possible
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accumulating point at infinity if 3η 6= (3λ + 2µ)k2 and there exists δ > 0 such that ρ ≥ ρf + δ.

This leads to the existence and uniqueness of solutions to the problem (18)-(21) for all ω ∈ R
+\D

with some discrete set D. In particular, the mapping (f, g) → (w, u) in problem (18)-(21) is bounded

from H−1/2(Γ) × H−1/2(Γ)3 to H1(Ω) × H1(Ω)3. Further, one can observe that, if v is a solution to

(12) with h ∈ H1/2(Γ), then the solution (w, u) = (v, 0) uniquely solves the problem (18)-(21) with

f = −(∂νv)|Γ and g = (νv)|Γ.

In the subsequent sections the problems (12), (14)-(17) and (18)-(21) are always supposed to be uniquely

solvable with the incidence frequency under question.

3.2 Solution operator

The solution operator G : H1/2(Γ) → L2(∂D) is defined as

Gh = ps|∂D, (22)

where ps ∈ H1
loc(Ω

c) is the unique solution to the problem (14)-(17). An explicit expression of the adjoint

of G is shown as below.

Lemma 3.2. The explicit expression of G∗ : L2(∂D) → H−1/2(Γ) is given by

G∗g = −[ρfω2ũ · ν + Λ(T ũ · ν)] for g ∈ L2(∂D), (23)

where ũ, together with some p̃s, is the unique solution to (14)-(17) with

h(y) = q(y)|Γ, q(y) :=

∫

∂D

Φk(x, y) g(x) ds(x) for y ∈ R
3. (24)

Remark 3.3. Since g ∈ L2(∂D), we know h ∈ H3/2(Γ) ⊂ H1/2(Γ) and thus by (17), T ũ · ν =
−(h + p̃s) ∈ H1/2(Γ) on Γ. Hence, the operator G∗ : L2(∂D) → H−1/2(Γ) defined by (23) is

well-defined.

Proof. For h ∈ H1/2(Γ), let (u, ps) be the solution of the problem (14)-(17). By the definition of G, we

see

〈Gh, g〉L2(∂D) =

∫

∂D

psg ds, (25)

where 〈·, ·〉L2(∂D) denotes the inner product in L2(∂D). Recalling Green’s second formula, we can

represent ps as

ps(x) =

∫

Γ

[∂νΦk(x, y) p
s(y) − Φk(x, y) ∂νp

s(y)] ds(y) for x ∈ R
3\Ω.

Inserting the above expression into (25) and changing the order of integration yield

〈Gh, g〉L2(∂D) =

∫

Γ

[∂νq p
s − q ∂νp

s] ds, (26)

where q is defined in (24). Let (ũ, p̃) be defined in Lemma 3.3. Then using the boundary conditions

Λ q = η (ũ · ν) − ∂ν p̃, νq = −(T ũ+ νp̃),
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it follows from (26) that

〈Gh, g〉L2(∂D) =

∫

Γ

[η(ũ · ν) ps − ∂ν p̃
s ps] ds+

∫

Γ

ν · (Tũ+ νp̃s) ∂νp
s ds. (27)

Since p̃s and ps are both radiating solutions in Ωc, we have that for any R′ > R
∫

Γ

[∂ν p̃
s ps − p̃s ∂νp

s] ds =

∫

ΓR′

[∂ν p̃
s ps − p̃s ∂νp

s] ds→ 0

as R′ → ∞. Hence, by (27),

〈Gh, g〉L2(∂D) =

∫

Γ

[(Tũ · ν) ∂νp
s + η (ũ · ν) ps] ds.

Recalling the coupling conditions

∂νp
s = ηu · ν − Λh, νps = −(Tu+ ν h)

we arrive at the identity

〈Gh, g〉L2(∂D) = −
∫

Γ

h [η ũ · ν + Λ(T ũ · ν)] ds, (28)

where we have used Lemma 3.1 and the relation

∫

Γ

(T ũ · u− Tu · ũ) ds = 0

which can be proved by Betti’s formula. The expression of G∗ then follows directly from (28).

The representation of G∗ can be used to verify the denseness of Range(G) in L2(∂D); see Lemma 3.4

below. We refer to [15] for the proof of the compactness and denseness of the far-field solution operator

corresponding to incident plane waves.

Lemma 3.4. The solution operatorG : H1/2(Γ) → L2(∂D) is compact with a dense range in L2(∂D).

Proof. For h ∈ H1/2(Γ), let (u, ps) be the unique solution to problem (14)-(17). Then

‖Gh‖L2(∂D) = ‖ps‖L2(∂D) ≤ ‖ps‖H1/2(∂D) ≤ c ‖h‖H1/2(Γ), c > 0,

where the last inequality is a consequence of the stability estimate for the auxiliary boundary value prob-

lem (14)-(17). The compactness of G then follows immediately from the decomposition G = G2G1,

whereG1, defined asG1h = ps|∂D, is a bounded map fromH1/2(Γ) toH1/2(∂D) andG2 : H1/2(∂D) →
L2(∂D) is compact.

To prove the denseness of G, it suffices to verify the injectivity of G∗ : L2(∂D) → H−1/2(Γ). Suppose

now G∗g = 0 and let ũ, p̃s and q be specified as in Lemma 3.2. By Lemma 3.2, the relation ηũ · ν +
Λ(T ũ · ν) = 0 holds on Γ. This, together with the coupling boundary conditions between ũ and p̃s,

implies that

∂ν p̃
s = −Λ(Tũ · ν + q|Γ), p̃s = −(Tũ · ν + q|Γ) on Γ. (29)
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Let Q̃ be the solution of problem (12) with h = −(T ũ · ν + q)|Γ ∈ H1/2(Γ). Define

Q := Q̃ in Ω, Q := p̃s
in R

3\Ω.

The relation (29) and the definition of Λ imply that

Q− = Q+, ∂νQ
− = ∂νQ

+
on Γ,

where the superscripts ’-’ and ’+’ denote respectively the limits from inside and outside Ω. Thus Q is an

entire radiating solution of the Helmholtz equation in the whole space, implying that Q = 0 in R
3. In

particular, p̃s = Q ≡ 0 in R
3\Ω and thus p̃s = ∂ν p̃

s = 0 on Γ. Consequently, by (29),

∂νq = −Λ(Tũ · ν) = η (ũ · ν), q = −Tũ · ν on Γ.

This suggests that the solution pair (ũ, q) is the unique solution to the homogeneous problem (18)-(21)

with f = g = 0. By uniqueness it holds that q = 0 in Ω, and by the unique continuation q = 0 in

D. Hence we get q = 0 on ∂D and q = 0 in R
3\D due to the uniqueness of solutions to the exterior

boundary value problem of the Helmholtz equation in R
3\D. Finally, we obtain g = 0 on ∂D as a

consequence of the jump relation g = ∂νq
− − ∂νq

+ on ∂D. This completes the proof.

3.3 Outgoing-to-Incoming (OtI) mapping

In this subsection we give a precise definition of the OtI operator on non-spherical surfaces. Let Y m
n be

the normalized spherical harmonic functions of order n,

Y m
n (θ, φ) =

√
2n+ 1

4π

n− |m|
n+ |m|P

|m|
n (cos θ)eimφ, n = 0, 1, 2, · · · , m = −n, · · · , n,

where (θ, φ) represents the spherical coordinates on the unit sphere and Pm
n are the associated Legen-

dre functions. Let jn and h
(1)
n be the spherical Bessel functions and spherical Hankel functions of order

n, respectively.

Definition 3.5. Let G be the solution operator and assume that f ∈ Range(G), that is, f = ps|∂D,

where ps ∈ H1
loc(Ω

c) is the unique radiation solution to the problem (14)-(17) with some h ∈ H1/2(Γ).

Suppose ps admits the expansion

ps(x) =
∞∑

n=0

n∑

m=−n

pn,m h(1)
n (k|x|)Y m

n (x̂), pn,m ∈ C, in |x| ≥ R.

Then the outgoing-to-incoming mapping T : Range(G) → L2(∂D) is defined as Tf = p̃s|∂D, with

p̃s(x) = −
∞∑

n=0

n∑

m=−n

pn,m h
(1)
n (k|x|)Y m

n (x̂), x ∈ Ωc. (30)

By definition, the mapping T : H1/2(∂D) → L2(∂D) is linear, bounded and one-to-one. Since the

domain Range(G) of T is dense in L2(∂D) (see Lemma 3.4), T can be extended to a linear, bounded

and one-to-one operator mapping L2(∂D) into itself, which, for simplicity, is denoted again by T . The

next result summarizes some properties of T : L2(∂D) → L2(∂D).
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Lemma 3.6. (i) T (Φk(·, z)|∂D) = Φk(·, z)|∂D for z ∈ Ω.

(ii) T has a dense range in L2(∂D).

(iii) Assume that T (ps|∂D) = p̃s|∂D, where ps and p̃s are outgoing and incoming solutions to the

Helmholtz equation in Ωc, respectively. Then p̃s has the asymptotic behavior

p̃s(x) =
e−ik|x|

4π|x|

{
p∞(−x̂) +O

(
1

|x|

)}
as |x| → ∞. (31)

Here p∞ denotes the far-field pattern of the outgoing radiating solution ps.

Proof. (i) Let f := Φk(·, z)|∂D and assume that ps ∈ H1
loc(Ω

c) is the radiating solution to the problem

(14)-(17) such that ps|∂D = f . By uniqueness, ps = Φk(·, z) in Ωc for any fixed z ∈ Ω. Recall the

addition theorem for the fundamental solution

Φk(x, z) = ik
∞∑

n=0

n∑

m=−n

h(1)
n (k|x|)Y m

n (x̂) jn(k|z|)Y m
n (ẑ) for |x| > R, z ∈ Ω. (32)

Using the relation Y m
n = Y −m

n , we obtain

Φk(x, z) = −ik
∞∑

n=0

n∑

m=−n

h
(1)
n (k|x|) Y m

n (x̂)jn(k|z|)Y m
n (ẑ)

= −ik
∞∑

n=0

n∑

m=−n

h
(1)
n (k|x|) Y m

n (x̂)jn(k|z|)Y m
n (ẑ). (33)

The first assertion then follows from (32), (33) and the definition of T .

(ii) Since k2 is not a Dirichlet eigenvalue of −∆ in D, one can readily prove that the set {Φk(·, z)|∂D :
z ∈ Ω} is dense in L2(∂D). Therefore, the denseness of Range(G) follows directly from the first

assertion.

(iii) Suppose ps and p̃s are expanded as those in Definition 3.5. From the asymptotic behavior of the

Hankel functions with a large argument we know

p∞(x̂) =
1

k

∞∑

n=0

1

in+1

n∑

m=−n

pn,m Y
m
n (x̂)

On the other hand, the incoming solution p̃s has the asymptotic behavior

p̃s(x) =
e−ik|x|

4π|x|

{
p̃∞(x̂) +O

(
1

|x|

)}
as |x| → ∞,

with

p̃∞(x̂) = −1

k

∞∑

n=0

(−1)n+1

in+1

n∑

m=−n

pn,m Y m
n (x̂).

Making use of the relation

Y m
n (x̂) = (−1)n Y m

n (−x̂),
we obtain p̃∞(x̂) = p∞(−x̂), which completes the proof of the third assertion.
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If the measurement surface ∂D = {x : |x| = R1} is a sphere with the radius R1 > R, the outgoing-to-

incoming mapping T takes the following explicit form (see [5]):

(Tg)(x) =

∫

ΓR1

K(x, y) g(y) ds(y) for g ∈ L2(ΓR1
) (34)

with the kernel

K(x, y) := − 1

4πR2
1

∞∑

n=0

(
h

(1)
n (kR1)

h
(1)
n (kR1)

)
(2n+ 1)Pn(cos θ). (35)

In (35), Pn are the Legendre polynomials and θ denotes the angle between x, y ∈ ΓR1
. The derivation

of (34) was based on the expansion of g in terms of its Fourier coefficients on |x| = R1. The analogous

form of (34) for non-spherical ∂D will be derived in Section 4.1. In the following we propose another

numerical scheme to implement T .

Given f ∈ Range(G), we assume that f = ps|∂D ∈ L2(∂D), where ps ∈ H1
loc(Ω

c) is some radiating

solution to the problem (14)-(17). We make an ansatz on the solution as follows:

ps(x) =

∫

∂D

∂Φ(k)(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ Dc := R

3\D, (36)

where ϕ ∈ L2(∂D) is the unique solution of the second kind integral equation

(
1

2
I + D)ϕ = ps|∂D = f on ∂D,

with

(Dϕ)(x) :=

∫

∂D

∂Φ(k)(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ ∂D.

Clearly, the adjoint operator of D in L2(∂D) is given by

(D∗ϕ)(x) :=

∫

∂D

∂Φ(k)(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ ∂D.

By Lemma 3.5 (i), the incoming solution p̃s corresponding to ps should be of the form

p̃s(x) =

∫

∂D

∂Φ(k)(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ Dc := R

3\D. (37)

The definition of T together with the jump relation of the double-layer potential gives

Tf = (
1

2
I + D∗)ϕ = (

1

2
I + D∗) (

1

2
I + D)−1 f for all f ∈ Range(G).

By the denseness of Range(G) in L2(∂D), we obtain

T = (
1

2
I + D∗) (

1

2
I + D)−1 : L2(∂D) → L2(∂D). (38)

Hence, the adjoint operator T ∗ takes the form

T ∗ = (
1

2
I + D∗)−1(

1

2
I + D) : L2(∂D) → L2(∂D). (39)
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Remark 3.7. (i) Obviously, the implementation of the outgoing-to-incoming mapping T depends on

the surface ∂D only. The computation of (1
2
I + D)−1 in (38) is amount to solving an exterior

boundary value problem in Dc. Alternatively, we may express the solution ps as a single-layer

potential, leading to the relation

T

(∫

Γ

Φ(k)(x, y)ϕ(y) ds(y)

)
=

∫

Γ

Φ(k)(x, y)ϕ(y) ds(y), x ∈ ∂D. (40)

In our numerical implementations, we shall employ a scheme of the form (34), which is derived

based on (40), to discretize T .

(ii) The adjoint T ∗ is exactly the incoming-to-outgoing (ItO) operator, that is, T ∗(p̃s|∂D) = ps|∂D where

ps and p̃s are given in (36) and (37), respectively. In fact, by (39) we have

T ∗(p̃s|∂D) = (
1

2
I + D∗)−1(

1

2
I + D)(

1

2
I + D∗)ϕ.

Applying the commutative property D∗D = DD∗, we find

T ∗(p̃s|∂D) = (
1

2
I + D∗)−1(

1

2
I + D∗)(

1

2
I + D)ϕ = (

1

2
I + D)ϕ = ps|∂D.

Notice that this implies that T is unitary, i.e., TT ∗ = T ∗T = I.

For notation clarity, we denote by Tx and Ty the outgoing-to-incoming operator T acting on functions of

variables x and y, respectively. Below we show the symmetry of Txp
s(x, y)|∂D when the measurement

surface is a sphere.

Lemma 3.8. Assume that ∂D = ΓR1
:= {x ∈ R

3 : |x| = R1} for some R1 > 0. Then

Txp
s(x, y) = Typ

s(y, x) for all x, y ∈ ΓR1
. (41)

Proof. Noting that ps(x, y) fulfills the outgoing Sommerfeld radiation condition (8) with respect to both x
and y, we can expand ps(x, y) into the convergent series

ps(x, y) =
∞∑

n=0

n∑

m=−n

h(1)
n (k|x|)Y m

n (x̂)
∞∑

n′=0

n′∑

m′=−n′

h
(1)
n′ (k|y|)Y m′

n′ (ŷ)Cn,m,n′,m′ , Cn,m,n′,m′ ∈ C

for all |x|, |y| ≥ R1. Since ps(x, y) = ps(y, x) (see Lemma 5.1 in the Appendix), there holds the relation

Cn,m,n′,m′ = Cn′,m′,n,m for all n, n′ ∈ N0, m = −n, · · · , n and m′ = −n′, · · · , n′. By the definition

of Tx and Ty, it is easy to deduce that

Tx[p
s(x, y)|x,y∈ΓR1

] =
∞∑

n=0

n∑

m=−n

h
(1)
n (kR)Y m

n (x̂)
∞∑

n′=0

n′∑

m′=−n′

h
(1)
n′ (kR)Y m′

n′ (ŷ)Cn,m,n′,m′ ,

Ty[p
s(x, y)|x,y∈ΓR1

] =
∞∑

n=0

n∑

m=−n

h(1)
n (kR)Y m

n (x̂)
∞∑

n′=0

n′∑

m′=−n′

h
(1)
n′ (kR)Y m′

n′ (ŷ)Cn,m,n′,m′ .

Changing x and y in the form of Ty[p
s(x, y)|x,y∈ΓR1

] and using the relation Cn,m,n′,m′ = Cn′,m′,n,m, we

obtain Txp
s(x, y) = Typ

s(y, x) for all x, y ∈ {x : |x| = R1}.
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Figure 3: The distribution of eigenvalues of TN for different obstacles (red: apple-shaped; blue: peanut-

shaped) in 2D. The measurement curve ∂D = ΓR1
is circular.

Kirsch and Ruiz have shown in [12] that the far-field operator F (incited by plane waves) is normal and

the scattering operator S := I + ik
8π2F is unitary. This gives rise to the coincidence of the ranges of

(F ∗F )1/4 and the corresponding far-field solution operator. Unfortunately, we do not know whether or

not analogous properties could apply to TN and the near-field scattering operator I+ ic (TN) for some

c ∈ R. A further investigation of these operators could help mathematically justify the near-field version

of the Linear Sampling Method [16] in a rigorous way. Our numerics show that the eigenvalues of TN all

lie on the upper half of the complex plane; see Figures 3 and 4. In particular, the eigenvalues are located

on a circle with the radius possibly depending on R1, if the measurement curve ∂D = ΓR1
is circular;

see Figure 3. We hope that Lemma 3.8, which is valid for spherical measurement surfaces only, could be

useful in evaluating TN and the scattering operator in the near-field case. Recently, the product operator

TN has been used in [7] for determining the Dirichlet eigenvalues of the region occupied by a sound-soft

obstacle from near-field measurements.
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(b) Rounded-triangle-shaped, square

Figure 4: The distribution of eigenvalues of TN for peanut-shaped and rounded-triangle-shaped obsta-

cles with non-circular measurement curves. The near-field data are measured on an ellipse (Left) and a

square (Right), respectively.

3.4 Factorization of TN

We multiply the near-field operatorN with the OtI operator T and then derive a factorization of the product

operator TN . Our scheme relies on a refinement of the argument in the far-field case [12] in combination

with the concept of the OtI operator introduced in Section 3.3 above.

We first introduce the incidence operator H : L2(∂D) → H1/2(Γ) as

(Hg)(x) =

∫

∂D

Φk(x, y)g(y)ds(y) for x ∈ Γ. (42)

The operator H is the restriction to Γ of a superposition of incident point source waves. It easily follows

that N = GH , since Λ(Hg) = ∂ν(Hg) on Γ for any g ∈ L2(∂D). For ϕ ∈ H−1/2(Γ), recall the

single-layer potential defined by

(Skϕ)(x) =

∫

Γ

Φk(x, y)ϕ(y)ds(y), x ∈ R
3.

Let (u, v) be the unique solution of the problem (18)-(21) with f = ∂ν(Skϕ)+ and g = −ν(Skϕ)+, that

is,

∆∗u+ ρω2u = 0 in Ω, (43)

∆v + k2v = 0 in Ω, (44)

ηu · ν − ∂νv = ∂ν(Skϕ)+
on Γ, (45)

T u+ νv = −ν(Skϕ)+
on Γ. (46)

The operator J : H−1/2(Γ) → H1/2(Γ) is defined as Jϕ := v|Γ for ϕ ∈ H−1/2(Γ). Since the function

(Skϕ)(·) satisfies the Helmholtz equation and the Sommerfeld radiation condition in Ωc, rearranging the
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terms in (43)-(46) yields

∆∗u+ ρω2u = 0 in Ω, (47)

(∆ + k2) (Skϕ) = 0 in Ωc, (48)

ηu · ν − ∂ν(Skϕ)+ = Λv on Γ, (49)

Tu+ ν (Skϕ)+ = −νv on Γ. (50)

This implies that (u, Skϕ) is the unique solution to the problem (14)-(17) with h = v|Γ. Therefore, we

deduce from the definition of G and J that

(GJϕ)(x) = (Skϕ)|∂D =

∫

Γ

Φk(x, y)ϕ(y)ds(y), x ∈ ∂D. (51)

On the other hand, the adjoint operator H∗ : H−1/2(Γ) → L2(∂D) is given by

(H∗ϕ)(x) =

∫

Γ

Φk(x, y)ϕ(y) ds(y) for x ∈ ∂D. (52)

Comparing the previous two identities and applying the outgoing-to-incoming operator yield the relation

H∗ = TGJ (cf. (40)), implying that H = J∗G∗T ∗. Hence, we get a factorization of the near-field

operator multiplied by T as follows:

TN = TGH = GJ∗
G

∗, G := TG. (53)

The form (53) will be used in the next section for the purpose of finding Ω from the data.

3.5 Inversion algorithm

In this subsection, we construct the characteristic function of the scatterer Ω in term of the spectral system

of TN relying on the factorization form (53). We first show properties of the modified solution operator

G.

Lemma 3.9. The operator G : H1/2(Γ) → L2(∂D) is compact with a dense range in L2(∂D).

Proof. The operator G = TG is compact since G is compact from H1/2(Γ) into L2(∂D) and T is

bounded from L2(∂D) into L2(∂D). The denseness of Range(G) follows from the denseness of G :
H1/2(Γ) → L2(∂D) and that of T : L2(∂D) → L2(∂D); see Lemma 3.4 and Lemma 3.6 (ii).

Below we show that Range(G) can be utilized to characterize the domain Ω.

Lemma 3.10. Let φz(·) = Φk(·, z)|∂D for z ∈ BR. Then z ∈ Ω if and only if φz ∈ Range(G).

Proof. We first assume that z ∈ Ω. Let (u,w) be the solution of the problem (18)-(21) with

f = (∂νΦk(·, z))|Γ ∈ H−1/2(Γ), g = −νΦk(·, z) ∈ H1/2(Γ)3.

Then by the definition of Λ we see Λ(w|Γ) = (∂νw)|Γ. Hence the solution (u,Φk(·, z)) solves problem

(14)-(17) with h = w|Γ. From the definition of G and Lemma 3.6 (i) it follows that

Gh = T (Gh) = T (Φ(·, z)|∂D) = Φ(·, z)|∂D.
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This implies that φz ∈ Range(G).

On the other hand, let z ∈ BR and assume that Gh = φz for some h ∈ H1/2(Γ), that is, T (Gh) =
Φk(·, z)|∂D. This implies that Gh = Φk(·, z)|∂D. Let ps be the unique solution of the problem (14)-

(17) with the same h. By uniqueness of outgoing solutions to the Dirichlet boundary value problem in

Dc := R
3\D and the analytic continuation, we get ps = Φk(·, z) in Ωc\{z}. If z ∈ BR\Ω, the

boundedness of limx→z p
s(x) contradicts the singularity of Φk(x, z) at x = z. If z ∈ Γ, the trace

regularity ps|Γ ∈ H1/2(Γ) is a contradiction to the fact that Φk(·, z)|Γ /∈ H1/2(Γ). Hence, we have

z ∈ Ω, which proves the lemma.

Next we briefly review properties of the middle operator J in Lemma 3.11 below. The proof of Lemma

3.11 (ii) and (iii) is exactly the same with that contained in [12] but modified to be applicable to the new

definition of J used in this paper.

Lemma 3.11. Assume that k2 is not a Dirichlet eigenvalue of −∆ in Ω and that ω is neither a Jones

frequency nor an interior transmission eigenvalue. Then

(i) The operator J : H−1/2(Γ) → H1/2(Γ) is injective.

(ii) There exists a self-adjoint and coercive operator J0 : H−1/2(Γ) → H1/2(Γ) such that J − J0 :
H−1/2(Γ) → H1/2(Γ) is compact.

(iii) Im 〈ϕ, Jϕ〉 > 0 for all ϕ ∈ H−1/2(Γ) with ϕ 6= 0.

Proof. (i) Assume that Jϕ = v|Γ = 0, where (u, v) is the solution of the problem (43)-(46). Since k2 is

not a Dirichlet eigenvalue of −∆ in Ω, v vanishes identically in Ω and, in particular, ∂v/∂ν = 0 on Γ.

Therefore, the solution pair (u, Skϕ|Ωc) solves the homogeneous problem (14)-(17) with h = 0, implying

that u ≡ 0 in Ω and Skϕ ≡ 0 in Ωc. In particular, we get (Skϕ)+ = 0 on Γ. Again using the assumption

on k2, we get ϕ = 0 on Γ since the single-layer boundary operator is an isomorphism from H−1/2(Γ)
onto H1/2(Γ). Hence J is injective.

(ii) Define J0 : H−1/2(Γ) → H1/2(Γ) by J0ϕ = v1|Γ, where v1 is the unique solution of the Neumann

problem

∆v1 − v1 = 0 in Ω, ∂νv1 = −∂ν(Siϕ)+
on Γ.

Setting p0 = Siϕ|Ω + v1 and applying the jump relation for single-layer potentials, we have

∆p0 − p0 = 0 in Ω, ∂νp0 = ϕ on Γ.

By definition, J0ϕ = (p0 − Siϕ)|Γ. We refer to [12, Theorem 2.4] for the proof of the coercivity of J0. To

investigate the compactness of J −J0, we simplify the arguments employed in the proof of [12, Theorem

2.4]. Setting v2 = v − v1, we have (J − J0)ϕ = v2|Γ, where (u, v2) ∈ H1(Ω)3 ×H1(Ω) satisfies the

inhomogeneous boundary value problem

∆∗u+ ρω2u = 0, ∆v2 + k2v2 = f in Ω,

ηu · ν − ∂νv2 = g, T u+ νv2 = h on Γ,
(54)

with (f, g, h) := (−(1+ k2)v1, ∂ν [(Sk −Si)ϕ]+,−ν((Skϕ)+ + p0 − (Siϕ)−)) ∈ H1(Ω)×L2(Γ)×
H1/2(Γ)3 compactly embedding into L2(Ω) × H−1/2(Γ) × H−1/2(Γ)2 for all ϕ ∈ H−1/2(Γ). Since
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ω is not an interior transmission eigenvalue, the problem (54) is well-posed with the data (f, g, h) ∈
L2(Ω) ×H−1/2(Γ) ×H−1/2(Γ)2. This implies that J − J0 is compact from H−1/2(Γ) into H1/2(Γ).

(iii) Letting w = v+Skϕ|Ω, we have Jϕ = v|Γ = (w−Skϕ)|Γ. Moreover, (u,w) satisfies the problem

∆∗u+ ρω2u = 0, ∆w + k2w = 0 in Ω,

ηu · ν − ∂νw = −ϕ, Tu+ νw = 0 on Γ.

The coercivity of J then follows from [12, Theorem 2.3].

Thanks to the properties of the solution operator G and the operator J (see Lemmas 3.10 and 3.11),

we may directly apply the following range identity (see [11, Theorem 2.15]) to the factorization form

established in (53). Recall that the real and imaginary parts of an operator H over a Hilbert space are

given by

ReH := (H +H∗)/2, ImH := (H −H∗)/(2i).

Obviously, both ReH and ImH are self-adjoint operators.

Lemma 3.12 (Range Identity). LetX ⊂ Y ⊂ X∗ be a Gelfand triple with Hilbert space Y and reflexive

Banach space X such that the embedding is dense. Furthermore, let Y be a second Hilbert space and

let F : Y → Y , G : X → Y and T : X∗ → X be linear and bounded operators with F = GTG∗.

Assume further that

(a) G is compact with dense range.

(b) There exists t ∈ [0, 2π] such that Re [exp(it)T ] has the form Re [exp(it)T ] = T0 + T1 with some

compact operator T1 and some coercive operator T0 : X∗ → X , that is, there exists c > 0 with

〈ϕ, T0ϕ〉 ≥ c‖ϕ‖2
for all ϕ ∈ X∗. (55)

(c) ImT is non-negative on Range(G∗) ⊂ X∗, that is, 〈ϕ, (ImT )ϕ〉 ≥ 0 for all ϕ ∈ Range(G∗).

(d) Re [exp(it)T ] is one-to-one or ImT is strictly positive on the closure Range(G∗) of Range(G∗),

that is, for all ϕ ∈ Range(G∗) with ϕ 6= 0 it holds that 〈ϕ, (ImT )ϕ〉 > 0.

Then the operator F] := |Re [exp(it)F ]| + |ImF | is positive definite and the ranges of G : X → Y

and F
1/2
] : Y → Y coincide.

To apply Lemma 3.12, we set

t = 0, F = TN, G = G, T = J∗, T0 = J0, T1 = Re (J − J0),

Y = L2(∂D), X = H1/2(Γ).

In our settings, all the conditions in Lemma 3.12 are satisfied. In fact, conditions (a) and (b) follow from

Lemma 3.9 and Lemma 3.11 (ii), respectively. Conditions (c) and (d) are guaranteed by Lemma 3.11 (iii).

Combining Lemmas 3.12 and 3.10, we have the following result.
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Theorem 3.13. Let z ∈ BR and φz be defined in Lemma 3.10. Then φz(x) belongs to the range of

(TN)] if and only if z ∈ Ω. Consequently, the near-field data ps(x, z) for all x, z ∈ ∂D uniquely

determine the interface Γ.

As a consequence of Picard’s range criterion we obtain the following sufficient and necessary computa-

tional criterion for precisely characterizing Ω through the eigensystem of TN .

Theorem 3.14. Let z ∈ BR and let φz be defined in Lemma 3.10. Denote by λj ∈ C the eigenvalues of

the operator TN with the corresponding normalized eigenfunctions ψj ∈ L2(∂D). Then

z ∈ Ω ⇐⇒ W (z) :=

[
∞∑

j=1

|〈φz, ψj〉L2(∂D)|2
|λj|

]−1

> 0. (56)

Thus, the function W (z) on the right hand side of (56) can be regarded as the characteristic function for

the domain occupied by the unknown scatterer Ω. By Theorem 3.14, the values of the indicator function

W (z) are positive for z ∈ Ω and zero for z ∈ BR\Ω. Numerically, the values of the indicator function

inside the scatterer should be relatively larger than those outside. This will be confirmed in our 2D numer-

ical examples presented in Section 4, where a rectangular domain containing Ω has been used in place

of a circular domain of radius R > 0. However, it can be observed that the large values of the indicator

function are at different scales. For example, they are oscillating in Figures 6 and 7. This may be due to

the co-existence of compressional and shear waves incited insider the elastic body in comparison with

earlier studies for pure compressional waves [5].

Remark 3.15. The indicator function (56) can be implemented even if limited aperture data are available

on a sub-domain SD ⊂ ∂D, i.e., the receivers and incident point sources are both located on SD rather

than the entire closed surface ∂D. In particular, SD is allowed to be part of a plane in three dimensions

or a line segment in two dimensions. We refer to Section 4.3 for the numerical examples.

4 Numerical experiments

In this section, we present numerical examples in two dimensions for testing accuracy and validity of the

developed inversion scheme.

4.1 Discretization schemes

We first discuss how to discretize the outgoing-to-incoming mapping T in two dimensions, based on (40)

and Fourier analysis. Employing the polar coordinates enables us to write

∂D = {x = x̂ γ0(θx) : x̂ = (cos θx, sin θx), θx ∈ [0, 2π)}.

For g ∈ L2(∂D) and ϕ ∈ L2(S1), define

g̃(x̂) := g(x̂ γ0(x̂)) ∈ L2(S1), ϕ(x) := ϕ̃(x/|x|) ∈ L2(∂D).

18



Then g ∈ L2(∂D) if and only if g̃ ∈ L2(S1). For each g ∈ L2(∂D) we have the expansion

g(x) =
∞∑

n=0

gn e
inθx , x ∈ ∂D

with

gn :=

∫

S1

g̃(x̂) e−inθx ds(x̂) =

∫

∂D

g(x) e−inθx
/√

[γ0 (θx)]2 + [γ′0(θx)]2 ds(x). (57)

Introduce the operator FD : L2(∂D) → l2 by

FDg = g, g := {gn : n ∈ N0} ∈ l2. (58)

Conversely, for g ∈ l2 define the operator F−1
D : l2 → L2(∂D) by

(F−1
D g)(x) := g(x) =

∞∑

n=0

gn e
inθx , x ∈ ∂D. (59)

Further, it can be readily deduced from (58) and (59) that

FDF
−1
D = Il2 , F−1

D FD = IL2(∂D). (60)

Now we define the operators GD : H1/2(Γ) → l2, HD : l2 → H1/2(Γ) and TD : l2 → l2 by

GD := FDG, HD := HF ∗
D, TD = FDTF

−1
D ,

respectively. Then the relation TGJ = H∗ implies that TDGDJ = H∗
D. Recall the two-dimensional

fundamental solution to the Helmholtz equation

Φk(x, y) =
i

4
H

(1)
0 (k|x− y|), x 6= y.

For |x| > |y| there holds the addition theorem (see [1, Chapter 3.4]):

Φk(x, y) =
i

4

+∞∑

n=−∞

H(1)
n (k|x|) Jn(k|y|) ein(θx−θy).

Here Jn are known as Bessel functions of order n and H
(1)
n Hankel functions of the first kind of order n.

Hence, for x ∈ ∂D,

(H∗
Dψ)(x) = (FDH

∗ψ)(x) = FD

(∫

Γ

Φ(x, y)ψ(y) ds(y)

)
=

{
∞∑

m=−∞

An,mΨm : n ∈ N

}
,

(GDJψ)(x) = (FDGJψ)(x) = FD

(∫

Γ

Φ(x, y)ψ(y) ds(y)

)
=

{
∞∑

m=−∞

Bn,mΨm : n ∈ N

}
,

where

Ψm =

∫

Γ

Jm(k|y|) e−imθyψ(y) dsy,

An,m = − i

4

∫ 2π

0

H
(1)
m (k γ0(θx)) e

i(m−n)θx dθx, (61)

Bn,m =
i

4

∫ 2π

0

H(1)
m (k γ0(θx)) e

i(m−n)θx dθx.
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Now we truncate the series in each entry of H∗
Dψ and GDJψ to get an approximation of TD: TD ≈

AB−1 where for some M1 > 0,

A =




A−M1,−M1
A−M1,−M1+1 · · · A−M1,M1

A−M1+1,−M1
A−M1+1,−M1+1 · · · A−M1,M1

...
...

. . .
...

AM1,−M1
AM1,−M1+1 · · · AM1,M1


 ,

B =




B−M1,−M1
B−M1,−M1+1 · · · B−M1,M1

B−M1+1,−M1
B−M1+1,−M1+1 · · · B−M1,M1

...
...

. . .
...

BM1,−M1
BM1,−M1+1 · · · BM1,M1


 .

Here [·]i,j represent the rectangular Cartesian components of a square matrix. Note that we have as-

sumed that the matrix B is invertible for the chosenM1 > 0. For g ∈ L2(∂D), the outgoing-to-incoming

operator T can be discretized by (cf. (57))

(Tg)(x) = (F−1
D TDFDg)(x)

≈ F−1
D TD

{∫

∂D

g(y) e−imθy/
√

[γ0 (θy)]2 + [γ′0(θy)]2 ds(y) : |m| < M1

}

Applying TD ≈ AB−1 and using the definition of FD, we obtain

(Tg)(x) ≈ (TM1
g)(x) :=

∫

∂D

KM1
(x, y)g(y) dsy,

where the truncated kernel KM1
is defined by

KM1
(x, y) =

M1∑

n=−M1

M1∑

m=−M1

[
AB−1

]
n+M1+1,m+M1+1

ei(nθx−mθy)
/√

[γ0(θy)]2 + [γ′0(θy)]2.

Remark 4.1. In the special case that ∂D is a sphere of radius R1, i.e., γ0(θx) ≡ R1 is independent of

θx, only the diagonal elements of A and B remain, while the other off-diagonal terms vanish identically.

The kernel KM1
then reduces to the following simple form (cf. [5, Section 6]):

KM1
(x, y) = − 1

R1

M1∑

n=−M1

(
H

(1)
n (kR1)

H
(1)
n (kR1)

)
ein(θx−θy).

To discretize the near-field operator N , we take the scattered field at a uniformly distributed grid over ∂D
with the step size ∆θx = ∆θy = 2π/M2 for some M2 ∈ N, that is,

θx = θx(j) = (j − 1)∆θx, θy = θy(j) = (j − 1)∆θy, j ∈ K,

where K := {j ∈ N : 1 ≤ j ≤M2}. Then we have the near-field matrix

NM2×M2
= [ps(θx(p), r(θx(p)); θx(p), r(θx(p)))]p,q∈K ,
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and the finite-dimensional matrix TM2×M2
= [KM1

(θx(p), r(θx(p)); θx(p), r(θx(p)))]p,q∈K for TM2
.

Letting NT
M2×M2

= TM2×M2
NM2×M2

, we can approximate the characteristic function of W defined in

Theorem 3.14 by the finite series

W̃ (z) :=

[
M2∑

j=1

|(φz, ψj)l2|2
|λj|

]−1

for z ∈ BR, (62)

where φz = Φ(·, z)|∂D and {ψj, λj}M2

j=1 is an eigensystem of the matrix NT
M2×M2,# := |Re (NT

M2×M2
)|+

|Im (NT
M2×M2

)|.

4.2 Inversion scheme by converting near-field data to far-field patterns

In contrast to the ïndirect"factorization of the near-field operator, the far-field operator F : L2(S2) →
L2(S2), defined by

(Fg)(x̂) =

∫

S2

v∞(x̂, d) g(d) ds(d), x̂ ∈ S
2,

can be factorized in a straightforward way (see [12]). Denote by v∞(x̂, d), vs(x̂, d) and v(x, d) the far-

field pattern, scattered and total fields associated with the incident plane wave pin = eikx·d of direction

d ∈ S
2, respectively. Hence, it is very natural to apply Kirsch’s idea [11, Chapter 2.4] of converting

the near-field data {ps(x, z) : x, z ∈ ∂D} into the far-field patterns {v∞(x̂, d) : x̂, d ∈ S
2}. To

achieve this, it is necessary to establish the mixed reciprocity relation p∞(x̂, z) = vsc(z,−x̂), and then

generalize [17, Theorem 4.15] for a sound-soft obstacle to the case of the fluid-solid interaction model.

Since such an argument is standard, we omit the details and state the resulting scheme in the following.

Given f ∈ H1/2(∂D), consider the boundary value problem of finding an outgoing Sommerfeld radiating

wave w ∈ H1
loc(R

3\D) such that

∆w + k2w = 0 in R
3\D, w = f on ∂D. (63)

The far-field pattern w∞ of w defines the far-field solution operator G+
D : H1/2(∂D) → L2(S2) by

G+
Df = w∞. Introduce the operator B : L2(S2) → L2(∂D) by

(Bg)(ξ) =

∫

S2

∂ν [w(ξ, d) + eikξ·d] g(d) ds(d), ξ ∈ ∂D, (64)

where w(ξ, d) is the solution of (63) with f = −eikx·d|∂D. We have

Lemma 4.2. (i) The far-field operator F can be factorized as F = G+
DNB.

(ii) Let z ∈ BR and ϕz(x̂) = e−ikx̂·z. Denote by λj ∈ C the eigenvalues of the operator F# =
(G+

DNBg)# with the corresponding normalized eigenfunctions φj ∈ L2(S2). Then

z ∈ Ω ⇐⇒ W0(z) :=

[
∞∑

j=1

|〈ϕz, ψj〉L2(S2)|2
λj

]−1

> 0. (65)
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Implementing the above scheme requires an efficient forward solver for the boundary value problem (63).

An analytical solution can be constructed only if ∂D = ΓR1
is a circle. In our numerical examples below,

we apply such scheme to spherical measurement surfaces in 2D only. The truncated far-field matrix

FM2×M2
can be obtained following the process discussed in [17]. Consequently, the series in (65) can

be approximated by

W̃0(z) :=

[
M2∑

j=1

|(ϕ̃z, ψ̃j)l2|2
λ̃j

]−1

for z ∈ BR, (66)

where φ̃z(x̂) = e−ikz·(cos θx,sin θx) and {ψ̃j, λ̃j}M2

j=1 is an eigensystem of the matrix (FM2×M2
)#. It is

expected that if M2 is taken large enough, the series in (62) and (66) approximate the true values of W
and W0, respectively. Thus, W̃ (z) and W̃0(z) should be very small in BR\Ω and considerably large in

Ω.

4.3 Numerical examples

In the following experiments, we use (A1) and (A2) to represent the algorithms using the criteria (56)

and (66), respectively. The direct problem is solved by using a finite element method in conjunction with

a DtN map on an artificial boundary, and the near-field data is measured at 64 points with 64 source

points equivalently distributed on ∂D, that is, M2 = 64. In Figure 5 we show the four configurations of

underlying elastic bodies to be reconstructed. We employ dotted lines to represent ∂D, i.e., the position

where the near-field data are collected and where the incident sources are located. Unless otherwise

stated, we always set ω = 3, µ = 2, λ = 1, ρf = 1, ρ = 2,M1 = 50, and plot the map W̃t(z), t = 0, 1
against the sampling point z. We choose k = 7, 5, 5, 2 for peanut-shaped, kite-shaped, mix-shaped and

rounded-triangle-shaped obstacles, respectively.

Example 1: We choose ∂D = ΓR1
to be a circle of radius R1, and set R1 = 5 for the kite-shaped ob-

stacle (see Figure 5 (a)) and R1 = 6 for the mix-shaped obstacle (see Figure 5 (b)). The reconstructions

from unpolluted and polluted data using the algorithms (A1) and (A2) are presented in Figures 6 and 7,

respectively. The near-field acoustic data are perturbed by the multiplication of (1 + δξ) with the noise

level δ%, where ξ is an independent and uniformly distributed random variable generated between -1

and 1. We set δ = 0% in Figures 6 and 7 (a) and (e), δ = 1% in Figures 6 and 7 (b) and (f), δ = 2%
in Figures 6 and 7 (c) and (g) and δ = 5% in Figures 6 and 7 (d) and (h), respectively. It turns out that

the proposed inversion scheme using the outgoing-to-incoming operator is more stable than the scheme

(A2) described in Section 4.2, especially at the low noise levels.

Example 2: In the second example, the measurement curve ∂D is chosen to be an ellipse with the

semi-major axis a = 4 and semi-minor axis b = 3. The focal points are located at x-axis; see Figure 5

(c). We apply the algorithm (A1) proposed in this paper to reconstruct the peanut-shaped obstacle from

unpolluted and polluted data; see Figures 8 (c), (d), (e) and (f).

In Figures 8 (a) and (b), we use limited aperture near-field data (unpolluted) to recover the boundary of

the elastic body. The incident point sources and receivers are supposed to be uniformly located at

Γ(1) : = {(a cos θ, b sin θ) : θ ∈ (0, π/2)} in Figure 8 (a),

Γ(2) : = {(a cos θ, b sin θ) : θ ∈ (0, 3π/4)} in Figure 8 (b).
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(a) Example 1, Kite-shaped
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(b) Example 1, mix-shaped
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(c) Example 2, Peanut-shaped
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(d) Example 3, Rounded-triangle-shaped

Figure 5: The four configurations to be reconstructed. Solid line: Γ; dotted lines: ∂D. In Example 3, ∂D
is allowed to be the line segments illustrated in (d).

(a) (A1), no noise (b) (A1), 1% noise (c) (A1), 2% noise (d) (A1), 5% noise

(e) (A2), no noise (f) (A2), 1% noise (g) (A2), 2% noise (h) (A2), 5% noise

Figure 6: Reconstruction of the kite-shaped obstacle with ∂D = {x ∈ R
2 : |x| = 5}.
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(a) (A1), no noise (b) (A1), 1% noise (c) (A1), 2% noise (d) (A1), 5% noise

(e) (A2), no noise (f) (A2), 1% noise (g) (A2), 2% noise (h) (A2), 5% noise

Figure 7: Reconstruction of the mix-shaped obstacle with ∂D = {x ∈ R
2 : |x| = 6}.

That is, the elastic body is illuminated by 32 and 48 point source waves, respectively. The positions

where the near-field data are recorded coincide with the incident point sources, that is, the transmitters

and receivers are placed on the same part of the near field measurement surface. In this case, the

matrices A and B are still calculated using the geometry of the entire closed curve ∂D (see (61)), whereas

the outgoing-to-incoming operator T is approximated only on the sub-domain Γ(j) of ∂D. Clearly, the

reconstruction from the limited data is less reliable and precise compared to the full-data case.

Example 3: In the third example, we apply the algorithm (A1) to recover the rounded-triangle-shaped

obstacle from limited data collected on a line segment l. We assume that l lies on the boundary of the

square centered at the origin with side lengthR0 = 6. We will show the reconstruction results associated

with the following different line segments:

l1 : = {(R0/ tan(π/2 − θ), R0) : θ ∈ [π/4, 3π/4] =: Θ1},
l2 : = {(−R0, R0/ tan(π − θ)) : θ ∈ [3π/4, 5π/4] =: Θ2},
l3 : = {(R0/ tan(θ − 3π/2),−R0) : θ ∈ [5π/4, 7π/4] =: Θ3]},
l4 : = {(R0, R0/ tan θ) : θ ∈ [0, π/4] ∪ [7π/4, 2π) =: Θ4}.

Since limited near-field data are available only, we can approximate the outgoing-to-incoming operator T
on lj by computing each entry of the matrix AB−1 on a closed curve Slj containing lj , as done in Example

2. From numerical point of view it is natural and convenient to use circular curves as the extended part.

Hence, we define the piecewise smooth curves

Slj := lj ∪ {
√

2R0(cos θ, sin θ) : θ ∈ [0, 2π)\Θj}.

We take M2 = 128. The reconstruction results from the near-field measurement on Slj and lj are

presented in Figure 9 (a)-(d) and (e)-(h), respectively. It is concluded from Figure 9 (a)-(d) that the near-

field imaging does not rely too much on the choice of the closed measurement curve, but varies with

the directions of the measurement line segments. Obviously, the extension from lj to Slj is not unique.

However, our numerics show that the reconstruction is independent of the way of extending lj to a closed
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(a) 50%- data (b) 75%- data (c) Full-data

(d) 1% noise (e) 2% noise (f) 5% noise

Figure 8: Reconstruction of the peanut-shaped obstacle with ∂D = {(4 cos θ, 3 sin θ) : θ ∈ [0, 2π)} in

(c)-(f). Limited aperture data from part of the ellipse are used in (a) and (b).

curve. To see this point, we reconstruct the elastic body from near-field measurement taken on l2 ∪ l3,

with the matrix AB−1 calculated on different closed curves Sj ⊇ {l2 ∪ l3}, j = 1, 2, 3, 4, given by

S1 : = l2 ∪ l3 ∪ l1 ∪ {
√

2R0(cos θ, sin θ) : θ ∈ [0, 2π)\(Θ2 ∪ Θ3 ∪ Θ1)},
S2 : = l2 ∪ l3 ∪ l4 ∪ {

√
2R0(cos θ, sin θ) : θ ∈ [0, 2π)\(Θ2 ∪ Θ3 ∪ Θ4)},

S3 : = l2 ∪ l3 ∪ {
√

2R0(cos θ, sin θ) : θ ∈ [0, 2π)\(Θ2 ∪ Θ3)},
S4 : = l2 ∪ l3 ∪ l1 ∪ l4.

It is seen from Figure 10 that the imaging results indeed do not depend on the choice of Sj . Finally, we

illustrate in Figure 11 the reconstruction of the peanut-shaped obstacle from the near-field data measured

on one or several line segments. Again the matrix AB−1 is computed by extending the measurement

line segments with circular curves. Clearly, increasing observation line segments with different directions

leads to a better imaging quality.

5 Appendix

Denote by ps(·, z) the scattering solution to the problem (3)-(8) with the incident point source wave

Φk(·, z) for z ∈ R
3\Ω. We show the symmetry of ps(x, z) with respect to x and z, which has been used

in the proof of Lemma 3.8.

Lemma 5.1. The scattering solution to the problem (3)-(8) with an incident point source satisfies

ps(y, z) = ps(z, y), y, z ∈ R
3\Ω. (67)
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(a) Sl1
(b) Sl2

(c) Sl3
(d) Sl4

(e) l1 (f) l2 (g) l3 (h) l4

Figure 9: Reconstruction of the rounded-triangle-shaped obstacle from limited aperture data collected on

the line segment lj in (e)-(h), and from the full data measured on the closed curve Slj in (a)-(d).

(a) S1 (b) S2 (c) S3 (d) S4

Figure 10: Reconstruction of the rounded-triangle-shaped obstacle from limited aperture data collected

on l2 ∪ l3. To compute the operator T , we calculate the matrix AB−1 using different closed curves Sj

containing l2 ∪ l3.
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(a) l1 (b) l2 (c) l3 (d) l4

(e) l1 ∪ l2 (f) l1 ∪ l2 ∪ l3 (g) l2 ∪ l3 ∪ l4 (h) l1 ∪ l2 ∪ l3 ∪ l4

Figure 11: Reconstruction of the peanut-shaped obstacle from the near-field data measured on one or

several line segments.

Proof. Choose ε > 0 sufficiently small and R > 0 sufficiently large such that

Ω ⊂ BR, Bε(z) ⊂ BR\Ω, Bε(y) ⊂ BR\Ω, Bε(y) ∩Bε(z) = ∅.

Applying Green’s second formula to the total fields p(x, y) and p(x, z) in the region BR\{Ω ∪ Bε(y) ∪
Bε(z)}, we find

0 =

(∫

∂BR

−
∫

∂Bε(z)

−
∫

∂Bε(z)

−
∫

Γ

)
[∂νp(x, y)p(x, z) − p(x, y)∂νp(x, z)] ds(x). (68)

In view of the coupling conditions between p and u, we derive from Betti’s formula that

∫

Γ

[∂νp(x, y)p(x, z) − p(x, y)∂νp(x, z)] ds(x) = 0.

Letting R → ∞ in (68) we get

(∫

∂Bε(z)

+

∫

∂Bε(y)

)
[∂νp(x, y)p(x, z) − p(x, y)∂νp(x, z)] ds(x) = 0, (69)

since p(x, y) and p(x, z) are both outgoing radiating solutions. Applying Green’s second theorem to

p(x, z) and ps(x, y) in the ball Bε(y) yields

0 =

∫

∂Bε(y)

[∂νp
s(x, y)p(x, z) − ps(x, y)∂νp(x, z)] ds(x). (70)

Analogously, there holds that

0 =

∫

∂Bε(z)

[∂νp
s(x, z)p(x, y) − ps(x, z)∂νp(x, y)] ds(x). (71)
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Inserting (70) and (71) into (69) and again applying Green’s second theorem yield

0 =

∫

∂Bε(z)

[∂νp(x, y)Φ(x, z) − p(x, y)∂νΦk(x, z)] ds(x)

+

∫

∂Bε(y)

[∂νΦk(x, y)p(x, z) − Φk(x, y)∂νp(x, z)] ds(x)

= p(z, y) − p(y, z).

Since Φk(z, y) = Φk(y, z), we obtain ps(z, y) = ps(y, z).
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