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Abstract

Consider time-harmonic acoustic scattering from a bounded penetrable obstacle D ⊂ RN em-
bedded in a homogeneous background medium. The index of refraction characterizing the material
inside D is supposed to be Hölder continuous near the corners. If D ⊂ R2 is a convex polygon,
we prove that its shape and location can be uniquely determined by the far-field pattern incited by
a single incident wave at a fixed frequency. In dimensions N ≥ 3, the uniqueness applies to pene-
trable scatterers of rectangular type with additional assumptions on the smoothness of the contrast.
Our arguments are motivated by recent studies on the absence of non-scattering wavenumbers in
domains with corners. As a byproduct, we show that the smoothness conditions in previous corner
scattering results are only required near the corners.

1 Introduction and main results

Assume a time-harmonic incident wave is incident onto a bounded penetrable obstacle D ⊂ RN

(N ≥ 2) embedded in a homogeneous medium. The incident field uin may be any non-trivial solution in
L2

loc(RN) of the Helmholtz equation

∆uin + k2uin = 0 in RN ,

where k > 0 is the wavenumber. For instance, the incident wave is allowed to be a plane wave exp(ikx ·
d) with incident direction d ∈ SN−1 := {x ∈ RN : |x| = 1}, or a Herglotz wave of the form

uin(x) =

∫
SN−1

exp(ikx · d) g(d) ds(d), g ∈ L2(SN−1).

In this paper we suppose the scatterer D to be a convex polygon in R2 or a convex polyhedron in RN .
The physical properties of the inhomogeneous medium D can be characterized by the refractive index
function (or potential) q(x). Without loss of generality we suppose q(x) = 1 for x ∈ De = RN\D due
to the homogeneity of the background medium.

Denote by u = uin + usc the total field generated by uin, where usc is the outgoing scattered field which
satisfies the Helmholtz equation (∆ + k2)usc = 0 in De and the Sommerfeld radiation condition

lim
|x|→∞

|x|
N−1

2

{
∂usc

∂|x|
− ikusc

}
= 0, (1.1)

uniformly in all directions. The propagation of the total wave is governed by the Helmholtz equation

∆u(x) + k2q(x)u(x) = 0 in RN . (1.2)

Across the interface ∂D, we assume the continuity of the total field and its normal derivative (already
implicitly contained in the formulation (1.2)), i.e.,

u+ = u−, ∂νu
+ = ∂νu

− on ∂D. (1.3)
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Here the superscripts (·)± stand for the limits taken from outside and inside, respectively, and ν ∈ SN−1

is the unit normal on ∂D pointing into De. The unique solvability of the scattering problem (1.1)–(1.3) in
H2

loc(RN) is well-known if q ∈ L∞(RN) (see e.g. [CK98, Chapter 8] or [Ki11, Chapter 6]). In particular,
the Sommerfeld radiation condition (1.1) leads to the asymptotic expansion

usc(x) =
eik|x|

|x|(N−1)/2
u∞(x̂) +O

(
1

|x|N/2

)
, |x| → +∞, (1.4)

uniformly in all directions x̂ := x/|x|, x ∈ RN . The function u∞(x̂) is a real-analytic function defined on
SN−1 and is referred to as the far-field pattern or the scattering amplitude for uin. The vector x̂ ∈ SN−1

is the observation direction of the far field.

This paper concerns the uniqueness in recovering the boundary ∂D (or equivalently, the convex hull of the
support of the contrast q−1) from the far-field pattern generated by one incident wave at a fixed frequency.
The study on global uniqueness with a single incident plane or point source wave is usually difficult and
challenging. For sound-soft or sound-hard obstacles, such uniqueness results have been obtained within
the class of polyhedral or polygonal scatterers; see e.g., [AR05, CY03, EY06, EY08, HL14, LZ06]. The
proofs rely heavily on the reflection principles for the Helmholtz equation with respect to a Dirichlet or
Neumann hyperplane and on properties of the incident wave (for instance, plane waves do not decay
at infinity and point source waves are singular). However, the approach of using reflection principles
does not apply to penetrable scatterers due to the lack of “reflectible” (Dirichlet or Neumann) boundary
conditions for the Helmholtz equation. To the best of our knowledge, uniqueness with one incident wave
is still unknown within the class of non-convex polyhedral obstacles of impedance type.

Earlier uniqueness results on shape identification in inverse medium scattering were derived by sending
plane waves with infinitely many directions at a fixed frequency (see e.g., [EH11, Is08, Is90,KG08,Ki93]),
which results in overdetermined inverse problems. Uniqueness with a single far-field pattern has been
verified in two cases: D is a ball (not necessarily centered at the origin) and q ≡ q0 6= 1 is a constant in
D [HLL15], or D is a convex polygon or polyhedron and q is real-analytic on D satisfying |q − 1| > 0
on ∂D [EH15]. The unique determination of a variable index of refraction q in RN from knowledge of the
far-field patterns of all incident plane waves at fixed frequency, or by measuring the Dirichlet-to-Neumann
map of the Helmholtz equation, has also been intensively studied. We refer to [SU87, HN87, Na88] and
the survey [Uh14] for results for N ≥ 3 and to recent results [Bu08,BIY15] for N = 2.

The purpose of this article is to remove the real-analyticity assumption made in [EH15] on the refractive
index. To do this, we employ a different method that is motivated by the recent studies [BPS14, PSV14]
on the absence of non-scattering wavenumbers in corner domains. This method relies on the construc-
tion of suitable complex geometrical optics (CGO) solutions to the Helmholtz equation. Recall that k is
called a non-scattering wavenumber if there is a nontrivial incident wave whose far-field pattern vanishes
identically. If k is a non-scattering wavenumber, the functions w = uin|D and u|D solve the interior
transmission eigenvalue problem{

∆w + k2w = 0, ∆u+ k2qu = 0 in D,
w = u, ∂νw = ∂νu on ∂D.

(1.5)

Thus each non-scattering wavenumber is an interior transmission eigenvalue (see the survey [CH13]).
On the other hand, if k2 is an interior transmission eigenvalue and if the non-trivial solution w of (1.5) has
a real-analytic extension from D to RN , then k2 is also a non-scattering wavenumber. This implies that,
when k2 is a non-scattering wavenumber, the Cauchy data of the total field u on ∂D coincide with the
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Cauchy data of a real-analytic function which satisfies the Helmholtz equation in a neighborhood of D. A
similar phenomenon can be observed around a corner point, if two distinct convex polygons or polyhedra
generate the same far-field pattern. Therefore, the argument for proving the absence of non-scattering
wavenumber can be used for justifying uniqueness in determining the shape of a penetrable scatterer.

Let Dj for j = 1, 2 be two penetrable scatterers with contrasts qj . Denote by u∞j the far-field pattern of
the scattered field caused by a fixed incoming wave uin incident onto Dj with fixed wavenumber k > 0.
The first uniqueness result is in two dimensions, and applies to convex polygons.

Theorem 1.1. Let Dj ⊂ R2 for j = 1, 2 be bounded convex polygons. Assume that qj ∈ L∞(R2) are
contrasts such that qj ≡ 1 in De

j , and each vertex of Dj has some neighborhood Uj such that qj|Dj∩Uj
is Cα for some α > 0. Furthermore, assume that qj(O) 6= 1 for each vertex O of Dj . Then the relation
u∞1 = u∞2 on S1 implies that D1 = D2.

The next result applies in dimensions N ≥ 3 but requires that the scatterers are closed rectangular
boxes, i.e. sets of the form [0, a1] × · · · × [0, aN ] for some aj > 0 up to rotations and translations. We
write Hs,p for the fractional Lp Sobolev space with smoothness index s.

Theorem 1.2. Let Dj ⊂ RN for j = 1, 2 be two rectangular boxes. Assume that qj ∈ L∞(RN) are
contrasts such that qj ≡ 1 in De

j , and each corner of Dj has some neighborhood Uj such that qj|Dj∩Uj
has regularityX as specified below. Furthermore, assume that qj(O) 6= 1 for each cornerO ofDj . Then
the relation u∞1 = u∞2 on SN−1 implies that D1 = D2, provided that one of the following assumptions
holds.

(a) N = 3 and X = Cα for some α > 1/4.

(b) N ≥ 3 and X = Hs,p for some s, p with 1 < p ≤ 2 and s > N/p.

Theorems 1.1 and 1.2 are valid for Hölder or Sobolev potentials and avoid the real-analyticity assumption
required in [EH15]. The results in dimensionsN ≥ 3 are confined to penetrable scatterers of rectangular
type. It is still open how to prove Theorem 1.2 for general convex polyhedra with Hölder continuous
contrasts. We remark that the above results remain valid for a large class of incident waves which do not
vanish identically in a neighborhood of the scatterer. For instance, uin is also allowed to be a spherical
point source emitted from some source position located in De.

Our technique improves the regularity conditions of the corner scattering results of [BPS14, PSV14].
Namely, regularity is only required in a small neighborhood of the corner point, and otherwise the contrasts
are only required to be L∞. We state the results on the absence of non-scattering wavenumbers as
follows. Throughout the paper we write Br := {x ∈ RN : |x| < r} for r > 0.

Theorem 1.3. Let q ∈ L∞(R2), and let W ⊂ R2 be a closed sector with angle < π and with vertex
at O. Suppose that q ≡ 1 in W e, that q − 1 is compactly supported, and that q|W∩Br is Cα for some
α > 0 and r > 0. Finally, assume that q(O) 6= 1. Then, with q as the contrast, for any incoming wave
uin 6≡ 0, the far-field pattern u∞ can not vanish identically.

Theorem 1.4. Let q ∈ L∞(RN). Suppose that q ≡ 1 in W e, that q − 1 is compactly supported, and
that q|W∩Br has regularity X for some r > 0, where one of the following conditions holds:

(a) N = 3, W = [0,∞[3, and X = Cα for some α > 1/4.
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(b) N ≥ 3, W = [0,∞[N , and X = Hs,p for some s, p with 1 < p ≤ 2 and s > N/p.

Finally, assume that q(O) 6= 1. Then, with q as the contrast, for any incoming wave uin 6≡ 0, the far-field
pattern u∞ can not vanish identically.

The subsequent Section 2 is devoted to the proofs of the two-dimensional results, i.e., Theorems 1.1
and 1.3. The unique determination of a rectangular box in any dimension N ≥ 3, Theorem 1.2, will be
proved in Section 3. The result of Theorem 1.4 on non-scattering wavenumbers can be derived by using
the same argument as in Theorem 1.3 and we omit its proof.

2 Proofs in two dimensions

Denote by (r, ϕ) the polar coordinates in R2, and by BR the disk centered at the origin O with radius
R > 0. For ϕ0 ∈ (0, π/2), define W ⊂ R2 as the infinite sector between the half-lines Γ± := {(r, ϕ) :
ϕ = ±ϕ0}. The closure of W will be denoted by W , which is a closed cone in R2. Set (see Figure 1)

SR = W ∩BR, Γ±R = Γ± ∩BR, SR = W ∩BR, SeR = BR\SR.

Figure 1: Geometrical settings.

The following two lemmas are the essential ingredients in the proofs. The first one concerns the con-
struction of suitable Complex Geometrical Optics (CGO) solutions to the Schrödinger equation in R2. For
convenience we employ the common notation 〈x〉 := (1 + |x|2)1/2 throughout the paper.

Lemma 2.1. Let q̃ ∈ L∞(R2) satisfy q̃ ≡ 1 in R2\W and 〈·〉β (q̃ − 1) ∈ Cα(W ) for some α > 0 and
β > 5/3. If ρ ∈ C2 satisfies ρ · ρ = −k2 and |Im (ρ)| is sufficiently large, then there exists a solution
of the Helmholtz equation

∆u(x) + k2q̃(x)u(x) = 0 in R2 (2.1)

of the form

u = e−ρ·x(1 + ψ(x)), (2.2)

where ψ satisfies

‖ψ‖L6(R2) = O(|Im (ρ)|−1/3−δ) as |ρ| → ∞, (2.3)

for some δ > 0.
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Lemma 2.1 is the special case N = 2 of Lemma 3.1 in [PSV14], the proof of which was based on
the uniform Sobolev estimates of Kenig, Ruiz and Sogge [KRS87]. Relying on the construction of CGO
solutions of the form (2.2), we next verify a result for the transmission problem between the Schrödinger
equations with constant and piecewise Hölder continuous potentials in a finite polygonal cone.

Lemma 2.2. Suppose q ∈ L∞(BR) satisfies q|SR ∈ C
α(SR) with some α > 0, and q ≡ 1 in SeR. Let

v1, v2 ∈ H2(BR) be solutions to

∆v1(x) + k2v1(x) = 0, ∆v2(x) + k2q(x)v2(x) = 0 in BR

subject to the transmission conditions

v1 = v2, ∂νv1 = ∂νv2 on Γ±R . (2.4)

Then we have v1 = v2 ≡ 0 in BR if q(O) 6= 1.

From Lemma 2.2 it follows that the Cauchy data of non-trivial solutions of the Schrödinger equations
with constant and piecewise Hölder continuous potentials cannot coincide on two intersecting lines, if
the potentials involved do not coincide on the intersection. The same result was verified in [EH15] but
restricted to real-analytic potentials. Making use of classical corner regularity results for the Laplace
equation in the plane (see e.g., [MNP00, Chapter 1.2], [Gr92, Chapter 2] or [Da88, Example 16.12]),
the approach of Taylor expansion [EH15] can be generalized only to infinitely smooth potentials on SR.
Hence, the above Lemma 2.2 has significantly relaxed the regularity assumption used in [EH15]. Below
we carry out the proof of Lemma 2.2 which is valid only when the corner of SR is convex, i.e., ϕ0 < π/2.

Proof of Lemma 2.2. We shall follow the approach from [PSV14, Section 4] but modified to be applicable
to a polygonal convex cone with finite height. For clarity we divide the proof into three steps.

Step 1. Establish an orthogonality identity with an exponentially decaying remainder term. Set
w = v1 − v2. Then w ∈ H2(BR), and we have

∆w + k2qw = k2(q − 1)v1 in BR, w = ∂νw = 0 on Γ±R . (2.5)

Extending q from BR/2 to R2 in a suitable way, we get a new potential q̃ ∈ L∞(R2) satisfying q̃|W ∈
Cα(W ) such that

q̃ = q in SR/2 , q̃ ≡ 1 in (W\SR) ∪ (R2\W ).

Clearly q̃ fulfills the assumptions in Lemma 2.1. Set β := π/2 − ϕ0 > 0. For any ϕ with ϕ ∈] −
β/2, β/2 [, let ω = (cosϕ, sinϕ) ∈ S1 and let ω⊥± be the two vectors orthogonal to ω, i.e., ω⊥± =
±(− sinϕ, cosϕ). For τ > 0, introduce the parameter-dependent vectors ρτ,ϕ,± ∈ C2 as follows

ρτ,ϕ,± = τω + i (τ 2 + k2)1/2ω⊥±.

Obviously, ρτ,ϕ,± · ρτ,ϕ,± = −k2 and |ρτ,ϕ,±| ∼
√

2τ as τ → ∞. By Lemma 2.1, we may construct
solutions to the Schrödinger equation (2.1) of the form

u(x) = uτ,ϕ,±(x) = exp(−ρτ,ϕ,± · x) (1 + ψτ,ϕ,±(x)) in R2, (2.6)
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provided τ > 0 is sufficiently large. Applying Green’s formula and using (2.5) yields

0 =

∫
SR/2

(∆u+ k2q̃u)w dx

=

∫
SR/2

(∆u+ k2qu)w dx

=

∫
SR/2

(∆w + k2qw)u dx+

∫
∂(SR/2)

(∂νuw − ∂νw u) ds

= k2

∫
SR/2

(q − 1)v1 u dx+

∫
ΛR/2

(∂νuw − ∂νw u) ds (2.7)

with ΛR/2 := {|x| = R/2} ∩ W . Since the constructed CGO solutions decay in W\{O}, we shall
prove that the integral over ΛR/2 in (2.7) converges to zero exponentially fast as τ →∞.

Figure 2: Configurations of ΛR/2 and Dε,R in the proof of Lemma 2.2.

For 0 < ε < min{β/2, R/2}, define a neighborhood of ΛR/2 by (see Figure 2)

Dε,R := {(r, ϕ) : R/2− ε < r < R/2 + ε, |ϕ| < ϕ0 + ε}.

Then, there exists δ0 = δ0(ε, R) > 0 such that

Re (ρτ,ϕ,± · x) = τ(ω · x) ≥ τ δ0 > 0 for all x ∈ Dε,R, ϕ ∈]− β/2, β/2 [.

This together with the estimates of ‖ψτ,ϕ,±‖L6(R2) (see (2.3)) implies the exponential decay of the L2-
norm of uτ,ϕ,± over L2(Dε,R), i.e.,

‖uτ,ϕ,±‖L2(Dε,R) = O(e−τδ0) as τ →∞.

On the other hand, since uτ,ϕ,± solves the Schrödinger equation in R2, the standard elliptic interior
regularity estimate allows us to estimate for ε′ < ε that

‖uτ,ϕ,±‖H2(Dε′,R) ≤ C ‖uτ,ϕ,±‖L2(Dε,R) ≤ Ce−τδ0 .

Applying the Cauchy-Schwarz inequality and using the trace lemma, we may estimate the last term on
the right-hand side of (2.7) as follows∫

ΛR/2

((∂νu)w − (∂νw)u) ds ≤ C ‖u‖H3/2(ΛR/2) ‖w‖H3/2(ΛR/2)

≤ C ‖u‖H2(Dε′,R)

(
‖v1‖H2(BR) + ‖v2‖H2(BR)

)
.
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Combining (2.7) with the previous two inequalities, we get the following orthogonality identity over SR/2
with an exponentially decaying remainder term∫

SR/2

(q − 1)v1 uτ,ϕ,± dx = O(e−τδ0) as τ →∞, ϕ ∈]− β/2, β/2 [. (2.8)

Step 2. Reduction to Laplace transforms. Assume that v1 6≡ 0. Since v1 is a solution of the Helmholtz
equation in BR, the lowest order nontrivial homogeneous polynomial H(x) in the Taylor expansion of
v1 around the origin is a harmonic function (see [BPS14, Lemma 2.4]). Without loss of generality, we
assume H is of order n for some n ≥ 0, i.e.,

v1(x) = H(x) +K(x), K(x) = O(|x|n+1) as |x| → 0. (2.9)

Define F to be the Laplace transform of H in W ,

F (z) :=

∫
W

exp(−z · x)H(x) dx, (2.10)

for z ∈ C2 such that Re (z) · (1, 0) > cos(β/2). Taking z = ρ = ρτ,ϕ,± and splitting F (ρ) into two
terms, we see

F (ρ) =

∫
SR/2

exp(−ρ · x)H(x) dx+

∫
W\SR/2

exp(−ρ · x)H(x) dx

=

∫
SR/2

exp(−ρ · x)H(x) dx+O(e−τδ1) (2.11)

as τ →∞ for some δ1 = δ1(R,ϕ0) > 0. By the assumption q(O) 6= 1, we may set η := q(O)−1 6= 0.
Inserting (2.6) and (2.9) into (2.8) and then combining the resulting expression with (2.11) gives

η F (ρ) =

∫
SR/2

exp(−ρ · x)
(
η H(x)− (q(x)− 1)(H(x) +K(x))(1 + ψ(x))

)
dx+O(e−τδ2)

as τ → ∞, with δ2 := min{δ0, δ1}. Making use of [BPS14, Lemma 3.6], we can estimate the integral
on the right hand of the previous identity by (see e.g., [PSV14, Section 4])∫

SR/2

exp(−ρ · x)
(
η H(x)− (q(x)− 1)(H(x) +K(x))(1 + ψ(x))

)
dx

=

∫
SR/2

exp(−ρ · x) {(q(O)− q(x))H(x)− (q(x)− 1)[K(x) + ψ(x)(H(x) +K(x))]} dx

≤ C τ−n−2−δ

for some δ > 0. Therefore, we arrive at

η F (ρ) ≤ C τ−n−2−δ (2.12)

for all ϕ ∈]− β/2, β/2 [ and τ > 0 sufficiently large.

On the other hand, since the cone W remains invariant under the transform x → |ρ|x and H is a
homogeneous polynomial, it is easy to check that

F (ρ) = |ρ|−n−2 F (ρ/|ρ|). (2.13)
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Consequently, taking τ →∞ in (2.12) gives F ((ω + iω⊥±)/
√

2) = 0. Moreover, the homogeneity of F
shown as in (2.13) yields

F (τ(ω + iω⊥±)) = 0 for all τ > 0, ϕ ∈ ]− β/2, β/2 [. (2.14)

This implies the vanishing of the Laplace transform of χWH at z = τ(ω + iω⊥±) for all τ > 0 and
ϕ ∈ ]− β/2, β/2 [.

Step 3. End of the proof. Repeating the arguments of [PSV14, Section 5], one can deduce from (2.14),
taking both signs ±, that H ≡ 0. This implies that v1 ≡ 0 in BR. As a consequence, the Cauchy
data of v2 on Γ±R vanish due to the transmission conditions (2.4). Finally, we get v2 ≡ 0 by the unique
continuation of solutions to the Schrödinger equation. This finishes the proof of Lemma 2.2.

We are now ready to prove Theorems 1.1 and 1.3 for general incident waves, including point source
waves.

Proof of Theorem 1.1. Since u∞1 (x̂) = u∞2 (x̂) for all x̂ ∈ S1, applying Rellich’s lemma we know that
usc

1 = usc
2 in R2\(D1 ∪D2). Thus

u1(x) = u2(x) (2.15)

for all x ∈ R2\(D1 ∪D2).

O

D1D2

Figure 3: Two distinct convex penetrable scatterers D1 and D2 of polygonal-type.

If ∂D1 6= ∂D2, without loss of generality we may assume there exists a cornerO ∈ R2 of ∂D2 such that
O /∈ D1. We suppose further that this corner point coincides with the origin and we pick a fixed number
R > 0 such that BR ⊂ De

1. Since D2 is a convex polygon, rotating coordinate axes if necessary, we
may assume that D2 ∩ BR = {(r, ϕ) : |ϕ| < ϕ0} for some ϕ0 ∈ (0, π/2); see Figure 3. From (2.15),
it follows that

u−1 = u+
1 = u+

2 = u−2 , ∂νu
−
1 = ∂νu

+
1 = ∂νu

+
2 = ∂νu

−
2 on ∂D2 ∩BR,
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where the superscripts (·)−, (·)+ stand for the limits taken from D2 and De
2, respectively. On the other

hand, the function u1 satisfies the Helmholtz equation with the wave number k2 in BR, while u2 fulfills
the Schrödinger equation

∆u2 + k2q2u2 = 0 in BR.

Since q2(O) 6= 1, applying Lemma 2.2 leads to u1 = u2 ≡ 0 in BR. Moreover, by unique continuation
we obtain u1 = u2 ≡ 0 in R2. This implies that the scattered fields satisfy usc

1 = usc
2 = −uin in all of R2.

Hence uin ≡ 0 in R2\(D1 ∪D2), but since uin solves the free Helmholtz equation, unique continuation
implies uin ≡ 0. This contradiction gives D1 = D2.

Proof of Theorem 1.3. Let us consider the incident wave uin 6≡ 0 with the total wave u, so that we have

∆uin(x) + k2uin(x) = 0 and ∆u(x) + k2q(x)u(x) = 0 in R2.

If for this incident wave u∞ ≡ 0, then Rellich’s lemma tells us that u ≡ uin in R2 \W , and Lemma 2.2
applied with v1 = uin and v2 = u gives uin ≡ 0 in BR. By unique continuation we get uin ≡ 0, which is
a contradiction.

3 Proofs in higher dimensions

We first present the proof under the assumption (a) of Theorem 1.2, that is, Dj ⊂ R3 is a rectangular
box and the potential is Cα near the corners with α > 1/4. Let W = [0,∞[3. We will make use of the
following result concerning complex geometrical optics solutions. Recall the notation 〈x〉 := (1+|x|2)1/2.

Lemma 3.1. Let q̃ ≡ 1 in R3 \ W and 〈·〉β (q̃ − 1) ∈ Cα(W ) for some α > 1/4 and β > 9/4.
If ρ ∈ C3 satisfies ρ · ρ = −k2 and |Im (ρ)| is sufficiently large, then there exists a solution of the
Helmholtz equation

∆u(x) + k2q̃(x)u(x) = 0 in R3

of the form
u = e−ρ·x(1 + ψ(x)),

where ψ satisfies
‖ψ‖L4(R3) = O(|Im (ρ)|−3/4−δ), as |ρ| → ∞,

for some δ > 0.

The proof of the above lemma is also based on the uniform Sobolev estimates of Kenig, Ruiz and Sogge
[KRS87]. In order to avoid repeating the arguments presented in [PSV14], we shall verify Lemma 3.1 by
indicating the changes necessary to the proof of [PSV14, Theorem 3.1]. For this purpose we need to
know into which Sobolev spaces the characteristic function of a cube belongs. Below we will write χQ
for the characteristic function of a set Q, and denote by C∞c (R3) the space of smooth functions with
compact support.

Lemma 3.2. Let Q ⊂ R3 be a closed cube. Then

χQ ∈ Hτ,p(R3)

for τ ∈ [0, 1/2[ and p ∈ ]1, 2].
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Proof. Without loss of generality, we consider Q = [−1, 1]3. Since χQ ∈ L1(R3), the Fourier transform
χ̂Q of χQ is continuous. For ξ = (ξ1, ξ2, ξ3) ∈ R3 with ξ1ξ2ξ3 6= 0, the transform χ̂Q takes the explicit
form

χ̂C(ξ) =
23 sin ξ1 sin ξ2 sin ξ3

ξ1ξ2ξ3

.

Thus, we may estimate

‖χQ‖2
Hτ,2(R3) =

∫
R3

〈ξ〉2τ |χ̂C(ξ)|2 dξ ≤ C

∫
R3

〈ξ〉2τ 〈ξ1〉−2 〈ξ2〉−2 〈ξ3〉−2 dξ.

The last integral is finite when τ < 1/2. Thus, χQ ∈ Hτ,2(R3) for τ ∈ [0, 1/2[.

Next, let ψ be a fixed function in C∞c (R3) satisfying ψχQ = χQ. By Hölder’s inequality, for any k ∈
{0, 1}, f ∈ Hk,2(R3) and fixed p ∈ ]1, 2],

‖ψf‖Hk,p(R3) ≤ C ‖ψf‖Hk,2(R3) ≤ C ‖f‖Hk,2(R3) .

By interpolation, the mapping f 7→ ψf maps Hs,2(R3) into Hs,p(R3) for s ∈ ]0, 1[, and thus χQ ∈
Hτ,p(R3) for all τ ∈ [0, 1/2[ and p ∈ ]1, 2].

The construction of CGO solutions for a cube is proved as follows.

Proof of Lemma 3.1. We may assume that α < 1/2. The proof of the complex geometric optics con-
struction in [PSV14] is mostly independent of the shape of W . For W = [0,∞[3 we only need to check
that V := χW (1 − q̃) has the pointwise Sobolev multiplier property of Proposition 3.4 in [PSV14], i.e.,
we need to check that

‖V f‖Hα−ε,4/3(R3) ≤ C ‖f‖Hα−ε,4(R3)

for some constant C > 0 for arbitrarily small fixed ε > 0. The desired multiplier property in turn follows
immediately, if we can show that (cf. [PSV14, Proposition 3.7])

〈·〉−γ χ[0,∞[3 ∈ H
τ,p(R3) (3.1)

for p ∈ ]1, 2], τ ∈ [0, 1/2[ and γ ∈ ]3/p,∞[. Given β1, β2 ∈ [0,∞[ with β1 < β2, we set Λ =
[0, β2]3 \ [0, β1[3. Applying Lemma 3.2 we know that the function χΛ belongs to Hτ,p(R3). This leads to
the relation (3.1) by changing variables and scaling the Sobolev norm; see the proof for Proposition 3.7
in [PSV14].

To continue the proof of Theorem 1.2 under the assumption (a), we again introduce some notation. Let
SR = W ∩BR, SeR = BR \ SR, and ΓR = ∂W ∩BR. As in two dimensions, we will employ a result of
the following type.

Lemma 3.3. Let q ∈ L∞(BR) satisfy q|SR ∈ Cα(SR), where α > 1/4, and q ≡ 1 in SeR. Let
v1, v2 ∈ H2(BR) be solutions to

∆v1(x) + k2v1(x) = 0 and ∆v2(x) + k2q(x)v2(x) = 0 in BR,

subject to the transmission conditions

v1 = v2, ∂νv1 = ∂νv2 on ΓR.

Then we have v1 = v2 ≡ 0 in BR, if q(O) 6= 1.
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Proof. We carry over the proof of Lemma 2.2 to three dimensions. Set w = v1 − v2. Then we have
w = ∂νw = 0 on ΓR and

∆w(x) + k2q(x)w(x) = k2(q(x)− 1)v1(x) in BR.

Extending q from BR/2 to R3, we can obtain a new potential q̃ ∈ Cα(W ) such that q̃ = q in SR/2
and that q̃ − 1 satisfies the smoothness conditions required by Lemma 3.1. Next, write β = π/3 and
a = (3−1/2, 3−1/2, 3−1/2). Choose τ ∈ R+ and ω, ω⊥ ∈ R3 with |ω| =

∣∣ω⊥∣∣ = 1, ω · ω⊥ = 0 and
ω · a > cos(β/2). We parameterize the CGO solutions with the complex vector

ρ = ρτ,ω,ω⊥ = τω + i(τ 2 − k2)1/2ω⊥.

Provided that τ is sufficiently large, Lemma 3.1 gives solutions

u(x) = uτ,ω,ω⊥(x) = e−ρ·x(1 + ψ(x))

to the Helmholtz equation ∆u(x) + k2q̃(x)u(x) = 0 in R3. Furthermore, the remainder ψ has the L4-
estimate

∥∥ψ∥∥
L4(R3)

< C τ−3/4−δ for some δ > 0. Arguing as before in the two-dimensional case, we
get

0 = k2

∫
SR/2

(q − 1)v1u dx+

∫
ΛR/2

((∂νu)w − u ∂νw) ds,

where ΛR/2 = W ∩∂BR/2. The selection of the parameters β, a and ω ensures the decay of the integral
over ΛR/2, ∫

ΛR/2

((∂νu)w − u∂νw) ds = O(e−τδ0) as τ →∞

for some δ0 > 0. Thus, we again get the orthogonality relation∫
SR/2

(q − 1)v1u dx = O(e−τδ0) as τ →∞

for any given admissible ω and ω⊥.

Denote by H the lowest degree nontrivial homogeneous polynomial in the Taylor expansion of v1 around
the origin, and consider the the Laplace transform F (z) of H (see (2.10)) for z ∈ C3 such that Re (z) ·
a > cos(β/2). If H has degree n, similarly as before we obtain F (ρ) = O(τ−n−3−δ) as τ → ∞, if
q(O) 6= 1. This estimate involves using the Hölder inequality so that the L4-norm of ψ appears. In the
other direction, by homogeneity, we have

F (ρ) = |ρ|−n−3 F

(
ρ

|ρ|

)
.

Taking τ →∞ gives thenF (τω+iτω⊥) = 0 for all τ ∈ R+ and all admissible ω and ω⊥. From [BPS14,
Theorem 2.5] we obtain the conclusion H(x) ≡ 0, which implies v1 = v2 ≡ 0 in BR.

Proof of Theorem 1.2 under assumption (a). The result follows by the same arguments as in the proof of
Theorem 1.1, except that Lemma 3.3 is used instead of Lemma 2.2.
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Next we indicate how to prove Theorem 1.2 under the assumption (b). Now we let W = [0,∞[N where
N ≥ 3. The required complex geometrical optics solutions were constructed in [BPS14] and they are
given by the following result.

Lemma 3.4. Let q̃ ≡ 1 in RN \(W ∩BR) for someR > 0, and let q̃ |W∩BR be inHs,p where 1 < p ≤ 2
and s > N/p. Let also D ⊂ RN be a bounded open set, and let 2 ≤ r < ∞. If ρ ∈ CN satisfies
ρ · ρ = 0 and |Im (ρ)| is sufficiently large, then there exists a solution of the Helmholtz equation

∆u(x) + k2q̃(x)u(x) = 0 in D

of the form
u = e−ρ·x(1 + ψ(x)),

where ψ satisfies
‖ψ‖Lr(D) = O(|Im (ρ)|−1), as |ρ| → ∞.

Proof. We can write q̃ = 1 − χKϕ for some cube K = [0, a]N and for some ϕ ∈ Hs,p
c (RN) by

the conditions on q̃ and the Sobolev extension theorem on Lipschitz domains. Writing m = χKϕ, the
equation that we need to solve is

(∆ + k2(1−m))u = 0 in D.

The result would then follow from [BPS14, Theorem 2.3], except that this theorem was proved under the
condition ϕ ∈ C∞ instead of ϕ ∈ Hs,p.

Inspecting the proof in [BPS14] we see that it is enough that the function

Q = −k2(1−m)ΦD,

where ΦD ∈ C∞c (RN) satisfies ΦD = 1 near D, satisfies [BPS14, formula (34)], i.e. that one has

Q ∈ B̂1
r,1 and ‖Qg‖dB1

r,1

≤ CQ‖g‖
B̂−1
r,∞

(3.2)

where the spaces are as in [BPS14]. Now we can writeQ = Q1 +Q2 whereQ1 = −k2ΦD ∈ C∞c (RN)
and Q2 = fχK where

f = k2ϕΦD,

so that f ∈ Hs,p
c (RN). We use [BPS14, Lemma 4.3 and preceding discussion] to conclude that when

supp(q) ⊂ BR, one has

‖q‖dB1
r,1

≤ CR‖q̂‖Lr ,

‖qg‖dB1
r,1

≤ 2R2‖q̂‖L1‖g‖
B̂−1
r,∞
,

‖χKg‖dB1
r,1

≤ Cr‖g‖dB1
r,1

.

It follows that (3.2) will be satisfied if the function f defined above satisfies f̂ ∈ L1 ∩ Lr. Since f ∈
L1

c(RN), we have f̂ ∈ L∞(RN) and it is enough to check that f̂ ∈ L1. But if (ψj(ξ))
∞
j=0 is a Littlewood–

Paley partition of unity and if 1 ≤ p ≤ 2, we obtain by the Hölder and Hausdorff–Young inequalities that∫
RN
|f̂(ξ)| dξ =

∞∑
j=0

∫
RN
ψj(ξ)|f̂(ξ)| dξ ≤ C

∞∑
j=0

2jN/p‖ψj(ξ)f̂(ξ)‖Lp′

≤ C
∞∑
j=0

2jN/p‖ψj(D)f‖Lp ≤ C‖f‖
B
N/p
p,1
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where ψj(D) is the Fourier multiplier with symbol ψj(ξ) and the last norm is a Besov norm. Since

Hs,p ⊂ Bs
p,∞ ⊂ B

N/p
p,1 for s > N/p, we get f̂ ∈ L1 as required. This shows that (3.2) is satisfied, which

concludes the proof.

Proof of Theorem 1.2 under assumption (b). It is enough to use Lemma 3.4 to prove an analogue of
Lemma 3.3, and then argue as in the proof of Theorem 1.1.

4 Concluding remarks

In two dimensions, we have verified the uniqueness in identifying a convex penetrable scatterer of polyg-
onal type with a single far-field pattern, provided the refractive index is discontinuous at the corner points
but Cα-Hölder continuous inside near the corners. In higher dimensions, the uniqueness applies to con-
vex polyhedra with additional assumptions on the geometrical shape (i.e., boxes) and on the smoothness
of the contrast. In this study, the smoothness assumption is required only near the corner points.

Our future efforts will be devoted to the uniqueness proof in 3D for convex polyhedra with general Cα-
Hölder (α > 0) continuous potentials. Since the CGO solutions can be constructed with plenty of gen-
erality, the 3D proof essentially requires to evaluate the Laplace transform of a harmonic homogeneous
polynomial over a general three-dimensional corner domain and then to prove the vanishing of this poly-
nomial through novel techniques. Another possible approach would be to analyze the corner and edge
singularities of an elliptic equation with analytical Cauchy data in weighted Hölder spaces. Further results
will be presented in a forthcoming publication.
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