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ABSTRACT. We consider transport networks with nodes scattered at random in a large domain. At certain local
rates, the nodes generate traffic flowing according to some navigation scheme in a given direction. In the ther-
modynamic limit of a growing domain, we present an asymptotic formula expressing the local traffic flow density
at any given location in the domain in terms of three fundamental characteristics of the underlying network: the
spatial intensity of the nodes together with their traffic generation rates, and of the links induced by the navigation.
This formula holds for a general class of navigations satisfying a link-density and a sub-ballisticity condition. As
a specific example, we verify these conditions for navigations arising from a directed spanning tree on a Poisson
point process with inhomogeneous intensity function.

1. INTRODUCTION AND MAIN RESULTS

For large-scale networks, where many network nodes simultaneously generate traffic of some kind, questions
of capacity become of central importance. Indeed, the traffic flow in the network can be seriously obstructed
if the amount of traffic that needs to be forwarded by a certain node becomes too large. The main results
presented here, Theorems 2 and 4, provide asymptotic formulas that allow one to express the traffic density in
any given point through fundamental network characteristics: the spatial intensity of users, the traffic intensity
and the intensity of links in the network. We envision applications of these results in the study of traffic flow in
multi-hop communication and drainage networks.

Based on the general framework developed by Bordenave [4], we consider two types of routing schemes, or,
using his terminology, navigations. First, directed navigations, where the flow of transport is steered towards a
certain direction. This type of navigation has been studied rigorously in recent years and includes the directed
spanning tree [1, 19], Delaunay routing [2], the directed minimum spanning tree [3, 18] and the Poisson tree [8].
Second, navigations where the network nodes have a single site as their transport destination. For example,
the radial spanning tree introduced by Baccelli and Bordenave [1] falls into this second class.

1.1. Directed networks. In the following we assume without loss of generality that the direction is given by the
unit vector e1 for a network on Rd. We consider a random network model with a certain intensity profile in the
thermodynamic limit. More precisely, let D be an open, bounded and convex subset of Rd. Then, for s ≥ 1
let X(s) be a simple point process with intensity function λ(s) : D → [0,∞), x 7→ λ(s)(x) = λ(x/s) for
some continuous and bounded mapping λ : D → [0,∞). Each node Xi ∈ X(s) generates traffic at rate
µ(s)(Xi) = µ(Xi/s), where µ : D → [0,∞) is also a continuous and bounded function.

Similar to the directed navigation scheme proposed by Bordenave [4], we think of a navigation as a function
mappingX(s) to itself, where the function value of a node will also be referred to as the successor of that node.
In other words, a navigation makes formal the concept of a routing scheme in the current setting. Additionally,
we impose the property that successors always lie to the right. Let π1 : Rd → R denote the projection to the
first coordinate and N the set of all locally finite sets of points in Rd.

Definition 1. A measurable functionA : Rd×N→ Rd is called directed navigation if the following properties
are satisfied.

(i) A(x, ϕ) ∈ ϕ, for all x ∈ ϕ,
(ii) π1(A(x, ϕ)) ≥ π1(x) for all x ∈ ϕ.

If there is no danger of ambiguity, we will often write A(x) instead of A(x, ϕ). In Figure 1 we present two
examples of directed navigation.

Suppose now that the nodes X(s) generate traffic at rates given by the function µ(s) and that the traffic is
forwarded in the e1-direction according to the navigation A. Then, the traffic flow at a node Xi can be thought
of as the sum of all rates associated with nodes whose route passes throughXi. To be more precise, define the
k-fold iteration Ak of A recursively by putting Ak(x, ϕ) = Ak−1(A(x, ϕ), ϕ), k ≥ 1 and A0(x, ϕ) = x.
Then we can trace the path of the traffic originating from a node Xi ∈ X(s) by considering the trajectory
Γ(Xi, X

(s)) = {Ak(Xi, X
(s)) : k ≥ 0}. In other words, Γ(Xi) = Γ(Xi, X

(s)) consists of all the iterated
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FIGURE 1. Directed navigation based on a Poisson point process on the unit square. Each
node connects to its nearest neighbor which is also contained in a wide, respectively narrow,
horizontal cone starting at the node.

successors of Xi. Let us also define Γ̄(Xi) =
⋃
k≥0[Ak(Xi),Ak+1(Xi)] as the interpolated trajectory. We

define the traffic flow at Xi ∈ X(s) as

∆(Xi) = ∆(Xi, X
(s)) =

∑
Xj :Xi∈Γ(Xj)

µ(s)(Xj).

In the following, we analyze the asymptotic behavior of the spatial traffic flow density at any given location as s
tends to infinity. Here the spatial traffic flow density is understood as a spatial average of traffic flow in a certain
microscopic environment, whose diameter is of order o(s). In order to get a tractable limit result, we need to
impose some restrictions on the navigationA.

For a point x ∈ Rd let Bd
r (x) denote the d-dimensional ball with radius r around x. First, we need to specify

a suitable notion of density of links induced by the navigation A passing through an g(s)-neighborhood of sx,
where g : [1,∞) → [1,∞) is an unbounded increasing function with g(s)/s tending monotonically to zero
as s tends to infinity. More precisely, let

IDs (x) = Bd
g(s)(sx) ∩ {y ∈ Rd : π1(y) = π1(sx)}

denote the environment of x inside the hyperplane through x perpendicular to e1. Our first condition ensures
the existence of the asymptotic intensity of the point process

ΞD
s (x) = {Xi ∈ X(s) : [Xi,A(Xi)] ∩ IDs (x) 6= ∅}

consisting of those points Xi ∈ X(s) such that the segment [Xi,A(Xi)] crosses IDs (x). More precisely, we
define the following link-density condition, where νd−1 denotes the (d− 1)-dimensional Hausdorff measure in
Rd.

(D1) There exists a function λA : D → (0,∞) such that for every x ∈ D,

λA(x) = lim
s→∞

νd−1(IDs (x))−1E#ΞD
s (x).

In words, λA(x) denotes the intensity of network links crossing the surface IDs (x).

Second, we assume that the paths Γ(Xi), for all Xi ∈ X(s) satisfy a certain sub-ballisticity condition, to be
defined shortly, with high probability. Loosely speaking, when considering any trajectory Γ(Xi) away from the
boundary of sD, then the deviation from the horizontal ray starting from Xi should be of order O(h(s)). Here
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h : [1,∞) → [1,∞) is an unbounded increasing function with h(s)/s tending monotonically to zero as s
tends to infinity. More precisely, we write

Dε = {x ∈ D : Bε(x) ⊂ D}

for the points of distance at least ε to the boundary of D. Moreover, we denote by

ZD
r (x) = R×Bd−1

r (o) + x

the horizontal cylinder with radius r shifted to the point x ∈ Rd. We define

ED
s,ε = ED

s,ε,1 ∩ ED
s,ε,2

where

ED
s,ε,1 = {A(Xi) 6= Xi for all Xi ∈ X(s) ∩ (sD)εs}

is the event that, away from the boundary of sD, there are no dead ends, that is, no pointsXi ∈ X(s) satisfying
A(Xi) = Xi, and

ED
s,ε,2 = {(Γ̄(Xi) ∩ (sD)εs) ⊂ ZD

h(s)(Xi) for all Xi ∈ X(s)}

is the event that, away from the boundary of sD, all interpolated trajectories remain in the h(s)-cylinder cen-
tered at their starting points. Let us now define the following sub-ballisticity condition.

(D2) For all ε > 0, we have 1− P(ED
s,ε) ∈ O(s−2d).

Note that this sub-ballisticity condition can be seen as a finite analog of the straightness condition introduced
by Howard and Newman [9].

Now we come to the main results for directed navigation, where formally λ and µ are extended by zero outside
of D.

Theorem 2. Let x ∈ D be arbitrary. Assume that conditions (D1) and (D2) are satisfied with h(s) ∈ o(g(s))

and that E[(#X(s))2] ∈ O(s2d).

(i) Then,

lim
s→∞

s−1
E
∑

Xi∈ΞD
s (sx) ∆(Xi)

E#ΞD
s (sx)

= λA(x)−1

∫ 0

−∞
λ(x+ re1)µ(x+ re1)dr. (1)

(ii) If, additionally, X(s) is either a Poisson point process or µ is constant on D and X(s) = X ∩ sD for
some ergodic point process X , then

lim
s→∞

s−1

∑
Xi∈ΞD

s (sx) ∆(Xi)

E#ΞD
s (sx)

= λA(x)−1

∫ 0

−∞
λ(x+ re1)µ(x+ re1)dr (2)

in probability.

As an example, in Section 1.3, we illustrate how to prove the conditions in the case of the directed spanning
tree. Let us note that we only need to know existence of fluctuation functions g and h, but not their precise
form in order to compute the right-hand side (r.h.s.) of the above equations. Before providing a rigorous proof of
Theorem 2, let us give some intuition for the expressions appearing in (1) and (2). First, as mentioned above,
the left-hand side (l.h.s.) can be interpreted as the rescaled traffic flows that are averaged over all nodes in
a microscopic environment around sx. In particular, the local traffic flow density grows asymptotically linearly
in s where the leading order coefficient is given by the r.h.s. For this coefficient, the sub-ballisticity condition
guarantees, that in the limit, only nodes inside a narrowing horizontal tube contribute to the traffic flow. This is
reflected by the fact that in the r.h.s. the integration is performed over the interval from −∞ to 0, accumulating
the spatial intensities of sites and the associated traffic along the horizontal line.
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1.2. Radial networks. In contrast to directed networks, here we consider navigations that create trees with
the origin o as their center. Similar to the setup for directed networks, we will study a large network of nodes.
As before, let D be an open, bounded and convex subset of Rd, which now includes the origin. The simple
point process X(s), s ≥ 1, has intensity x 7→ λ(s)(x) = λ(x/s), where λ : D → [0,∞) is continuous
and bounded. Additionally, each node Xi ∈ X(s) generates traffic at rate µ(s)(Xi) = µ(Xi/s), where
µ : D → [0,∞) is some continuous and bounded function. Similar to navigations proposed in [4], we define
a radial navigation scheme as follows.

Definition 3. A measurable function A : Rd ×N → Rd is called radial navigation if the following properties
are satisfied.

(i) A(o, ϕ ∪ {o}) = o,
(ii) A(x, ϕ) ∈ ϕ ∪ {o} for all x ∈ ϕ,
(iii) #A(x, ϕ) < |x| for all x ∈ ϕ \ {o}.

In Figure 2, we illustrate a radial navigation based on nodes distributed according to a Poisson point process. We
note that in [4], item (iii) is not part of the definition. Nevertheless, navigations with this property are considered
as the special class of navigations with positive progress. Trajectories and traffic flow are defined as in the
directed case. Again we have to introduce two conditions under which we prove an asymptotic traffic flow
density result.

FIGURE 2. Radial navigation based on a Poisson point process on the disc. Each node con-
nects to its nearest neighbor which is also closer to the origin, respectively additionally is
contained in a cone starting at the node and opening towards the origin.

First, for the link-density condition (D1), we need to adapt the definitions of ID and ΞD to the radial network
setting. More precisely, we fix two unbounded increasing functions g, h : [1,∞) → [1,∞) such that g(s)/s
and h(s)/s tend monotonically to zero as s tends to infinity. Then, we put

IRs (x) = Bd
g(s)(sx) ∩ ∂Bd

s|x|(o),

noting that the hyperplane surface in case of directed networks here becomes a spherical cap. Moreover, we
put

ΞR
s (x) = {Xi ∈ X(s) : [Xi,A(Xi)] ∩ IRs (x) 6= ∅}

for those points Xi ∈ X(s) such that the segment [Xi,A(Xi)] crosses IRs (x).

(R1) There exists a function λA : D → [0,∞) such that for every x ∈ D \ {o},
λA(x) = lim

s→∞
νd−1(IRs (x))−1E#ΞR

s (x).
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Second, we change the sub-ballisticity condition (D2) in such a way that the cylinders point towards the origin.
More precisely, we write v̂ = v/|v| for v ∈ Rd \ {o} and define

ZR
r (v) = {y ∈ Rd : |y − 〈y, v̂〉v̂| ≤ r}

for the cylinder consisting of all points in Rd whose projection onto the orthogonal complement of the direction
v̂ ∈ ∂Bd

1(o) is of length at most r ≥ 0. Moreover,

ER
s = {γ(Xi) ⊂ ZR

h(s)(Xi) for all Xi ∈ X(s)}
is the event that the trajectory is contained in a narrow cylinder directed towards the origin.

(R2) 1− P(ER
s ) ∈ O(s−2d).

Observe that in the definition of (R2), in comparison to (D2), there is no restriction regarding the boundary of
D. This comes from the fact that, in the radial case, trajectories are always directed towards the center and
therefore cannot enter the ε-boundary from the ε-interior. On the contrary, in the directed case, if a trajectories
enters the right ε-boundary of D it is pushed further in the direction of that boundary and therefore cannot be
controlled.

Now we come to our second main result.

Theorem 4. Let x ∈ D \ {o} be arbitrary. Assume that conditions (R1) and (R2) are satisfied with
h(s) ∈ o(g(s)) and that E[(#X(s))2] ∈ O(s2d).

(i) Then,

lim
s→∞

s−1
E
∑

Xi∈ΞR
s (x) ∆(Xi)

E#ΞR
s (x)

= |x|−d+1λA(x)−1

∫ ∞
|x|

λ(rx̂)µ(rx̂)rd−1dr. (3)

(ii) If, additionally, X(s) is either a Poisson point process or µ is constant on D and X(s) = X ∩ sD for
some ergodic point process X , then

lim
s→∞

s−1

∑
Xi∈ΞR

s (x) ∆(Xi)

E#ΞR
s (x)

= |x|−d+1λA(x)−1

∫ ∞
|x|

λ(rx̂)µ(rx̂)rd−1dr (4)

in probability.

Note that the additional factors rd−1 and |x|−d+1, which are not present in the directed case, correspond to
the fact that in the radial network, the limiting integration domain is given by a narrowing conical frustum, with a
radius depending on |x| and not, as in the directed case, by a narrowing tube.

Theorem 4 is an extension of earlier results in the engineering literature [15, 22], which provide formulas for the
average traffic flow passing through a macroscopic shell around the origin. Our result gives the asymptotically
precise value of the traffic-flow density averaged in a microscopic environment around any given point in an
inhomogeneous network.

1.3. Verification of (D1) and (D2) for inhomogeneous processes. In order to illustrate the applicability of
our main results, we verify the abstract conditions for a standard example of a directed navigation, namely the
directed spanning tree considered in [1, 4]. This navigation is defined as follows. If ϕ ⊂ Rd is locally finite and
x ∈ ϕ, then A(x, ϕ) is defined to be the point in ϕ ∩ ((π1(x),∞) × Rd−1) that is of minimal Euclidean
distance to x. If the minimum is realized in several points, we choose the lexicographic smallest of them. If x is
the right-most point of ϕ, then we putA(x, ϕ) = x.

Starting from a homogeneous Poisson point process, it would not be difficult to deduce conditions (D1) and
(D2) from the results of [1, 4]. However, one of the strengths of our asymptotic traffic density formula is its
validity under rather general assumptions on the underlying network, including, in particular, situations with
inhomogeneous node distributions. Therefore, we take a further step and show that these conditions remain
valid if we replace the constant intensity by a general inhomogeneous intensity function that is subject only to a
Lipschitz constraint. From now on,A denotes the directed-spanning tree navigation.
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The link-density and the sub-ballisticity conditions are of fundamentally different nature. The link-density condi-
tion is often easier to verify since it only depends on the local behavior of the navigation.

Proposition 5. Let λ be as in Section 1.1 and locally Lipschitz. Further, letX(s) be a Poisson point process on
sD with intensity function λ(s). Then, for every 0 < ξ < 1 condition (D1) is satisfied for the directed spanning
tree on X(s) together with the fluctuation function g(s) = sξ .

Let us comment also on the sub-ballisticity condition (D2). In [1, Theorem 4.10] a closely related property is
proved for the directed spanning tree constructed on the homogeneous Poisson point process. Moreover, the
fluctuation function is given by s1/2+ε which indicates the diffusive character of the scaling. Using this result, we
can verify condition (D2) also for inhomogeneous Poisson point processes, provided that the intensity function
is Lipschitz.

As a simplification, we assume that the convex domain D is given by the unit cube in Rd.

Proposition 6. Let λ be as in Section 1.1 and assume additionally that D = [−1/2, 1/2]d and that λ is
Lipschitz. Furthermore, let X(s) be a Poisson point process on sD with intensity function λ(s). Then, there
exists 0 < ξ < 1 such that condition (D2) is satisfied for the directed spanning tree on X(s) together with the
fluctuation function h(s) = sξ .

In fact, in [4] sub-ballisticity is not only checked for the specific choice of the directed spanning tree, but more
generally for a class of regenerative navigations with certain additional properties. Similarly, Proposition 6 could
be extended in this direction. However, to keep the presentation accessible, we restrict our attention to the
important special case of the directed spanning tree on inhomogeneous Poisson point processes.

1.4. Conjectures for navigation schemes based on bounded range radii. In the setting of wireless net-
works, much of the work by practitioners on routing algorithms has been done under the assumption that the
ranges or radii of the transmitters are bounded, which has led to a number of routing schemes being proposed
and studied [11, 12, 24].

In a radial setting the assumption of bounded radii has important consequences as it implies that dead ends
can occur. More precisely, a positive proportion of nodes is isolated in the sense that there is no node within
the range that lies closer to the origin. Since this violates condition (iii) in Definition 3, this condition must be
replaced by condition (iii-a) where < is replaced by ≤. More importantly, simply adding a radius constraint in
the radial spanning tree results in a highly disconnected network, where only a small number of nodes can
communicate with the origin before reaching a dead end.

Nevertheless, by implementing a global navigation algorithm, it is possible to build a working transport network
with bounded ranges. More precisely, we may consider all paths from a given node to the origin where every
step is closer to the origin and additionally the constraint of bounded ranges is not violated. If such a path does
not exist, the node is considered to be a dead end. In the other case, we may choose a path with a minimum
number of hops. The collection of all chosen paths gives rise to a navigation with condition (iii-a).

Is it possible, under link-density and sub-ballisticity conditions, to give a generalized version of Theorem 4 for
navigations with condition (iii-a)? Is it reasonable to believe that the conditions are valid for standard examples
in the class of navigations with condition (iii-a)? Regarding the first question, it is plausible that under Pois-
son assumptions the formula for the asymptotic mean-value in Theorem 4 only needs to be extended by an
additional factor in the integrand taking into account the probability of getting stuck in a dead end.

Regarding the second question, the link-density and sub-ballisticity conditions should be satisfied for minimum-
hop navigations. Indeed, in two dimensions, it is expected that in the thermodynamic limit, trajectories converge
to the uniquely determined semi-infinite geodesic with a certain direction [10, 13]. Moreover, again in two di-
mensions, it is conjectured that many first-passage percolation models are sub-ballistic with exponent 2/3,
see [5, 16]. However, up to now, partial results related to the link-density and sub-ballisticity condition have
only been obtained under restrictive assumptions such as isotropy and planarity. This makes it rather difficult
to provide a non-artificial type of bounded-range navigation where the two central conditions can be checked
rigorously.
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2. PROOFS OF THEOREM 2 AND 4

Let us denote µmax = supx∈D µ(x) and λmax = supx∈D λ(x) where µmax < ∞ and λmax < ∞ by the
boundedness assumptions. We will also write Ac for the complement of the set A.

2.1. Proof of Theorem 2. Let us start with two lemmas giving estimates of the accumulated traffic flow under
the events ED

s,ε and (ED
s,ε)

c, respectively. For this we need the following definitions. We write

R+
s (x) = ZD

g(s)+h(s)(sx) and

Rleft,+
s (x) = {sy ∈ sD ∩R+

s (x) : π1(y) ≤ π1(x)}

for the set of points in sD which lie in the microscopic cylinder R+
s (x) to the left of sx. Further we write

R−s (x) = ZD
g(s)−h(s)(sx) and

Rleft,−
s,ε (x) = {sy ∈ sD ∩R−s (x) : ζ−s (ε) ≤ π1(y) ≤ π1(x)}

where ζ−s (ε) = inf{π1(z) : z ∈ Dε∩ (R−s (x)/s)} denotes the smallest first coordinate of points which are
in the ε-interior of D intersected with the microscopic cylinder R−s (x)/s, see also Figure 3.

sx
sxεsx∗

sz

∂(sD)

∂((sD)sε)

IDs (x)

h(s)

FIGURE 3. Construction of the cylinders Rleft,−
s,ε (x) (light gray) and Rleft,+

s (x) (union of light
and dark gray) where π1(z) = ζ−s (ε).

Lemma 7. Let ε > 0 and x ∈ D2ε be arbitrary. Further, let X(s) ∈ ED
s,ε then∑

Xj∈X(s)∩Rleft,−
s,ε (x)

µ(s)(Xj) ≤
∑

Xi∈X(s)∩ΞD
s (x)

∆(Xi) ≤
∑

Xj∈X(s)∩Rleft,+
s (x)

µ(s)(Xj).

Proof. For the upper bound, the cylinder condition given by ED
s,ε ensures that we can estimate∑

Xi∈X(s)∩ΞD
s (x)

∆(Xi) =
∑

Xj∈X(s)

µ(s)(Xj)
∑

Xi∈ΞD
s (x)

1γ(Xj)(Xi)

=
∑

Xj∈X(s)∩Rleft,+
s (x)

µ(s)(Xj)
∑

Xi∈ΞD
s (x)

1γ(Xj)(Xi) ≤
∑

Xj∈X(s)∩Rleft,+
s (x)

µ(s)(Xj).

For the lower bound, since ED
s,ε does not give control over nodes in sD \ (sD)sε, those nodes have to be

excluded. �

Lemma 8. E[1(ED
s,ε)

c

∑
Xi∈ΞD

s (x) ∆(Xi)] ∈ O(1).

Proof. Note that ∑
Xi∈ΞD

s (x)

∆(Xi) =
∑

Xj∈X(s)

µ(s)(Xj)
∑

Xi∈ΞD
s (x)

1γ(Xj)(Xi) ≤ µmax#X
(s)
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and hence using Cauchy-Schwarz,

E1(ED
s,ε)

c

∑
Xi∈ΞD

s (x)

∆(Xi) ≤ µmax

√
1− P(ED

s )
√

E[(#X(s))2] ∈ O(1). �

Now, we are in the position to prove Theorem 2. For convenience let us abbreviate is = sνd−1(IDs (x)),

Ns = i−1
s

∑
Xi∈X(s)∩ΞD

s (x) ∆(Xi) and S =
∫ 0
−∞ λ(x+ re1)µ(x+ re1)dr.

Proof of Theorem 2. Part (i): By condition (D1) it suffices to show lims→∞ ENs = S. Using Lemma 7, Lemma
8, Campbell’s theorem for random sums and coordinate transformation we can estimate for the upper bound

ENs = E1ED
s,ε
Ns + E1(ED

s,ε)
cNs

≤ i−1
s E

∑
Xj∈X(s)∩Rleft,+

s (x)

µ(s)(Xj) + o(1)

= i−1
s

∫
Rleft,+
s (x)

µ(s)(y)λ(s)(y)dy + o(1)

= sdi−1
s

∫
R+
s (x)/s

1π1(y)≤π1(x)µ(y)λ(y)dy + o(1).

Note that y ∈ R+
s (x)/s if and only if ȳ = (y2, . . . , yd) ∈ Bd−1

(h(s)+g(s))/s(x2, . . . , xd). Hence, by Fubini’s
Theorem, we have

ENs ≤ sd−1νd−1(Bd−1
g(s) (o))−1

∫ 0

−∞

∫
Bd−1

(h(s)+g(s))/s
(o)
µ(x+ re1 + ȳ)λ(x+ re1 + ȳ)dȳdr + o(1).

Since µ and λ are continuous, the dominated convergence theorem implies that the last line converges to S,
as required.

As for the lower bound, assume s′ to be large enough such that g(s) − h(s) > 0 for all s ≥ s′. Then, using
again Lemma 7 we can estimate

E1ED
s,ε

∑
Xi∈ΞD

s (x)

∆(Xi) ≥ E
∑

Xj∈X(s)∩Rleft,−
s,ε (x)

µ(s)(Xj)− E1(ED
s,ε)

c

∑
Xi∈ΞD

s (x)

∆(Xi)

where the second summand is in O(1) by Lemma 8 and hence can be neglected in the scaling is. Again using
Campbell’s theorem and coordinate transformation, for the first summand we can write

E
∑

Xj∈X(s)∩Rleft,−
s,ε (x)

µ(s)(Xj) =

∫
Rleft,−
s,ε (x)

µ(s)(y)λ(s)(y)dy

= sd
∫
R−s (x)/s

1π1(y)≤π1(x)µ(y)λ(y)dy − sd
∫
R−s (x)/s

1π1(y)<ζ−s (ε)µ(y)λ(y)dy,

where, as above y ∈ R−s (x)/s if and only if ȳ = (y2, . . . , yd) ∈ Bd−1
(g(s)−h(s))/s(x2, . . . , xd). Hence, by

Fubini’s Theorem, the rescaled first summand converges to S as required. As for the second summand,

sd−1

νd−1(Bd−1
g(s) (o))

∫
R−s (x)/s

1π1(y)<ζ−s (ε)µ(y)λ(y)dy ≤ µmaxλmax

νd−1(Bd−1
g(s)−h(s)(o))

νd−1(Bd−1
g(s) (o))

(ζ−s (ε)− ζ−s ), (5)

where

ζ−s = inf{π1(z) : z ∈ ∂D ∩ (R−s (x)/s)}
denotes the smallest first coordinate of points on the boundary of D intersected with the cylinder R−s (x)/s. In
order to conclude that the r.h.s. of (5) tends to zero, first note that

lim
s→∞

νd−1(Bd−1
g(s)−h(s)(o))/νd−1(Bd−1

g(s) (o)) = 1.

8



Second, let x− denote the unique intersection of the negative horizontal ray x − (0,∞)e1 with ∂D, the
boundary of D, where uniqueness is a consequence of the convexity of D. Further, let x−(ε) denote the
unique intersection of the ray x − (0,∞)e1 with ∂Dε. Now, for s tending to infinity, ζ−s tends to π1(x−),
ζ−s (ε) tends to π1(x−(ε)) and it suffices to show that limε→0 x

−(ε) = x−. But this is the case since
π1(x−(ε1)) ≤ π1(x−(ε2)) for ε1 ≤ ε2 and if limε→0 x

−(ε) = x′ 6= x− then, since x′ ∈ ∂D, the
uniqueness of the intersection would be violated, hence x′ = x−.

Part (ii): Again by condition (D1) it suffices to show lims→∞Ns = S in probability. Using Markov’s inequality
we can estimate P[|Ns − S| > ε] ≤ ε−1E[|Ns − S|], and it suffices to prove that the r.h.s. tends to zero as
s tends to infinity. We start by estimating E[|Ns − S|] ≤ E[|Ns − ENs|] + |ENs − S|, where the second
summand tends to zero by part (i). Further we can write

E[|Ns − ENs|] = E[1ED
s,ε
|Ns − ENs|] + E[1(ED

s,ε)
c |Ns − ENs|], (6)

where the second summand is in o(1) by Lemma 8. Using Lemma 7, and distinguishing between the cases
Ns ≥ ENs and Ns ≤ ENs, the first summand in (6) can be bounded above by

E[|N+
s − ENs|] + E[|N−s − ENs|], (7)

where we write for convenience

N+
s = i−1

s

∑
Xj∈X(s)∩Rleft,+

s (x)

µ(s)(Xj) and N−s = i−1
s

∑
Xj∈X(s)∩Rleft,−

s,ε (x)

µ(s)(Xj),

and note that the dependence on ε in N−s is omitted in the notation. Then, the first summand in (7) can be
bounded by E[|N+

s −EN+
s |] + |EN+

s −ENs|, and similarly the second summand in (7) can be bounded by
E[|N−s −EN−s |]+|EN−s −ENs|. In particular, the second summands in those expressions tend to zero when
first s is sent to infinity and then ε is sent to zero as proved in part (i). In order to prove that the first summands
in those expressions tend to zero as well, let us consider the two cases given in the theorem separately.

Part (ii) case 1: Let us start with the case of a possibly inhomogeneous Poisson point process X(s). Let V
denote the variance with respect to the Poisson point process X(s). Then, by Jensen’s inequality and Camp-
bell’s theorem for the variance we have

E[|N+
s − EN+

s |] ≤
(
V[N+

s ]
)1/2

= i−1
s

(
V[

∑
Xj∈X(s)∩Rleft,+

s (x)

µ(s)(Xj)]
)1/2

= i−1
s

(
sd
∫
R+
s (x)/s

1π1(y)≤π1(x)µ(y)2λ(y)dy
)1/2

,

where the expression under the square root is proportional to is and hence the last line tends to zero as s tends
to infinity. The same argument also holds for N+ replaced by N−.

Part (ii) case 2: For the case of ergodic point processes we use the ergodic theorem, see for example [6,
Theorem 6.2]. Let us abbreviate r+

s (x) = νd(R
left,+
s (x)). Then, by translation invariance,

E[|N+
s − EN+

s |] = µr+
s (x)i−1

s E[|#(X ∩ Rleft,+
s (x))

r+
s (x)

− λ|],

where r+
s (x)/is tends to

∫ 0
−∞ 1D(x+ re1)dr as s tends to infinity. In order to apply the ergodic theorem, let

us first note that since X is translation invariant, Rleft,+
s (x) can be replaced by

Rleft,+
s,x = {sy ∈ s(D − x) ∩R+

s (o) : π1(y) ≤ 0},

which is a convex and compact set that also has the property of eventually containing arbitrarily large balls.
However, due to boundary effects, it is not clear that Rleft,+

s,x contains an increasing sequence of sets for some

s tending to infinity. In order to appropriately modify Rleft,+
s,x , let us define, similarly to ζ−s (ε), the quantity

ζ−s,x = sup{π1(z) : z ∈ ∂(D − x) ∩ (R+
s (o)/s) and π1(z) ≤ 0}

9



to be the largest first coordinate of points in the part of the boundary of s(D − x) intersected with the cylinder
R+
s (o) which lies to the left of the origin. Then,

R̂left,+
s,x = {sy ∈ s(D − x) ∩R+

s (o) : ζ−s,x ≤ π1(y) ≤ 0}

is an increasing sequence of sets due to the convexity of D. In particular R̂left,+
s,x is a sequence of convex

averaging windows as defined in [6]. Denoting r̂+
s (x) = νd(R̂

left,+
s,x ), we can estimate

E|#(X ∩ Rleft,+
s,x )

r+
s (x)

− λ| ≤ 2λ
r+
s (x)− r̂+

s (x)

r̂+
s (x)

+ E|#(X ∩ R̂left,+
s,x )

r̂+
s (x)

− λ|,

where the second summand tends to zero by the ergodic theorem and the first summand tends to zero by
convexity of D, using arguments similar to the ones used in the final paragraph of the proof of part (i). An
analogous proof holds for the case where N+ is replaced by N−. �

2.2. Proof of Theorem 4. Recall v̂ = v/|v|. For convenience we use the similar abbreviations as in
the directed case and write is(x) = sνd−1(IRs (x)), Ns = (is(x))−1

∑
Xi∈X(s)∩ΞR

s (x) ∆(Xi) and

S = |x|−d+1
∫∞
|x| λ(rx̂)µ(rx̂)rd−1dr. Let us define the following analogs of the cylinders Rleft,+

s (x) and

Rleft,−
s (x) used in the directed case. First,

C+
s (x) = {sy ∈ sD \Bd

|sx|(o) : ||x|ŷ − x| ≤ (g(s) + 2h(s))/s}
is the set of points which lie in an extended cone around sx facing towards the boundary of D. Second, for s
such that g(s) ≥ 2h(s)

C−s (x) = {sy ∈ sD \Bd
|sx|(o) : ||x|ŷ − x| ≤ (g(s)− 2h(s))/s}

is the set of points which lie in an diminished cone around sx facing towards the boundary of D, see also
Figure 4.

sx

o

IRs (x)

g(s) 2h(s)

FIGURE 4. Construction of the cones C−s (x) (dark gray) and C+
s (x) (union of light and dark gray).

The next two lemmas give estimates of the accumulated traffic flow under ER
s and (ER

s )c.

Lemma 9. Let x ∈ D and X(s) ∈ ER
s , then∑

Xj∈X(s)∩C−s (x)

µ(s)(Xj) ≤
∑

Xi∈X(s)∩ΞR
s (x)

∆(Xi) ≤
∑

Xj∈X(s)∩C+
s (x)

µ(s)(Xj).

Proof. For the upper bound, the cylinder condition given by ER
s ensures that we can estimate∑

Xi∈X(s)∩ΞR
s (x)

∆(Xi) =
∑

Xj∈X(s)∩C+
s (x)

µ(s)(Xj)
∑

Xi∈ΞR
s (x)

1γ(Xj)(Xi) ≤
∑

Xj∈X(s)∩C+
s (x)

µ(s)(Xj)
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where for the last inequality we note that in any trajectory there is either one or no node that crosses ΞR
s (x) in

the consecutive step. In order to justify the first equal sign, let us sketch the elementary proof. First note that it
suffices to show that if ZR

h(s)(y)∩ IRs (x) 6= ∅, then y ∈ C+
s (x). To show this, let z ∈ ZR

h(s)(y)∩ IRs (x) and

note that, since 〈ẑ, ŷ〉 is close to one, by the polarization identity |ẑ − ŷ| ≤ 2|ẑ − 〈ẑ, ŷ〉ŷ|. Therefore,

|ŷ − x̂| ≤ |ẑ − ŷ|+ |ẑ − x̂| ≤ 2|ẑ − 〈ẑ, ŷ〉ŷ|+ |ẑ − x̂|.
Since z ∈ ZR

h(s)(y) ∩ IRs (x) we have |z| = s|x|, s|x||ẑ − x̂| ≤ g(s) and s|x||ẑ − 〈ẑ, ŷ〉ŷ| ≤ h(s) and

thus s|x||ŷ − x̂| ≤ g(s) + 2h(s). For the lower bound, similar arguments apply. �

The following lemma is proved precisely as Lemma 8.

Lemma 10. It holds that E[1(ER
s,ε)

c

∑
Xi∈ΞR

s (x) ∆(Xi)] ∈ O(1).

Proof of Theorem 4. Part (i): By condition (R1) it suffices to show lims→∞ ENs = S. Using Lemma 9, Lemma
10 and Campbell’s theorem we can estimate for the upper bound

ENs = E1ER
s
Ns + E1(ER

s )cNs

≤ is(x)−1E
∑

Xj∈X(s)∩C+
s (x)

µ(s)(Xj) + o(1) = is(x)−1

∫
C+
s (x)

µ(s)(y)λ(s)(y)dy + o(1).

For the integral we can further use coordinate transformations and the co-area formula [7] to rewrite∫
C+
s (x)

µ(s)(y)λ(s)(y)dy =

∫
1|y|>|sx|1|sx||ŷ−x̂|≤g(s)+2h(s)µ

(s)(y)λ(s)(y)dy

= sd
∫
1|y|>|x|1|ŷ−x̂|≤(g(s)+2h(s))/|sx|µ(y)λ(y)dy

= sd
∫ ∞
|x|

∫
∂Bdr (o)

1|ŷ−x̂|≤(g(s)+2h(s))/|sx|µ(y)λ(y)νd−1(dy)dr

= sd
∫ ∞
|x|

rd−1

∫
∂Bd1 (o)

1|ŷ−x̂|≤(g(s)+2h(s))/|sx|µ(ry)λ(ry)νd−1(dy)dr.

Next, we identify is(x) as the correct scaling for the inner integral above. More precisely,

is(x) = sνd−1(IRs (x)) = sd|x|d−1

∫
∂Bd1 (o)

1|ŷ−x̂|≤g(s)/|sx|νd−1(dy).

Since h(s) ∈ o(g(s)) and µ, λ are assumed to be continuous,∫
∂Bd1 (o) 1|ŷ−x̂|≤(g(s)+2h(s))/|sx|µ(ry)λ(ry)νd−1(dy)∫

∂Bd1 (o) 1|ŷ−x̂|≤g(s)/|sx|νd−1(dy)

is uniformly bounded in s and r and converges to µ(rx̂)λ(rx̂). Hence we can conclude by dominated conver-
gence.

As for the lower bound, using the same arguments as above, we can estimate

ENs ≥ sdis(x)−1

∫ ∞
|x|

rd−1

∫
∂Bd1 (o)

1|ŷ−x̂|≤(g(s)−2h(s))/|sx|µ(ry)λ(ry)νd−1(dy)dr − o(1).

Since h(s) ∈ o(g(s)), the desired convergence result follows.

Part (ii): Again by condition (R1) it suffices to show lims→∞Ns = S in probability and we can apply Markov’s
inequality as in the directed navigation case. Following the exact same arguments as in Theorem 2, replacing
the following definition N±s = is(x)−1

∑
Xj∈X(s)∩C±s (x) µ

(s)(Xj), it suffices to show that E[|N+
s −EN+

s |]
and E[|N−s −EN−s |] tend to zero as s tends to infinity for Poissonian and ergodic point processes. The case of
a possibly inhomogeneous Poisson point processX(s) can be proved using Jensen’s inequality and Campbell’s
theorem for the variance as in the directed case.
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For the case of ergodic point processes we have to construct a sequence of convex averaging windows as
required for the application of the ergodic theorem, see [6, Theorem 6.2]. Let us write r+

s (x) = νd(C
+
s (x)).

Then, by translation invariance,

E[|N+
s − EN+

s |] = µ
r+
s (x)

is(x)
E[|#(X ∩ C+

s (x))

r+
s (x)

− λ|],

where r+
s (x)/is(x) tends to |x|−d+1

∫∞
|x| 1D(rx̂)rd−1dr as s tends to infinity as proved in part (i). Note

that C+
s (x) has to be modified in order to become a sequence of convex averaging windows. Let us define

ζs,x = inf{〈z, x̂〉 : z ∈ ∂D ∩ (C+
s (x)/s)} to be the smallest component in the direction x̂ of points in the

boundary of sD intersected with the cone C+
s (x). Then,

Ĉ+
s,x = {y ∈ D : sy ∈ C+

s (x) and |x| ≤ 〈y, x̂〉 ≤ ζs,x} − sx
indeed is a sequence of convex averaging windows, see also Figure 5.

sx

sz

∂(sD)

Ĉ+
s (x) + sx

FIGURE 5. Construction of the cone Ĉ+
s,x (gray area), where 〈z, x̂〉 = ζxs .

Denoting r̂+
s (x) = νd(Ĉ

+
s (x)) we can estimate

E[|#(X ∩ C+
s (x))

r+
s (x)

− λ|] ≤ 2λ
r+
s (x)− r̂+

s (x)

r̂+
s (x)

+ E[|#(X ∩ Ĉ+
s (x))

r̂+
s (x)

− λ|]

where the second summand tends to zero by the ergodic theorem. In the first summand there are two error
terms contributing. The first term, measuring the error made close to the boundary of D tends to zero by
convexity of D. This can be seen using arguments similar to the ones used in the final paragraph of the proof
of Theorem 2 part (i). The other term, measuring the error made close to the origin, also tends to zero by the
convexity of Bd

|sx|(sx).

Similar arguments apply for the case where N+ is replaced by N−. �

3. PROOFS OF PROPOSITION 5 AND PROPOSITION 6

In the following, we write A for the directed-spanning tree navigation and Br(x) (instead of the more verbose
Bd
r (x)) for the d-dimensional ball with radius r > 0 centered at x ∈ Rd. To begin with, we prove Proposition 5.

In a stationary setting, according to well-known results on intersection processes, the function λA exists and is
constant on D. In fact, one can derive an explicit formula for λA that depends only on the length intensity and
the directional distribution of the segment process of links, see [23, Theorem 4.5.3]. Now, the proof is based
on the observation that directed spanning trees are strongly stabilizing in the sense of [20, 21], so that locally
around a given point sx ∈ sD the process X(s) can be replaced by a homogeneous Poisson point process
with intensity λ(x).

In order to make this precise, we first recall the standard coupling of Poisson point processes with bounded
intensities. Let X be a Poisson point process in Rd × [0, λmax] whose intensity measure is given by νd+1(·),

12



where λmax = maxx∈D λ(x). If λ∗ : Rd → [0, λmax] is any measurable function, then we define X [λ∗] =

{Xi : (Xi, Ui) ∈ X and Ui ≤ λ∗(Xi)} noting that X [λ∗] is a Poisson point process in Rd with intensity

function λ∗. For instance, we can now express X(s) as X [1sD(·)λ(s)]. If λ∗ is a function that is constant and
equal to some λ0, we also write X [λ0] instead of X [λ∗].

To begin with, we state three auxiliary results (Lemmas 11–13) and explain how Proposition 5 can be derived
using these results. Afterwards, we prove Lemmas 11–13. First, we show that only points ofX(s) which lie close
to Is(x) = IDs (x) are relevant. More precisely, fixing some ξ′ ∈ (max{ξ, 1/2}, 1) and putting I+

s (x) =
Is(x)⊕Bd

s1−ξ′
(o), we have the following result.

Lemma 11. Let x ∈ D be arbitrary. Then,

(i)
∫
sD\I+s (x) P([y,A(y,X(s) ∪ {y})] ∩ Is(x) 6= ∅)λ(s)(y)dy ∈ o(νd−1(Is(x))),

(ii)
∫
Rd\I+s (x) P([y,A(y,X [λ(x)] ∪ {y})] ∩ Is(x) 6= ∅)dy ∈ o(νd−1(Is(x))).

Second, we provide an elementary result showing that if we replace integrals over I+
s (x) with respect to the

intensity λ(s) by integrals with respect to the constant intensity λ(x), then the error is of order o(νd−1(Is(x))).

Lemma 12. Let x ∈ D be arbitrary and let f : I+
s (x)→ [0, 1] be a measurable function. Then,∣∣∣ ∫

I+s (x)
f(y)λ(s)(y)dy − λ(x)

∫
I+s (x)

f(y)dy
∣∣∣ ∈ o(νd−1(Is(x))).

Third, we show that replacing the Poisson point process X(s) in the probability P([y,A(y,X(s) ∪ {y})] ∩
Is(x) 6= ∅) by the homogeneous Poisson point process X [λ(x)] leads to a negligible error.

Lemma 13. Let x ∈ D be arbitrary and assume that λ is locally Lipschitz. Then,∫
I+s (x)

∣∣P([y,A(y,X(s)∪{y})]∩Is(x) 6= ∅)−P([y,A(y,X [λ(x)]∪{y})]∩Is(x) 6= ∅)
∣∣dy∈ o(νd−1(Is(x))

)
.

Using Lemmas 11–13, we can now prove Proposition 5.

Proof of Proposition 5. Let x ∈ D be arbitrary. We claim that λA(x) equals the intensity of the intersec-
tion process of the stationary segment process {(Xi, [Xi,A(Xi, X

[λ(x)])])}Xi∈X[λ(x)] with the hyperplane

{y ∈ Rd : π1(y) = π1(x)}.
First, using the Slivnyak-Mecke theorem [23, Theorem 3.2.3], this intensity is expressed as

λ(x)
∫
Rd P([y,A(y,X [λ(x)] ∪ {y})] ∩ Is(x) 6= ∅)dy

νd−1(Is(x))
,

which is independent of s by stationarity. Moreover, again by the Slivnyak-Mecke theorem,

E#{Xi ∈ X(s) : [Xi,A(Xi, X
(s))] ∩ Is(x) 6= ∅}=

∫
sD
P([y,A(y,X(s) ∪ {y})] ∩ Is(x) 6= ∅)λ(s)(y)dy.

Therefore, by Lemma 11, it suffices to show that the difference∫
I+s (x)

P([y,A(y,X(s)∪{y})]∩Is(x) 6= ∅)λ(s)(y)dy−
∫
I+s (x)

P([y,A(y,X [λ(x)]∪{y})]∩Is(x) 6= ∅)λ(x)dy.

is of order o(νd−1(Is(x))). Now, by Lemma 12 this assertion is reduced to the statement that∫
I+s (x)

∣∣∣P([y,A(y,X(s) ∪ {y})] ∩ Is(x) 6= ∅)− P([y,A(y,X [λ(x)] ∪ {y})] ∩ Is(x) 6= ∅)
∣∣∣dy.

is of order o(νd−1(Is(x))). Hence, an application of Lemma 13 completes the proof. �

Finally, we provide the proofs for Lemmas 11–13.
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Proof of Lemma 11. We only prove the first assertion, since the second may be deduced using similar argu-
ments. Let ε > 0 be such thatB3ε(x) ⊂ D. First, if y ∈ sD \B2εs(sx) is such that [y,A(y,X(s)∪{y})]∩
Is(x) 6= ∅, then X(s) does not contain any points in the set

B|y−sx|−εs(y) ∩B2εs(sx) ∩ ([π1(y),∞)× Rd−1).

Now, an elementary argument shows that this set contains a half-ball of radius 2−1εs. Hence,

P([y,A(y,X(s) ∪ {y})] ∩ Is(x) 6= ∅) ≤ exp
(
− λminκd2

−1(2−1εs)d
)
, (8)

where λmin = minx∈D λ(x) and κd denotes the volume of the unit ball in Rd. Hence, it suffices to show that∫
B2εs(sx)\I+s (x)

P([y,A(y,X(s) ∪ {y})] ∩ Is(x) 6= ∅)λ(s)(y)dy ∈ o(νd−1(Is(x))).

In order to prove this assertion, we observe that∫
B2εs(sx)\I+s

P([y,A(y,X(s) ∪ {y})] ∩ Is(x) 6= ∅)λ(s)(y)dy

≤
∫
B2εs(sx)

P(|y −A(y,X(s) ∪ {y})| ≥ s1−ξ′)λ(s)(y)dy.

Proceeding as in (8), the probability in the integrand is at most exp
(
− λminκd2

−1sd−dξ
′)
, so that the proof is

concluded by noting that∫
B2εs(sx)

P(|y −A(y,X(s) ∪ {y})| ≥ s1−ξ′)λ(s)(y)dy ∈ o(νd−1(Is(x))). �

Proof of Lemma 12. First, letting L denote the Lipschitz constant of λ in I+
s (x), we see that replacing λ(s)(y)

by λ(x) leads to the error term∫
I+s (x)

|λ(s)(y)− λ(x)|dy ≤ L(sξ + s1−ξ′)s−1νd(I
+
s (x)).

Since νd(I+
s (x)) is of order νd−1(Is(x))s1−ξ′ , we conclude that after division by νd−1(Is(x)) the last line

tends to zero as s tends to infinity. �

Proof of Lemma 13. First, we put I++
s (x) = I+

s (x) ⊕ Bs1−ξ′ (o) and α = (ξ′ − ξ)/(2d). Hence, for every
y ∈ I+

s (x),

|P([y,A(y,X(s) ∪ {y})] ∩ Is(x) 6= ∅})− P([y,A(y,X [λ(x)] ∪ {y})] ∩ Is(x) 6= ∅})|

≤ P(A(y,X(s) ∪ {y}) 6= A(y,X [λ(x)] ∪ {y}))

≤ P(X [λ(x)] ∩Bsα(y) 6= X(s) ∩Bsα(y)) + P(|y −A(y,X [λ(x)] ∪ {y})| ≥ sα).

Now, as in the proof of Lemma 11, we see that∫
I+s (x)

P(|y −A(y,X [λ(x)] ∪ {y})| ≥ sα)dy = P(|A(o,X [λ(x)] ∪ {o})| ≥ sα)νd(I
+
s (x))

is of order O(s−n) for any given n ≥ 1. Moreover, the symmetric difference (X(s)∆X [λ(x)]) ∩ Bsα(y) is a
Poisson point process with intensity function y 7→ |λ(s)(y)− λ(x)|. Now, the Lipschitz continuity implies that
supy∈I++

s (x) |λ
(s)(y)− λ(x)| ≤ L(sξ + 2s1−ξ′)s−1. Hence,

P(X(s) ∩Bsα(y) 6= X [λ(x)] ∩Bsα(y)) ≤ E#
(
(X(s)∆X [λ(x)]) ∩Bsα(y)

)
≤ L(sξ + 2s1−ξ′)s−1νd(Bsα(y)).

We conclude the proof by noting that by the definition of α, the right-hand side is of order

o(sξ
′−1) = o

(
νd(I

+
s (x))−1νd−1(Is(x))

)
. �
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The main idea for proving Proposition 6, is to first show, using the Lipschitz property, that locally X(s) looks
like a homogeneous Poisson point process and then to apply known results from the homogeneous setting
considered in [1]. Before we start with the proof, we present an auxiliary result showing that with high probability
long edges in the directed spanning tree on X(s) can only appear at far right points of sD. More precisely, as
observed in [1], the directed spanning tree clearly enjoys a strong stabilization property. In the current setting
this means the following. If ϕ ⊂ Rd is any locally finite set such that Xi,A(Xi, X

(s)) ∈ ϕ and there does not
exist x ∈ ϕ with π1(x) > π1(Xi) and |Xi − x| < |A(Xi, X

(s)) −Xi|, then A(Xi, X
(s)) = A(Xi, ϕ).

Moreover, the following result shows that the maximal radius of stabilization

R−,s = max
Xi∈X(s):π1(Xi)≤s/2−s1/(2d)

|Xi −A(Xi, X
(s))|

is small with high probability. More precisely, we let E
(1)
s denote the event {R−,s ≥ s1/(4d)}.

Lemma 14. As s→∞, P(E
(1)
s ) ∈ O(s−2d).

Proof. For any x ∈ [−s/2, s/2]d with π1(x) ≤ s/2− s1/(2d) we have that

P(|x−A(x,X(s) ∪ {x})| > s1/(4d)) = P(X(s) ∩Bs1/(4d)(x) ∩ ([π1(x),∞)× Rd−1) = ∅)

≤ exp(−κd2−ds1/4 min
x∈D

λ(x)).

Hence, the claim follows from the Slivnyak-Mecke formula. �

In the following, we write

D−,s = [− s
2 ,

s
2 − 2s1/(2d)]× [− s

2 + 2s1/(2d), s2 − 2s1/(2d)]d−1

for the domain sD shrunk except for the left boundary. Furthermore, to simplify notation, we replace s1/(2d) by
s′ and assume that s(s′)−1 is an odd integer. This is not a restriction, since otherwise s′ can be adjusted in
such a way that it is of the same order as s1/(2d). Next, we quantify the local homogeneity of the Poisson point
processX(s) by comparing it to a homogeneous version using coupling. More precisely, for s ≥ 1 and z ∈ Zd
we let Hs,z denote the event that the point processes X(s) and X [λs,z ] agree on Q3s′(s

′z) ∩ sD, where

λs,z = max
{
λ(s)(x) : x ∈ Q3s′(s

′z)
}

denotes the maximum of the intensity λ(s)(·) in the cube Q3s′(s
′z) of side-length 3s′ centered at s′z. In other

words, under the event Hs,z the Poisson point process X(s) cannot be distinguished from a homogeneous
Poisson point process with intensity λs,z in a 3s′-environment around s′z. Finally, we say that the site z (or the
associated cube Qs′(s

′z)) is s-good, if the event Hs,z occurs. Sites that are not s-good are called s-bad.

We use that locally, trajectories do not deviate substantially from the horizontal line. More precisely, let H ′s,z
denote the event that for every path Γ in the directed spanning tree on X [λs,z ] ∩ Q3s′(s

′z) whose starting
point X0 is contained in Qs′(s

′z) and whose endpoint Xend satisfies π1(Xend) ≤ π1(s′z) + s′ we have

Γ ⊂ ZD
(s′)5/8

(X0). Then, we say that the event E
(2)
s occurs if there exists z ∈ Zd such that s′z ∈ sD−,s and

H ′s,z fails to occur. In particular, [1, Theorem 4.10] gives the following auxiliary result.

Lemma 15. As s→∞, P(E
(2)
s ) ∈ O(s−2d).

Now, for any path Γ in the directed spanning tree on X(s) we let

#sΓ = #{z ∈ Zd : Xi ∈ Qs′(s′z) for some Xi ∈ Γ}
denote the number of s′-cubes intersected by Γ. Similarly, we let #s,gΓ and #s,bΓ denote the number of good,
respectively bad cubes that are intersected by Γ. Next, we provide an upper bound for the vertical displacement
of a path Γ in terms of #s,gΓ and #s,bΓ. To make this precise, if Γ is a path in the directed spanning tree
on X(s) starting from X0 ∈ X(s), then we let V (Γ) = maxXi∈Γ d1,∞(X0, Xi) denote the maximal vertical
displacement of Γ, where we write d1,∞(X0, Xi) = d∞(X0 + Re1, Xi), for the d∞-distance of Xi to the
horizontal line X0 + Re1.

15



Lemma 16. Let Γ ⊂ D−,s be an arbitrary path in the directed spanning tree on X(s). Then, almost surely

under the complement of the event E
(1)
s ∪ E(2)

s ,

V (Γ) ≤ 2s′ + 3(s′)5/8#s,gΓ + 3s′#s,bΓ.

Proof. By shortening the path if necessary, we may assume that the maximal vertical displacement V (Γ)
is achieved at the endpoint Xend of Γ. The proof proceeds via induction on the number of vertices in Γ.
The assertion is trivial if V (Γ) ≤ 2s′, so that we may assume that V (Γ) > 2s′. Fix the site z0 ∈ Zd
such that Qs′(s

′z0) contains the starting point X0 of Γ. Then, we let X2 ∈ Γ denote the first vertex of
Γ such that X2 ∈ Qs′(s′z2) for some z2 ∈ Zd with d1,∞(z0, z2) > 1. We also let X1 ∈ Γ be such that
X2 = A(X1, X

(s)). That is,X1 is the predecessor ofX2 in Γ. Similarly, we letX3 ∈ Γ denote the last vertex
of Γ such thatX3 ∈ Qs′(s′z3) for some z3 ∈ Zd with d1,∞(z0, z3) ≤ 1. Finally, we putX4 = A(X3, X

(s)).
We refer to Figure 6 for an illustration of the construction.

X0

X1

X2

X3

X4

XendΓ

s′

FIGURE 6. Illustration of the induction step in the proof of Lemma 16.

In particular, no s′-subcube is hit by both Γ[X0, X1] and Γ[X4, Xend], where Γ[X0, X1] and Γ[X4, Xend]
denote the subpaths of Γ from X0 to X1 and from X4 to Xend, respectively.

Now, by the definitions of the point X3 and the event E
(1)
s ,

V (Γ) ≤ V (Γ[X4, Xend]) + 2s′ + |X3 −X4| ≤ V (Γ[X4, Xend]) + 5
2s
′.

Hence, using the induction hypothesis, we arrive at

V (Γ) ≤ 2s′ + 3(s′)5/8#s,gΓ[X4, Xend] + 3s′#s,bΓ[X4, Xend] + 5
2s
′.

In particular, the assertion follows if Γ[X0, X1] hits at least one s-bad cube. Therefore, it remains to consider

the case, where Γ[X0, X1] intersects only s-good cubes. Since the complement of the event E
(1)
s ∪ E(2)

s

occurs, it follows that

5
6s
′ ≤ d1,∞(X0, X1) ≤ V (Γ[X0, X1]) ≤ (s′)5/8#s,gΓ[X0, X1].

Therefore, we complete the induction step by noting that

V (Γ) ≤ 2s′ + 3(s′)5/8#s,gΓ[X4, Xend] + 3s′#s,bΓ[X4, Xend] + 5
2s
′

≤ 2s′ + 3(s′)5/8(#s,gΓ[X0, X1] + #s,gΓ[X4, Xend]) + 3s′#s,bΓ[X4, Xend]

≤ 2s′ + 3(s′)5/8#s,gΓ + 3s′#s,bΓ, �

Hence, in order to prove Proposition 6, we need to derive appropriate upper bounds on #s,gΓ(Xi) and
#s,bΓ(Xi) for any Xi ∈ X(s). First, we show that conditioned on the event that a path Γ is not too long,
the number of bad cubes #s,bΓ is of order o(s/s′) with high probability.

Lemma 17. Almost surely, for every path Γ ⊂ D−,s in the directed spanning tree on X(s),

1{#sΓ ≤ 3d+3s(s′)−1}P(#s,bΓ ≥ s1−5/(8d)|X(s)) ≤ exp(−
√
s).
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A proof of Lemma 17 will be given below. Second, we use a percolation argument to show that #sΓ(Xi) is of
order O(s/s′) with high probability. More precisely, we let Γ−,s(Xi) denote the longest subpath of Γ(Xi) that

starts at Xi and is contained entirely within D−,s. Then, we let E
(3)
s denote the event that there exists a point

Xi ∈ X(s) such that #sΓ−,s(Xi) ≥ 3d+3s(s′)−1.

Lemma 18. As s→∞, P(E
(3)
s ) ∈ O(s−2d).

Before proving Lemmas 17 and 18, we show how they can be used to deduce Proposition 6.

Proof of Proposition 6. The assertion involving ED
s,ε,1 is clear since the unique dead end can only occur in

the right boundary of D. Indeed, the probability that X(s) does not contain points close to the right boundary
of sD, decays exponentially in s. In order to deal with ED

s,ε,2, we first consider the auxiliary event ED−
s,ε,2 =

{Γ−,s(Xi) ⊂ ZD
g(s)(Xi) for all Xi ∈ X(s)}, where g(s) = s1−1/(64d) and assert that ED−

s,ε,2 ⊂ ED
s,ε,2 ∪⋃3

i=1E
(i)
s . In order to prove this assertion, we assume that the eventED−

s,ε,2∩
(⋃3

i=1E
(i)
s

)c
occurs. It suffices

to show under this event that whenever Xi ∈ X(s) is such that Xi ∈ sD \D−,s, then Γ(Xi)∩ (sD)εs = ∅.
Suppose the contrary and let Xi2 ∈ X(s) be the first point in Γ(Xi) such that Xi2 ∈ (sD)εs. Moreover, let
Xi1 be the first point on Γ(Xi) such that Γ[Xi1 , Xi2 ] ⊂ (sD)εs/2. Then, the vertical deviation of the subpath

from Xi1 to Xi2 is larger than εs/4, which contradicts the occurrence of ED−
s,ε,2. This construction is illustrated

in Figure 7.

∂(sD)

∂D−,s

∂((sD)εs/2)

∂((sD)εs)

Xi

Γ(Xi)

Xi1

Xi2

FIGURE 7. Behavior of trajectories close to the boundary of sD

Hence, by Lemmas 14, 15 and 18, it remains to show that 1− P(E
D−
s,ε,2) ∈ O(s−2d). First, we observe that if

Xi ∈ X(s) ∩D−,s is such that Γ−,s(Xi) 6⊂ ZD
s1−1/(64d)(Xi), then V (Γ−,s(Xi)) ≥ s1−1/(32d). Therefore,

Lemma 16 yields that

1− P(E
D−
s,ε,2) ≤ P

(
sup

Xi∈X(s)∩D−,s
V (Γ−,s(Xi)) ≥ s1−1/(32d)

)
≤ P(E(1)

s ∪ E(2)
s ∪ E(3)

s ) + P
(

(E(3)
s )c ∩

{
sup

Xi∈X(s)∩D−,s
#s,bΓ−,s(Xi) ≥ s1−9/(16d)

})
.

By Lemmas 14, 15 and 18, the first summand is of order O(s−2d). For the second, we may condition on X(s)

to deduce from Lemma 17 that

P
(
(E(3)

s )c ∩
{

#s,bΓ−,s(Xi) ≥ s1−9/(16d) for some Xi ∈ X(s) ∩D−,s
})

≤ E
(
1{(E(3)

s )c}
∑

Xi∈X(s)∩D−,s

P(#s,bΓ−,s(Xi) ≥ s1−9/(16d)|X(s))
)

≤ exp(−
√
s)E#X(s).

Since for large s the last expression is of order O(sdexp(−
√
s)), we conclude the proof. �

Now it remains to prove Lemmas 17 and 18. We begin with the first one. As an important auxiliary result, we
show that conditioned onX(s), sites are s-good with high probability. LetL denote the global Lipschitz constant
of λ.
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Lemma 19. Almost surely, for every z ∈ Zd with s′z ∈ D−,s it holds that

1− P(Hs,z|X(s)) ≤ L
√
d3d+1s−1/4.

Proof. In the canonical coupling the event Hs,z expresses that

X ∩ {(x, u) : x ∈ Q3s′(s
′z) and λ(s)(x) ≤ u ≤ λs,z} = ∅.

Conditioned on X(s) the number of points in the left-hand side is a Poisson random variable whose parameter
is bounded above by (λs,z − λs,z,min)3d

√
s, where

λs,z,min = min
{
λ(s)(x) : x ∈ Q3s′(s

′z)
}
.

Since λ is locally Lipschitz, we obtain that almost surely,

1− P(Hs,z|X(s)) ≤ L
√
d3d+1s−1/2+1/(2d).

We conclude the proof by observing that −1/2 + 1/(2d) ≤ −1/4. �

Now, we can complete the proof of Lemma 17.

Proof of Lemma 17. First, we note that conditioned on X(s) the process of s-good sites is 3-dependent with
respect to the sub-cubes with side length s′. More precisely, using a standard construction in dependent per-
colation, we let γ = {z ∈ Zd : Qs′(s

′z) ∩ Γ 6= ∅} be the discretization of Γ and define Mi = zi + 3Zd,
where zi ∈ Zd can be chosen such that {M1, . . . ,MK} is a partition of Zd for K = 3d.

Hence, for every i conditioned on X(s) the process of s-good sites is an independent site process on γi =
γ ∩ Mi. Moreover, by Lemma 19, conditioned on X(s) the probability for a site to be s-bad is of order
O(s−1/4). Let #bγ denote the number of bad sites in γ then, having shown Lemma 19, we may now ap-
ply the Binomial concentration inequality [17, Lemma 1.1]. This implies that almost surely under the event
{#Γ ≤ 3d+1s(s′)−1} we have that

P(#s,bΓ ≥ s1−5/(8d)|X(s)) ≤
K∑
i=1

P(#bγi ≥ K−1s1−5/(8d)|X(s)) ≤ exp(−
√
s). �

The proof of Lemma 18 is based on two main ideas. First, we use a percolation-type argument to show that
in most of the cubes that are intersected by a trajectory, the point process X(s) cannot be distinguished from
a homogeneous Poisson point process. Second, we use the fluctuation results from [1] to show that the total
number of such cubes is of order O(s1−1/(2d)).

From now on, we consider paths in the graph Zd with edges between sites of d∞-distance 1.

Lemma 20. Let E
(4)
s denote the event that there exists a finite connected set γ in Zd such that

(i) #γ ≥
√
s,

(ii) s′z ∈ D−,s holds for every z ∈ γ,
(iii) the number of s-good sites intersected by γ is at most #γ/2.

Then lims→∞ P(E
(4)
s ) = 0.

Proof. Since the process of s-good sites is a 3-dependent percolation process, Lemma 19 allows us to ap-
ply [14, Theorem 0.0]. Hence, the process of s-good sites is dominated from below by a Bernoulli site perco-
lation process with probability p ∈ (0, 1) for open sites. Moreover, p can be chosen arbitrarily close to 1 if
s is sufficiently large, so that the claim reduces to a standard problem in Bernoulli percolation theory. For the
convenience of the reader, we provide some details on the solution of this problem. For a fixed connected set γ
the probability that γ contains at least #γ/2 bad sites is at most 2#γ(1− p)#γ/2. Moreover, by [17, Lemma

9.3], the number of connected sets containing k ≥ 1 sites is bounded above by sd23dk. Therefore,

P(E(4)
s ) ≤ sd

∑
k≥√s

23dk2k(1− p)k/2,
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which is of order O(s−2d), provided that p is chosen sufficiently close to 1. �

Finally, we need an elementary deterministic result giving an upper bound on the number of s-good cubes of a
path in terms of its horizontal extent.

Lemma 21. Suppose that (E
(1)
s ∪E(2)

s )c occurs and letXi ∈ X(s) be arbitrary. Furthermore, letXend ∈ X(s)

be the end point of Γ−,s(Xi). Then, π1(Xend −Xi) ≥ 3−d−2s′#s,gΓ−,s(Xi).

Proof. Let γ be a subset of s-good sites whose cubes are intersected by Γ−,s(Xi) such that every pair of
distinct sites in γ is of d∞-distance at least 3 and #γ ≥ 3−d#s,gΓ−,s(Xi). Writing k = #γ and γ =
{z1, . . . , zk}, we now define subpaths Γ1, . . .Γk of Γ, where the starting point Xj,0 of Γj is the first point
of Γ that is contained in the cube Qs′(s

′zj). Starting from that point, Γj is the longest subpath of Γ that is

contained in the left half-space (−∞, π1(s′zj) + s′) × Rd−1. Since the events E
(1)
s and E

(2)
s do not occur,

we conclude that these subpaths are disjoint and, moreover, that π1(Xj,end − Xj,0) ≥ s′/4, where Xj,end

denotes the endpoint of Γj . Combining these lower bounds shows that

π1(Xend −Xi) ≥ s′

4 #γ ≥ 3−d−2s′#s,gΓ−,s(Xi), �

Using Lemma 20 and Lemma 21, the proof of Lemma 18 is now elementary.

Proof of Lemma 18. We claim that E
(3)
s ⊂ E

(1)
s ∪ E(2)

s ∪ E(4)
s . Indeed, assume that the complement of the

event E
(1)
s ∪ E(2)

s ∪ E(4)
s occurs. In order to derive a contradiction, we assume that there exists Xi ∈ X(s)

such that #sΓ−,s(Xi) ≥ 3d+3s(s′)−1. Since the complement of the event E
(4)
s occurs, we obtain that

#s,gΓ−,s(Xi) ≥ 1
2#sΓ−,s(Xi) ≥ 3d+2s(s′)−1.

In particular, Lemma 21 would then imply that π1(Xend −Xi) ≥ s. But this is impossible, since both X1 and
Xend are contained in sD, a cube of side length s. �
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