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Abstract 

We discuss the nonconvex optimal shape design problem of minimiz-
ing the weight of a loaded beam subject to deflection constraints. We 
associate to it a convex minimization problem which will play the role 
of a dual. The algorithm we propose has a global character and iterates 
between the two optimization problems via a so called "resizing rule". 

1 Introduction 

We consider the classical example of a beam, with various boundary conditions 
(see Haslinger and Neittaanmaki [3], Casas [1]): 

(bu3y")" f . ]O 1[ In ' ' 
y(O) = y(l) - 0, 

y" ( 0) = y" ( 1) 0; 

y(O) y' (0) = 0, 
y" (1) - (bu3y")' (1) = O; 

y(O) 
y'(O) 

y(l) = 0, . 
- y'(l) = O; 

(1) 
(2) 
(3) 

(1.2') 
(1.3') 

(1.2") 
(1.3") 

where u( x) denotes the thickness of the beam, y is the deflection, f :S 0 is the 
load, and b > 0 is a material coefficient. 

Th.e boundary value problem (1) - (3) models a simply supported beam, (1) 
+ (2'), (3') corresponds to a cantilevered beam, and (1) + (2" ), (3") represents 
a clamped beam. 

A typical optimal shape design problem is to minimize the weight of the 
beam, 

1 

Min j u(x) dx 
0 

1 

(1.4) 



subject to various constraints on u, y. Here, we require that the thickness 
u E L00 (0, 1) should stay between some prescribed limits, 

0 :=:; a :=:; u( x) :=:; M, a.e. in ]O, 1 [, (1.5) 

and that the deflection should exceed a given value (r > 0): 

y(x) ~ -r in [O, l]. (1.6) 

Other variants will be considered as well. The above formulation is obtained 
after scaling the variable domain represented by the beam itself onto a fixed 
domain. This is the mapping method due to Murat and Simon [10], and the 
function describing the initially variable geometry enters in the coefficients 
of the differential ~quation (i.e., u is the·thickness of the beam). We refer 
to Haslinger, Neittaanmaki and Tiba [4] or Tiba [13] for other examples of 
this kind. Let us also mention that there are many alternative approaches to 
optimal shape design problems; we only quote here the controllability method 
of Tiba [14], Tiba and Neittaanmaki [16], the classical boundary variation 
technique Pironneau [12], Haslinger and Neittaanmaki [3], etc. From the point 
of view of num~rical ·approximation, various finite element schemes have been 
proposed, and a recent improvement of the convergence properties is due to 
Hlavacek [ 6], [7]. 

Since the mapping u i-+ y, as defined by (1.1)-(1.3), is highly. nonlinear, 
the optimization problem (1.1)~(1.6) is nonconvex. This is one of its main 
difficulties. In this setting, duality theory is not yet completely clarified, al-
though there are several notable cases and approaches as those of Toland [17], 
Lindberg [8], Vinter [18] and Young [20], as well as some very good surveys 
due to Hiriart-Urruty [5], Outrata and Jarusek [11], Mannikko [9]. 

The method proposed here is a duality-type approach in the sense that 
we associate with the optimization problem (1.1)-(1.6) another minimization 
(optimal control) problem which is easier (convex) and will give relevant infor-
mation for (1.4). However, our idea is different from the previously mentioned 
work and is not inspired by the convex duality_ theory. Our starting point is 
the simple mechanical intuition that if a given thickness ·u is not optimal for 
(1.1)-(1.6), then the load f may be increased~ Therefore, we define a dual-type 
problem (associated to (1.1)-(1.6) and to u) where another parameter - the 
load f - can be varied: 

Min t f(x) dx, (1.7) 
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(bu3y")" f in ]O, 1[, (1.8) 
y(O) = y(l) 0, (1.9) 

y" ( 0} = y" ( 1) 0, (1.10) 
f < 0 a.e. in [O, 1], (1.11) 

y(x) > -r in [O, 1 J. (l.12) 

It is understood that the boundary conditions (2'), (3'), or (2"), (3"), can 
be used alternatively in place of (2), (3). 

In t.he following sections the relationship between the two problems will be 
explored and an algorithm will be given. A numerical example is thoroughly 
investigated in Section 4. 

Let us also point out that neither the existence of optimal pairs for the 
problem (1.1)-(1.6) nor for the problem (1.7)-(1.12) can be guaranteed, in 
general, and will be assumed in the sequel. If in (1.5) some boundedness on 
u' is required (or in (1. 7) ·some coercivity with respect to f) then existence 
results are known to hold. 

Our method is partially comparable with -the Fully Stressed Design (FSD) 
approach used by engineers which is discussed, for instance, in [2, Ch. 9]. 

2 The Simply Supported Beam 

As it is standard in the literature, we shall denote the problem (1.1)-(1.6) by 
(P) (primal) and the problem (1.7)-(1.12) by (D) (dual). 

Definition 2.1 (a) An admissible control u for (P) is called extremal iff for 
any u ::; u a.e. [O, 1], u admissible for (P), it holds u = u a.e. in [O, 1]. 
(b) An admissible control f for (D) is called extremal iff for any f::; f a.e. in 
[O, 1], f admissible for (D), it holds f = f a.e. in [O, l]. 

Proposition 2.2 If u is a local minimizer for (P) and f t 0, then u is 
extremal for (P). 

Proof. Assume that u is not extremal for (P), that is, there is some u ::; u, 
u =f. u, which is feasible for (P). Let i), y be the states associated with u, u, 
respectively, via (l.1)~(1.3). Then 

b-3(- -)" b-"(-3 -3) u y-y = y u -u . 
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Since f :::; 0, f t 0, then (1.1), (1.3) show that bu3f/' > 0, bu3y" > 0 in 
]O, 1[ and (2.1) yields similarly that f) <yin JO, l[. 

Let U>. = >.u + (1 - >.)u, >. E [O, 1], and let Y>. denote the corresponding 
solution to (1.1 )-(1.3). 

Then 

u :::; U>. :::; fl, V).. E [O, 1], a.e. x E [0, 1], 
u-/= U>. -/= fl, \:/).. E]O, l[, 
f) < Y>. < y, V>. E]O, 1[, Vx E]O, 1[, 

that is, U>. is feasible for (P), for all >. E [O, 1 J. 
Notice that, in general, a convex combination of two admissible controls for 

(P) may be no longer admissible. Here, the admissibility remains valid since 
u, fl are comparable. 

Obviously, U>. -t fl strongly in £ 00 (0, 1) for >. -t 0, and 

l U>,(x)dx < l u(x)dx, V>. > 0. 

This contradicts the local minimum property of u, and the proof is finished. 

Since the problem (D) is convex, it may have only global minimum points, 
and the statement corresponding to Proposition 2.2 is obvious. 

Theorem 2.3 (a) If f t 0 is extremal for (D) with a :::; fl :::; M, then fl is 
extremal for. (P). 
(b) If fl is extremal for (P) and a = 0, then f is extremal for (D) if f :::; 0, 
f i= 0. 

Proof (a) By hypothesis, we see that fl satisfies the control constraints and 
(1.12) shows that fl is admissible for (P). 

We notice that if f is extremal for (D) then it follows that there is some 
x0 E JO, 1[ such that y(x0 ) = -r. Otherwise, there is some c E ]O, r[ with 
y(x) ~ -r+c-, Vx E [O, 1], where 'f} is the solution to (1.8)-(1.10) corresponding 
to f (and to fl, in fact). Then 

(b -3 -11 r ) " f r uy ·-- = -- m 
r-c r-c JO, 1[, 

and _r_f is admissible for (D).Since ft 0, we have _r_f:::; f:::; 0 with -r-c- r-c-
_r_f -/= f, which contradicts the extremality of f. 
r-c 
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Now, let us prove that u is extremal for (P). Assume that u with u :s; u, 
u-=/= u, is admissible for (P), and let by y, y denote the corresponding solutions 
to(l.1)-(1.3). Then 

· bii3 y" = bu 3 y" > O in JO, 1 [, 

and therefore y" > 0, y" > 0, u > 0, u > 0 in JO, l[. That is (see (2.1)), 

and we obtain y < y in ]O, 1[ which contra~icts the admissibility of u and 
y(xo) = -r. 

(b) Again, the hypothesis yields that f is admissible for (D). Moreover, if u 
is extremal for (P) and y is the associated state, then there is some x0 E JO, 1[ 
such that y(x0 ) = -r. Indeed, otherwise there would be some c E JO, r[ such 
that y(x) ;?:: -r + c for any x E [O, lJ. Then 

(br - c u3-r-y") 11 

= f in ]O, 1[, 
r r-c (2.2) 

[r -r cy-, (r -r c) ~u-] and the pair ~ is admissible for (P), since a = 0. But 

C ~ '°) t U :::; u and C ~ '°) t U ~ U, since we may assume that U "f. 0 by 
f t 0. This contradicts the extremality of u, and thus the existence of some 
x 0 E ]O, 1[ with the desired property is proved. 

Now, if j with j :s; f, j-=/= f, is admissible for (D) and y is the associated 
state, we have 

(bu3 (y - y)")" = f - J 2:: o, 
that is, bu3 (y - y)" < 0 in JO, 1[, and y(x) < y(x), x E ]0,1[ which contradicts 
the admissibility of} and y(x0 ) = -r. This shows that f is extremal for (D) 
and the proof is finished. D 

Remarks: 1) The pre.vious proof shows that the extremality of u or f in 
(P), (p) yields that the associated stat.e is active with respect to ~he state 
constraint.' 

2) We also notice that admissible controls u cannot attain the value 0 in 
J 0, 1 [ , even in case b), if f t. 0. This is again a direct consequence of the 
maximum principle ,as shown in the above proof. 
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3) Another simple consequence of the above argument is that in order to 
obtain an ·extremal f starting from an admissible one for the problem (D) it 
is enough to multiply the state equation by an appropriate positive constant, 
k = - . r ( ) , where y is the corresponding state. If a = 0, a similar 

mmxE[0,1] Y X 

argument may be used for (P), as suggested in (2.2). 
Next, we indicate an approximation procedure for the problem (P) in the 

case that a = 0, M = +oo and f t 0. An integrability assumption on u-3 has 
to be imposed which will be explained in the next section. 

Algorithm 2.4 
1. Let n = 0, and let u0 be an admissible control for (P). 

2. Solve Min (Dn), corresponding to the coefficient Un, and denote the min-
imizer by fn. 

3. If fn = f (or fn - f is "small"), then .STOP! Otherwise, 

4. ("Resizing Step") define u~+l := u~ ..!!_; and n := n + 1, GO TO ·2. 
gn 

Here, g, gn are associated to f, f n, respectively, through g" = f, g~ = f n 
in JO, 1[, with zero boundary conditions. Obviously, we have f n t 0 and this 
gives gn > 0 in ]O, l[. 

Moreover, Hopf's lemma implies that g'(O) > 0, g~(O) > 0, as well as g'(l) < 
0, gn(l) < 0. Hence, by !'Hospital's rule, the limits lim g((t)) and lim g((t)) 

· t~O+ gn t t~l- gn i 
exists and are positive. 
Consequently, the funct!ons g / gn are continuous and everywhere positive on 
[O, l]. 

1) The previous results show that each Un is extremal for (P) since the state 
constraint will be active. The algorithm has a global character and convergence 
can be expected only in special cases as the examples show. 

2) If a > 0 or M < +oo, then Step 4 should include a projection of the 
control on its constraint set. In Step 1 a local II1inimization routine for (P) 
may be added, as well. 

3) We notice that in each step of the algorithm a new "dual" problem (Dn) 
is used, depending o~ the coefficient Un. 

4) The first three steps of the algorithm give a test for other solution meth-
ods for the problem (P) in order to see how accurate the obtained solution 
is. 
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5) The stopping criterion is equivalent to the test Un = Un+l and has the 
meaning that the algorithm cannot, be continued. However, this is not the case 
with respect to the equality 'f n = f n+l which just says that u~ = Un+l · Un-l· 

In the applications other types of stopping criterions are used. 

In the final part of this section, we comment briefly on the cantilevered 
beam, i.e. on the boundary conditions (1.2'), (l.3'): Since a variant of the 
maximum principle is valid under these Cauchy type conditions (Weinberger 
and Protter [19, Ch.I]), this case behaves similarly as the simply supported 
beam. We note that under negative load the state constraint always may be-
come active just in x = 1. In the Step 2· of the Algorithm 2.4, it is conceptually 
possible that fn = 0 in [s, 1] for some s E]O, 1[, although the control constraint 
has a maximum in 0. If this is the case, then 9n defined by Step 4, will satisfy 
9n . 0 in [ s, 1], and the resizing Step 4 will become impo~sible. 

To avoid this situation, one can refine the definition of the dual problem 
(Dn) by imposing the control constraint 

where hn < 0 a.e. in [O, 1 ]] . This can be interpreted as taking the load of the 
beam itself into account. For instance, we may take hn = -{}un, where {) > 0 
denotes the density of the materiaL 

3 The Clamped Beam 

We begin with a comparison result for the solution to the boundary value 
problem 

(bu3y")" 
y(O) = y(l) 

y., ( 0) = y' ( 1) 

-
-
-

f 
0, 
0, 

in JO, 1[, (3.1) 
(3.2) 
(3.3) 

where f E L 2 (0, 1), and where u 2::: 0 is such that u\ E L 2 (0, 1); bis a positive 
constant. Then the solution y belongs to W€'2 (0, 1) with u3y" E W 212 (0, 1), 
and y is uniquely determined. 

Theorem 3.1 If f :::; 0 in [O, 1] then y:::; 0 in [O, l]. 
Proof. We denote g := bu3y", which is a concave C1-mapping in [O, 1]. 

Hence, g may change sign at most twice in [O, 1], that is, it may have at most 
two distinct roots in ]O, 1[, unless it is identically zero in some subinterval. 
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Assume first that g has exactly two roots 6, 6 such that 0 < 6 < 6 < 1. 
Then, again by the concavity, g (and y") is positive in ]6, 6[ and negative 
in ]O, 6[U]6, l[. Furthermore, this shows that y is concave in [O, 6], [6, 1] and 
convex in [6, 6] respectively. Taking the boundary conditions (3.2), (3.3) into 
account, we obtain that y :::; 0 in [O, l]. If g = 0 in [6, 6], then y" = 0 
in [6, 6] and thus y(x) = mx + n with suitable m, n E lR, in [6, 6]. We 
infer that y'(6) = y'(6) = m, but this contradicts Hopf's lemma (Weinberger 
and Protter· [19, Ch. I], Theorem 2), applied to [O, ei] and [6, 1] respectively, 
.which gives strictly opposite signs for y'(6) and y'(6)'. Hence this situation is 
impossible. 

Next, assume that g has just one root e such that 0 < e < 1. Then, the 
·Concavity of g yields that g (and y") changes sign in e or, otherwise, that g ::=£ 0 
in [O, 1] and e is a maximum point for g. Let us assume firs~ that g (and y") 
is positive in [O, e[ and negative in Je, 1]. We infer that y is convex in [O, eJ and 
concave in [e, 1] and the boundary conditions show y :::; 0 in [O, e], y :::; 0 in 
[~, l]. Since y is continuous, it follows y(e) = 0, and the convexity properties 
of y imply that y = 0 in [O, 1], that is, g = 0 in [O, 1], which contradicts 
the. starting assumption. The situation is similar when the opposite signs are 
assumed. 
It remains to consider the case when g has constant sign, (which also includes 
the second subcase from above). Then, unless y and g vanish identically, we 
get a contradiction to Hopf's lemma and the boundary condition (3.3). This 
concludes the proof of the assertion. D 

Remark: The only possible situation is that g changes sign twice in [O, 1], 
unless g = 0. This result is not a consequence of sucessive applications of the 
maximum principle for second order equations, since owing to the boundary 
conditions, the maximum principle does not apply directly to y". We now 
define the problems (P) and (D) as in Section 2 where the boundary condi-
tions are replaced by (1.2"), (1.3"). The duality-type algorithm has the same 
structure as in 2.4., with the resizing step modified according to the properties 
of the solution y and of g. 

Algorithm 3.2 

1. n = 0 , u0 admissible for (P); 

2. Min (Dn) gives Yn, f n; 
3. If f n = f (or f n - f is small), then STOP! otherwise, 

4. ("Resizing Step") 

a) compute the roots e1, ~~ of 9n = bu~ y~·, 
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/3) define 9n as follows: 

. {· g~ = f in ] 0' er[, 
i) 9n(er) = o , §~(er-) = 9~(e1+ ); 
ii) . ~n -n ~n ~1 's.2 ' 

{ 

-11 - J · ] en tn [ 

9n(e1) = 9n(e2) = O; 

... ) { g~ = f ' in ] e2' 1 [, 
lll 9n ( e2) = 0 ' g~ ( e2 +) = g~ ( e2-) 

) · b 3 _ 3 §n. "( resize Un y Un+l - Un - , 
9n 

and n := n + 1 , GO TO 2. 

Remarks: 1) One has to solve part ii) first, and afterwal:'ds parts i) and iii), 
in Step 4, /3). Since f n ~ 0, it follows that 9n has the properties derived in the 
proof of Theorem 3.1, and it is 'Very easy to see that g is 0 1 and has. the same 
sign as 9n· Therefore Un+l 2:: 0, and the significance of the resizing Step 4 is 
that (as before) 

(bu~+iY~)" = f 
(we return to the right-hand side f and iterate). 
2) The resizing step gives in fact the solution of an identification problem, since 
we know for the boundary value problem (1.1), (1.2"), (1.3") that Yn should 
be the solution, and we have to find the coefficient Un+i· From this point of 
view the above algorithm may be directly extended to very ge.neral situations. 
3) If ~r, e2 are known then 9n may be alternatively defined by g~ = f n in ]O, 1[ 
and 9n(er) = 9n(e2) - 0. If f ¥=- 0 a.e. in ]O, 1[, then Hopf's lemma implies 
that in a neighborhood of er, G it holds 

9n(x) rv ki(x - er) , i = 1, 2, 
9n(x) rv ki(x - ~f) , i = 1, 2, 

- 9n · 1 2 . 1 with ki ¥=- 0. Thus, -=- E L00 (0, 1) for any n, and hence - 3- EL (0, 1) if 3 E 
9n Un+l Un 

L2 (0, 1). Therefore, the algorithm will preserve the integrability properties of 
the control. 
4) It is not clear whether a comparison result of the type "O < u1 (x) ~ u2 (x) 
a.e. [O, 1] :::? y1(x) ~ y2(x)" is valid. Therefore, we state the definition of 
extremality implicity on the state, and not directly on the control as in the 
previous section. 
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Definition 3.3 An admissible control u for (P) is called extremal iff the 
state constraint is active for the corresponding solution y to (3.1), (3.2), (3.3). 

Proposition 3.4 Any local minimizer of (P) is extremal for (P). 

Proof. Otherwise, there is some ,\ > 1 such that ,\y(x) 2:: -r in [O, 1] and 
the pair [,\-iu, ,\y] is admissible, since 

But ,\-iu < u in ]0,1[ and, for,\~ 1,,\-iu belongs to any neighborhood of 
u. This contradicts the fact that u is a local minimum for (P). D 

Corollary 3.5 For n 2:: 1, the sequence { un} generated by the Algorithm 
3.2 consists of extremals for the problem (P). 

Proof. We just have to confirm that the optimal pair [Yn, fn] for (Dn) is 
active with respect to the state constraint. Indeed, otherwise .there is some 
,\ > 1 such that the pair [,\yn, ,\fn] is admissible for (Dn) and, in addition 
f0

1 Afn(x)dx < f0
1 fn(x)dx, since fn ~ 0, fn # 0. This contradicts the optimal-

ity of fn· D 

4 Numerical Experiments 

We have only studied the case of a simply supported beam. To this end we 
divided the ,interval [O, 1] into 32 equal elements and we considered two basic 

examples, namely f(x) = -48, x E [O, 1], and f(x) = -48 in [O, ~], f(x) = 0 in 
. 2 

]~, 1], which we shall denote subsequently as (P1) and (P2). The initial guess 
was always u0(x) = 3, x E [O, 1], which is admissible for both (P1 ) and (P2}, 

as can easily be verified by hand if we put b = 1 and assume the constraints: 

0 ~ u(x) < oo, 
(a) y(x) 2:: -0.33, (b) y(x) 2:: -0.5. 

(4.2) 
(4.3) 

While the constraint ( 4.2) never became active by the very nature of the 
problem (P), the constraint (4.3) (a) or (b) was· active at any time, since the 
algorithm was generating extremals in each iteration except the initial one. 
For the treatment of ( 4.3), we used a standard penalization technique, i.e. we 
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added to the cost functional in (P) or in (D) the term 

1 1 -; j (y + r)~ (x)dx, (4.4) 
0 

where, c > 0 is "small" and r = -0.33 or r = -0.5. The typical choice was 
c = 10-5 or c = 10-s, and this approach allowed for some minor violations of 
the state constraint in several points of the grid. The experiments have shown 
that the result depends on the choice of c, which is an undesirable perturbation 
of the original algorithm, and more refined techniques for dealing with state 
constraints like the augmented Lagr,angian method or the variational inequality 
approach (see Tiba and Neittaanmaki [15]) will have to be tested as well. 

We have all the time compared our algorithm with the standard descent 
·method provided by the NAG library applied directly to (P) (which we also 
use in Step 2 for problem (D)). As the following table shows, the volume of 
the beam provided by our algorithm was at any time slightly smaller than the 
one obtained by the standard descent method. 

· Table 4.1. Volume of the beam (c = 10-5) 

Problem r Standard method Dual method 
P1 -0.33 1.0759 1.0313 
P1 -0.5 0.9368 0.9277 
P2 -0.33 0.8301 0.8256 

Slightly larger violations of the state constraint were observed in the dual 
approach. The stopping test which was used is related to the descent property 
of the algorithm. Since the problems are nonconvex and the proposed algo-
rithm has a global character, some oscillations of the cost may occur, and we 
stop when the descent property is violated for the first time. 

We have also tested the behaviour of the algorithm after the descent prop-
erty has been violated. In the case of the problem (P1) we obtained convergence 
in all experiments, that is, the criterion f n = f (or, equivalently, Un = Un-i) 

was fulfilled after a finite number of steps. , However, the obtained limit Un 

is just an extremal for (P), not optimal, and is hard to interpret. Moreover, 
this property is no longer valid for the nonsymmetric case (P2). In general, 
the thickness of the beam was decreased in three to four steps until the opti-
mum is achieved; then another mechanical property is put into evidence: due 
to the boundary conditions (simply supported beam), the force acting on the 

. boundary elements may b.e very large, and the resizing Step 4 gives a very thin 
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beam near the boundary points. In order to satisfy the deflection constraints, 
on the contrary, the beam has to be thicker in the interior region, and so the 
total volume of the beam is increased in this second part of the algorithm. 
The resulting beam has the property that its coincidence set (where the state 
constraint is "approximately" active) becomes bigger and bigger, almost the 
whole interval [O, 1] in some experiments. 

Suggested by this observation, we have introduced a perturbation Un+i -+ 
Un+l + 8 in Step 4. We used 8 = 0.3, and this trick avoided that the algorithm 
degenerated in its second phase. So, only normal small oscillations of the cost 
around the minimal value were observed, and repeating the example (P2 ) in 
this way, we obtained a decrease of the volume of the beam down to 0.7956. 
The stopping test here was simply a preassigned number of iterations, namely 
20. The volume 0.8035 was obtained already in the fifth iteration. 

Acknowledgement The numerical tests were performed with the help of 
Ph.lic. T. Raisanen from the Laboratory of Scientific Computing, Department 
of Mathematics, University of Jyvaskyla, Finland. 
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